diffusers 0.33.0__py3-none-any.whl → 0.34.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (478) hide show
  1. diffusers/__init__.py +48 -1
  2. diffusers/commands/__init__.py +1 -1
  3. diffusers/commands/diffusers_cli.py +1 -1
  4. diffusers/commands/env.py +1 -1
  5. diffusers/commands/fp16_safetensors.py +1 -1
  6. diffusers/dependency_versions_check.py +1 -1
  7. diffusers/dependency_versions_table.py +1 -1
  8. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  9. diffusers/hooks/faster_cache.py +2 -2
  10. diffusers/hooks/group_offloading.py +128 -29
  11. diffusers/hooks/hooks.py +2 -2
  12. diffusers/hooks/layerwise_casting.py +3 -3
  13. diffusers/hooks/pyramid_attention_broadcast.py +1 -1
  14. diffusers/image_processor.py +7 -2
  15. diffusers/loaders/__init__.py +4 -0
  16. diffusers/loaders/ip_adapter.py +5 -14
  17. diffusers/loaders/lora_base.py +212 -111
  18. diffusers/loaders/lora_conversion_utils.py +275 -34
  19. diffusers/loaders/lora_pipeline.py +1554 -819
  20. diffusers/loaders/peft.py +52 -109
  21. diffusers/loaders/single_file.py +2 -2
  22. diffusers/loaders/single_file_model.py +20 -4
  23. diffusers/loaders/single_file_utils.py +225 -5
  24. diffusers/loaders/textual_inversion.py +3 -2
  25. diffusers/loaders/transformer_flux.py +1 -1
  26. diffusers/loaders/transformer_sd3.py +2 -2
  27. diffusers/loaders/unet.py +2 -16
  28. diffusers/loaders/unet_loader_utils.py +1 -1
  29. diffusers/loaders/utils.py +1 -1
  30. diffusers/models/__init__.py +15 -1
  31. diffusers/models/activations.py +5 -5
  32. diffusers/models/adapter.py +2 -3
  33. diffusers/models/attention.py +4 -4
  34. diffusers/models/attention_flax.py +10 -10
  35. diffusers/models/attention_processor.py +14 -10
  36. diffusers/models/auto_model.py +47 -10
  37. diffusers/models/autoencoders/__init__.py +1 -0
  38. diffusers/models/autoencoders/autoencoder_asym_kl.py +4 -4
  39. diffusers/models/autoencoders/autoencoder_dc.py +3 -3
  40. diffusers/models/autoencoders/autoencoder_kl.py +4 -4
  41. diffusers/models/autoencoders/autoencoder_kl_allegro.py +4 -4
  42. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +6 -6
  43. diffusers/models/autoencoders/autoencoder_kl_cosmos.py +1108 -0
  44. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +2 -2
  45. diffusers/models/autoencoders/autoencoder_kl_ltx.py +3 -3
  46. diffusers/models/autoencoders/autoencoder_kl_magvit.py +4 -4
  47. diffusers/models/autoencoders/autoencoder_kl_mochi.py +3 -3
  48. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +4 -4
  49. diffusers/models/autoencoders/autoencoder_kl_wan.py +256 -22
  50. diffusers/models/autoencoders/autoencoder_oobleck.py +1 -1
  51. diffusers/models/autoencoders/autoencoder_tiny.py +3 -3
  52. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  53. diffusers/models/autoencoders/vae.py +13 -2
  54. diffusers/models/autoencoders/vq_model.py +2 -2
  55. diffusers/models/cache_utils.py +1 -1
  56. diffusers/models/controlnet.py +1 -1
  57. diffusers/models/controlnet_flux.py +1 -1
  58. diffusers/models/controlnet_sd3.py +1 -1
  59. diffusers/models/controlnet_sparsectrl.py +1 -1
  60. diffusers/models/controlnets/__init__.py +1 -0
  61. diffusers/models/controlnets/controlnet.py +3 -3
  62. diffusers/models/controlnets/controlnet_flax.py +1 -1
  63. diffusers/models/controlnets/controlnet_flux.py +16 -15
  64. diffusers/models/controlnets/controlnet_hunyuan.py +2 -2
  65. diffusers/models/controlnets/controlnet_sana.py +290 -0
  66. diffusers/models/controlnets/controlnet_sd3.py +1 -1
  67. diffusers/models/controlnets/controlnet_sparsectrl.py +2 -2
  68. diffusers/models/controlnets/controlnet_union.py +1 -1
  69. diffusers/models/controlnets/controlnet_xs.py +7 -7
  70. diffusers/models/controlnets/multicontrolnet.py +4 -5
  71. diffusers/models/controlnets/multicontrolnet_union.py +5 -6
  72. diffusers/models/downsampling.py +2 -2
  73. diffusers/models/embeddings.py +10 -12
  74. diffusers/models/embeddings_flax.py +2 -2
  75. diffusers/models/lora.py +3 -3
  76. diffusers/models/modeling_utils.py +44 -14
  77. diffusers/models/normalization.py +4 -4
  78. diffusers/models/resnet.py +2 -2
  79. diffusers/models/resnet_flax.py +1 -1
  80. diffusers/models/transformers/__init__.py +5 -0
  81. diffusers/models/transformers/auraflow_transformer_2d.py +70 -24
  82. diffusers/models/transformers/cogvideox_transformer_3d.py +1 -1
  83. diffusers/models/transformers/consisid_transformer_3d.py +1 -1
  84. diffusers/models/transformers/dit_transformer_2d.py +2 -2
  85. diffusers/models/transformers/dual_transformer_2d.py +1 -1
  86. diffusers/models/transformers/hunyuan_transformer_2d.py +2 -2
  87. diffusers/models/transformers/latte_transformer_3d.py +4 -5
  88. diffusers/models/transformers/lumina_nextdit2d.py +2 -2
  89. diffusers/models/transformers/pixart_transformer_2d.py +3 -3
  90. diffusers/models/transformers/prior_transformer.py +1 -1
  91. diffusers/models/transformers/sana_transformer.py +8 -3
  92. diffusers/models/transformers/stable_audio_transformer.py +5 -9
  93. diffusers/models/transformers/t5_film_transformer.py +3 -3
  94. diffusers/models/transformers/transformer_2d.py +1 -1
  95. diffusers/models/transformers/transformer_allegro.py +1 -1
  96. diffusers/models/transformers/transformer_chroma.py +742 -0
  97. diffusers/models/transformers/transformer_cogview3plus.py +5 -10
  98. diffusers/models/transformers/transformer_cogview4.py +317 -25
  99. diffusers/models/transformers/transformer_cosmos.py +579 -0
  100. diffusers/models/transformers/transformer_flux.py +9 -11
  101. diffusers/models/transformers/transformer_hidream_image.py +942 -0
  102. diffusers/models/transformers/transformer_hunyuan_video.py +6 -8
  103. diffusers/models/transformers/transformer_hunyuan_video_framepack.py +416 -0
  104. diffusers/models/transformers/transformer_ltx.py +2 -2
  105. diffusers/models/transformers/transformer_lumina2.py +1 -1
  106. diffusers/models/transformers/transformer_mochi.py +1 -1
  107. diffusers/models/transformers/transformer_omnigen.py +2 -2
  108. diffusers/models/transformers/transformer_sd3.py +7 -7
  109. diffusers/models/transformers/transformer_temporal.py +1 -1
  110. diffusers/models/transformers/transformer_wan.py +24 -8
  111. diffusers/models/transformers/transformer_wan_vace.py +393 -0
  112. diffusers/models/unets/unet_1d.py +1 -1
  113. diffusers/models/unets/unet_1d_blocks.py +1 -1
  114. diffusers/models/unets/unet_2d.py +1 -1
  115. diffusers/models/unets/unet_2d_blocks.py +1 -1
  116. diffusers/models/unets/unet_2d_blocks_flax.py +8 -7
  117. diffusers/models/unets/unet_2d_condition.py +2 -2
  118. diffusers/models/unets/unet_2d_condition_flax.py +2 -2
  119. diffusers/models/unets/unet_3d_blocks.py +1 -1
  120. diffusers/models/unets/unet_3d_condition.py +3 -3
  121. diffusers/models/unets/unet_i2vgen_xl.py +3 -3
  122. diffusers/models/unets/unet_kandinsky3.py +1 -1
  123. diffusers/models/unets/unet_motion_model.py +2 -2
  124. diffusers/models/unets/unet_stable_cascade.py +1 -1
  125. diffusers/models/upsampling.py +2 -2
  126. diffusers/models/vae_flax.py +2 -2
  127. diffusers/models/vq_model.py +1 -1
  128. diffusers/pipelines/__init__.py +37 -6
  129. diffusers/pipelines/allegro/pipeline_allegro.py +11 -11
  130. diffusers/pipelines/amused/pipeline_amused.py +7 -6
  131. diffusers/pipelines/amused/pipeline_amused_img2img.py +6 -5
  132. diffusers/pipelines/amused/pipeline_amused_inpaint.py +6 -5
  133. diffusers/pipelines/animatediff/pipeline_animatediff.py +6 -6
  134. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +6 -6
  135. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +16 -15
  136. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +6 -6
  137. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +5 -5
  138. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +5 -5
  139. diffusers/pipelines/audioldm/pipeline_audioldm.py +8 -7
  140. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  141. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +23 -13
  142. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +48 -11
  143. diffusers/pipelines/auto_pipeline.py +6 -7
  144. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  145. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
  146. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +11 -10
  147. diffusers/pipelines/chroma/__init__.py +49 -0
  148. diffusers/pipelines/chroma/pipeline_chroma.py +949 -0
  149. diffusers/pipelines/chroma/pipeline_chroma_img2img.py +1034 -0
  150. diffusers/pipelines/chroma/pipeline_output.py +21 -0
  151. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +8 -8
  152. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +8 -8
  153. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +8 -8
  154. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +8 -8
  155. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +9 -9
  156. diffusers/pipelines/cogview4/pipeline_cogview4.py +7 -7
  157. diffusers/pipelines/cogview4/pipeline_cogview4_control.py +7 -7
  158. diffusers/pipelines/consisid/consisid_utils.py +2 -2
  159. diffusers/pipelines/consisid/pipeline_consisid.py +8 -8
  160. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  161. diffusers/pipelines/controlnet/pipeline_controlnet.py +7 -7
  162. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +8 -8
  163. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +7 -7
  164. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +7 -7
  165. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +14 -14
  166. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +10 -6
  167. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +13 -13
  168. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +14 -14
  169. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +5 -5
  170. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +13 -13
  171. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +1 -1
  172. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +8 -8
  173. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +7 -7
  174. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
  175. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -10
  176. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +9 -7
  177. diffusers/pipelines/cosmos/__init__.py +54 -0
  178. diffusers/pipelines/cosmos/pipeline_cosmos2_text2image.py +673 -0
  179. diffusers/pipelines/cosmos/pipeline_cosmos2_video2world.py +792 -0
  180. diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +664 -0
  181. diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +826 -0
  182. diffusers/pipelines/cosmos/pipeline_output.py +40 -0
  183. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +5 -4
  184. diffusers/pipelines/ddim/pipeline_ddim.py +4 -4
  185. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
  186. diffusers/pipelines/deepfloyd_if/pipeline_if.py +10 -10
  187. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +10 -10
  188. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +10 -10
  189. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +10 -10
  190. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +10 -10
  191. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +10 -10
  192. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +8 -8
  193. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +5 -5
  194. diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
  195. diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +3 -3
  196. diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
  197. diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +2 -2
  198. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +4 -3
  199. diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
  200. diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
  201. diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
  202. diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
  203. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
  204. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +7 -7
  205. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +9 -9
  206. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +10 -10
  207. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -8
  208. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -5
  209. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +18 -18
  210. diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
  211. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +2 -2
  212. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +6 -6
  213. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +5 -5
  214. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +5 -5
  215. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +5 -5
  216. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
  217. diffusers/pipelines/dit/pipeline_dit.py +1 -1
  218. diffusers/pipelines/easyanimate/pipeline_easyanimate.py +4 -4
  219. diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +4 -4
  220. diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +7 -6
  221. diffusers/pipelines/flux/modeling_flux.py +1 -1
  222. diffusers/pipelines/flux/pipeline_flux.py +10 -17
  223. diffusers/pipelines/flux/pipeline_flux_control.py +6 -6
  224. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -6
  225. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +6 -6
  226. diffusers/pipelines/flux/pipeline_flux_controlnet.py +6 -6
  227. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +30 -22
  228. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +2 -1
  229. diffusers/pipelines/flux/pipeline_flux_fill.py +6 -6
  230. diffusers/pipelines/flux/pipeline_flux_img2img.py +39 -6
  231. diffusers/pipelines/flux/pipeline_flux_inpaint.py +11 -6
  232. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +1 -1
  233. diffusers/pipelines/free_init_utils.py +2 -2
  234. diffusers/pipelines/free_noise_utils.py +3 -3
  235. diffusers/pipelines/hidream_image/__init__.py +47 -0
  236. diffusers/pipelines/hidream_image/pipeline_hidream_image.py +1026 -0
  237. diffusers/pipelines/hidream_image/pipeline_output.py +35 -0
  238. diffusers/pipelines/hunyuan_video/__init__.py +2 -0
  239. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +8 -8
  240. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +8 -8
  241. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_framepack.py +1114 -0
  242. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +71 -15
  243. diffusers/pipelines/hunyuan_video/pipeline_output.py +19 -0
  244. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +8 -8
  245. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +10 -8
  246. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +6 -6
  247. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +34 -34
  248. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +19 -26
  249. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +7 -7
  250. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +11 -11
  251. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  252. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +35 -35
  253. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +6 -6
  254. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +17 -39
  255. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +17 -45
  256. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +7 -7
  257. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +10 -10
  258. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +10 -10
  259. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +7 -7
  260. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +17 -38
  261. diffusers/pipelines/kolors/pipeline_kolors.py +10 -10
  262. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +12 -12
  263. diffusers/pipelines/kolors/text_encoder.py +3 -3
  264. diffusers/pipelines/kolors/tokenizer.py +1 -1
  265. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +2 -2
  266. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +2 -2
  267. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  268. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +3 -3
  269. diffusers/pipelines/latte/pipeline_latte.py +12 -12
  270. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +13 -13
  271. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +17 -16
  272. diffusers/pipelines/ltx/__init__.py +4 -0
  273. diffusers/pipelines/ltx/modeling_latent_upsampler.py +188 -0
  274. diffusers/pipelines/ltx/pipeline_ltx.py +51 -6
  275. diffusers/pipelines/ltx/pipeline_ltx_condition.py +107 -29
  276. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +50 -6
  277. diffusers/pipelines/ltx/pipeline_ltx_latent_upsample.py +277 -0
  278. diffusers/pipelines/lumina/pipeline_lumina.py +13 -13
  279. diffusers/pipelines/lumina2/pipeline_lumina2.py +10 -10
  280. diffusers/pipelines/marigold/marigold_image_processing.py +2 -2
  281. diffusers/pipelines/mochi/pipeline_mochi.py +6 -6
  282. diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -13
  283. diffusers/pipelines/omnigen/pipeline_omnigen.py +13 -11
  284. diffusers/pipelines/omnigen/processor_omnigen.py +8 -3
  285. diffusers/pipelines/onnx_utils.py +15 -2
  286. diffusers/pipelines/pag/pag_utils.py +2 -2
  287. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -8
  288. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +7 -7
  289. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +10 -6
  290. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +14 -14
  291. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +8 -8
  292. diffusers/pipelines/pag/pipeline_pag_kolors.py +10 -10
  293. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +11 -11
  294. diffusers/pipelines/pag/pipeline_pag_sana.py +18 -12
  295. diffusers/pipelines/pag/pipeline_pag_sd.py +8 -8
  296. diffusers/pipelines/pag/pipeline_pag_sd_3.py +7 -7
  297. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +7 -7
  298. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +6 -6
  299. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +5 -5
  300. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +8 -8
  301. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +16 -15
  302. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +18 -17
  303. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +12 -12
  304. diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
  305. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +8 -7
  306. diffusers/pipelines/pia/pipeline_pia.py +8 -6
  307. diffusers/pipelines/pipeline_flax_utils.py +3 -4
  308. diffusers/pipelines/pipeline_loading_utils.py +89 -13
  309. diffusers/pipelines/pipeline_utils.py +105 -33
  310. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +11 -11
  311. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +11 -11
  312. diffusers/pipelines/sana/__init__.py +4 -0
  313. diffusers/pipelines/sana/pipeline_sana.py +23 -21
  314. diffusers/pipelines/sana/pipeline_sana_controlnet.py +1106 -0
  315. diffusers/pipelines/sana/pipeline_sana_sprint.py +23 -19
  316. diffusers/pipelines/sana/pipeline_sana_sprint_img2img.py +981 -0
  317. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +7 -6
  318. diffusers/pipelines/shap_e/camera.py +1 -1
  319. diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
  320. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
  321. diffusers/pipelines/shap_e/renderer.py +3 -3
  322. diffusers/pipelines/stable_audio/modeling_stable_audio.py +1 -1
  323. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +5 -5
  324. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +8 -8
  325. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +13 -13
  326. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +9 -9
  327. diffusers/pipelines/stable_diffusion/__init__.py +0 -7
  328. diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
  329. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +11 -4
  330. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  331. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +1 -1
  332. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
  333. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +10 -10
  334. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +10 -10
  335. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +10 -10
  336. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +9 -9
  337. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +8 -8
  338. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -5
  339. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +5 -5
  340. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +5 -5
  341. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +5 -5
  342. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +5 -5
  343. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -4
  344. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -5
  345. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +7 -7
  346. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -5
  347. diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
  348. diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
  349. diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
  350. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +7 -7
  351. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +7 -7
  352. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +7 -7
  353. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +12 -8
  354. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +15 -9
  355. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +11 -9
  356. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -9
  357. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +18 -12
  358. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +11 -8
  359. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +11 -8
  360. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -12
  361. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +8 -6
  362. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  363. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +15 -11
  364. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  365. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -15
  366. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +18 -17
  367. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +12 -12
  368. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -15
  369. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +3 -3
  370. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +12 -12
  371. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -17
  372. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +12 -7
  373. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +12 -7
  374. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +15 -13
  375. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +24 -21
  376. diffusers/pipelines/unclip/pipeline_unclip.py +4 -3
  377. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +4 -3
  378. diffusers/pipelines/unclip/text_proj.py +2 -2
  379. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +2 -2
  380. diffusers/pipelines/unidiffuser/modeling_uvit.py +1 -1
  381. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +8 -7
  382. diffusers/pipelines/visualcloze/__init__.py +52 -0
  383. diffusers/pipelines/visualcloze/pipeline_visualcloze_combined.py +444 -0
  384. diffusers/pipelines/visualcloze/pipeline_visualcloze_generation.py +952 -0
  385. diffusers/pipelines/visualcloze/visualcloze_utils.py +251 -0
  386. diffusers/pipelines/wan/__init__.py +2 -0
  387. diffusers/pipelines/wan/pipeline_wan.py +17 -12
  388. diffusers/pipelines/wan/pipeline_wan_i2v.py +42 -20
  389. diffusers/pipelines/wan/pipeline_wan_vace.py +976 -0
  390. diffusers/pipelines/wan/pipeline_wan_video2video.py +18 -18
  391. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  392. diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +1 -1
  393. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  394. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
  395. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +16 -15
  396. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +6 -6
  397. diffusers/quantizers/__init__.py +179 -1
  398. diffusers/quantizers/base.py +6 -1
  399. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -0
  400. diffusers/quantizers/bitsandbytes/utils.py +10 -7
  401. diffusers/quantizers/gguf/gguf_quantizer.py +13 -4
  402. diffusers/quantizers/gguf/utils.py +16 -13
  403. diffusers/quantizers/quantization_config.py +18 -16
  404. diffusers/quantizers/quanto/quanto_quantizer.py +4 -0
  405. diffusers/quantizers/torchao/torchao_quantizer.py +5 -1
  406. diffusers/schedulers/__init__.py +3 -1
  407. diffusers/schedulers/deprecated/scheduling_karras_ve.py +4 -3
  408. diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
  409. diffusers/schedulers/scheduling_consistency_models.py +1 -1
  410. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +10 -5
  411. diffusers/schedulers/scheduling_ddim.py +8 -8
  412. diffusers/schedulers/scheduling_ddim_cogvideox.py +5 -5
  413. diffusers/schedulers/scheduling_ddim_flax.py +6 -6
  414. diffusers/schedulers/scheduling_ddim_inverse.py +6 -6
  415. diffusers/schedulers/scheduling_ddim_parallel.py +22 -22
  416. diffusers/schedulers/scheduling_ddpm.py +9 -9
  417. diffusers/schedulers/scheduling_ddpm_flax.py +7 -7
  418. diffusers/schedulers/scheduling_ddpm_parallel.py +18 -18
  419. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +2 -2
  420. diffusers/schedulers/scheduling_deis_multistep.py +8 -8
  421. diffusers/schedulers/scheduling_dpm_cogvideox.py +5 -5
  422. diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -12
  423. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +22 -20
  424. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +11 -11
  425. diffusers/schedulers/scheduling_dpmsolver_sde.py +2 -2
  426. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +13 -13
  427. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +13 -8
  428. diffusers/schedulers/scheduling_edm_euler.py +20 -11
  429. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +3 -3
  430. diffusers/schedulers/scheduling_euler_discrete.py +3 -3
  431. diffusers/schedulers/scheduling_euler_discrete_flax.py +3 -3
  432. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +20 -5
  433. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +1 -1
  434. diffusers/schedulers/scheduling_flow_match_lcm.py +561 -0
  435. diffusers/schedulers/scheduling_heun_discrete.py +2 -2
  436. diffusers/schedulers/scheduling_ipndm.py +2 -2
  437. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +2 -2
  438. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +2 -2
  439. diffusers/schedulers/scheduling_karras_ve_flax.py +5 -5
  440. diffusers/schedulers/scheduling_lcm.py +3 -3
  441. diffusers/schedulers/scheduling_lms_discrete.py +2 -2
  442. diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
  443. diffusers/schedulers/scheduling_pndm.py +4 -4
  444. diffusers/schedulers/scheduling_pndm_flax.py +4 -4
  445. diffusers/schedulers/scheduling_repaint.py +9 -9
  446. diffusers/schedulers/scheduling_sasolver.py +15 -15
  447. diffusers/schedulers/scheduling_scm.py +1 -1
  448. diffusers/schedulers/scheduling_sde_ve.py +1 -1
  449. diffusers/schedulers/scheduling_sde_ve_flax.py +2 -2
  450. diffusers/schedulers/scheduling_tcd.py +3 -3
  451. diffusers/schedulers/scheduling_unclip.py +5 -5
  452. diffusers/schedulers/scheduling_unipc_multistep.py +11 -11
  453. diffusers/schedulers/scheduling_utils.py +1 -1
  454. diffusers/schedulers/scheduling_utils_flax.py +1 -1
  455. diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
  456. diffusers/training_utils.py +13 -5
  457. diffusers/utils/__init__.py +5 -0
  458. diffusers/utils/accelerate_utils.py +1 -1
  459. diffusers/utils/doc_utils.py +1 -1
  460. diffusers/utils/dummy_pt_objects.py +120 -0
  461. diffusers/utils/dummy_torch_and_transformers_objects.py +225 -0
  462. diffusers/utils/dynamic_modules_utils.py +21 -3
  463. diffusers/utils/export_utils.py +1 -1
  464. diffusers/utils/import_utils.py +81 -18
  465. diffusers/utils/logging.py +1 -1
  466. diffusers/utils/outputs.py +2 -1
  467. diffusers/utils/peft_utils.py +91 -8
  468. diffusers/utils/state_dict_utils.py +20 -3
  469. diffusers/utils/testing_utils.py +59 -7
  470. diffusers/utils/torch_utils.py +25 -5
  471. diffusers/video_processor.py +2 -2
  472. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/METADATA +3 -3
  473. diffusers-0.34.0.dist-info/RECORD +639 -0
  474. diffusers-0.33.0.dist-info/RECORD +0 -608
  475. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/LICENSE +0 -0
  476. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/WHEEL +0 -0
  477. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/entry_points.txt +0 -0
  478. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,673 @@
1
+ # Copyright 2025 The NVIDIA Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import T5EncoderModel, T5TokenizerFast
21
+
22
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
23
+ from ...models import AutoencoderKLWan, CosmosTransformer3DModel
24
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
25
+ from ...utils import is_cosmos_guardrail_available, is_torch_xla_available, logging, replace_example_docstring
26
+ from ...utils.torch_utils import randn_tensor
27
+ from ...video_processor import VideoProcessor
28
+ from ..pipeline_utils import DiffusionPipeline
29
+ from .pipeline_output import CosmosImagePipelineOutput
30
+
31
+
32
+ if is_cosmos_guardrail_available():
33
+ from cosmos_guardrail import CosmosSafetyChecker
34
+ else:
35
+
36
+ class CosmosSafetyChecker:
37
+ def __init__(self, *args, **kwargs):
38
+ raise ImportError(
39
+ "`cosmos_guardrail` is not installed. Please install it to use the safety checker for Cosmos: `pip install cosmos_guardrail`."
40
+ )
41
+
42
+
43
+ if is_torch_xla_available():
44
+ import torch_xla.core.xla_model as xm
45
+
46
+ XLA_AVAILABLE = True
47
+ else:
48
+ XLA_AVAILABLE = False
49
+
50
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
51
+
52
+
53
+ EXAMPLE_DOC_STRING = """
54
+ Examples:
55
+ ```python
56
+ >>> import torch
57
+ >>> from diffusers import Cosmos2TextToImagePipeline
58
+
59
+ >>> # Available checkpoints: nvidia/Cosmos-Predict2-2B-Text2Image, nvidia/Cosmos-Predict2-14B-Text2Image
60
+ >>> model_id = "nvidia/Cosmos-Predict2-2B-Text2Image"
61
+ >>> pipe = Cosmos2TextToImagePipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
62
+ >>> pipe.to("cuda")
63
+
64
+ >>> prompt = "A close-up shot captures a vibrant yellow scrubber vigorously working on a grimy plate, its bristles moving in circular motions to lift stubborn grease and food residue. The dish, once covered in remnants of a hearty meal, gradually reveals its original glossy surface. Suds form and bubble around the scrubber, creating a satisfying visual of cleanliness in progress. The sound of scrubbing fills the air, accompanied by the gentle clinking of the dish against the sink. As the scrubber continues its task, the dish transforms, gleaming under the bright kitchen lights, symbolizing the triumph of cleanliness over mess."
65
+ >>> negative_prompt = "The video captures a series of frames showing ugly scenes, static with no motion, motion blur, over-saturation, shaky footage, low resolution, grainy texture, pixelated images, poorly lit areas, underexposed and overexposed scenes, poor color balance, washed out colors, choppy sequences, jerky movements, low frame rate, artifacting, color banding, unnatural transitions, outdated special effects, fake elements, unconvincing visuals, poorly edited content, jump cuts, visual noise, and flickering. Overall, the video is of poor quality."
66
+
67
+ >>> output = pipe(
68
+ ... prompt=prompt, negative_prompt=negative_prompt, generator=torch.Generator().manual_seed(1)
69
+ ... ).images[0]
70
+ >>> output.save("output.png")
71
+ ```
72
+ """
73
+
74
+
75
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
76
+ def retrieve_timesteps(
77
+ scheduler,
78
+ num_inference_steps: Optional[int] = None,
79
+ device: Optional[Union[str, torch.device]] = None,
80
+ timesteps: Optional[List[int]] = None,
81
+ sigmas: Optional[List[float]] = None,
82
+ **kwargs,
83
+ ):
84
+ r"""
85
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
86
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
87
+
88
+ Args:
89
+ scheduler (`SchedulerMixin`):
90
+ The scheduler to get timesteps from.
91
+ num_inference_steps (`int`):
92
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
93
+ must be `None`.
94
+ device (`str` or `torch.device`, *optional*):
95
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
96
+ timesteps (`List[int]`, *optional*):
97
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
98
+ `num_inference_steps` and `sigmas` must be `None`.
99
+ sigmas (`List[float]`, *optional*):
100
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
101
+ `num_inference_steps` and `timesteps` must be `None`.
102
+
103
+ Returns:
104
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
105
+ second element is the number of inference steps.
106
+ """
107
+ if timesteps is not None and sigmas is not None:
108
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
109
+ if timesteps is not None:
110
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
111
+ if not accepts_timesteps:
112
+ raise ValueError(
113
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
114
+ f" timestep schedules. Please check whether you are using the correct scheduler."
115
+ )
116
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
117
+ timesteps = scheduler.timesteps
118
+ num_inference_steps = len(timesteps)
119
+ elif sigmas is not None:
120
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
121
+ if not accept_sigmas:
122
+ raise ValueError(
123
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
124
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
125
+ )
126
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
127
+ timesteps = scheduler.timesteps
128
+ num_inference_steps = len(timesteps)
129
+ else:
130
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
131
+ timesteps = scheduler.timesteps
132
+ return timesteps, num_inference_steps
133
+
134
+
135
+ class Cosmos2TextToImagePipeline(DiffusionPipeline):
136
+ r"""
137
+ Pipeline for text-to-image generation using [Cosmos Predict2](https://github.com/nvidia-cosmos/cosmos-predict2).
138
+
139
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
140
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
141
+
142
+ Args:
143
+ text_encoder ([`T5EncoderModel`]):
144
+ Frozen text-encoder. Cosmos uses
145
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the
146
+ [t5-11b](https://huggingface.co/google-t5/t5-11b) variant.
147
+ tokenizer (`T5TokenizerFast`):
148
+ Tokenizer of class
149
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
150
+ transformer ([`CosmosTransformer3DModel`]):
151
+ Conditional Transformer to denoise the encoded image latents.
152
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
153
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
154
+ vae ([`AutoencoderKLWan`]):
155
+ Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
156
+ """
157
+
158
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
159
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
160
+ # We mark safety_checker as optional here to get around some test failures, but it is not really optional
161
+ _optional_components = ["safety_checker"]
162
+
163
+ def __init__(
164
+ self,
165
+ text_encoder: T5EncoderModel,
166
+ tokenizer: T5TokenizerFast,
167
+ transformer: CosmosTransformer3DModel,
168
+ vae: AutoencoderKLWan,
169
+ scheduler: FlowMatchEulerDiscreteScheduler,
170
+ safety_checker: CosmosSafetyChecker = None,
171
+ ):
172
+ super().__init__()
173
+
174
+ if safety_checker is None:
175
+ safety_checker = CosmosSafetyChecker()
176
+
177
+ self.register_modules(
178
+ vae=vae,
179
+ text_encoder=text_encoder,
180
+ tokenizer=tokenizer,
181
+ transformer=transformer,
182
+ scheduler=scheduler,
183
+ safety_checker=safety_checker,
184
+ )
185
+
186
+ self.vae_scale_factor_temporal = 2 ** sum(self.vae.temperal_downsample) if getattr(self, "vae", None) else 4
187
+ self.vae_scale_factor_spatial = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
188
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
189
+
190
+ self.sigma_max = 80.0
191
+ self.sigma_min = 0.002
192
+ self.sigma_data = 1.0
193
+ self.final_sigmas_type = "sigma_min"
194
+ if self.scheduler is not None:
195
+ self.scheduler.register_to_config(
196
+ sigma_max=self.sigma_max,
197
+ sigma_min=self.sigma_min,
198
+ sigma_data=self.sigma_data,
199
+ final_sigmas_type=self.final_sigmas_type,
200
+ )
201
+
202
+ # Copied from diffusers.pipelines.cosmos.pipeline_cosmos_text2world.CosmosTextToWorldPipeline._get_t5_prompt_embeds
203
+ def _get_t5_prompt_embeds(
204
+ self,
205
+ prompt: Union[str, List[str]] = None,
206
+ max_sequence_length: int = 512,
207
+ device: Optional[torch.device] = None,
208
+ dtype: Optional[torch.dtype] = None,
209
+ ):
210
+ device = device or self._execution_device
211
+ dtype = dtype or self.text_encoder.dtype
212
+ prompt = [prompt] if isinstance(prompt, str) else prompt
213
+
214
+ text_inputs = self.tokenizer(
215
+ prompt,
216
+ padding="max_length",
217
+ max_length=max_sequence_length,
218
+ truncation=True,
219
+ return_tensors="pt",
220
+ return_length=True,
221
+ return_offsets_mapping=False,
222
+ )
223
+ text_input_ids = text_inputs.input_ids
224
+ prompt_attention_mask = text_inputs.attention_mask.bool().to(device)
225
+
226
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
227
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
228
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
229
+ logger.warning(
230
+ "The following part of your input was truncated because `max_sequence_length` is set to "
231
+ f" {max_sequence_length} tokens: {removed_text}"
232
+ )
233
+
234
+ prompt_embeds = self.text_encoder(
235
+ text_input_ids.to(device), attention_mask=prompt_attention_mask
236
+ ).last_hidden_state
237
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
238
+
239
+ lengths = prompt_attention_mask.sum(dim=1).cpu()
240
+ for i, length in enumerate(lengths):
241
+ prompt_embeds[i, length:] = 0
242
+
243
+ return prompt_embeds
244
+
245
+ # Copied from diffusers.pipelines.cosmos.pipeline_cosmos_text2world.CosmosTextToWorldPipeline.encode_prompt with num_videos_per_prompt->num_images_per_prompt
246
+ def encode_prompt(
247
+ self,
248
+ prompt: Union[str, List[str]],
249
+ negative_prompt: Optional[Union[str, List[str]]] = None,
250
+ do_classifier_free_guidance: bool = True,
251
+ num_images_per_prompt: int = 1,
252
+ prompt_embeds: Optional[torch.Tensor] = None,
253
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
254
+ max_sequence_length: int = 512,
255
+ device: Optional[torch.device] = None,
256
+ dtype: Optional[torch.dtype] = None,
257
+ ):
258
+ r"""
259
+ Encodes the prompt into text encoder hidden states.
260
+
261
+ Args:
262
+ prompt (`str` or `List[str]`, *optional*):
263
+ prompt to be encoded
264
+ negative_prompt (`str` or `List[str]`, *optional*):
265
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
266
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
267
+ less than `1`).
268
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
269
+ Whether to use classifier free guidance or not.
270
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
271
+ Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
272
+ prompt_embeds (`torch.Tensor`, *optional*):
273
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
274
+ provided, text embeddings will be generated from `prompt` input argument.
275
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
276
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
277
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
278
+ argument.
279
+ device: (`torch.device`, *optional*):
280
+ torch device
281
+ dtype: (`torch.dtype`, *optional*):
282
+ torch dtype
283
+ """
284
+ device = device or self._execution_device
285
+
286
+ prompt = [prompt] if isinstance(prompt, str) else prompt
287
+ if prompt is not None:
288
+ batch_size = len(prompt)
289
+ else:
290
+ batch_size = prompt_embeds.shape[0]
291
+
292
+ if prompt_embeds is None:
293
+ prompt_embeds = self._get_t5_prompt_embeds(
294
+ prompt=prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype
295
+ )
296
+
297
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
298
+ _, seq_len, _ = prompt_embeds.shape
299
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
300
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
301
+
302
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
303
+ negative_prompt = negative_prompt or ""
304
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
305
+
306
+ if prompt is not None and type(prompt) is not type(negative_prompt):
307
+ raise TypeError(
308
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
309
+ f" {type(prompt)}."
310
+ )
311
+ elif batch_size != len(negative_prompt):
312
+ raise ValueError(
313
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
314
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
315
+ " the batch size of `prompt`."
316
+ )
317
+
318
+ negative_prompt_embeds = self._get_t5_prompt_embeds(
319
+ prompt=negative_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype
320
+ )
321
+
322
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
323
+ _, seq_len, _ = negative_prompt_embeds.shape
324
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
325
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
326
+
327
+ return prompt_embeds, negative_prompt_embeds
328
+
329
+ def prepare_latents(
330
+ self,
331
+ batch_size: int,
332
+ num_channels_latents: 16,
333
+ height: int = 768,
334
+ width: int = 1360,
335
+ num_frames: int = 1,
336
+ dtype: Optional[torch.dtype] = None,
337
+ device: Optional[torch.device] = None,
338
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
339
+ latents: Optional[torch.Tensor] = None,
340
+ ) -> torch.Tensor:
341
+ if latents is not None:
342
+ return latents.to(device=device, dtype=dtype) * self.scheduler.config.sigma_max
343
+
344
+ num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
345
+ latent_height = height // self.vae_scale_factor_spatial
346
+ latent_width = width // self.vae_scale_factor_spatial
347
+ shape = (batch_size, num_channels_latents, num_latent_frames, latent_height, latent_width)
348
+
349
+ if isinstance(generator, list) and len(generator) != batch_size:
350
+ raise ValueError(
351
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
352
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
353
+ )
354
+
355
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
356
+ return latents * self.scheduler.config.sigma_max
357
+
358
+ # Copied from diffusers.pipelines.cosmos.pipeline_cosmos_text2world.CosmosTextToWorldPipeline.check_inputs
359
+ def check_inputs(
360
+ self,
361
+ prompt,
362
+ height,
363
+ width,
364
+ prompt_embeds=None,
365
+ callback_on_step_end_tensor_inputs=None,
366
+ ):
367
+ if height % 16 != 0 or width % 16 != 0:
368
+ raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
369
+
370
+ if callback_on_step_end_tensor_inputs is not None and not all(
371
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
372
+ ):
373
+ raise ValueError(
374
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
375
+ )
376
+
377
+ if prompt is not None and prompt_embeds is not None:
378
+ raise ValueError(
379
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
380
+ " only forward one of the two."
381
+ )
382
+ elif prompt is None and prompt_embeds is None:
383
+ raise ValueError(
384
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
385
+ )
386
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
387
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
388
+
389
+ @property
390
+ def guidance_scale(self):
391
+ return self._guidance_scale
392
+
393
+ @property
394
+ def do_classifier_free_guidance(self):
395
+ return self._guidance_scale > 1.0
396
+
397
+ @property
398
+ def num_timesteps(self):
399
+ return self._num_timesteps
400
+
401
+ @property
402
+ def current_timestep(self):
403
+ return self._current_timestep
404
+
405
+ @property
406
+ def interrupt(self):
407
+ return self._interrupt
408
+
409
+ @torch.no_grad()
410
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
411
+ def __call__(
412
+ self,
413
+ prompt: Union[str, List[str]] = None,
414
+ negative_prompt: Optional[Union[str, List[str]]] = None,
415
+ height: int = 768,
416
+ width: int = 1360,
417
+ num_inference_steps: int = 35,
418
+ guidance_scale: float = 7.0,
419
+ num_images_per_prompt: Optional[int] = 1,
420
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
421
+ latents: Optional[torch.Tensor] = None,
422
+ prompt_embeds: Optional[torch.Tensor] = None,
423
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
424
+ output_type: Optional[str] = "pil",
425
+ return_dict: bool = True,
426
+ callback_on_step_end: Optional[
427
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
428
+ ] = None,
429
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
430
+ max_sequence_length: int = 512,
431
+ ):
432
+ r"""
433
+ The call function to the pipeline for generation.
434
+
435
+ Args:
436
+ prompt (`str` or `List[str]`, *optional*):
437
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
438
+ instead.
439
+ height (`int`, defaults to `768`):
440
+ The height in pixels of the generated image.
441
+ width (`int`, defaults to `1360`):
442
+ The width in pixels of the generated image.
443
+ num_inference_steps (`int`, defaults to `35`):
444
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
445
+ expense of slower inference.
446
+ guidance_scale (`float`, defaults to `7.0`):
447
+ Guidance scale as defined in [Classifier-Free Diffusion
448
+ Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
449
+ of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
450
+ `guidance_scale > 1`.
451
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
452
+ The number of images to generate per prompt.
453
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
454
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
455
+ generation deterministic.
456
+ latents (`torch.Tensor`, *optional*):
457
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
458
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
459
+ tensor is generated by sampling using the supplied random `generator`.
460
+ prompt_embeds (`torch.Tensor`, *optional*):
461
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
462
+ provided, text embeddings will be generated from `prompt` input argument.
463
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
464
+ Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
465
+ provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
466
+ output_type (`str`, *optional*, defaults to `"pil"`):
467
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
468
+ return_dict (`bool`, *optional*, defaults to `True`):
469
+ Whether or not to return a [`CosmosImagePipelineOutput`] instead of a plain tuple.
470
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
471
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
472
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
473
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
474
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
475
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
476
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
477
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
478
+ `._callback_tensor_inputs` attribute of your pipeline class.
479
+
480
+ Examples:
481
+
482
+ Returns:
483
+ [`~CosmosImagePipelineOutput`] or `tuple`:
484
+ If `return_dict` is `True`, [`CosmosImagePipelineOutput`] is returned, otherwise a `tuple` is returned
485
+ where the first element is a list with the generated images and the second element is a list of `bool`s
486
+ indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
487
+ """
488
+
489
+ if self.safety_checker is None:
490
+ raise ValueError(
491
+ f"You have disabled the safety checker for {self.__class__}. This is in violation of the "
492
+ "[NVIDIA Open Model License Agreement](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license). "
493
+ f"Please ensure that you are compliant with the license agreement."
494
+ )
495
+
496
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
497
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
498
+
499
+ num_frames = 1
500
+
501
+ # 1. Check inputs. Raise error if not correct
502
+ self.check_inputs(prompt, height, width, prompt_embeds, callback_on_step_end_tensor_inputs)
503
+
504
+ self._guidance_scale = guidance_scale
505
+ self._current_timestep = None
506
+ self._interrupt = False
507
+
508
+ device = self._execution_device
509
+
510
+ if self.safety_checker is not None:
511
+ self.safety_checker.to(device)
512
+ if prompt is not None:
513
+ prompt_list = [prompt] if isinstance(prompt, str) else prompt
514
+ for p in prompt_list:
515
+ if not self.safety_checker.check_text_safety(p):
516
+ raise ValueError(
517
+ f"Cosmos Guardrail detected unsafe text in the prompt: {p}. Please ensure that the "
518
+ f"prompt abides by the NVIDIA Open Model License Agreement."
519
+ )
520
+ self.safety_checker.to("cpu")
521
+
522
+ # 2. Define call parameters
523
+ if prompt is not None and isinstance(prompt, str):
524
+ batch_size = 1
525
+ elif prompt is not None and isinstance(prompt, list):
526
+ batch_size = len(prompt)
527
+ else:
528
+ batch_size = prompt_embeds.shape[0]
529
+
530
+ # 3. Encode input prompt
531
+ (
532
+ prompt_embeds,
533
+ negative_prompt_embeds,
534
+ ) = self.encode_prompt(
535
+ prompt=prompt,
536
+ negative_prompt=negative_prompt,
537
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
538
+ num_images_per_prompt=num_images_per_prompt,
539
+ prompt_embeds=prompt_embeds,
540
+ negative_prompt_embeds=negative_prompt_embeds,
541
+ device=device,
542
+ max_sequence_length=max_sequence_length,
543
+ )
544
+
545
+ # 4. Prepare timesteps
546
+ sigmas_dtype = torch.float32 if torch.backends.mps.is_available() else torch.float64
547
+ sigmas = torch.linspace(0, 1, num_inference_steps, dtype=sigmas_dtype)
548
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, device=device, sigmas=sigmas)
549
+ if self.scheduler.config.get("final_sigmas_type", "zero") == "sigma_min":
550
+ # Replace the last sigma (which is zero) with the minimum sigma value
551
+ self.scheduler.sigmas[-1] = self.scheduler.sigmas[-2]
552
+
553
+ # 5. Prepare latent variables
554
+ transformer_dtype = self.transformer.dtype
555
+ num_channels_latents = self.transformer.config.in_channels
556
+ latents = self.prepare_latents(
557
+ batch_size * num_images_per_prompt,
558
+ num_channels_latents,
559
+ height,
560
+ width,
561
+ num_frames,
562
+ torch.float32,
563
+ device,
564
+ generator,
565
+ latents,
566
+ )
567
+
568
+ padding_mask = latents.new_zeros(1, 1, height, width, dtype=transformer_dtype)
569
+
570
+ # 6. Denoising loop
571
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
572
+ self._num_timesteps = len(timesteps)
573
+
574
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
575
+ for i, t in enumerate(timesteps):
576
+ if self.interrupt:
577
+ continue
578
+
579
+ self._current_timestep = t
580
+ current_sigma = self.scheduler.sigmas[i]
581
+
582
+ current_t = current_sigma / (current_sigma + 1)
583
+ c_in = 1 - current_t
584
+ c_skip = 1 - current_t
585
+ c_out = -current_t
586
+ timestep = current_t.expand(latents.shape[0]).to(transformer_dtype) # [B, 1, T, 1, 1]
587
+
588
+ latent_model_input = latents * c_in
589
+ latent_model_input = latent_model_input.to(transformer_dtype)
590
+
591
+ noise_pred = self.transformer(
592
+ hidden_states=latent_model_input,
593
+ timestep=timestep,
594
+ encoder_hidden_states=prompt_embeds,
595
+ padding_mask=padding_mask,
596
+ return_dict=False,
597
+ )[0]
598
+ noise_pred = (c_skip * latents + c_out * noise_pred.float()).to(transformer_dtype)
599
+
600
+ if self.do_classifier_free_guidance:
601
+ noise_pred_uncond = self.transformer(
602
+ hidden_states=latent_model_input,
603
+ timestep=timestep,
604
+ encoder_hidden_states=negative_prompt_embeds,
605
+ padding_mask=padding_mask,
606
+ return_dict=False,
607
+ )[0]
608
+ noise_pred_uncond = (c_skip * latents + c_out * noise_pred_uncond.float()).to(transformer_dtype)
609
+ noise_pred = noise_pred + self.guidance_scale * (noise_pred - noise_pred_uncond)
610
+
611
+ noise_pred = (latents - noise_pred) / current_sigma
612
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
613
+
614
+ if callback_on_step_end is not None:
615
+ callback_kwargs = {}
616
+ for k in callback_on_step_end_tensor_inputs:
617
+ callback_kwargs[k] = locals()[k]
618
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
619
+
620
+ latents = callback_outputs.pop("latents", latents)
621
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
622
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
623
+
624
+ # call the callback, if provided
625
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
626
+ progress_bar.update()
627
+
628
+ if XLA_AVAILABLE:
629
+ xm.mark_step()
630
+
631
+ self._current_timestep = None
632
+
633
+ if not output_type == "latent":
634
+ latents_mean = (
635
+ torch.tensor(self.vae.config.latents_mean)
636
+ .view(1, self.vae.config.z_dim, 1, 1, 1)
637
+ .to(latents.device, latents.dtype)
638
+ )
639
+ latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
640
+ latents.device, latents.dtype
641
+ )
642
+ latents = latents / latents_std / self.scheduler.config.sigma_data + latents_mean
643
+ video = self.vae.decode(latents.to(self.vae.dtype), return_dict=False)[0]
644
+
645
+ if self.safety_checker is not None:
646
+ self.safety_checker.to(device)
647
+ video = self.video_processor.postprocess_video(video, output_type="np")
648
+ video = (video * 255).astype(np.uint8)
649
+ video_batch = []
650
+ for vid in video:
651
+ vid = self.safety_checker.check_video_safety(vid)
652
+ video_batch.append(vid)
653
+ video = np.stack(video_batch).astype(np.float32) / 255.0 * 2 - 1
654
+ video = torch.from_numpy(video).permute(0, 4, 1, 2, 3)
655
+ video = self.video_processor.postprocess_video(video, output_type=output_type)
656
+ self.safety_checker.to("cpu")
657
+ else:
658
+ video = self.video_processor.postprocess_video(video, output_type=output_type)
659
+ image = [batch[0] for batch in video]
660
+ if isinstance(video, torch.Tensor):
661
+ image = torch.stack(image)
662
+ elif isinstance(video, np.ndarray):
663
+ image = np.stack(image)
664
+ else:
665
+ image = latents[:, :, 0]
666
+
667
+ # Offload all models
668
+ self.maybe_free_model_hooks()
669
+
670
+ if not return_dict:
671
+ return (image,)
672
+
673
+ return CosmosImagePipelineOutput(images=image)