diffusers 0.33.0__py3-none-any.whl → 0.34.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +48 -1
- diffusers/commands/__init__.py +1 -1
- diffusers/commands/diffusers_cli.py +1 -1
- diffusers/commands/env.py +1 -1
- diffusers/commands/fp16_safetensors.py +1 -1
- diffusers/dependency_versions_check.py +1 -1
- diffusers/dependency_versions_table.py +1 -1
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/hooks/faster_cache.py +2 -2
- diffusers/hooks/group_offloading.py +128 -29
- diffusers/hooks/hooks.py +2 -2
- diffusers/hooks/layerwise_casting.py +3 -3
- diffusers/hooks/pyramid_attention_broadcast.py +1 -1
- diffusers/image_processor.py +7 -2
- diffusers/loaders/__init__.py +4 -0
- diffusers/loaders/ip_adapter.py +5 -14
- diffusers/loaders/lora_base.py +212 -111
- diffusers/loaders/lora_conversion_utils.py +275 -34
- diffusers/loaders/lora_pipeline.py +1554 -819
- diffusers/loaders/peft.py +52 -109
- diffusers/loaders/single_file.py +2 -2
- diffusers/loaders/single_file_model.py +20 -4
- diffusers/loaders/single_file_utils.py +225 -5
- diffusers/loaders/textual_inversion.py +3 -2
- diffusers/loaders/transformer_flux.py +1 -1
- diffusers/loaders/transformer_sd3.py +2 -2
- diffusers/loaders/unet.py +2 -16
- diffusers/loaders/unet_loader_utils.py +1 -1
- diffusers/loaders/utils.py +1 -1
- diffusers/models/__init__.py +15 -1
- diffusers/models/activations.py +5 -5
- diffusers/models/adapter.py +2 -3
- diffusers/models/attention.py +4 -4
- diffusers/models/attention_flax.py +10 -10
- diffusers/models/attention_processor.py +14 -10
- diffusers/models/auto_model.py +47 -10
- diffusers/models/autoencoders/__init__.py +1 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +4 -4
- diffusers/models/autoencoders/autoencoder_dc.py +3 -3
- diffusers/models/autoencoders/autoencoder_kl.py +4 -4
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +4 -4
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +6 -6
- diffusers/models/autoencoders/autoencoder_kl_cosmos.py +1108 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +2 -2
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +3 -3
- diffusers/models/autoencoders/autoencoder_kl_magvit.py +4 -4
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +3 -3
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +4 -4
- diffusers/models/autoencoders/autoencoder_kl_wan.py +256 -22
- diffusers/models/autoencoders/autoencoder_oobleck.py +1 -1
- diffusers/models/autoencoders/autoencoder_tiny.py +3 -3
- diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
- diffusers/models/autoencoders/vae.py +13 -2
- diffusers/models/autoencoders/vq_model.py +2 -2
- diffusers/models/cache_utils.py +1 -1
- diffusers/models/controlnet.py +1 -1
- diffusers/models/controlnet_flux.py +1 -1
- diffusers/models/controlnet_sd3.py +1 -1
- diffusers/models/controlnet_sparsectrl.py +1 -1
- diffusers/models/controlnets/__init__.py +1 -0
- diffusers/models/controlnets/controlnet.py +3 -3
- diffusers/models/controlnets/controlnet_flax.py +1 -1
- diffusers/models/controlnets/controlnet_flux.py +16 -15
- diffusers/models/controlnets/controlnet_hunyuan.py +2 -2
- diffusers/models/controlnets/controlnet_sana.py +290 -0
- diffusers/models/controlnets/controlnet_sd3.py +1 -1
- diffusers/models/controlnets/controlnet_sparsectrl.py +2 -2
- diffusers/models/controlnets/controlnet_union.py +1 -1
- diffusers/models/controlnets/controlnet_xs.py +7 -7
- diffusers/models/controlnets/multicontrolnet.py +4 -5
- diffusers/models/controlnets/multicontrolnet_union.py +5 -6
- diffusers/models/downsampling.py +2 -2
- diffusers/models/embeddings.py +10 -12
- diffusers/models/embeddings_flax.py +2 -2
- diffusers/models/lora.py +3 -3
- diffusers/models/modeling_utils.py +44 -14
- diffusers/models/normalization.py +4 -4
- diffusers/models/resnet.py +2 -2
- diffusers/models/resnet_flax.py +1 -1
- diffusers/models/transformers/__init__.py +5 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +70 -24
- diffusers/models/transformers/cogvideox_transformer_3d.py +1 -1
- diffusers/models/transformers/consisid_transformer_3d.py +1 -1
- diffusers/models/transformers/dit_transformer_2d.py +2 -2
- diffusers/models/transformers/dual_transformer_2d.py +1 -1
- diffusers/models/transformers/hunyuan_transformer_2d.py +2 -2
- diffusers/models/transformers/latte_transformer_3d.py +4 -5
- diffusers/models/transformers/lumina_nextdit2d.py +2 -2
- diffusers/models/transformers/pixart_transformer_2d.py +3 -3
- diffusers/models/transformers/prior_transformer.py +1 -1
- diffusers/models/transformers/sana_transformer.py +8 -3
- diffusers/models/transformers/stable_audio_transformer.py +5 -9
- diffusers/models/transformers/t5_film_transformer.py +3 -3
- diffusers/models/transformers/transformer_2d.py +1 -1
- diffusers/models/transformers/transformer_allegro.py +1 -1
- diffusers/models/transformers/transformer_chroma.py +742 -0
- diffusers/models/transformers/transformer_cogview3plus.py +5 -10
- diffusers/models/transformers/transformer_cogview4.py +317 -25
- diffusers/models/transformers/transformer_cosmos.py +579 -0
- diffusers/models/transformers/transformer_flux.py +9 -11
- diffusers/models/transformers/transformer_hidream_image.py +942 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +6 -8
- diffusers/models/transformers/transformer_hunyuan_video_framepack.py +416 -0
- diffusers/models/transformers/transformer_ltx.py +2 -2
- diffusers/models/transformers/transformer_lumina2.py +1 -1
- diffusers/models/transformers/transformer_mochi.py +1 -1
- diffusers/models/transformers/transformer_omnigen.py +2 -2
- diffusers/models/transformers/transformer_sd3.py +7 -7
- diffusers/models/transformers/transformer_temporal.py +1 -1
- diffusers/models/transformers/transformer_wan.py +24 -8
- diffusers/models/transformers/transformer_wan_vace.py +393 -0
- diffusers/models/unets/unet_1d.py +1 -1
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d.py +1 -1
- diffusers/models/unets/unet_2d_blocks.py +1 -1
- diffusers/models/unets/unet_2d_blocks_flax.py +8 -7
- diffusers/models/unets/unet_2d_condition.py +2 -2
- diffusers/models/unets/unet_2d_condition_flax.py +2 -2
- diffusers/models/unets/unet_3d_blocks.py +1 -1
- diffusers/models/unets/unet_3d_condition.py +3 -3
- diffusers/models/unets/unet_i2vgen_xl.py +3 -3
- diffusers/models/unets/unet_kandinsky3.py +1 -1
- diffusers/models/unets/unet_motion_model.py +2 -2
- diffusers/models/unets/unet_stable_cascade.py +1 -1
- diffusers/models/upsampling.py +2 -2
- diffusers/models/vae_flax.py +2 -2
- diffusers/models/vq_model.py +1 -1
- diffusers/pipelines/__init__.py +37 -6
- diffusers/pipelines/allegro/pipeline_allegro.py +11 -11
- diffusers/pipelines/amused/pipeline_amused.py +7 -6
- diffusers/pipelines/amused/pipeline_amused_img2img.py +6 -5
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +6 -5
- diffusers/pipelines/animatediff/pipeline_animatediff.py +6 -6
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +6 -6
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +16 -15
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +6 -6
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +5 -5
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +5 -5
- diffusers/pipelines/audioldm/pipeline_audioldm.py +8 -7
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +23 -13
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +48 -11
- diffusers/pipelines/auto_pipeline.py +6 -7
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +11 -10
- diffusers/pipelines/chroma/__init__.py +49 -0
- diffusers/pipelines/chroma/pipeline_chroma.py +949 -0
- diffusers/pipelines/chroma/pipeline_chroma_img2img.py +1034 -0
- diffusers/pipelines/chroma/pipeline_output.py +21 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +8 -8
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +8 -8
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +8 -8
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +8 -8
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +9 -9
- diffusers/pipelines/cogview4/pipeline_cogview4.py +7 -7
- diffusers/pipelines/cogview4/pipeline_cogview4_control.py +7 -7
- diffusers/pipelines/consisid/consisid_utils.py +2 -2
- diffusers/pipelines/consisid/pipeline_consisid.py +8 -8
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +7 -7
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +8 -8
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +7 -7
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +7 -7
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +14 -14
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +10 -6
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +13 -13
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +14 -14
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +5 -5
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +13 -13
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +1 -1
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +8 -8
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +7 -7
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -10
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +9 -7
- diffusers/pipelines/cosmos/__init__.py +54 -0
- diffusers/pipelines/cosmos/pipeline_cosmos2_text2image.py +673 -0
- diffusers/pipelines/cosmos/pipeline_cosmos2_video2world.py +792 -0
- diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +664 -0
- diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +826 -0
- diffusers/pipelines/cosmos/pipeline_output.py +40 -0
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +5 -4
- diffusers/pipelines/ddim/pipeline_ddim.py +4 -4
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +10 -10
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +8 -8
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +5 -5
- diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
- diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +3 -3
- diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
- diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +2 -2
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +4 -3
- diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +9 -9
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +10 -10
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -8
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -5
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +18 -18
- diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +2 -2
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +6 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +5 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +5 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +5 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -1
- diffusers/pipelines/easyanimate/pipeline_easyanimate.py +4 -4
- diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +4 -4
- diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +7 -6
- diffusers/pipelines/flux/modeling_flux.py +1 -1
- diffusers/pipelines/flux/pipeline_flux.py +10 -17
- diffusers/pipelines/flux/pipeline_flux_control.py +6 -6
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -6
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +6 -6
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +6 -6
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +30 -22
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +2 -1
- diffusers/pipelines/flux/pipeline_flux_fill.py +6 -6
- diffusers/pipelines/flux/pipeline_flux_img2img.py +39 -6
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +11 -6
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +1 -1
- diffusers/pipelines/free_init_utils.py +2 -2
- diffusers/pipelines/free_noise_utils.py +3 -3
- diffusers/pipelines/hidream_image/__init__.py +47 -0
- diffusers/pipelines/hidream_image/pipeline_hidream_image.py +1026 -0
- diffusers/pipelines/hidream_image/pipeline_output.py +35 -0
- diffusers/pipelines/hunyuan_video/__init__.py +2 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +8 -8
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +8 -8
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_framepack.py +1114 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +71 -15
- diffusers/pipelines/hunyuan_video/pipeline_output.py +19 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +8 -8
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +10 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +6 -6
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +34 -34
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +19 -26
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +7 -7
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +11 -11
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +35 -35
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +17 -39
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +17 -45
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +10 -10
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +7 -7
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +17 -38
- diffusers/pipelines/kolors/pipeline_kolors.py +10 -10
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +12 -12
- diffusers/pipelines/kolors/text_encoder.py +3 -3
- diffusers/pipelines/kolors/tokenizer.py +1 -1
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +2 -2
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +2 -2
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +3 -3
- diffusers/pipelines/latte/pipeline_latte.py +12 -12
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +13 -13
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +17 -16
- diffusers/pipelines/ltx/__init__.py +4 -0
- diffusers/pipelines/ltx/modeling_latent_upsampler.py +188 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +51 -6
- diffusers/pipelines/ltx/pipeline_ltx_condition.py +107 -29
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +50 -6
- diffusers/pipelines/ltx/pipeline_ltx_latent_upsample.py +277 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +13 -13
- diffusers/pipelines/lumina2/pipeline_lumina2.py +10 -10
- diffusers/pipelines/marigold/marigold_image_processing.py +2 -2
- diffusers/pipelines/mochi/pipeline_mochi.py +6 -6
- diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -13
- diffusers/pipelines/omnigen/pipeline_omnigen.py +13 -11
- diffusers/pipelines/omnigen/processor_omnigen.py +8 -3
- diffusers/pipelines/onnx_utils.py +15 -2
- diffusers/pipelines/pag/pag_utils.py +2 -2
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -8
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +7 -7
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +10 -6
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +14 -14
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +8 -8
- diffusers/pipelines/pag/pipeline_pag_kolors.py +10 -10
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +11 -11
- diffusers/pipelines/pag/pipeline_pag_sana.py +18 -12
- diffusers/pipelines/pag/pipeline_pag_sd.py +8 -8
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +7 -7
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +7 -7
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +6 -6
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +5 -5
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +8 -8
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +16 -15
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +18 -17
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +12 -12
- diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +8 -7
- diffusers/pipelines/pia/pipeline_pia.py +8 -6
- diffusers/pipelines/pipeline_flax_utils.py +3 -4
- diffusers/pipelines/pipeline_loading_utils.py +89 -13
- diffusers/pipelines/pipeline_utils.py +105 -33
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +11 -11
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +11 -11
- diffusers/pipelines/sana/__init__.py +4 -0
- diffusers/pipelines/sana/pipeline_sana.py +23 -21
- diffusers/pipelines/sana/pipeline_sana_controlnet.py +1106 -0
- diffusers/pipelines/sana/pipeline_sana_sprint.py +23 -19
- diffusers/pipelines/sana/pipeline_sana_sprint_img2img.py +981 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +7 -6
- diffusers/pipelines/shap_e/camera.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
- diffusers/pipelines/shap_e/renderer.py +3 -3
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +1 -1
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +5 -5
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +8 -8
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +13 -13
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +9 -9
- diffusers/pipelines/stable_diffusion/__init__.py +0 -7
- diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +11 -4
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +10 -10
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +10 -10
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +10 -10
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +9 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +8 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -4
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +7 -7
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -5
- diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
- diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +7 -7
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +7 -7
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +7 -7
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +12 -8
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +15 -9
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +11 -9
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -9
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +18 -12
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +11 -8
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +11 -8
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -12
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +8 -6
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +15 -11
- diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -15
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +18 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +12 -12
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -15
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +3 -3
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +12 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -17
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +12 -7
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +12 -7
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +15 -13
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +24 -21
- diffusers/pipelines/unclip/pipeline_unclip.py +4 -3
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +4 -3
- diffusers/pipelines/unclip/text_proj.py +2 -2
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +2 -2
- diffusers/pipelines/unidiffuser/modeling_uvit.py +1 -1
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +8 -7
- diffusers/pipelines/visualcloze/__init__.py +52 -0
- diffusers/pipelines/visualcloze/pipeline_visualcloze_combined.py +444 -0
- diffusers/pipelines/visualcloze/pipeline_visualcloze_generation.py +952 -0
- diffusers/pipelines/visualcloze/visualcloze_utils.py +251 -0
- diffusers/pipelines/wan/__init__.py +2 -0
- diffusers/pipelines/wan/pipeline_wan.py +17 -12
- diffusers/pipelines/wan/pipeline_wan_i2v.py +42 -20
- diffusers/pipelines/wan/pipeline_wan_vace.py +976 -0
- diffusers/pipelines/wan/pipeline_wan_video2video.py +18 -18
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +16 -15
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +6 -6
- diffusers/quantizers/__init__.py +179 -1
- diffusers/quantizers/base.py +6 -1
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -0
- diffusers/quantizers/bitsandbytes/utils.py +10 -7
- diffusers/quantizers/gguf/gguf_quantizer.py +13 -4
- diffusers/quantizers/gguf/utils.py +16 -13
- diffusers/quantizers/quantization_config.py +18 -16
- diffusers/quantizers/quanto/quanto_quantizer.py +4 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +5 -1
- diffusers/schedulers/__init__.py +3 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +4 -3
- diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
- diffusers/schedulers/scheduling_consistency_models.py +1 -1
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +10 -5
- diffusers/schedulers/scheduling_ddim.py +8 -8
- diffusers/schedulers/scheduling_ddim_cogvideox.py +5 -5
- diffusers/schedulers/scheduling_ddim_flax.py +6 -6
- diffusers/schedulers/scheduling_ddim_inverse.py +6 -6
- diffusers/schedulers/scheduling_ddim_parallel.py +22 -22
- diffusers/schedulers/scheduling_ddpm.py +9 -9
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -7
- diffusers/schedulers/scheduling_ddpm_parallel.py +18 -18
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +2 -2
- diffusers/schedulers/scheduling_deis_multistep.py +8 -8
- diffusers/schedulers/scheduling_dpm_cogvideox.py +5 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -12
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +22 -20
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +11 -11
- diffusers/schedulers/scheduling_dpmsolver_sde.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +13 -13
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +13 -8
- diffusers/schedulers/scheduling_edm_euler.py +20 -11
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +3 -3
- diffusers/schedulers/scheduling_euler_discrete.py +3 -3
- diffusers/schedulers/scheduling_euler_discrete_flax.py +3 -3
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +20 -5
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +1 -1
- diffusers/schedulers/scheduling_flow_match_lcm.py +561 -0
- diffusers/schedulers/scheduling_heun_discrete.py +2 -2
- diffusers/schedulers/scheduling_ipndm.py +2 -2
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +2 -2
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +2 -2
- diffusers/schedulers/scheduling_karras_ve_flax.py +5 -5
- diffusers/schedulers/scheduling_lcm.py +3 -3
- diffusers/schedulers/scheduling_lms_discrete.py +2 -2
- diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
- diffusers/schedulers/scheduling_pndm.py +4 -4
- diffusers/schedulers/scheduling_pndm_flax.py +4 -4
- diffusers/schedulers/scheduling_repaint.py +9 -9
- diffusers/schedulers/scheduling_sasolver.py +15 -15
- diffusers/schedulers/scheduling_scm.py +1 -1
- diffusers/schedulers/scheduling_sde_ve.py +1 -1
- diffusers/schedulers/scheduling_sde_ve_flax.py +2 -2
- diffusers/schedulers/scheduling_tcd.py +3 -3
- diffusers/schedulers/scheduling_unclip.py +5 -5
- diffusers/schedulers/scheduling_unipc_multistep.py +11 -11
- diffusers/schedulers/scheduling_utils.py +1 -1
- diffusers/schedulers/scheduling_utils_flax.py +1 -1
- diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
- diffusers/training_utils.py +13 -5
- diffusers/utils/__init__.py +5 -0
- diffusers/utils/accelerate_utils.py +1 -1
- diffusers/utils/doc_utils.py +1 -1
- diffusers/utils/dummy_pt_objects.py +120 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +225 -0
- diffusers/utils/dynamic_modules_utils.py +21 -3
- diffusers/utils/export_utils.py +1 -1
- diffusers/utils/import_utils.py +81 -18
- diffusers/utils/logging.py +1 -1
- diffusers/utils/outputs.py +2 -1
- diffusers/utils/peft_utils.py +91 -8
- diffusers/utils/state_dict_utils.py +20 -3
- diffusers/utils/testing_utils.py +59 -7
- diffusers/utils/torch_utils.py +25 -5
- diffusers/video_processor.py +2 -2
- {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/METADATA +3 -3
- diffusers-0.34.0.dist-info/RECORD +639 -0
- diffusers-0.33.0.dist-info/RECORD +0 -608
- {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/LICENSE +0 -0
- {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/WHEEL +0 -0
- {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,942 @@
|
|
1
|
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
2
|
+
|
3
|
+
import torch
|
4
|
+
import torch.nn as nn
|
5
|
+
import torch.nn.functional as F
|
6
|
+
|
7
|
+
from ...configuration_utils import ConfigMixin, register_to_config
|
8
|
+
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
|
9
|
+
from ...models.modeling_outputs import Transformer2DModelOutput
|
10
|
+
from ...models.modeling_utils import ModelMixin
|
11
|
+
from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
12
|
+
from ...utils.torch_utils import maybe_allow_in_graph
|
13
|
+
from ..attention import Attention
|
14
|
+
from ..embeddings import TimestepEmbedding, Timesteps
|
15
|
+
|
16
|
+
|
17
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
18
|
+
|
19
|
+
|
20
|
+
class HiDreamImageFeedForwardSwiGLU(nn.Module):
|
21
|
+
def __init__(
|
22
|
+
self,
|
23
|
+
dim: int,
|
24
|
+
hidden_dim: int,
|
25
|
+
multiple_of: int = 256,
|
26
|
+
ffn_dim_multiplier: Optional[float] = None,
|
27
|
+
):
|
28
|
+
super().__init__()
|
29
|
+
hidden_dim = int(2 * hidden_dim / 3)
|
30
|
+
# custom dim factor multiplier
|
31
|
+
if ffn_dim_multiplier is not None:
|
32
|
+
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
|
33
|
+
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
34
|
+
|
35
|
+
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
|
36
|
+
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
|
37
|
+
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
|
38
|
+
|
39
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
40
|
+
return self.w2(torch.nn.functional.silu(self.w1(x)) * self.w3(x))
|
41
|
+
|
42
|
+
|
43
|
+
class HiDreamImagePooledEmbed(nn.Module):
|
44
|
+
def __init__(self, text_emb_dim, hidden_size):
|
45
|
+
super().__init__()
|
46
|
+
self.pooled_embedder = TimestepEmbedding(in_channels=text_emb_dim, time_embed_dim=hidden_size)
|
47
|
+
|
48
|
+
def forward(self, pooled_embed: torch.Tensor) -> torch.Tensor:
|
49
|
+
return self.pooled_embedder(pooled_embed)
|
50
|
+
|
51
|
+
|
52
|
+
class HiDreamImageTimestepEmbed(nn.Module):
|
53
|
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
54
|
+
super().__init__()
|
55
|
+
self.time_proj = Timesteps(num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0)
|
56
|
+
self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=hidden_size)
|
57
|
+
|
58
|
+
def forward(self, timesteps: torch.Tensor, wdtype: Optional[torch.dtype] = None):
|
59
|
+
t_emb = self.time_proj(timesteps).to(dtype=wdtype)
|
60
|
+
t_emb = self.timestep_embedder(t_emb)
|
61
|
+
return t_emb
|
62
|
+
|
63
|
+
|
64
|
+
class HiDreamImageOutEmbed(nn.Module):
|
65
|
+
def __init__(self, hidden_size, patch_size, out_channels):
|
66
|
+
super().__init__()
|
67
|
+
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
68
|
+
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
69
|
+
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
|
70
|
+
|
71
|
+
def forward(self, hidden_states: torch.Tensor, temb: torch.Tensor) -> torch.Tensor:
|
72
|
+
shift, scale = self.adaLN_modulation(temb).chunk(2, dim=1)
|
73
|
+
hidden_states = self.norm_final(hidden_states) * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
74
|
+
hidden_states = self.linear(hidden_states)
|
75
|
+
return hidden_states
|
76
|
+
|
77
|
+
|
78
|
+
class HiDreamImagePatchEmbed(nn.Module):
|
79
|
+
def __init__(
|
80
|
+
self,
|
81
|
+
patch_size=2,
|
82
|
+
in_channels=4,
|
83
|
+
out_channels=1024,
|
84
|
+
):
|
85
|
+
super().__init__()
|
86
|
+
self.patch_size = patch_size
|
87
|
+
self.out_channels = out_channels
|
88
|
+
self.proj = nn.Linear(in_channels * patch_size * patch_size, out_channels, bias=True)
|
89
|
+
|
90
|
+
def forward(self, latent):
|
91
|
+
latent = self.proj(latent)
|
92
|
+
return latent
|
93
|
+
|
94
|
+
|
95
|
+
def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor:
|
96
|
+
assert dim % 2 == 0, "The dimension must be even."
|
97
|
+
|
98
|
+
is_mps = pos.device.type == "mps"
|
99
|
+
is_npu = pos.device.type == "npu"
|
100
|
+
|
101
|
+
dtype = torch.float32 if (is_mps or is_npu) else torch.float64
|
102
|
+
|
103
|
+
scale = torch.arange(0, dim, 2, dtype=dtype, device=pos.device) / dim
|
104
|
+
omega = 1.0 / (theta**scale)
|
105
|
+
|
106
|
+
batch_size, seq_length = pos.shape
|
107
|
+
out = torch.einsum("...n,d->...nd", pos, omega)
|
108
|
+
cos_out = torch.cos(out)
|
109
|
+
sin_out = torch.sin(out)
|
110
|
+
|
111
|
+
stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
|
112
|
+
out = stacked_out.view(batch_size, -1, dim // 2, 2, 2)
|
113
|
+
return out.float()
|
114
|
+
|
115
|
+
|
116
|
+
class HiDreamImageEmbedND(nn.Module):
|
117
|
+
def __init__(self, theta: int, axes_dim: List[int]):
|
118
|
+
super().__init__()
|
119
|
+
self.theta = theta
|
120
|
+
self.axes_dim = axes_dim
|
121
|
+
|
122
|
+
def forward(self, ids: torch.Tensor) -> torch.Tensor:
|
123
|
+
n_axes = ids.shape[-1]
|
124
|
+
emb = torch.cat(
|
125
|
+
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
126
|
+
dim=-3,
|
127
|
+
)
|
128
|
+
return emb.unsqueeze(2)
|
129
|
+
|
130
|
+
|
131
|
+
def apply_rope(xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
132
|
+
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
133
|
+
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
134
|
+
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
135
|
+
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
136
|
+
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
137
|
+
|
138
|
+
|
139
|
+
@maybe_allow_in_graph
|
140
|
+
class HiDreamAttention(Attention):
|
141
|
+
def __init__(
|
142
|
+
self,
|
143
|
+
query_dim: int,
|
144
|
+
heads: int = 8,
|
145
|
+
dim_head: int = 64,
|
146
|
+
upcast_attention: bool = False,
|
147
|
+
upcast_softmax: bool = False,
|
148
|
+
scale_qk: bool = True,
|
149
|
+
eps: float = 1e-5,
|
150
|
+
processor=None,
|
151
|
+
out_dim: int = None,
|
152
|
+
single: bool = False,
|
153
|
+
):
|
154
|
+
super(Attention, self).__init__()
|
155
|
+
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
|
156
|
+
self.query_dim = query_dim
|
157
|
+
self.upcast_attention = upcast_attention
|
158
|
+
self.upcast_softmax = upcast_softmax
|
159
|
+
self.out_dim = out_dim if out_dim is not None else query_dim
|
160
|
+
|
161
|
+
self.scale_qk = scale_qk
|
162
|
+
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
|
163
|
+
|
164
|
+
self.heads = out_dim // dim_head if out_dim is not None else heads
|
165
|
+
self.sliceable_head_dim = heads
|
166
|
+
self.single = single
|
167
|
+
|
168
|
+
self.to_q = nn.Linear(query_dim, self.inner_dim)
|
169
|
+
self.to_k = nn.Linear(self.inner_dim, self.inner_dim)
|
170
|
+
self.to_v = nn.Linear(self.inner_dim, self.inner_dim)
|
171
|
+
self.to_out = nn.Linear(self.inner_dim, self.out_dim)
|
172
|
+
self.q_rms_norm = nn.RMSNorm(self.inner_dim, eps)
|
173
|
+
self.k_rms_norm = nn.RMSNorm(self.inner_dim, eps)
|
174
|
+
|
175
|
+
if not single:
|
176
|
+
self.to_q_t = nn.Linear(query_dim, self.inner_dim)
|
177
|
+
self.to_k_t = nn.Linear(self.inner_dim, self.inner_dim)
|
178
|
+
self.to_v_t = nn.Linear(self.inner_dim, self.inner_dim)
|
179
|
+
self.to_out_t = nn.Linear(self.inner_dim, self.out_dim)
|
180
|
+
self.q_rms_norm_t = nn.RMSNorm(self.inner_dim, eps)
|
181
|
+
self.k_rms_norm_t = nn.RMSNorm(self.inner_dim, eps)
|
182
|
+
|
183
|
+
self.set_processor(processor)
|
184
|
+
|
185
|
+
def forward(
|
186
|
+
self,
|
187
|
+
norm_hidden_states: torch.Tensor,
|
188
|
+
hidden_states_masks: torch.Tensor = None,
|
189
|
+
norm_encoder_hidden_states: torch.Tensor = None,
|
190
|
+
image_rotary_emb: torch.Tensor = None,
|
191
|
+
) -> torch.Tensor:
|
192
|
+
return self.processor(
|
193
|
+
self,
|
194
|
+
hidden_states=norm_hidden_states,
|
195
|
+
hidden_states_masks=hidden_states_masks,
|
196
|
+
encoder_hidden_states=norm_encoder_hidden_states,
|
197
|
+
image_rotary_emb=image_rotary_emb,
|
198
|
+
)
|
199
|
+
|
200
|
+
|
201
|
+
class HiDreamAttnProcessor:
|
202
|
+
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
203
|
+
|
204
|
+
def __call__(
|
205
|
+
self,
|
206
|
+
attn: HiDreamAttention,
|
207
|
+
hidden_states: torch.Tensor,
|
208
|
+
hidden_states_masks: Optional[torch.Tensor] = None,
|
209
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
210
|
+
image_rotary_emb: torch.Tensor = None,
|
211
|
+
*args,
|
212
|
+
**kwargs,
|
213
|
+
) -> torch.Tensor:
|
214
|
+
dtype = hidden_states.dtype
|
215
|
+
batch_size = hidden_states.shape[0]
|
216
|
+
|
217
|
+
query_i = attn.q_rms_norm(attn.to_q(hidden_states)).to(dtype=dtype)
|
218
|
+
key_i = attn.k_rms_norm(attn.to_k(hidden_states)).to(dtype=dtype)
|
219
|
+
value_i = attn.to_v(hidden_states)
|
220
|
+
|
221
|
+
inner_dim = key_i.shape[-1]
|
222
|
+
head_dim = inner_dim // attn.heads
|
223
|
+
|
224
|
+
query_i = query_i.view(batch_size, -1, attn.heads, head_dim)
|
225
|
+
key_i = key_i.view(batch_size, -1, attn.heads, head_dim)
|
226
|
+
value_i = value_i.view(batch_size, -1, attn.heads, head_dim)
|
227
|
+
if hidden_states_masks is not None:
|
228
|
+
key_i = key_i * hidden_states_masks.view(batch_size, -1, 1, 1)
|
229
|
+
|
230
|
+
if not attn.single:
|
231
|
+
query_t = attn.q_rms_norm_t(attn.to_q_t(encoder_hidden_states)).to(dtype=dtype)
|
232
|
+
key_t = attn.k_rms_norm_t(attn.to_k_t(encoder_hidden_states)).to(dtype=dtype)
|
233
|
+
value_t = attn.to_v_t(encoder_hidden_states)
|
234
|
+
|
235
|
+
query_t = query_t.view(batch_size, -1, attn.heads, head_dim)
|
236
|
+
key_t = key_t.view(batch_size, -1, attn.heads, head_dim)
|
237
|
+
value_t = value_t.view(batch_size, -1, attn.heads, head_dim)
|
238
|
+
|
239
|
+
num_image_tokens = query_i.shape[1]
|
240
|
+
num_text_tokens = query_t.shape[1]
|
241
|
+
query = torch.cat([query_i, query_t], dim=1)
|
242
|
+
key = torch.cat([key_i, key_t], dim=1)
|
243
|
+
value = torch.cat([value_i, value_t], dim=1)
|
244
|
+
else:
|
245
|
+
query = query_i
|
246
|
+
key = key_i
|
247
|
+
value = value_i
|
248
|
+
|
249
|
+
if query.shape[-1] == image_rotary_emb.shape[-3] * 2:
|
250
|
+
query, key = apply_rope(query, key, image_rotary_emb)
|
251
|
+
|
252
|
+
else:
|
253
|
+
query_1, query_2 = query.chunk(2, dim=-1)
|
254
|
+
key_1, key_2 = key.chunk(2, dim=-1)
|
255
|
+
query_1, key_1 = apply_rope(query_1, key_1, image_rotary_emb)
|
256
|
+
query = torch.cat([query_1, query_2], dim=-1)
|
257
|
+
key = torch.cat([key_1, key_2], dim=-1)
|
258
|
+
|
259
|
+
hidden_states = F.scaled_dot_product_attention(
|
260
|
+
query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2), dropout_p=0.0, is_causal=False
|
261
|
+
)
|
262
|
+
|
263
|
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
264
|
+
hidden_states = hidden_states.to(query.dtype)
|
265
|
+
|
266
|
+
if not attn.single:
|
267
|
+
hidden_states_i, hidden_states_t = torch.split(hidden_states, [num_image_tokens, num_text_tokens], dim=1)
|
268
|
+
hidden_states_i = attn.to_out(hidden_states_i)
|
269
|
+
hidden_states_t = attn.to_out_t(hidden_states_t)
|
270
|
+
return hidden_states_i, hidden_states_t
|
271
|
+
else:
|
272
|
+
hidden_states = attn.to_out(hidden_states)
|
273
|
+
return hidden_states
|
274
|
+
|
275
|
+
|
276
|
+
# Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
|
277
|
+
class MoEGate(nn.Module):
|
278
|
+
def __init__(
|
279
|
+
self,
|
280
|
+
embed_dim,
|
281
|
+
num_routed_experts=4,
|
282
|
+
num_activated_experts=2,
|
283
|
+
aux_loss_alpha=0.01,
|
284
|
+
_force_inference_output=False,
|
285
|
+
):
|
286
|
+
super().__init__()
|
287
|
+
self.top_k = num_activated_experts
|
288
|
+
self.n_routed_experts = num_routed_experts
|
289
|
+
|
290
|
+
self.scoring_func = "softmax"
|
291
|
+
self.alpha = aux_loss_alpha
|
292
|
+
self.seq_aux = False
|
293
|
+
|
294
|
+
# topk selection algorithm
|
295
|
+
self.norm_topk_prob = False
|
296
|
+
self.gating_dim = embed_dim
|
297
|
+
self.weight = nn.Parameter(torch.randn(self.n_routed_experts, self.gating_dim) / embed_dim**0.5)
|
298
|
+
|
299
|
+
self._force_inference_output = _force_inference_output
|
300
|
+
|
301
|
+
def forward(self, hidden_states):
|
302
|
+
bsz, seq_len, h = hidden_states.shape
|
303
|
+
### compute gating score
|
304
|
+
hidden_states = hidden_states.view(-1, h)
|
305
|
+
logits = F.linear(hidden_states, self.weight, None)
|
306
|
+
if self.scoring_func == "softmax":
|
307
|
+
scores = logits.softmax(dim=-1)
|
308
|
+
else:
|
309
|
+
raise NotImplementedError(f"insupportable scoring function for MoE gating: {self.scoring_func}")
|
310
|
+
|
311
|
+
### select top-k experts
|
312
|
+
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
|
313
|
+
|
314
|
+
### norm gate to sum 1
|
315
|
+
if self.top_k > 1 and self.norm_topk_prob:
|
316
|
+
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
|
317
|
+
topk_weight = topk_weight / denominator
|
318
|
+
|
319
|
+
### expert-level computation auxiliary loss
|
320
|
+
if self.training and self.alpha > 0.0 and not self._force_inference_output:
|
321
|
+
scores_for_aux = scores
|
322
|
+
aux_topk = self.top_k
|
323
|
+
# always compute aux loss based on the naive greedy topk method
|
324
|
+
topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
|
325
|
+
if self.seq_aux:
|
326
|
+
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
|
327
|
+
ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device)
|
328
|
+
ce.scatter_add_(
|
329
|
+
1, topk_idx_for_aux_loss, torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)
|
330
|
+
).div_(seq_len * aux_topk / self.n_routed_experts)
|
331
|
+
aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean() * self.alpha
|
332
|
+
else:
|
333
|
+
mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts)
|
334
|
+
ce = mask_ce.float().mean(0)
|
335
|
+
|
336
|
+
Pi = scores_for_aux.mean(0)
|
337
|
+
fi = ce * self.n_routed_experts
|
338
|
+
aux_loss = (Pi * fi).sum() * self.alpha
|
339
|
+
else:
|
340
|
+
aux_loss = None
|
341
|
+
return topk_idx, topk_weight, aux_loss
|
342
|
+
|
343
|
+
|
344
|
+
# Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
|
345
|
+
class MOEFeedForwardSwiGLU(nn.Module):
|
346
|
+
def __init__(
|
347
|
+
self,
|
348
|
+
dim: int,
|
349
|
+
hidden_dim: int,
|
350
|
+
num_routed_experts: int,
|
351
|
+
num_activated_experts: int,
|
352
|
+
_force_inference_output: bool = False,
|
353
|
+
):
|
354
|
+
super().__init__()
|
355
|
+
self.shared_experts = HiDreamImageFeedForwardSwiGLU(dim, hidden_dim // 2)
|
356
|
+
self.experts = nn.ModuleList(
|
357
|
+
[HiDreamImageFeedForwardSwiGLU(dim, hidden_dim) for i in range(num_routed_experts)]
|
358
|
+
)
|
359
|
+
self._force_inference_output = _force_inference_output
|
360
|
+
self.gate = MoEGate(
|
361
|
+
embed_dim=dim,
|
362
|
+
num_routed_experts=num_routed_experts,
|
363
|
+
num_activated_experts=num_activated_experts,
|
364
|
+
_force_inference_output=_force_inference_output,
|
365
|
+
)
|
366
|
+
self.num_activated_experts = num_activated_experts
|
367
|
+
|
368
|
+
def forward(self, x):
|
369
|
+
wtype = x.dtype
|
370
|
+
identity = x
|
371
|
+
orig_shape = x.shape
|
372
|
+
topk_idx, topk_weight, aux_loss = self.gate(x)
|
373
|
+
x = x.view(-1, x.shape[-1])
|
374
|
+
flat_topk_idx = topk_idx.view(-1)
|
375
|
+
if self.training and not self._force_inference_output:
|
376
|
+
x = x.repeat_interleave(self.num_activated_experts, dim=0)
|
377
|
+
y = torch.empty_like(x, dtype=wtype)
|
378
|
+
for i, expert in enumerate(self.experts):
|
379
|
+
y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(dtype=wtype)
|
380
|
+
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
381
|
+
y = y.view(*orig_shape).to(dtype=wtype)
|
382
|
+
# y = AddAuxiliaryLoss.apply(y, aux_loss)
|
383
|
+
else:
|
384
|
+
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
|
385
|
+
y = y + self.shared_experts(identity)
|
386
|
+
return y
|
387
|
+
|
388
|
+
@torch.no_grad()
|
389
|
+
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
|
390
|
+
expert_cache = torch.zeros_like(x)
|
391
|
+
idxs = flat_expert_indices.argsort()
|
392
|
+
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
|
393
|
+
token_idxs = idxs // self.num_activated_experts
|
394
|
+
for i, end_idx in enumerate(tokens_per_expert):
|
395
|
+
start_idx = 0 if i == 0 else tokens_per_expert[i - 1]
|
396
|
+
if start_idx == end_idx:
|
397
|
+
continue
|
398
|
+
expert = self.experts[i]
|
399
|
+
exp_token_idx = token_idxs[start_idx:end_idx]
|
400
|
+
expert_tokens = x[exp_token_idx]
|
401
|
+
expert_out = expert(expert_tokens)
|
402
|
+
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
|
403
|
+
|
404
|
+
# for fp16 and other dtype
|
405
|
+
expert_cache = expert_cache.to(expert_out.dtype)
|
406
|
+
expert_cache.scatter_reduce_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out, reduce="sum")
|
407
|
+
return expert_cache
|
408
|
+
|
409
|
+
|
410
|
+
class TextProjection(nn.Module):
|
411
|
+
def __init__(self, in_features, hidden_size):
|
412
|
+
super().__init__()
|
413
|
+
self.linear = nn.Linear(in_features=in_features, out_features=hidden_size, bias=False)
|
414
|
+
|
415
|
+
def forward(self, caption):
|
416
|
+
hidden_states = self.linear(caption)
|
417
|
+
return hidden_states
|
418
|
+
|
419
|
+
|
420
|
+
@maybe_allow_in_graph
|
421
|
+
class HiDreamImageSingleTransformerBlock(nn.Module):
|
422
|
+
def __init__(
|
423
|
+
self,
|
424
|
+
dim: int,
|
425
|
+
num_attention_heads: int,
|
426
|
+
attention_head_dim: int,
|
427
|
+
num_routed_experts: int = 4,
|
428
|
+
num_activated_experts: int = 2,
|
429
|
+
_force_inference_output: bool = False,
|
430
|
+
):
|
431
|
+
super().__init__()
|
432
|
+
self.num_attention_heads = num_attention_heads
|
433
|
+
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim, 6 * dim, bias=True))
|
434
|
+
|
435
|
+
# 1. Attention
|
436
|
+
self.norm1_i = nn.LayerNorm(dim, eps=1e-06, elementwise_affine=False)
|
437
|
+
self.attn1 = HiDreamAttention(
|
438
|
+
query_dim=dim,
|
439
|
+
heads=num_attention_heads,
|
440
|
+
dim_head=attention_head_dim,
|
441
|
+
processor=HiDreamAttnProcessor(),
|
442
|
+
single=True,
|
443
|
+
)
|
444
|
+
|
445
|
+
# 3. Feed-forward
|
446
|
+
self.norm3_i = nn.LayerNorm(dim, eps=1e-06, elementwise_affine=False)
|
447
|
+
if num_routed_experts > 0:
|
448
|
+
self.ff_i = MOEFeedForwardSwiGLU(
|
449
|
+
dim=dim,
|
450
|
+
hidden_dim=4 * dim,
|
451
|
+
num_routed_experts=num_routed_experts,
|
452
|
+
num_activated_experts=num_activated_experts,
|
453
|
+
_force_inference_output=_force_inference_output,
|
454
|
+
)
|
455
|
+
else:
|
456
|
+
self.ff_i = HiDreamImageFeedForwardSwiGLU(dim=dim, hidden_dim=4 * dim)
|
457
|
+
|
458
|
+
def forward(
|
459
|
+
self,
|
460
|
+
hidden_states: torch.Tensor,
|
461
|
+
hidden_states_masks: Optional[torch.Tensor] = None,
|
462
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
463
|
+
temb: Optional[torch.Tensor] = None,
|
464
|
+
image_rotary_emb: torch.Tensor = None,
|
465
|
+
) -> torch.Tensor:
|
466
|
+
wtype = hidden_states.dtype
|
467
|
+
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i = self.adaLN_modulation(temb)[
|
468
|
+
:, None
|
469
|
+
].chunk(6, dim=-1)
|
470
|
+
|
471
|
+
# 1. MM-Attention
|
472
|
+
norm_hidden_states = self.norm1_i(hidden_states).to(dtype=wtype)
|
473
|
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa_i) + shift_msa_i
|
474
|
+
attn_output_i = self.attn1(
|
475
|
+
norm_hidden_states,
|
476
|
+
hidden_states_masks,
|
477
|
+
image_rotary_emb=image_rotary_emb,
|
478
|
+
)
|
479
|
+
hidden_states = gate_msa_i * attn_output_i + hidden_states
|
480
|
+
|
481
|
+
# 2. Feed-forward
|
482
|
+
norm_hidden_states = self.norm3_i(hidden_states).to(dtype=wtype)
|
483
|
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp_i) + shift_mlp_i
|
484
|
+
ff_output_i = gate_mlp_i * self.ff_i(norm_hidden_states.to(dtype=wtype))
|
485
|
+
hidden_states = ff_output_i + hidden_states
|
486
|
+
return hidden_states
|
487
|
+
|
488
|
+
|
489
|
+
@maybe_allow_in_graph
|
490
|
+
class HiDreamImageTransformerBlock(nn.Module):
|
491
|
+
def __init__(
|
492
|
+
self,
|
493
|
+
dim: int,
|
494
|
+
num_attention_heads: int,
|
495
|
+
attention_head_dim: int,
|
496
|
+
num_routed_experts: int = 4,
|
497
|
+
num_activated_experts: int = 2,
|
498
|
+
_force_inference_output: bool = False,
|
499
|
+
):
|
500
|
+
super().__init__()
|
501
|
+
self.num_attention_heads = num_attention_heads
|
502
|
+
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim, 12 * dim, bias=True))
|
503
|
+
|
504
|
+
# 1. Attention
|
505
|
+
self.norm1_i = nn.LayerNorm(dim, eps=1e-06, elementwise_affine=False)
|
506
|
+
self.norm1_t = nn.LayerNorm(dim, eps=1e-06, elementwise_affine=False)
|
507
|
+
self.attn1 = HiDreamAttention(
|
508
|
+
query_dim=dim,
|
509
|
+
heads=num_attention_heads,
|
510
|
+
dim_head=attention_head_dim,
|
511
|
+
processor=HiDreamAttnProcessor(),
|
512
|
+
single=False,
|
513
|
+
)
|
514
|
+
|
515
|
+
# 3. Feed-forward
|
516
|
+
self.norm3_i = nn.LayerNorm(dim, eps=1e-06, elementwise_affine=False)
|
517
|
+
if num_routed_experts > 0:
|
518
|
+
self.ff_i = MOEFeedForwardSwiGLU(
|
519
|
+
dim=dim,
|
520
|
+
hidden_dim=4 * dim,
|
521
|
+
num_routed_experts=num_routed_experts,
|
522
|
+
num_activated_experts=num_activated_experts,
|
523
|
+
_force_inference_output=_force_inference_output,
|
524
|
+
)
|
525
|
+
else:
|
526
|
+
self.ff_i = HiDreamImageFeedForwardSwiGLU(dim=dim, hidden_dim=4 * dim)
|
527
|
+
self.norm3_t = nn.LayerNorm(dim, eps=1e-06, elementwise_affine=False)
|
528
|
+
self.ff_t = HiDreamImageFeedForwardSwiGLU(dim=dim, hidden_dim=4 * dim)
|
529
|
+
|
530
|
+
def forward(
|
531
|
+
self,
|
532
|
+
hidden_states: torch.Tensor,
|
533
|
+
hidden_states_masks: Optional[torch.Tensor] = None,
|
534
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
535
|
+
temb: Optional[torch.Tensor] = None,
|
536
|
+
image_rotary_emb: torch.Tensor = None,
|
537
|
+
) -> torch.Tensor:
|
538
|
+
wtype = hidden_states.dtype
|
539
|
+
(
|
540
|
+
shift_msa_i,
|
541
|
+
scale_msa_i,
|
542
|
+
gate_msa_i,
|
543
|
+
shift_mlp_i,
|
544
|
+
scale_mlp_i,
|
545
|
+
gate_mlp_i,
|
546
|
+
shift_msa_t,
|
547
|
+
scale_msa_t,
|
548
|
+
gate_msa_t,
|
549
|
+
shift_mlp_t,
|
550
|
+
scale_mlp_t,
|
551
|
+
gate_mlp_t,
|
552
|
+
) = self.adaLN_modulation(temb)[:, None].chunk(12, dim=-1)
|
553
|
+
|
554
|
+
# 1. MM-Attention
|
555
|
+
norm_hidden_states = self.norm1_i(hidden_states).to(dtype=wtype)
|
556
|
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa_i) + shift_msa_i
|
557
|
+
norm_encoder_hidden_states = self.norm1_t(encoder_hidden_states).to(dtype=wtype)
|
558
|
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + scale_msa_t) + shift_msa_t
|
559
|
+
|
560
|
+
attn_output_i, attn_output_t = self.attn1(
|
561
|
+
norm_hidden_states,
|
562
|
+
hidden_states_masks,
|
563
|
+
norm_encoder_hidden_states,
|
564
|
+
image_rotary_emb=image_rotary_emb,
|
565
|
+
)
|
566
|
+
|
567
|
+
hidden_states = gate_msa_i * attn_output_i + hidden_states
|
568
|
+
encoder_hidden_states = gate_msa_t * attn_output_t + encoder_hidden_states
|
569
|
+
|
570
|
+
# 2. Feed-forward
|
571
|
+
norm_hidden_states = self.norm3_i(hidden_states).to(dtype=wtype)
|
572
|
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp_i) + shift_mlp_i
|
573
|
+
norm_encoder_hidden_states = self.norm3_t(encoder_hidden_states).to(dtype=wtype)
|
574
|
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + scale_mlp_t) + shift_mlp_t
|
575
|
+
|
576
|
+
ff_output_i = gate_mlp_i * self.ff_i(norm_hidden_states)
|
577
|
+
ff_output_t = gate_mlp_t * self.ff_t(norm_encoder_hidden_states)
|
578
|
+
hidden_states = ff_output_i + hidden_states
|
579
|
+
encoder_hidden_states = ff_output_t + encoder_hidden_states
|
580
|
+
return hidden_states, encoder_hidden_states
|
581
|
+
|
582
|
+
|
583
|
+
class HiDreamBlock(nn.Module):
|
584
|
+
def __init__(self, block: Union[HiDreamImageTransformerBlock, HiDreamImageSingleTransformerBlock]):
|
585
|
+
super().__init__()
|
586
|
+
self.block = block
|
587
|
+
|
588
|
+
def forward(
|
589
|
+
self,
|
590
|
+
hidden_states: torch.Tensor,
|
591
|
+
hidden_states_masks: Optional[torch.Tensor] = None,
|
592
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
593
|
+
temb: Optional[torch.Tensor] = None,
|
594
|
+
image_rotary_emb: torch.Tensor = None,
|
595
|
+
) -> torch.Tensor:
|
596
|
+
return self.block(
|
597
|
+
hidden_states=hidden_states,
|
598
|
+
hidden_states_masks=hidden_states_masks,
|
599
|
+
encoder_hidden_states=encoder_hidden_states,
|
600
|
+
temb=temb,
|
601
|
+
image_rotary_emb=image_rotary_emb,
|
602
|
+
)
|
603
|
+
|
604
|
+
|
605
|
+
class HiDreamImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
606
|
+
_supports_gradient_checkpointing = True
|
607
|
+
_no_split_modules = ["HiDreamImageTransformerBlock", "HiDreamImageSingleTransformerBlock"]
|
608
|
+
|
609
|
+
@register_to_config
|
610
|
+
def __init__(
|
611
|
+
self,
|
612
|
+
patch_size: Optional[int] = None,
|
613
|
+
in_channels: int = 64,
|
614
|
+
out_channels: Optional[int] = None,
|
615
|
+
num_layers: int = 16,
|
616
|
+
num_single_layers: int = 32,
|
617
|
+
attention_head_dim: int = 128,
|
618
|
+
num_attention_heads: int = 20,
|
619
|
+
caption_channels: List[int] = None,
|
620
|
+
text_emb_dim: int = 2048,
|
621
|
+
num_routed_experts: int = 4,
|
622
|
+
num_activated_experts: int = 2,
|
623
|
+
axes_dims_rope: Tuple[int, int] = (32, 32),
|
624
|
+
max_resolution: Tuple[int, int] = (128, 128),
|
625
|
+
llama_layers: List[int] = None,
|
626
|
+
force_inference_output: bool = False,
|
627
|
+
):
|
628
|
+
super().__init__()
|
629
|
+
self.out_channels = out_channels or in_channels
|
630
|
+
self.inner_dim = num_attention_heads * attention_head_dim
|
631
|
+
|
632
|
+
self.t_embedder = HiDreamImageTimestepEmbed(self.inner_dim)
|
633
|
+
self.p_embedder = HiDreamImagePooledEmbed(text_emb_dim, self.inner_dim)
|
634
|
+
self.x_embedder = HiDreamImagePatchEmbed(
|
635
|
+
patch_size=patch_size,
|
636
|
+
in_channels=in_channels,
|
637
|
+
out_channels=self.inner_dim,
|
638
|
+
)
|
639
|
+
self.pe_embedder = HiDreamImageEmbedND(theta=10000, axes_dim=axes_dims_rope)
|
640
|
+
|
641
|
+
self.double_stream_blocks = nn.ModuleList(
|
642
|
+
[
|
643
|
+
HiDreamBlock(
|
644
|
+
HiDreamImageTransformerBlock(
|
645
|
+
dim=self.inner_dim,
|
646
|
+
num_attention_heads=num_attention_heads,
|
647
|
+
attention_head_dim=attention_head_dim,
|
648
|
+
num_routed_experts=num_routed_experts,
|
649
|
+
num_activated_experts=num_activated_experts,
|
650
|
+
_force_inference_output=force_inference_output,
|
651
|
+
)
|
652
|
+
)
|
653
|
+
for _ in range(num_layers)
|
654
|
+
]
|
655
|
+
)
|
656
|
+
|
657
|
+
self.single_stream_blocks = nn.ModuleList(
|
658
|
+
[
|
659
|
+
HiDreamBlock(
|
660
|
+
HiDreamImageSingleTransformerBlock(
|
661
|
+
dim=self.inner_dim,
|
662
|
+
num_attention_heads=num_attention_heads,
|
663
|
+
attention_head_dim=attention_head_dim,
|
664
|
+
num_routed_experts=num_routed_experts,
|
665
|
+
num_activated_experts=num_activated_experts,
|
666
|
+
_force_inference_output=force_inference_output,
|
667
|
+
)
|
668
|
+
)
|
669
|
+
for _ in range(num_single_layers)
|
670
|
+
]
|
671
|
+
)
|
672
|
+
|
673
|
+
self.final_layer = HiDreamImageOutEmbed(self.inner_dim, patch_size, self.out_channels)
|
674
|
+
|
675
|
+
caption_channels = [caption_channels[1]] * (num_layers + num_single_layers) + [caption_channels[0]]
|
676
|
+
caption_projection = []
|
677
|
+
for caption_channel in caption_channels:
|
678
|
+
caption_projection.append(TextProjection(in_features=caption_channel, hidden_size=self.inner_dim))
|
679
|
+
self.caption_projection = nn.ModuleList(caption_projection)
|
680
|
+
self.max_seq = max_resolution[0] * max_resolution[1] // (patch_size * patch_size)
|
681
|
+
|
682
|
+
self.gradient_checkpointing = False
|
683
|
+
|
684
|
+
def unpatchify(self, x: torch.Tensor, img_sizes: List[Tuple[int, int]], is_training: bool) -> List[torch.Tensor]:
|
685
|
+
if is_training and not self.config.force_inference_output:
|
686
|
+
B, S, F = x.shape
|
687
|
+
C = F // (self.config.patch_size * self.config.patch_size)
|
688
|
+
x = (
|
689
|
+
x.reshape(B, S, self.config.patch_size, self.config.patch_size, C)
|
690
|
+
.permute(0, 4, 1, 2, 3)
|
691
|
+
.reshape(B, C, S, self.config.patch_size * self.config.patch_size)
|
692
|
+
)
|
693
|
+
else:
|
694
|
+
x_arr = []
|
695
|
+
p1 = self.config.patch_size
|
696
|
+
p2 = self.config.patch_size
|
697
|
+
for i, img_size in enumerate(img_sizes):
|
698
|
+
pH, pW = img_size
|
699
|
+
t = x[i, : pH * pW].reshape(1, pH, pW, -1)
|
700
|
+
F_token = t.shape[-1]
|
701
|
+
C = F_token // (p1 * p2)
|
702
|
+
t = t.reshape(1, pH, pW, p1, p2, C)
|
703
|
+
t = t.permute(0, 5, 1, 3, 2, 4)
|
704
|
+
t = t.reshape(1, C, pH * p1, pW * p2)
|
705
|
+
x_arr.append(t)
|
706
|
+
x = torch.cat(x_arr, dim=0)
|
707
|
+
return x
|
708
|
+
|
709
|
+
def patchify(self, hidden_states):
|
710
|
+
batch_size, channels, height, width = hidden_states.shape
|
711
|
+
patch_size = self.config.patch_size
|
712
|
+
patch_height, patch_width = height // patch_size, width // patch_size
|
713
|
+
device = hidden_states.device
|
714
|
+
dtype = hidden_states.dtype
|
715
|
+
|
716
|
+
# create img_sizes
|
717
|
+
img_sizes = torch.tensor([patch_height, patch_width], dtype=torch.int64, device=device).reshape(-1)
|
718
|
+
img_sizes = img_sizes.unsqueeze(0).repeat(batch_size, 1)
|
719
|
+
|
720
|
+
# create hidden_states_masks
|
721
|
+
if hidden_states.shape[-2] != hidden_states.shape[-1]:
|
722
|
+
hidden_states_masks = torch.zeros((batch_size, self.max_seq), dtype=dtype, device=device)
|
723
|
+
hidden_states_masks[:, : patch_height * patch_width] = 1.0
|
724
|
+
else:
|
725
|
+
hidden_states_masks = None
|
726
|
+
|
727
|
+
# create img_ids
|
728
|
+
img_ids = torch.zeros(patch_height, patch_width, 3, device=device)
|
729
|
+
row_indices = torch.arange(patch_height, device=device)[:, None]
|
730
|
+
col_indices = torch.arange(patch_width, device=device)[None, :]
|
731
|
+
img_ids[..., 1] = img_ids[..., 1] + row_indices
|
732
|
+
img_ids[..., 2] = img_ids[..., 2] + col_indices
|
733
|
+
img_ids = img_ids.reshape(patch_height * patch_width, -1)
|
734
|
+
|
735
|
+
if hidden_states.shape[-2] != hidden_states.shape[-1]:
|
736
|
+
# Handle non-square latents
|
737
|
+
img_ids_pad = torch.zeros(self.max_seq, 3, device=device)
|
738
|
+
img_ids_pad[: patch_height * patch_width, :] = img_ids
|
739
|
+
img_ids = img_ids_pad.unsqueeze(0).repeat(batch_size, 1, 1)
|
740
|
+
else:
|
741
|
+
img_ids = img_ids.unsqueeze(0).repeat(batch_size, 1, 1)
|
742
|
+
|
743
|
+
# patchify hidden_states
|
744
|
+
if hidden_states.shape[-2] != hidden_states.shape[-1]:
|
745
|
+
# Handle non-square latents
|
746
|
+
out = torch.zeros(
|
747
|
+
(batch_size, channels, self.max_seq, patch_size * patch_size),
|
748
|
+
dtype=dtype,
|
749
|
+
device=device,
|
750
|
+
)
|
751
|
+
hidden_states = hidden_states.reshape(
|
752
|
+
batch_size, channels, patch_height, patch_size, patch_width, patch_size
|
753
|
+
)
|
754
|
+
hidden_states = hidden_states.permute(0, 1, 2, 4, 3, 5)
|
755
|
+
hidden_states = hidden_states.reshape(
|
756
|
+
batch_size, channels, patch_height * patch_width, patch_size * patch_size
|
757
|
+
)
|
758
|
+
out[:, :, 0 : patch_height * patch_width] = hidden_states
|
759
|
+
hidden_states = out
|
760
|
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
761
|
+
batch_size, self.max_seq, patch_size * patch_size * channels
|
762
|
+
)
|
763
|
+
|
764
|
+
else:
|
765
|
+
# Handle square latents
|
766
|
+
hidden_states = hidden_states.reshape(
|
767
|
+
batch_size, channels, patch_height, patch_size, patch_width, patch_size
|
768
|
+
)
|
769
|
+
hidden_states = hidden_states.permute(0, 2, 4, 3, 5, 1)
|
770
|
+
hidden_states = hidden_states.reshape(
|
771
|
+
batch_size, patch_height * patch_width, patch_size * patch_size * channels
|
772
|
+
)
|
773
|
+
|
774
|
+
return hidden_states, hidden_states_masks, img_sizes, img_ids
|
775
|
+
|
776
|
+
def forward(
|
777
|
+
self,
|
778
|
+
hidden_states: torch.Tensor,
|
779
|
+
timesteps: torch.LongTensor = None,
|
780
|
+
encoder_hidden_states_t5: torch.Tensor = None,
|
781
|
+
encoder_hidden_states_llama3: torch.Tensor = None,
|
782
|
+
pooled_embeds: torch.Tensor = None,
|
783
|
+
img_ids: Optional[torch.Tensor] = None,
|
784
|
+
img_sizes: Optional[List[Tuple[int, int]]] = None,
|
785
|
+
hidden_states_masks: Optional[torch.Tensor] = None,
|
786
|
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
787
|
+
return_dict: bool = True,
|
788
|
+
**kwargs,
|
789
|
+
):
|
790
|
+
encoder_hidden_states = kwargs.get("encoder_hidden_states", None)
|
791
|
+
|
792
|
+
if encoder_hidden_states is not None:
|
793
|
+
deprecation_message = "The `encoder_hidden_states` argument is deprecated. Please use `encoder_hidden_states_t5` and `encoder_hidden_states_llama3` instead."
|
794
|
+
deprecate("encoder_hidden_states", "0.35.0", deprecation_message)
|
795
|
+
encoder_hidden_states_t5 = encoder_hidden_states[0]
|
796
|
+
encoder_hidden_states_llama3 = encoder_hidden_states[1]
|
797
|
+
|
798
|
+
if img_ids is not None and img_sizes is not None and hidden_states_masks is None:
|
799
|
+
deprecation_message = (
|
800
|
+
"Passing `img_ids` and `img_sizes` with unpachified `hidden_states` is deprecated and will be ignored."
|
801
|
+
)
|
802
|
+
deprecate("img_ids", "0.35.0", deprecation_message)
|
803
|
+
|
804
|
+
if hidden_states_masks is not None and (img_ids is None or img_sizes is None):
|
805
|
+
raise ValueError("if `hidden_states_masks` is passed, `img_ids` and `img_sizes` must also be passed.")
|
806
|
+
elif hidden_states_masks is not None and hidden_states.ndim != 3:
|
807
|
+
raise ValueError(
|
808
|
+
"if `hidden_states_masks` is passed, `hidden_states` must be a 3D tensors with shape (batch_size, patch_height * patch_width, patch_size * patch_size * channels)"
|
809
|
+
)
|
810
|
+
|
811
|
+
if attention_kwargs is not None:
|
812
|
+
attention_kwargs = attention_kwargs.copy()
|
813
|
+
lora_scale = attention_kwargs.pop("scale", 1.0)
|
814
|
+
else:
|
815
|
+
lora_scale = 1.0
|
816
|
+
|
817
|
+
if USE_PEFT_BACKEND:
|
818
|
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
819
|
+
scale_lora_layers(self, lora_scale)
|
820
|
+
else:
|
821
|
+
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
|
822
|
+
logger.warning(
|
823
|
+
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
|
824
|
+
)
|
825
|
+
|
826
|
+
# spatial forward
|
827
|
+
batch_size = hidden_states.shape[0]
|
828
|
+
hidden_states_type = hidden_states.dtype
|
829
|
+
|
830
|
+
# Patchify the input
|
831
|
+
if hidden_states_masks is None:
|
832
|
+
hidden_states, hidden_states_masks, img_sizes, img_ids = self.patchify(hidden_states)
|
833
|
+
|
834
|
+
# Embed the hidden states
|
835
|
+
hidden_states = self.x_embedder(hidden_states)
|
836
|
+
|
837
|
+
# 0. time
|
838
|
+
timesteps = self.t_embedder(timesteps, hidden_states_type)
|
839
|
+
p_embedder = self.p_embedder(pooled_embeds)
|
840
|
+
temb = timesteps + p_embedder
|
841
|
+
|
842
|
+
encoder_hidden_states = [encoder_hidden_states_llama3[k] for k in self.config.llama_layers]
|
843
|
+
|
844
|
+
if self.caption_projection is not None:
|
845
|
+
new_encoder_hidden_states = []
|
846
|
+
for i, enc_hidden_state in enumerate(encoder_hidden_states):
|
847
|
+
enc_hidden_state = self.caption_projection[i](enc_hidden_state)
|
848
|
+
enc_hidden_state = enc_hidden_state.view(batch_size, -1, hidden_states.shape[-1])
|
849
|
+
new_encoder_hidden_states.append(enc_hidden_state)
|
850
|
+
encoder_hidden_states = new_encoder_hidden_states
|
851
|
+
encoder_hidden_states_t5 = self.caption_projection[-1](encoder_hidden_states_t5)
|
852
|
+
encoder_hidden_states_t5 = encoder_hidden_states_t5.view(batch_size, -1, hidden_states.shape[-1])
|
853
|
+
encoder_hidden_states.append(encoder_hidden_states_t5)
|
854
|
+
|
855
|
+
txt_ids = torch.zeros(
|
856
|
+
batch_size,
|
857
|
+
encoder_hidden_states[-1].shape[1]
|
858
|
+
+ encoder_hidden_states[-2].shape[1]
|
859
|
+
+ encoder_hidden_states[0].shape[1],
|
860
|
+
3,
|
861
|
+
device=img_ids.device,
|
862
|
+
dtype=img_ids.dtype,
|
863
|
+
)
|
864
|
+
ids = torch.cat((img_ids, txt_ids), dim=1)
|
865
|
+
image_rotary_emb = self.pe_embedder(ids)
|
866
|
+
|
867
|
+
# 2. Blocks
|
868
|
+
block_id = 0
|
869
|
+
initial_encoder_hidden_states = torch.cat([encoder_hidden_states[-1], encoder_hidden_states[-2]], dim=1)
|
870
|
+
initial_encoder_hidden_states_seq_len = initial_encoder_hidden_states.shape[1]
|
871
|
+
for bid, block in enumerate(self.double_stream_blocks):
|
872
|
+
cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id]
|
873
|
+
cur_encoder_hidden_states = torch.cat(
|
874
|
+
[initial_encoder_hidden_states, cur_llama31_encoder_hidden_states], dim=1
|
875
|
+
)
|
876
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
877
|
+
hidden_states, initial_encoder_hidden_states = self._gradient_checkpointing_func(
|
878
|
+
block,
|
879
|
+
hidden_states,
|
880
|
+
hidden_states_masks,
|
881
|
+
cur_encoder_hidden_states,
|
882
|
+
temb,
|
883
|
+
image_rotary_emb,
|
884
|
+
)
|
885
|
+
else:
|
886
|
+
hidden_states, initial_encoder_hidden_states = block(
|
887
|
+
hidden_states=hidden_states,
|
888
|
+
hidden_states_masks=hidden_states_masks,
|
889
|
+
encoder_hidden_states=cur_encoder_hidden_states,
|
890
|
+
temb=temb,
|
891
|
+
image_rotary_emb=image_rotary_emb,
|
892
|
+
)
|
893
|
+
initial_encoder_hidden_states = initial_encoder_hidden_states[:, :initial_encoder_hidden_states_seq_len]
|
894
|
+
block_id += 1
|
895
|
+
|
896
|
+
image_tokens_seq_len = hidden_states.shape[1]
|
897
|
+
hidden_states = torch.cat([hidden_states, initial_encoder_hidden_states], dim=1)
|
898
|
+
hidden_states_seq_len = hidden_states.shape[1]
|
899
|
+
if hidden_states_masks is not None:
|
900
|
+
encoder_attention_mask_ones = torch.ones(
|
901
|
+
(batch_size, initial_encoder_hidden_states.shape[1] + cur_llama31_encoder_hidden_states.shape[1]),
|
902
|
+
device=hidden_states_masks.device,
|
903
|
+
dtype=hidden_states_masks.dtype,
|
904
|
+
)
|
905
|
+
hidden_states_masks = torch.cat([hidden_states_masks, encoder_attention_mask_ones], dim=1)
|
906
|
+
|
907
|
+
for bid, block in enumerate(self.single_stream_blocks):
|
908
|
+
cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id]
|
909
|
+
hidden_states = torch.cat([hidden_states, cur_llama31_encoder_hidden_states], dim=1)
|
910
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
911
|
+
hidden_states = self._gradient_checkpointing_func(
|
912
|
+
block,
|
913
|
+
hidden_states,
|
914
|
+
hidden_states_masks,
|
915
|
+
None,
|
916
|
+
temb,
|
917
|
+
image_rotary_emb,
|
918
|
+
)
|
919
|
+
else:
|
920
|
+
hidden_states = block(
|
921
|
+
hidden_states=hidden_states,
|
922
|
+
hidden_states_masks=hidden_states_masks,
|
923
|
+
encoder_hidden_states=None,
|
924
|
+
temb=temb,
|
925
|
+
image_rotary_emb=image_rotary_emb,
|
926
|
+
)
|
927
|
+
hidden_states = hidden_states[:, :hidden_states_seq_len]
|
928
|
+
block_id += 1
|
929
|
+
|
930
|
+
hidden_states = hidden_states[:, :image_tokens_seq_len, ...]
|
931
|
+
output = self.final_layer(hidden_states, temb)
|
932
|
+
output = self.unpatchify(output, img_sizes, self.training)
|
933
|
+
if hidden_states_masks is not None:
|
934
|
+
hidden_states_masks = hidden_states_masks[:, :image_tokens_seq_len]
|
935
|
+
|
936
|
+
if USE_PEFT_BACKEND:
|
937
|
+
# remove `lora_scale` from each PEFT layer
|
938
|
+
unscale_lora_layers(self, lora_scale)
|
939
|
+
|
940
|
+
if not return_dict:
|
941
|
+
return (output,)
|
942
|
+
return Transformer2DModelOutput(sample=output)
|