diffusers 0.33.0__py3-none-any.whl → 0.34.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (478) hide show
  1. diffusers/__init__.py +48 -1
  2. diffusers/commands/__init__.py +1 -1
  3. diffusers/commands/diffusers_cli.py +1 -1
  4. diffusers/commands/env.py +1 -1
  5. diffusers/commands/fp16_safetensors.py +1 -1
  6. diffusers/dependency_versions_check.py +1 -1
  7. diffusers/dependency_versions_table.py +1 -1
  8. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  9. diffusers/hooks/faster_cache.py +2 -2
  10. diffusers/hooks/group_offloading.py +128 -29
  11. diffusers/hooks/hooks.py +2 -2
  12. diffusers/hooks/layerwise_casting.py +3 -3
  13. diffusers/hooks/pyramid_attention_broadcast.py +1 -1
  14. diffusers/image_processor.py +7 -2
  15. diffusers/loaders/__init__.py +4 -0
  16. diffusers/loaders/ip_adapter.py +5 -14
  17. diffusers/loaders/lora_base.py +212 -111
  18. diffusers/loaders/lora_conversion_utils.py +275 -34
  19. diffusers/loaders/lora_pipeline.py +1554 -819
  20. diffusers/loaders/peft.py +52 -109
  21. diffusers/loaders/single_file.py +2 -2
  22. diffusers/loaders/single_file_model.py +20 -4
  23. diffusers/loaders/single_file_utils.py +225 -5
  24. diffusers/loaders/textual_inversion.py +3 -2
  25. diffusers/loaders/transformer_flux.py +1 -1
  26. diffusers/loaders/transformer_sd3.py +2 -2
  27. diffusers/loaders/unet.py +2 -16
  28. diffusers/loaders/unet_loader_utils.py +1 -1
  29. diffusers/loaders/utils.py +1 -1
  30. diffusers/models/__init__.py +15 -1
  31. diffusers/models/activations.py +5 -5
  32. diffusers/models/adapter.py +2 -3
  33. diffusers/models/attention.py +4 -4
  34. diffusers/models/attention_flax.py +10 -10
  35. diffusers/models/attention_processor.py +14 -10
  36. diffusers/models/auto_model.py +47 -10
  37. diffusers/models/autoencoders/__init__.py +1 -0
  38. diffusers/models/autoencoders/autoencoder_asym_kl.py +4 -4
  39. diffusers/models/autoencoders/autoencoder_dc.py +3 -3
  40. diffusers/models/autoencoders/autoencoder_kl.py +4 -4
  41. diffusers/models/autoencoders/autoencoder_kl_allegro.py +4 -4
  42. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +6 -6
  43. diffusers/models/autoencoders/autoencoder_kl_cosmos.py +1108 -0
  44. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +2 -2
  45. diffusers/models/autoencoders/autoencoder_kl_ltx.py +3 -3
  46. diffusers/models/autoencoders/autoencoder_kl_magvit.py +4 -4
  47. diffusers/models/autoencoders/autoencoder_kl_mochi.py +3 -3
  48. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +4 -4
  49. diffusers/models/autoencoders/autoencoder_kl_wan.py +256 -22
  50. diffusers/models/autoencoders/autoencoder_oobleck.py +1 -1
  51. diffusers/models/autoencoders/autoencoder_tiny.py +3 -3
  52. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  53. diffusers/models/autoencoders/vae.py +13 -2
  54. diffusers/models/autoencoders/vq_model.py +2 -2
  55. diffusers/models/cache_utils.py +1 -1
  56. diffusers/models/controlnet.py +1 -1
  57. diffusers/models/controlnet_flux.py +1 -1
  58. diffusers/models/controlnet_sd3.py +1 -1
  59. diffusers/models/controlnet_sparsectrl.py +1 -1
  60. diffusers/models/controlnets/__init__.py +1 -0
  61. diffusers/models/controlnets/controlnet.py +3 -3
  62. diffusers/models/controlnets/controlnet_flax.py +1 -1
  63. diffusers/models/controlnets/controlnet_flux.py +16 -15
  64. diffusers/models/controlnets/controlnet_hunyuan.py +2 -2
  65. diffusers/models/controlnets/controlnet_sana.py +290 -0
  66. diffusers/models/controlnets/controlnet_sd3.py +1 -1
  67. diffusers/models/controlnets/controlnet_sparsectrl.py +2 -2
  68. diffusers/models/controlnets/controlnet_union.py +1 -1
  69. diffusers/models/controlnets/controlnet_xs.py +7 -7
  70. diffusers/models/controlnets/multicontrolnet.py +4 -5
  71. diffusers/models/controlnets/multicontrolnet_union.py +5 -6
  72. diffusers/models/downsampling.py +2 -2
  73. diffusers/models/embeddings.py +10 -12
  74. diffusers/models/embeddings_flax.py +2 -2
  75. diffusers/models/lora.py +3 -3
  76. diffusers/models/modeling_utils.py +44 -14
  77. diffusers/models/normalization.py +4 -4
  78. diffusers/models/resnet.py +2 -2
  79. diffusers/models/resnet_flax.py +1 -1
  80. diffusers/models/transformers/__init__.py +5 -0
  81. diffusers/models/transformers/auraflow_transformer_2d.py +70 -24
  82. diffusers/models/transformers/cogvideox_transformer_3d.py +1 -1
  83. diffusers/models/transformers/consisid_transformer_3d.py +1 -1
  84. diffusers/models/transformers/dit_transformer_2d.py +2 -2
  85. diffusers/models/transformers/dual_transformer_2d.py +1 -1
  86. diffusers/models/transformers/hunyuan_transformer_2d.py +2 -2
  87. diffusers/models/transformers/latte_transformer_3d.py +4 -5
  88. diffusers/models/transformers/lumina_nextdit2d.py +2 -2
  89. diffusers/models/transformers/pixart_transformer_2d.py +3 -3
  90. diffusers/models/transformers/prior_transformer.py +1 -1
  91. diffusers/models/transformers/sana_transformer.py +8 -3
  92. diffusers/models/transformers/stable_audio_transformer.py +5 -9
  93. diffusers/models/transformers/t5_film_transformer.py +3 -3
  94. diffusers/models/transformers/transformer_2d.py +1 -1
  95. diffusers/models/transformers/transformer_allegro.py +1 -1
  96. diffusers/models/transformers/transformer_chroma.py +742 -0
  97. diffusers/models/transformers/transformer_cogview3plus.py +5 -10
  98. diffusers/models/transformers/transformer_cogview4.py +317 -25
  99. diffusers/models/transformers/transformer_cosmos.py +579 -0
  100. diffusers/models/transformers/transformer_flux.py +9 -11
  101. diffusers/models/transformers/transformer_hidream_image.py +942 -0
  102. diffusers/models/transformers/transformer_hunyuan_video.py +6 -8
  103. diffusers/models/transformers/transformer_hunyuan_video_framepack.py +416 -0
  104. diffusers/models/transformers/transformer_ltx.py +2 -2
  105. diffusers/models/transformers/transformer_lumina2.py +1 -1
  106. diffusers/models/transformers/transformer_mochi.py +1 -1
  107. diffusers/models/transformers/transformer_omnigen.py +2 -2
  108. diffusers/models/transformers/transformer_sd3.py +7 -7
  109. diffusers/models/transformers/transformer_temporal.py +1 -1
  110. diffusers/models/transformers/transformer_wan.py +24 -8
  111. diffusers/models/transformers/transformer_wan_vace.py +393 -0
  112. diffusers/models/unets/unet_1d.py +1 -1
  113. diffusers/models/unets/unet_1d_blocks.py +1 -1
  114. diffusers/models/unets/unet_2d.py +1 -1
  115. diffusers/models/unets/unet_2d_blocks.py +1 -1
  116. diffusers/models/unets/unet_2d_blocks_flax.py +8 -7
  117. diffusers/models/unets/unet_2d_condition.py +2 -2
  118. diffusers/models/unets/unet_2d_condition_flax.py +2 -2
  119. diffusers/models/unets/unet_3d_blocks.py +1 -1
  120. diffusers/models/unets/unet_3d_condition.py +3 -3
  121. diffusers/models/unets/unet_i2vgen_xl.py +3 -3
  122. diffusers/models/unets/unet_kandinsky3.py +1 -1
  123. diffusers/models/unets/unet_motion_model.py +2 -2
  124. diffusers/models/unets/unet_stable_cascade.py +1 -1
  125. diffusers/models/upsampling.py +2 -2
  126. diffusers/models/vae_flax.py +2 -2
  127. diffusers/models/vq_model.py +1 -1
  128. diffusers/pipelines/__init__.py +37 -6
  129. diffusers/pipelines/allegro/pipeline_allegro.py +11 -11
  130. diffusers/pipelines/amused/pipeline_amused.py +7 -6
  131. diffusers/pipelines/amused/pipeline_amused_img2img.py +6 -5
  132. diffusers/pipelines/amused/pipeline_amused_inpaint.py +6 -5
  133. diffusers/pipelines/animatediff/pipeline_animatediff.py +6 -6
  134. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +6 -6
  135. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +16 -15
  136. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +6 -6
  137. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +5 -5
  138. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +5 -5
  139. diffusers/pipelines/audioldm/pipeline_audioldm.py +8 -7
  140. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  141. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +23 -13
  142. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +48 -11
  143. diffusers/pipelines/auto_pipeline.py +6 -7
  144. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  145. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
  146. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +11 -10
  147. diffusers/pipelines/chroma/__init__.py +49 -0
  148. diffusers/pipelines/chroma/pipeline_chroma.py +949 -0
  149. diffusers/pipelines/chroma/pipeline_chroma_img2img.py +1034 -0
  150. diffusers/pipelines/chroma/pipeline_output.py +21 -0
  151. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +8 -8
  152. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +8 -8
  153. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +8 -8
  154. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +8 -8
  155. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +9 -9
  156. diffusers/pipelines/cogview4/pipeline_cogview4.py +7 -7
  157. diffusers/pipelines/cogview4/pipeline_cogview4_control.py +7 -7
  158. diffusers/pipelines/consisid/consisid_utils.py +2 -2
  159. diffusers/pipelines/consisid/pipeline_consisid.py +8 -8
  160. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  161. diffusers/pipelines/controlnet/pipeline_controlnet.py +7 -7
  162. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +8 -8
  163. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +7 -7
  164. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +7 -7
  165. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +14 -14
  166. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +10 -6
  167. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +13 -13
  168. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +14 -14
  169. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +5 -5
  170. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +13 -13
  171. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +1 -1
  172. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +8 -8
  173. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +7 -7
  174. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
  175. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -10
  176. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +9 -7
  177. diffusers/pipelines/cosmos/__init__.py +54 -0
  178. diffusers/pipelines/cosmos/pipeline_cosmos2_text2image.py +673 -0
  179. diffusers/pipelines/cosmos/pipeline_cosmos2_video2world.py +792 -0
  180. diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +664 -0
  181. diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +826 -0
  182. diffusers/pipelines/cosmos/pipeline_output.py +40 -0
  183. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +5 -4
  184. diffusers/pipelines/ddim/pipeline_ddim.py +4 -4
  185. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
  186. diffusers/pipelines/deepfloyd_if/pipeline_if.py +10 -10
  187. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +10 -10
  188. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +10 -10
  189. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +10 -10
  190. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +10 -10
  191. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +10 -10
  192. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +8 -8
  193. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +5 -5
  194. diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
  195. diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +3 -3
  196. diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
  197. diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +2 -2
  198. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +4 -3
  199. diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
  200. diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
  201. diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
  202. diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
  203. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
  204. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +7 -7
  205. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +9 -9
  206. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +10 -10
  207. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -8
  208. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -5
  209. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +18 -18
  210. diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
  211. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +2 -2
  212. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +6 -6
  213. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +5 -5
  214. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +5 -5
  215. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +5 -5
  216. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
  217. diffusers/pipelines/dit/pipeline_dit.py +1 -1
  218. diffusers/pipelines/easyanimate/pipeline_easyanimate.py +4 -4
  219. diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +4 -4
  220. diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +7 -6
  221. diffusers/pipelines/flux/modeling_flux.py +1 -1
  222. diffusers/pipelines/flux/pipeline_flux.py +10 -17
  223. diffusers/pipelines/flux/pipeline_flux_control.py +6 -6
  224. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -6
  225. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +6 -6
  226. diffusers/pipelines/flux/pipeline_flux_controlnet.py +6 -6
  227. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +30 -22
  228. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +2 -1
  229. diffusers/pipelines/flux/pipeline_flux_fill.py +6 -6
  230. diffusers/pipelines/flux/pipeline_flux_img2img.py +39 -6
  231. diffusers/pipelines/flux/pipeline_flux_inpaint.py +11 -6
  232. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +1 -1
  233. diffusers/pipelines/free_init_utils.py +2 -2
  234. diffusers/pipelines/free_noise_utils.py +3 -3
  235. diffusers/pipelines/hidream_image/__init__.py +47 -0
  236. diffusers/pipelines/hidream_image/pipeline_hidream_image.py +1026 -0
  237. diffusers/pipelines/hidream_image/pipeline_output.py +35 -0
  238. diffusers/pipelines/hunyuan_video/__init__.py +2 -0
  239. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +8 -8
  240. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +8 -8
  241. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_framepack.py +1114 -0
  242. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +71 -15
  243. diffusers/pipelines/hunyuan_video/pipeline_output.py +19 -0
  244. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +8 -8
  245. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +10 -8
  246. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +6 -6
  247. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +34 -34
  248. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +19 -26
  249. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +7 -7
  250. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +11 -11
  251. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  252. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +35 -35
  253. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +6 -6
  254. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +17 -39
  255. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +17 -45
  256. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +7 -7
  257. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +10 -10
  258. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +10 -10
  259. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +7 -7
  260. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +17 -38
  261. diffusers/pipelines/kolors/pipeline_kolors.py +10 -10
  262. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +12 -12
  263. diffusers/pipelines/kolors/text_encoder.py +3 -3
  264. diffusers/pipelines/kolors/tokenizer.py +1 -1
  265. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +2 -2
  266. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +2 -2
  267. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  268. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +3 -3
  269. diffusers/pipelines/latte/pipeline_latte.py +12 -12
  270. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +13 -13
  271. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +17 -16
  272. diffusers/pipelines/ltx/__init__.py +4 -0
  273. diffusers/pipelines/ltx/modeling_latent_upsampler.py +188 -0
  274. diffusers/pipelines/ltx/pipeline_ltx.py +51 -6
  275. diffusers/pipelines/ltx/pipeline_ltx_condition.py +107 -29
  276. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +50 -6
  277. diffusers/pipelines/ltx/pipeline_ltx_latent_upsample.py +277 -0
  278. diffusers/pipelines/lumina/pipeline_lumina.py +13 -13
  279. diffusers/pipelines/lumina2/pipeline_lumina2.py +10 -10
  280. diffusers/pipelines/marigold/marigold_image_processing.py +2 -2
  281. diffusers/pipelines/mochi/pipeline_mochi.py +6 -6
  282. diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -13
  283. diffusers/pipelines/omnigen/pipeline_omnigen.py +13 -11
  284. diffusers/pipelines/omnigen/processor_omnigen.py +8 -3
  285. diffusers/pipelines/onnx_utils.py +15 -2
  286. diffusers/pipelines/pag/pag_utils.py +2 -2
  287. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -8
  288. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +7 -7
  289. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +10 -6
  290. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +14 -14
  291. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +8 -8
  292. diffusers/pipelines/pag/pipeline_pag_kolors.py +10 -10
  293. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +11 -11
  294. diffusers/pipelines/pag/pipeline_pag_sana.py +18 -12
  295. diffusers/pipelines/pag/pipeline_pag_sd.py +8 -8
  296. diffusers/pipelines/pag/pipeline_pag_sd_3.py +7 -7
  297. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +7 -7
  298. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +6 -6
  299. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +5 -5
  300. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +8 -8
  301. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +16 -15
  302. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +18 -17
  303. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +12 -12
  304. diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
  305. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +8 -7
  306. diffusers/pipelines/pia/pipeline_pia.py +8 -6
  307. diffusers/pipelines/pipeline_flax_utils.py +3 -4
  308. diffusers/pipelines/pipeline_loading_utils.py +89 -13
  309. diffusers/pipelines/pipeline_utils.py +105 -33
  310. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +11 -11
  311. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +11 -11
  312. diffusers/pipelines/sana/__init__.py +4 -0
  313. diffusers/pipelines/sana/pipeline_sana.py +23 -21
  314. diffusers/pipelines/sana/pipeline_sana_controlnet.py +1106 -0
  315. diffusers/pipelines/sana/pipeline_sana_sprint.py +23 -19
  316. diffusers/pipelines/sana/pipeline_sana_sprint_img2img.py +981 -0
  317. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +7 -6
  318. diffusers/pipelines/shap_e/camera.py +1 -1
  319. diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
  320. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
  321. diffusers/pipelines/shap_e/renderer.py +3 -3
  322. diffusers/pipelines/stable_audio/modeling_stable_audio.py +1 -1
  323. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +5 -5
  324. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +8 -8
  325. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +13 -13
  326. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +9 -9
  327. diffusers/pipelines/stable_diffusion/__init__.py +0 -7
  328. diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
  329. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +11 -4
  330. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  331. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +1 -1
  332. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
  333. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +10 -10
  334. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +10 -10
  335. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +10 -10
  336. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +9 -9
  337. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +8 -8
  338. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -5
  339. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +5 -5
  340. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +5 -5
  341. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +5 -5
  342. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +5 -5
  343. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -4
  344. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -5
  345. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +7 -7
  346. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -5
  347. diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
  348. diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
  349. diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
  350. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +7 -7
  351. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +7 -7
  352. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +7 -7
  353. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +12 -8
  354. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +15 -9
  355. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +11 -9
  356. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -9
  357. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +18 -12
  358. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +11 -8
  359. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +11 -8
  360. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -12
  361. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +8 -6
  362. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  363. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +15 -11
  364. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  365. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -15
  366. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +18 -17
  367. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +12 -12
  368. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -15
  369. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +3 -3
  370. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +12 -12
  371. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -17
  372. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +12 -7
  373. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +12 -7
  374. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +15 -13
  375. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +24 -21
  376. diffusers/pipelines/unclip/pipeline_unclip.py +4 -3
  377. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +4 -3
  378. diffusers/pipelines/unclip/text_proj.py +2 -2
  379. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +2 -2
  380. diffusers/pipelines/unidiffuser/modeling_uvit.py +1 -1
  381. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +8 -7
  382. diffusers/pipelines/visualcloze/__init__.py +52 -0
  383. diffusers/pipelines/visualcloze/pipeline_visualcloze_combined.py +444 -0
  384. diffusers/pipelines/visualcloze/pipeline_visualcloze_generation.py +952 -0
  385. diffusers/pipelines/visualcloze/visualcloze_utils.py +251 -0
  386. diffusers/pipelines/wan/__init__.py +2 -0
  387. diffusers/pipelines/wan/pipeline_wan.py +17 -12
  388. diffusers/pipelines/wan/pipeline_wan_i2v.py +42 -20
  389. diffusers/pipelines/wan/pipeline_wan_vace.py +976 -0
  390. diffusers/pipelines/wan/pipeline_wan_video2video.py +18 -18
  391. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  392. diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +1 -1
  393. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  394. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
  395. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +16 -15
  396. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +6 -6
  397. diffusers/quantizers/__init__.py +179 -1
  398. diffusers/quantizers/base.py +6 -1
  399. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -0
  400. diffusers/quantizers/bitsandbytes/utils.py +10 -7
  401. diffusers/quantizers/gguf/gguf_quantizer.py +13 -4
  402. diffusers/quantizers/gguf/utils.py +16 -13
  403. diffusers/quantizers/quantization_config.py +18 -16
  404. diffusers/quantizers/quanto/quanto_quantizer.py +4 -0
  405. diffusers/quantizers/torchao/torchao_quantizer.py +5 -1
  406. diffusers/schedulers/__init__.py +3 -1
  407. diffusers/schedulers/deprecated/scheduling_karras_ve.py +4 -3
  408. diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
  409. diffusers/schedulers/scheduling_consistency_models.py +1 -1
  410. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +10 -5
  411. diffusers/schedulers/scheduling_ddim.py +8 -8
  412. diffusers/schedulers/scheduling_ddim_cogvideox.py +5 -5
  413. diffusers/schedulers/scheduling_ddim_flax.py +6 -6
  414. diffusers/schedulers/scheduling_ddim_inverse.py +6 -6
  415. diffusers/schedulers/scheduling_ddim_parallel.py +22 -22
  416. diffusers/schedulers/scheduling_ddpm.py +9 -9
  417. diffusers/schedulers/scheduling_ddpm_flax.py +7 -7
  418. diffusers/schedulers/scheduling_ddpm_parallel.py +18 -18
  419. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +2 -2
  420. diffusers/schedulers/scheduling_deis_multistep.py +8 -8
  421. diffusers/schedulers/scheduling_dpm_cogvideox.py +5 -5
  422. diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -12
  423. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +22 -20
  424. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +11 -11
  425. diffusers/schedulers/scheduling_dpmsolver_sde.py +2 -2
  426. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +13 -13
  427. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +13 -8
  428. diffusers/schedulers/scheduling_edm_euler.py +20 -11
  429. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +3 -3
  430. diffusers/schedulers/scheduling_euler_discrete.py +3 -3
  431. diffusers/schedulers/scheduling_euler_discrete_flax.py +3 -3
  432. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +20 -5
  433. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +1 -1
  434. diffusers/schedulers/scheduling_flow_match_lcm.py +561 -0
  435. diffusers/schedulers/scheduling_heun_discrete.py +2 -2
  436. diffusers/schedulers/scheduling_ipndm.py +2 -2
  437. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +2 -2
  438. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +2 -2
  439. diffusers/schedulers/scheduling_karras_ve_flax.py +5 -5
  440. diffusers/schedulers/scheduling_lcm.py +3 -3
  441. diffusers/schedulers/scheduling_lms_discrete.py +2 -2
  442. diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
  443. diffusers/schedulers/scheduling_pndm.py +4 -4
  444. diffusers/schedulers/scheduling_pndm_flax.py +4 -4
  445. diffusers/schedulers/scheduling_repaint.py +9 -9
  446. diffusers/schedulers/scheduling_sasolver.py +15 -15
  447. diffusers/schedulers/scheduling_scm.py +1 -1
  448. diffusers/schedulers/scheduling_sde_ve.py +1 -1
  449. diffusers/schedulers/scheduling_sde_ve_flax.py +2 -2
  450. diffusers/schedulers/scheduling_tcd.py +3 -3
  451. diffusers/schedulers/scheduling_unclip.py +5 -5
  452. diffusers/schedulers/scheduling_unipc_multistep.py +11 -11
  453. diffusers/schedulers/scheduling_utils.py +1 -1
  454. diffusers/schedulers/scheduling_utils_flax.py +1 -1
  455. diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
  456. diffusers/training_utils.py +13 -5
  457. diffusers/utils/__init__.py +5 -0
  458. diffusers/utils/accelerate_utils.py +1 -1
  459. diffusers/utils/doc_utils.py +1 -1
  460. diffusers/utils/dummy_pt_objects.py +120 -0
  461. diffusers/utils/dummy_torch_and_transformers_objects.py +225 -0
  462. diffusers/utils/dynamic_modules_utils.py +21 -3
  463. diffusers/utils/export_utils.py +1 -1
  464. diffusers/utils/import_utils.py +81 -18
  465. diffusers/utils/logging.py +1 -1
  466. diffusers/utils/outputs.py +2 -1
  467. diffusers/utils/peft_utils.py +91 -8
  468. diffusers/utils/state_dict_utils.py +20 -3
  469. diffusers/utils/testing_utils.py +59 -7
  470. diffusers/utils/torch_utils.py +25 -5
  471. diffusers/video_processor.py +2 -2
  472. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/METADATA +3 -3
  473. diffusers-0.34.0.dist-info/RECORD +639 -0
  474. diffusers-0.33.0.dist-info/RECORD +0 -608
  475. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/LICENSE +0 -0
  476. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/WHEEL +0 -0
  477. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/entry_points.txt +0 -0
  478. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1026 @@
1
+ # Copyright 2025 HiDream-ai Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ import math
17
+ from typing import Any, Callable, Dict, List, Optional, Union
18
+
19
+ import torch
20
+ from transformers import (
21
+ CLIPTextModelWithProjection,
22
+ CLIPTokenizer,
23
+ LlamaForCausalLM,
24
+ PreTrainedTokenizerFast,
25
+ T5EncoderModel,
26
+ T5Tokenizer,
27
+ )
28
+
29
+ from ...image_processor import VaeImageProcessor
30
+ from ...loaders import HiDreamImageLoraLoaderMixin
31
+ from ...models import AutoencoderKL, HiDreamImageTransformer2DModel
32
+ from ...schedulers import FlowMatchEulerDiscreteScheduler, UniPCMultistepScheduler
33
+ from ...utils import deprecate, is_torch_xla_available, logging, replace_example_docstring
34
+ from ...utils.torch_utils import randn_tensor
35
+ from ..pipeline_utils import DiffusionPipeline
36
+ from .pipeline_output import HiDreamImagePipelineOutput
37
+
38
+
39
+ if is_torch_xla_available():
40
+ import torch_xla.core.xla_model as xm
41
+
42
+ XLA_AVAILABLE = True
43
+ else:
44
+ XLA_AVAILABLE = False
45
+
46
+
47
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
48
+
49
+ EXAMPLE_DOC_STRING = """
50
+ Examples:
51
+ ```py
52
+ >>> import torch
53
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
54
+ >>> from diffusers import HiDreamImagePipeline
55
+
56
+
57
+ >>> tokenizer_4 = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
58
+ >>> text_encoder_4 = LlamaForCausalLM.from_pretrained(
59
+ ... "meta-llama/Meta-Llama-3.1-8B-Instruct",
60
+ ... output_hidden_states=True,
61
+ ... output_attentions=True,
62
+ ... torch_dtype=torch.bfloat16,
63
+ ... )
64
+
65
+ >>> pipe = HiDreamImagePipeline.from_pretrained(
66
+ ... "HiDream-ai/HiDream-I1-Full",
67
+ ... tokenizer_4=tokenizer_4,
68
+ ... text_encoder_4=text_encoder_4,
69
+ ... torch_dtype=torch.bfloat16,
70
+ ... )
71
+ >>> pipe.enable_model_cpu_offload()
72
+
73
+ >>> image = pipe(
74
+ ... 'A cat holding a sign that says "Hi-Dreams.ai".',
75
+ ... height=1024,
76
+ ... width=1024,
77
+ ... guidance_scale=5.0,
78
+ ... num_inference_steps=50,
79
+ ... generator=torch.Generator("cuda").manual_seed(0),
80
+ ... ).images[0]
81
+ >>> image.save("output.png")
82
+ ```
83
+ """
84
+
85
+
86
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
87
+ def calculate_shift(
88
+ image_seq_len,
89
+ base_seq_len: int = 256,
90
+ max_seq_len: int = 4096,
91
+ base_shift: float = 0.5,
92
+ max_shift: float = 1.15,
93
+ ):
94
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
95
+ b = base_shift - m * base_seq_len
96
+ mu = image_seq_len * m + b
97
+ return mu
98
+
99
+
100
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
101
+ def retrieve_timesteps(
102
+ scheduler,
103
+ num_inference_steps: Optional[int] = None,
104
+ device: Optional[Union[str, torch.device]] = None,
105
+ timesteps: Optional[List[int]] = None,
106
+ sigmas: Optional[List[float]] = None,
107
+ **kwargs,
108
+ ):
109
+ r"""
110
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
111
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
112
+
113
+ Args:
114
+ scheduler (`SchedulerMixin`):
115
+ The scheduler to get timesteps from.
116
+ num_inference_steps (`int`):
117
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
118
+ must be `None`.
119
+ device (`str` or `torch.device`, *optional*):
120
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
121
+ timesteps (`List[int]`, *optional*):
122
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
123
+ `num_inference_steps` and `sigmas` must be `None`.
124
+ sigmas (`List[float]`, *optional*):
125
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
126
+ `num_inference_steps` and `timesteps` must be `None`.
127
+
128
+ Returns:
129
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
130
+ second element is the number of inference steps.
131
+ """
132
+ if timesteps is not None and sigmas is not None:
133
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
134
+ if timesteps is not None:
135
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
136
+ if not accepts_timesteps:
137
+ raise ValueError(
138
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
139
+ f" timestep schedules. Please check whether you are using the correct scheduler."
140
+ )
141
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
142
+ timesteps = scheduler.timesteps
143
+ num_inference_steps = len(timesteps)
144
+ elif sigmas is not None:
145
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
146
+ if not accept_sigmas:
147
+ raise ValueError(
148
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
149
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
150
+ )
151
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
152
+ timesteps = scheduler.timesteps
153
+ num_inference_steps = len(timesteps)
154
+ else:
155
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
156
+ timesteps = scheduler.timesteps
157
+ return timesteps, num_inference_steps
158
+
159
+
160
+ class HiDreamImagePipeline(DiffusionPipeline, HiDreamImageLoraLoaderMixin):
161
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->text_encoder_4->transformer->vae"
162
+ _callback_tensor_inputs = ["latents", "prompt_embeds_t5", "prompt_embeds_llama3", "pooled_prompt_embeds"]
163
+
164
+ def __init__(
165
+ self,
166
+ scheduler: FlowMatchEulerDiscreteScheduler,
167
+ vae: AutoencoderKL,
168
+ text_encoder: CLIPTextModelWithProjection,
169
+ tokenizer: CLIPTokenizer,
170
+ text_encoder_2: CLIPTextModelWithProjection,
171
+ tokenizer_2: CLIPTokenizer,
172
+ text_encoder_3: T5EncoderModel,
173
+ tokenizer_3: T5Tokenizer,
174
+ text_encoder_4: LlamaForCausalLM,
175
+ tokenizer_4: PreTrainedTokenizerFast,
176
+ transformer: HiDreamImageTransformer2DModel,
177
+ ):
178
+ super().__init__()
179
+
180
+ self.register_modules(
181
+ vae=vae,
182
+ text_encoder=text_encoder,
183
+ text_encoder_2=text_encoder_2,
184
+ text_encoder_3=text_encoder_3,
185
+ text_encoder_4=text_encoder_4,
186
+ tokenizer=tokenizer,
187
+ tokenizer_2=tokenizer_2,
188
+ tokenizer_3=tokenizer_3,
189
+ tokenizer_4=tokenizer_4,
190
+ scheduler=scheduler,
191
+ transformer=transformer,
192
+ )
193
+ self.vae_scale_factor = (
194
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
195
+ )
196
+ # HiDreamImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
197
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
198
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
199
+ self.default_sample_size = 128
200
+ if getattr(self, "tokenizer_4", None) is not None:
201
+ self.tokenizer_4.pad_token = self.tokenizer_4.eos_token
202
+
203
+ def _get_t5_prompt_embeds(
204
+ self,
205
+ prompt: Union[str, List[str]] = None,
206
+ max_sequence_length: int = 128,
207
+ device: Optional[torch.device] = None,
208
+ dtype: Optional[torch.dtype] = None,
209
+ ):
210
+ device = device or self._execution_device
211
+ dtype = dtype or self.text_encoder_3.dtype
212
+
213
+ prompt = [prompt] if isinstance(prompt, str) else prompt
214
+
215
+ text_inputs = self.tokenizer_3(
216
+ prompt,
217
+ padding="max_length",
218
+ max_length=min(max_sequence_length, self.tokenizer_3.model_max_length),
219
+ truncation=True,
220
+ add_special_tokens=True,
221
+ return_tensors="pt",
222
+ )
223
+ text_input_ids = text_inputs.input_ids
224
+ attention_mask = text_inputs.attention_mask
225
+ untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
226
+
227
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
228
+ removed_text = self.tokenizer_3.batch_decode(
229
+ untruncated_ids[:, min(max_sequence_length, self.tokenizer_3.model_max_length) - 1 : -1]
230
+ )
231
+ logger.warning(
232
+ "The following part of your input was truncated because `max_sequence_length` is set to "
233
+ f" {min(max_sequence_length, self.tokenizer_3.model_max_length)} tokens: {removed_text}"
234
+ )
235
+
236
+ prompt_embeds = self.text_encoder_3(text_input_ids.to(device), attention_mask=attention_mask.to(device))[0]
237
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
238
+ return prompt_embeds
239
+
240
+ def _get_clip_prompt_embeds(
241
+ self,
242
+ tokenizer,
243
+ text_encoder,
244
+ prompt: Union[str, List[str]],
245
+ max_sequence_length: int = 128,
246
+ device: Optional[torch.device] = None,
247
+ dtype: Optional[torch.dtype] = None,
248
+ ):
249
+ device = device or self._execution_device
250
+ dtype = dtype or text_encoder.dtype
251
+
252
+ prompt = [prompt] if isinstance(prompt, str) else prompt
253
+
254
+ text_inputs = tokenizer(
255
+ prompt,
256
+ padding="max_length",
257
+ max_length=min(max_sequence_length, 218),
258
+ truncation=True,
259
+ return_tensors="pt",
260
+ )
261
+
262
+ text_input_ids = text_inputs.input_ids
263
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
264
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
265
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, 218 - 1 : -1])
266
+ logger.warning(
267
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
268
+ f" {218} tokens: {removed_text}"
269
+ )
270
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
271
+
272
+ # Use pooled output of CLIPTextModel
273
+ prompt_embeds = prompt_embeds[0]
274
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
275
+ return prompt_embeds
276
+
277
+ def _get_llama3_prompt_embeds(
278
+ self,
279
+ prompt: Union[str, List[str]] = None,
280
+ max_sequence_length: int = 128,
281
+ device: Optional[torch.device] = None,
282
+ dtype: Optional[torch.dtype] = None,
283
+ ):
284
+ device = device or self._execution_device
285
+ dtype = dtype or self.text_encoder_4.dtype
286
+
287
+ prompt = [prompt] if isinstance(prompt, str) else prompt
288
+
289
+ text_inputs = self.tokenizer_4(
290
+ prompt,
291
+ padding="max_length",
292
+ max_length=min(max_sequence_length, self.tokenizer_4.model_max_length),
293
+ truncation=True,
294
+ add_special_tokens=True,
295
+ return_tensors="pt",
296
+ )
297
+ text_input_ids = text_inputs.input_ids
298
+ attention_mask = text_inputs.attention_mask
299
+ untruncated_ids = self.tokenizer_4(prompt, padding="longest", return_tensors="pt").input_ids
300
+
301
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
302
+ removed_text = self.tokenizer_4.batch_decode(
303
+ untruncated_ids[:, min(max_sequence_length, self.tokenizer_4.model_max_length) - 1 : -1]
304
+ )
305
+ logger.warning(
306
+ "The following part of your input was truncated because `max_sequence_length` is set to "
307
+ f" {min(max_sequence_length, self.tokenizer_4.model_max_length)} tokens: {removed_text}"
308
+ )
309
+
310
+ outputs = self.text_encoder_4(
311
+ text_input_ids.to(device),
312
+ attention_mask=attention_mask.to(device),
313
+ output_hidden_states=True,
314
+ output_attentions=True,
315
+ )
316
+
317
+ prompt_embeds = outputs.hidden_states[1:]
318
+ prompt_embeds = torch.stack(prompt_embeds, dim=0)
319
+ return prompt_embeds
320
+
321
+ def encode_prompt(
322
+ self,
323
+ prompt: Optional[Union[str, List[str]]] = None,
324
+ prompt_2: Optional[Union[str, List[str]]] = None,
325
+ prompt_3: Optional[Union[str, List[str]]] = None,
326
+ prompt_4: Optional[Union[str, List[str]]] = None,
327
+ device: Optional[torch.device] = None,
328
+ dtype: Optional[torch.dtype] = None,
329
+ num_images_per_prompt: int = 1,
330
+ do_classifier_free_guidance: bool = True,
331
+ negative_prompt: Optional[Union[str, List[str]]] = None,
332
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
333
+ negative_prompt_3: Optional[Union[str, List[str]]] = None,
334
+ negative_prompt_4: Optional[Union[str, List[str]]] = None,
335
+ prompt_embeds_t5: Optional[List[torch.FloatTensor]] = None,
336
+ prompt_embeds_llama3: Optional[List[torch.FloatTensor]] = None,
337
+ negative_prompt_embeds_t5: Optional[List[torch.FloatTensor]] = None,
338
+ negative_prompt_embeds_llama3: Optional[List[torch.FloatTensor]] = None,
339
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
340
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
341
+ max_sequence_length: int = 128,
342
+ lora_scale: Optional[float] = None,
343
+ ):
344
+ prompt = [prompt] if isinstance(prompt, str) else prompt
345
+ if prompt is not None:
346
+ batch_size = len(prompt)
347
+ else:
348
+ batch_size = pooled_prompt_embeds.shape[0]
349
+
350
+ device = device or self._execution_device
351
+
352
+ if pooled_prompt_embeds is None:
353
+ pooled_prompt_embeds_1 = self._get_clip_prompt_embeds(
354
+ self.tokenizer, self.text_encoder, prompt, max_sequence_length, device, dtype
355
+ )
356
+
357
+ if do_classifier_free_guidance and negative_pooled_prompt_embeds is None:
358
+ negative_prompt = negative_prompt or ""
359
+ negative_prompt = [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
360
+
361
+ if len(negative_prompt) > 1 and len(negative_prompt) != batch_size:
362
+ raise ValueError(f"negative_prompt must be of length 1 or {batch_size}")
363
+
364
+ negative_pooled_prompt_embeds_1 = self._get_clip_prompt_embeds(
365
+ self.tokenizer, self.text_encoder, negative_prompt, max_sequence_length, device, dtype
366
+ )
367
+
368
+ if negative_pooled_prompt_embeds_1.shape[0] == 1 and batch_size > 1:
369
+ negative_pooled_prompt_embeds_1 = negative_pooled_prompt_embeds_1.repeat(batch_size, 1)
370
+
371
+ if pooled_prompt_embeds is None:
372
+ prompt_2 = prompt_2 or prompt
373
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
374
+
375
+ if len(prompt_2) > 1 and len(prompt_2) != batch_size:
376
+ raise ValueError(f"prompt_2 must be of length 1 or {batch_size}")
377
+
378
+ pooled_prompt_embeds_2 = self._get_clip_prompt_embeds(
379
+ self.tokenizer_2, self.text_encoder_2, prompt_2, max_sequence_length, device, dtype
380
+ )
381
+
382
+ if pooled_prompt_embeds_2.shape[0] == 1 and batch_size > 1:
383
+ pooled_prompt_embeds_2 = pooled_prompt_embeds_2.repeat(batch_size, 1)
384
+
385
+ if do_classifier_free_guidance and negative_pooled_prompt_embeds is None:
386
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
387
+ negative_prompt_2 = [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
388
+
389
+ if len(negative_prompt_2) > 1 and len(negative_prompt_2) != batch_size:
390
+ raise ValueError(f"negative_prompt_2 must be of length 1 or {batch_size}")
391
+
392
+ negative_pooled_prompt_embeds_2 = self._get_clip_prompt_embeds(
393
+ self.tokenizer_2, self.text_encoder_2, negative_prompt_2, max_sequence_length, device, dtype
394
+ )
395
+
396
+ if negative_pooled_prompt_embeds_2.shape[0] == 1 and batch_size > 1:
397
+ negative_pooled_prompt_embeds_2 = negative_pooled_prompt_embeds_2.repeat(batch_size, 1)
398
+
399
+ if pooled_prompt_embeds is None:
400
+ pooled_prompt_embeds = torch.cat([pooled_prompt_embeds_1, pooled_prompt_embeds_2], dim=-1)
401
+
402
+ if do_classifier_free_guidance and negative_pooled_prompt_embeds is None:
403
+ negative_pooled_prompt_embeds = torch.cat(
404
+ [negative_pooled_prompt_embeds_1, negative_pooled_prompt_embeds_2], dim=-1
405
+ )
406
+
407
+ if prompt_embeds_t5 is None:
408
+ prompt_3 = prompt_3 or prompt
409
+ prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
410
+
411
+ if len(prompt_3) > 1 and len(prompt_3) != batch_size:
412
+ raise ValueError(f"prompt_3 must be of length 1 or {batch_size}")
413
+
414
+ prompt_embeds_t5 = self._get_t5_prompt_embeds(prompt_3, max_sequence_length, device, dtype)
415
+
416
+ if prompt_embeds_t5.shape[0] == 1 and batch_size > 1:
417
+ prompt_embeds_t5 = prompt_embeds_t5.repeat(batch_size, 1, 1)
418
+
419
+ if do_classifier_free_guidance and negative_prompt_embeds_t5 is None:
420
+ negative_prompt_3 = negative_prompt_3 or negative_prompt
421
+ negative_prompt_3 = [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
422
+
423
+ if len(negative_prompt_3) > 1 and len(negative_prompt_3) != batch_size:
424
+ raise ValueError(f"negative_prompt_3 must be of length 1 or {batch_size}")
425
+
426
+ negative_prompt_embeds_t5 = self._get_t5_prompt_embeds(
427
+ negative_prompt_3, max_sequence_length, device, dtype
428
+ )
429
+
430
+ if negative_prompt_embeds_t5.shape[0] == 1 and batch_size > 1:
431
+ negative_prompt_embeds_t5 = negative_prompt_embeds_t5.repeat(batch_size, 1, 1)
432
+
433
+ if prompt_embeds_llama3 is None:
434
+ prompt_4 = prompt_4 or prompt
435
+ prompt_4 = [prompt_4] if isinstance(prompt_4, str) else prompt_4
436
+
437
+ if len(prompt_4) > 1 and len(prompt_4) != batch_size:
438
+ raise ValueError(f"prompt_4 must be of length 1 or {batch_size}")
439
+
440
+ prompt_embeds_llama3 = self._get_llama3_prompt_embeds(prompt_4, max_sequence_length, device, dtype)
441
+
442
+ if prompt_embeds_llama3.shape[0] == 1 and batch_size > 1:
443
+ prompt_embeds_llama3 = prompt_embeds_llama3.repeat(1, batch_size, 1, 1)
444
+
445
+ if do_classifier_free_guidance and negative_prompt_embeds_llama3 is None:
446
+ negative_prompt_4 = negative_prompt_4 or negative_prompt
447
+ negative_prompt_4 = [negative_prompt_4] if isinstance(negative_prompt_4, str) else negative_prompt_4
448
+
449
+ if len(negative_prompt_4) > 1 and len(negative_prompt_4) != batch_size:
450
+ raise ValueError(f"negative_prompt_4 must be of length 1 or {batch_size}")
451
+
452
+ negative_prompt_embeds_llama3 = self._get_llama3_prompt_embeds(
453
+ negative_prompt_4, max_sequence_length, device, dtype
454
+ )
455
+
456
+ if negative_prompt_embeds_llama3.shape[0] == 1 and batch_size > 1:
457
+ negative_prompt_embeds_llama3 = negative_prompt_embeds_llama3.repeat(1, batch_size, 1, 1)
458
+
459
+ # duplicate pooled_prompt_embeds for each generation per prompt
460
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt)
461
+ pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
462
+
463
+ # duplicate t5_prompt_embeds for batch_size and num_images_per_prompt
464
+ bs_embed, seq_len, _ = prompt_embeds_t5.shape
465
+ if bs_embed == 1 and batch_size > 1:
466
+ prompt_embeds_t5 = prompt_embeds_t5.repeat(batch_size, 1, 1)
467
+ elif bs_embed > 1 and bs_embed != batch_size:
468
+ raise ValueError(f"cannot duplicate prompt_embeds_t5 of batch size {bs_embed}")
469
+ prompt_embeds_t5 = prompt_embeds_t5.repeat(1, num_images_per_prompt, 1)
470
+ prompt_embeds_t5 = prompt_embeds_t5.view(batch_size * num_images_per_prompt, seq_len, -1)
471
+
472
+ # duplicate llama3_prompt_embeds for batch_size and num_images_per_prompt
473
+ _, bs_embed, seq_len, dim = prompt_embeds_llama3.shape
474
+ if bs_embed == 1 and batch_size > 1:
475
+ prompt_embeds_llama3 = prompt_embeds_llama3.repeat(1, batch_size, 1, 1)
476
+ elif bs_embed > 1 and bs_embed != batch_size:
477
+ raise ValueError(f"cannot duplicate prompt_embeds_llama3 of batch size {bs_embed}")
478
+ prompt_embeds_llama3 = prompt_embeds_llama3.repeat(1, 1, num_images_per_prompt, 1)
479
+ prompt_embeds_llama3 = prompt_embeds_llama3.view(-1, batch_size * num_images_per_prompt, seq_len, dim)
480
+
481
+ if do_classifier_free_guidance:
482
+ # duplicate negative_pooled_prompt_embeds for batch_size and num_images_per_prompt
483
+ bs_embed, seq_len = negative_pooled_prompt_embeds.shape
484
+ if bs_embed == 1 and batch_size > 1:
485
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(batch_size, 1)
486
+ elif bs_embed > 1 and bs_embed != batch_size:
487
+ raise ValueError(f"cannot duplicate negative_pooled_prompt_embeds of batch size {bs_embed}")
488
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt)
489
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
490
+
491
+ # duplicate negative_t5_prompt_embeds for batch_size and num_images_per_prompt
492
+ bs_embed, seq_len, _ = negative_prompt_embeds_t5.shape
493
+ if bs_embed == 1 and batch_size > 1:
494
+ negative_prompt_embeds_t5 = negative_prompt_embeds_t5.repeat(batch_size, 1, 1)
495
+ elif bs_embed > 1 and bs_embed != batch_size:
496
+ raise ValueError(f"cannot duplicate negative_prompt_embeds_t5 of batch size {bs_embed}")
497
+ negative_prompt_embeds_t5 = negative_prompt_embeds_t5.repeat(1, num_images_per_prompt, 1)
498
+ negative_prompt_embeds_t5 = negative_prompt_embeds_t5.view(batch_size * num_images_per_prompt, seq_len, -1)
499
+
500
+ # duplicate negative_prompt_embeds_llama3 for batch_size and num_images_per_prompt
501
+ _, bs_embed, seq_len, dim = negative_prompt_embeds_llama3.shape
502
+ if bs_embed == 1 and batch_size > 1:
503
+ negative_prompt_embeds_llama3 = negative_prompt_embeds_llama3.repeat(1, batch_size, 1, 1)
504
+ elif bs_embed > 1 and bs_embed != batch_size:
505
+ raise ValueError(f"cannot duplicate negative_prompt_embeds_llama3 of batch size {bs_embed}")
506
+ negative_prompt_embeds_llama3 = negative_prompt_embeds_llama3.repeat(1, 1, num_images_per_prompt, 1)
507
+ negative_prompt_embeds_llama3 = negative_prompt_embeds_llama3.view(
508
+ -1, batch_size * num_images_per_prompt, seq_len, dim
509
+ )
510
+
511
+ return (
512
+ prompt_embeds_t5,
513
+ negative_prompt_embeds_t5,
514
+ prompt_embeds_llama3,
515
+ negative_prompt_embeds_llama3,
516
+ pooled_prompt_embeds,
517
+ negative_pooled_prompt_embeds,
518
+ )
519
+
520
+ def enable_vae_slicing(self):
521
+ r"""
522
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
523
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
524
+ """
525
+ self.vae.enable_slicing()
526
+
527
+ def disable_vae_slicing(self):
528
+ r"""
529
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
530
+ computing decoding in one step.
531
+ """
532
+ self.vae.disable_slicing()
533
+
534
+ def enable_vae_tiling(self):
535
+ r"""
536
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
537
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
538
+ processing larger images.
539
+ """
540
+ self.vae.enable_tiling()
541
+
542
+ def disable_vae_tiling(self):
543
+ r"""
544
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
545
+ computing decoding in one step.
546
+ """
547
+ self.vae.disable_tiling()
548
+
549
+ def check_inputs(
550
+ self,
551
+ prompt,
552
+ prompt_2,
553
+ prompt_3,
554
+ prompt_4,
555
+ negative_prompt=None,
556
+ negative_prompt_2=None,
557
+ negative_prompt_3=None,
558
+ negative_prompt_4=None,
559
+ prompt_embeds_t5=None,
560
+ prompt_embeds_llama3=None,
561
+ negative_prompt_embeds_t5=None,
562
+ negative_prompt_embeds_llama3=None,
563
+ pooled_prompt_embeds=None,
564
+ negative_pooled_prompt_embeds=None,
565
+ callback_on_step_end_tensor_inputs=None,
566
+ ):
567
+ if callback_on_step_end_tensor_inputs is not None and not all(
568
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
569
+ ):
570
+ raise ValueError(
571
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
572
+ )
573
+
574
+ if prompt is not None and pooled_prompt_embeds is not None:
575
+ raise ValueError(
576
+ f"Cannot forward both `prompt`: {prompt} and `pooled_prompt_embeds`: {pooled_prompt_embeds}. Please make sure to"
577
+ " only forward one of the two."
578
+ )
579
+ elif prompt_2 is not None and pooled_prompt_embeds is not None:
580
+ raise ValueError(
581
+ f"Cannot forward both `prompt_2`: {prompt_2} and `pooled_prompt_embeds`: {pooled_prompt_embeds}. Please make sure to"
582
+ " only forward one of the two."
583
+ )
584
+ elif prompt_3 is not None and prompt_embeds_t5 is not None:
585
+ raise ValueError(
586
+ f"Cannot forward both `prompt_3`: {prompt_3} and `prompt_embeds_t5`: {prompt_embeds_t5}. Please make sure to"
587
+ " only forward one of the two."
588
+ )
589
+ elif prompt_4 is not None and prompt_embeds_llama3 is not None:
590
+ raise ValueError(
591
+ f"Cannot forward both `prompt_4`: {prompt_4} and `prompt_embeds_llama3`: {prompt_embeds_llama3}. Please make sure to"
592
+ " only forward one of the two."
593
+ )
594
+ elif prompt is None and pooled_prompt_embeds is None:
595
+ raise ValueError(
596
+ "Provide either `prompt` or `pooled_prompt_embeds`. Cannot leave both `prompt` and `pooled_prompt_embeds` undefined."
597
+ )
598
+ elif prompt is None and prompt_embeds_t5 is None:
599
+ raise ValueError(
600
+ "Provide either `prompt` or `prompt_embeds_t5`. Cannot leave both `prompt` and `prompt_embeds_t5` undefined."
601
+ )
602
+ elif prompt is None and prompt_embeds_llama3 is None:
603
+ raise ValueError(
604
+ "Provide either `prompt` or `prompt_embeds_llama3`. Cannot leave both `prompt` and `prompt_embeds_llama3` undefined."
605
+ )
606
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
607
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
608
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
609
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
610
+ elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)):
611
+ raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}")
612
+ elif prompt_4 is not None and (not isinstance(prompt_4, str) and not isinstance(prompt_4, list)):
613
+ raise ValueError(f"`prompt_4` has to be of type `str` or `list` but is {type(prompt_4)}")
614
+
615
+ if negative_prompt is not None and negative_pooled_prompt_embeds is not None:
616
+ raise ValueError(
617
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_pooled_prompt_embeds`:"
618
+ f" {negative_pooled_prompt_embeds}. Please make sure to only forward one of the two."
619
+ )
620
+ elif negative_prompt_2 is not None and negative_pooled_prompt_embeds is not None:
621
+ raise ValueError(
622
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_pooled_prompt_embeds`:"
623
+ f" {negative_pooled_prompt_embeds}. Please make sure to only forward one of the two."
624
+ )
625
+ elif negative_prompt_3 is not None and negative_prompt_embeds_t5 is not None:
626
+ raise ValueError(
627
+ f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds_t5`:"
628
+ f" {negative_prompt_embeds_t5}. Please make sure to only forward one of the two."
629
+ )
630
+ elif negative_prompt_4 is not None and negative_prompt_embeds_llama3 is not None:
631
+ raise ValueError(
632
+ f"Cannot forward both `negative_prompt_4`: {negative_prompt_4} and `negative_prompt_embeds_llama3`:"
633
+ f" {negative_prompt_embeds_llama3}. Please make sure to only forward one of the two."
634
+ )
635
+
636
+ if pooled_prompt_embeds is not None and negative_pooled_prompt_embeds is not None:
637
+ if pooled_prompt_embeds.shape != negative_pooled_prompt_embeds.shape:
638
+ raise ValueError(
639
+ "`pooled_prompt_embeds` and `negative_pooled_prompt_embeds` must have the same shape when passed directly, but"
640
+ f" got: `pooled_prompt_embeds` {pooled_prompt_embeds.shape} != `negative_pooled_prompt_embeds`"
641
+ f" {negative_pooled_prompt_embeds.shape}."
642
+ )
643
+ if prompt_embeds_t5 is not None and negative_prompt_embeds_t5 is not None:
644
+ if prompt_embeds_t5.shape != negative_prompt_embeds_t5.shape:
645
+ raise ValueError(
646
+ "`prompt_embeds_t5` and `negative_prompt_embeds_t5` must have the same shape when passed directly, but"
647
+ f" got: `prompt_embeds_t5` {prompt_embeds_t5.shape} != `negative_prompt_embeds_t5`"
648
+ f" {negative_prompt_embeds_t5.shape}."
649
+ )
650
+ if prompt_embeds_llama3 is not None and negative_prompt_embeds_llama3 is not None:
651
+ if prompt_embeds_llama3.shape != negative_prompt_embeds_llama3.shape:
652
+ raise ValueError(
653
+ "`prompt_embeds_llama3` and `negative_prompt_embeds_llama3` must have the same shape when passed directly, but"
654
+ f" got: `prompt_embeds_llama3` {prompt_embeds_llama3.shape} != `negative_prompt_embeds_llama3`"
655
+ f" {negative_prompt_embeds_llama3.shape}."
656
+ )
657
+
658
+ def prepare_latents(
659
+ self,
660
+ batch_size,
661
+ num_channels_latents,
662
+ height,
663
+ width,
664
+ dtype,
665
+ device,
666
+ generator,
667
+ latents=None,
668
+ ):
669
+ # VAE applies 8x compression on images but we must also account for packing which requires
670
+ # latent height and width to be divisible by 2.
671
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
672
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
673
+
674
+ shape = (batch_size, num_channels_latents, height, width)
675
+
676
+ if latents is None:
677
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
678
+ else:
679
+ if latents.shape != shape:
680
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
681
+ latents = latents.to(device)
682
+ return latents
683
+
684
+ @property
685
+ def guidance_scale(self):
686
+ return self._guidance_scale
687
+
688
+ @property
689
+ def do_classifier_free_guidance(self):
690
+ return self._guidance_scale > 1
691
+
692
+ @property
693
+ def attention_kwargs(self):
694
+ return self._attention_kwargs
695
+
696
+ @property
697
+ def num_timesteps(self):
698
+ return self._num_timesteps
699
+
700
+ @property
701
+ def interrupt(self):
702
+ return self._interrupt
703
+
704
+ @torch.no_grad()
705
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
706
+ def __call__(
707
+ self,
708
+ prompt: Union[str, List[str]] = None,
709
+ prompt_2: Optional[Union[str, List[str]]] = None,
710
+ prompt_3: Optional[Union[str, List[str]]] = None,
711
+ prompt_4: Optional[Union[str, List[str]]] = None,
712
+ height: Optional[int] = None,
713
+ width: Optional[int] = None,
714
+ num_inference_steps: int = 50,
715
+ sigmas: Optional[List[float]] = None,
716
+ guidance_scale: float = 5.0,
717
+ negative_prompt: Optional[Union[str, List[str]]] = None,
718
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
719
+ negative_prompt_3: Optional[Union[str, List[str]]] = None,
720
+ negative_prompt_4: Optional[Union[str, List[str]]] = None,
721
+ num_images_per_prompt: Optional[int] = 1,
722
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
723
+ latents: Optional[torch.FloatTensor] = None,
724
+ prompt_embeds_t5: Optional[torch.FloatTensor] = None,
725
+ prompt_embeds_llama3: Optional[torch.FloatTensor] = None,
726
+ negative_prompt_embeds_t5: Optional[torch.FloatTensor] = None,
727
+ negative_prompt_embeds_llama3: Optional[torch.FloatTensor] = None,
728
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
729
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
730
+ output_type: Optional[str] = "pil",
731
+ return_dict: bool = True,
732
+ attention_kwargs: Optional[Dict[str, Any]] = None,
733
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
734
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
735
+ max_sequence_length: int = 128,
736
+ **kwargs,
737
+ ):
738
+ r"""
739
+ Function invoked when calling the pipeline for generation.
740
+
741
+ Args:
742
+ prompt (`str` or `List[str]`, *optional*):
743
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
744
+ instead.
745
+ prompt_2 (`str` or `List[str]`, *optional*):
746
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
747
+ will be used instead.
748
+ prompt_3 (`str` or `List[str]`, *optional*):
749
+ The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
750
+ will be used instead.
751
+ prompt_4 (`str` or `List[str]`, *optional*):
752
+ The prompt or prompts to be sent to `tokenizer_4` and `text_encoder_4`. If not defined, `prompt` is
753
+ will be used instead.
754
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
755
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
756
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
757
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
758
+ num_inference_steps (`int`, *optional*, defaults to 50):
759
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
760
+ expense of slower inference.
761
+ sigmas (`List[float]`, *optional*):
762
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
763
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
764
+ will be used.
765
+ guidance_scale (`float`, *optional*, defaults to 3.5):
766
+ Guidance scale as defined in [Classifier-Free Diffusion
767
+ Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
768
+ of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
769
+ `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
770
+ the text `prompt`, usually at the expense of lower image quality.
771
+ negative_prompt (`str` or `List[str]`, *optional*):
772
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
773
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
774
+ not greater than `1`).
775
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
776
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
777
+ `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
778
+ negative_prompt_3 (`str` or `List[str]`, *optional*):
779
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
780
+ `text_encoder_3`. If not defined, `negative_prompt` is used in all the text-encoders.
781
+ negative_prompt_4 (`str` or `List[str]`, *optional*):
782
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_4` and
783
+ `text_encoder_4`. If not defined, `negative_prompt` is used in all the text-encoders.
784
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
785
+ The number of images to generate per prompt.
786
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
787
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
788
+ to make generation deterministic.
789
+ latents (`torch.FloatTensor`, *optional*):
790
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
791
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
792
+ tensor will ge generated by sampling using the supplied random `generator`.
793
+ prompt_embeds (`torch.FloatTensor`, *optional*):
794
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
795
+ provided, text embeddings will be generated from `prompt` input argument.
796
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
797
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
798
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
799
+ argument.
800
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
801
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
802
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
803
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
804
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
805
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
806
+ input argument.
807
+ output_type (`str`, *optional*, defaults to `"pil"`):
808
+ The output format of the generate image. Choose between
809
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
810
+ return_dict (`bool`, *optional*, defaults to `True`):
811
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
812
+ attention_kwargs (`dict`, *optional*):
813
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
814
+ `self.processor` in
815
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
816
+ callback_on_step_end (`Callable`, *optional*):
817
+ A function that calls at the end of each denoising steps during the inference. The function is called
818
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
819
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
820
+ `callback_on_step_end_tensor_inputs`.
821
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
822
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
823
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
824
+ `._callback_tensor_inputs` attribute of your pipeline class.
825
+ max_sequence_length (`int` defaults to 128): Maximum sequence length to use with the `prompt`.
826
+
827
+ Examples:
828
+
829
+ Returns:
830
+ [`~pipelines.hidream_image.HiDreamImagePipelineOutput`] or `tuple`:
831
+ [`~pipelines.hidream_image.HiDreamImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
832
+ returning a tuple, the first element is a list with the generated. images.
833
+ """
834
+
835
+ prompt_embeds = kwargs.get("prompt_embeds", None)
836
+ negative_prompt_embeds = kwargs.get("negative_prompt_embeds", None)
837
+
838
+ if prompt_embeds is not None:
839
+ deprecation_message = "The `prompt_embeds` argument is deprecated. Please use `prompt_embeds_t5` and `prompt_embeds_llama3` instead."
840
+ deprecate("prompt_embeds", "0.35.0", deprecation_message)
841
+ prompt_embeds_t5 = prompt_embeds[0]
842
+ prompt_embeds_llama3 = prompt_embeds[1]
843
+
844
+ if negative_prompt_embeds is not None:
845
+ deprecation_message = "The `negative_prompt_embeds` argument is deprecated. Please use `negative_prompt_embeds_t5` and `negative_prompt_embeds_llama3` instead."
846
+ deprecate("negative_prompt_embeds", "0.35.0", deprecation_message)
847
+ negative_prompt_embeds_t5 = negative_prompt_embeds[0]
848
+ negative_prompt_embeds_llama3 = negative_prompt_embeds[1]
849
+
850
+ height = height or self.default_sample_size * self.vae_scale_factor
851
+ width = width or self.default_sample_size * self.vae_scale_factor
852
+
853
+ division = self.vae_scale_factor * 2
854
+ S_max = (self.default_sample_size * self.vae_scale_factor) ** 2
855
+ scale = S_max / (width * height)
856
+ scale = math.sqrt(scale)
857
+ width, height = int(width * scale // division * division), int(height * scale // division * division)
858
+
859
+ # 1. Check inputs. Raise error if not correct
860
+ self.check_inputs(
861
+ prompt,
862
+ prompt_2,
863
+ prompt_3,
864
+ prompt_4,
865
+ negative_prompt=negative_prompt,
866
+ negative_prompt_2=negative_prompt_2,
867
+ negative_prompt_3=negative_prompt_3,
868
+ negative_prompt_4=negative_prompt_4,
869
+ prompt_embeds_t5=prompt_embeds_t5,
870
+ prompt_embeds_llama3=prompt_embeds_llama3,
871
+ negative_prompt_embeds_t5=negative_prompt_embeds_t5,
872
+ negative_prompt_embeds_llama3=negative_prompt_embeds_llama3,
873
+ pooled_prompt_embeds=pooled_prompt_embeds,
874
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
875
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
876
+ )
877
+
878
+ self._guidance_scale = guidance_scale
879
+ self._attention_kwargs = attention_kwargs
880
+ self._interrupt = False
881
+
882
+ # 2. Define call parameters
883
+ if prompt is not None and isinstance(prompt, str):
884
+ batch_size = 1
885
+ elif prompt is not None and isinstance(prompt, list):
886
+ batch_size = len(prompt)
887
+ elif pooled_prompt_embeds is not None:
888
+ batch_size = pooled_prompt_embeds.shape[0]
889
+
890
+ device = self._execution_device
891
+
892
+ # 3. Encode prompt
893
+ lora_scale = self.attention_kwargs.get("scale", None) if self.attention_kwargs is not None else None
894
+ (
895
+ prompt_embeds_t5,
896
+ negative_prompt_embeds_t5,
897
+ prompt_embeds_llama3,
898
+ negative_prompt_embeds_llama3,
899
+ pooled_prompt_embeds,
900
+ negative_pooled_prompt_embeds,
901
+ ) = self.encode_prompt(
902
+ prompt=prompt,
903
+ prompt_2=prompt_2,
904
+ prompt_3=prompt_3,
905
+ prompt_4=prompt_4,
906
+ negative_prompt=negative_prompt,
907
+ negative_prompt_2=negative_prompt_2,
908
+ negative_prompt_3=negative_prompt_3,
909
+ negative_prompt_4=negative_prompt_4,
910
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
911
+ prompt_embeds_t5=prompt_embeds_t5,
912
+ prompt_embeds_llama3=prompt_embeds_llama3,
913
+ negative_prompt_embeds_t5=negative_prompt_embeds_t5,
914
+ negative_prompt_embeds_llama3=negative_prompt_embeds_llama3,
915
+ pooled_prompt_embeds=pooled_prompt_embeds,
916
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
917
+ device=device,
918
+ num_images_per_prompt=num_images_per_prompt,
919
+ max_sequence_length=max_sequence_length,
920
+ lora_scale=lora_scale,
921
+ )
922
+
923
+ if self.do_classifier_free_guidance:
924
+ prompt_embeds_t5 = torch.cat([negative_prompt_embeds_t5, prompt_embeds_t5], dim=0)
925
+ prompt_embeds_llama3 = torch.cat([negative_prompt_embeds_llama3, prompt_embeds_llama3], dim=1)
926
+ pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
927
+
928
+ # 4. Prepare latent variables
929
+ num_channels_latents = self.transformer.config.in_channels
930
+ latents = self.prepare_latents(
931
+ batch_size * num_images_per_prompt,
932
+ num_channels_latents,
933
+ height,
934
+ width,
935
+ pooled_prompt_embeds.dtype,
936
+ device,
937
+ generator,
938
+ latents,
939
+ )
940
+
941
+ # 5. Prepare timesteps
942
+ mu = calculate_shift(self.transformer.max_seq)
943
+ scheduler_kwargs = {"mu": mu}
944
+ if isinstance(self.scheduler, UniPCMultistepScheduler):
945
+ self.scheduler.set_timesteps(num_inference_steps, device=device) # , shift=math.exp(mu))
946
+ timesteps = self.scheduler.timesteps
947
+ else:
948
+ timesteps, num_inference_steps = retrieve_timesteps(
949
+ self.scheduler,
950
+ num_inference_steps,
951
+ device,
952
+ sigmas=sigmas,
953
+ **scheduler_kwargs,
954
+ )
955
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
956
+ self._num_timesteps = len(timesteps)
957
+
958
+ # 6. Denoising loop
959
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
960
+ for i, t in enumerate(timesteps):
961
+ if self.interrupt:
962
+ continue
963
+
964
+ # expand the latents if we are doing classifier free guidance
965
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
966
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
967
+ timestep = t.expand(latent_model_input.shape[0])
968
+
969
+ noise_pred = self.transformer(
970
+ hidden_states=latent_model_input,
971
+ timesteps=timestep,
972
+ encoder_hidden_states_t5=prompt_embeds_t5,
973
+ encoder_hidden_states_llama3=prompt_embeds_llama3,
974
+ pooled_embeds=pooled_prompt_embeds,
975
+ return_dict=False,
976
+ )[0]
977
+ noise_pred = -noise_pred
978
+
979
+ # perform guidance
980
+ if self.do_classifier_free_guidance:
981
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
982
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
983
+
984
+ # compute the previous noisy sample x_t -> x_t-1
985
+ latents_dtype = latents.dtype
986
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
987
+
988
+ if latents.dtype != latents_dtype:
989
+ if torch.backends.mps.is_available():
990
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
991
+ latents = latents.to(latents_dtype)
992
+
993
+ if callback_on_step_end is not None:
994
+ callback_kwargs = {}
995
+ for k in callback_on_step_end_tensor_inputs:
996
+ callback_kwargs[k] = locals()[k]
997
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
998
+
999
+ latents = callback_outputs.pop("latents", latents)
1000
+ prompt_embeds_t5 = callback_outputs.pop("prompt_embeds_t5", prompt_embeds_t5)
1001
+ prompt_embeds_llama3 = callback_outputs.pop("prompt_embeds_llama3", prompt_embeds_llama3)
1002
+ pooled_prompt_embeds = callback_outputs.pop("pooled_prompt_embeds", pooled_prompt_embeds)
1003
+
1004
+ # call the callback, if provided
1005
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1006
+ progress_bar.update()
1007
+
1008
+ if XLA_AVAILABLE:
1009
+ xm.mark_step()
1010
+
1011
+ if output_type == "latent":
1012
+ image = latents
1013
+
1014
+ else:
1015
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
1016
+
1017
+ image = self.vae.decode(latents, return_dict=False)[0]
1018
+ image = self.image_processor.postprocess(image, output_type=output_type)
1019
+
1020
+ # Offload all models
1021
+ self.maybe_free_model_hooks()
1022
+
1023
+ if not return_dict:
1024
+ return (image,)
1025
+
1026
+ return HiDreamImagePipelineOutput(images=image)