diffusers 0.33.0__py3-none-any.whl → 0.34.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (478) hide show
  1. diffusers/__init__.py +48 -1
  2. diffusers/commands/__init__.py +1 -1
  3. diffusers/commands/diffusers_cli.py +1 -1
  4. diffusers/commands/env.py +1 -1
  5. diffusers/commands/fp16_safetensors.py +1 -1
  6. diffusers/dependency_versions_check.py +1 -1
  7. diffusers/dependency_versions_table.py +1 -1
  8. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  9. diffusers/hooks/faster_cache.py +2 -2
  10. diffusers/hooks/group_offloading.py +128 -29
  11. diffusers/hooks/hooks.py +2 -2
  12. diffusers/hooks/layerwise_casting.py +3 -3
  13. diffusers/hooks/pyramid_attention_broadcast.py +1 -1
  14. diffusers/image_processor.py +7 -2
  15. diffusers/loaders/__init__.py +4 -0
  16. diffusers/loaders/ip_adapter.py +5 -14
  17. diffusers/loaders/lora_base.py +212 -111
  18. diffusers/loaders/lora_conversion_utils.py +275 -34
  19. diffusers/loaders/lora_pipeline.py +1554 -819
  20. diffusers/loaders/peft.py +52 -109
  21. diffusers/loaders/single_file.py +2 -2
  22. diffusers/loaders/single_file_model.py +20 -4
  23. diffusers/loaders/single_file_utils.py +225 -5
  24. diffusers/loaders/textual_inversion.py +3 -2
  25. diffusers/loaders/transformer_flux.py +1 -1
  26. diffusers/loaders/transformer_sd3.py +2 -2
  27. diffusers/loaders/unet.py +2 -16
  28. diffusers/loaders/unet_loader_utils.py +1 -1
  29. diffusers/loaders/utils.py +1 -1
  30. diffusers/models/__init__.py +15 -1
  31. diffusers/models/activations.py +5 -5
  32. diffusers/models/adapter.py +2 -3
  33. diffusers/models/attention.py +4 -4
  34. diffusers/models/attention_flax.py +10 -10
  35. diffusers/models/attention_processor.py +14 -10
  36. diffusers/models/auto_model.py +47 -10
  37. diffusers/models/autoencoders/__init__.py +1 -0
  38. diffusers/models/autoencoders/autoencoder_asym_kl.py +4 -4
  39. diffusers/models/autoencoders/autoencoder_dc.py +3 -3
  40. diffusers/models/autoencoders/autoencoder_kl.py +4 -4
  41. diffusers/models/autoencoders/autoencoder_kl_allegro.py +4 -4
  42. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +6 -6
  43. diffusers/models/autoencoders/autoencoder_kl_cosmos.py +1108 -0
  44. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +2 -2
  45. diffusers/models/autoencoders/autoencoder_kl_ltx.py +3 -3
  46. diffusers/models/autoencoders/autoencoder_kl_magvit.py +4 -4
  47. diffusers/models/autoencoders/autoencoder_kl_mochi.py +3 -3
  48. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +4 -4
  49. diffusers/models/autoencoders/autoencoder_kl_wan.py +256 -22
  50. diffusers/models/autoencoders/autoencoder_oobleck.py +1 -1
  51. diffusers/models/autoencoders/autoencoder_tiny.py +3 -3
  52. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  53. diffusers/models/autoencoders/vae.py +13 -2
  54. diffusers/models/autoencoders/vq_model.py +2 -2
  55. diffusers/models/cache_utils.py +1 -1
  56. diffusers/models/controlnet.py +1 -1
  57. diffusers/models/controlnet_flux.py +1 -1
  58. diffusers/models/controlnet_sd3.py +1 -1
  59. diffusers/models/controlnet_sparsectrl.py +1 -1
  60. diffusers/models/controlnets/__init__.py +1 -0
  61. diffusers/models/controlnets/controlnet.py +3 -3
  62. diffusers/models/controlnets/controlnet_flax.py +1 -1
  63. diffusers/models/controlnets/controlnet_flux.py +16 -15
  64. diffusers/models/controlnets/controlnet_hunyuan.py +2 -2
  65. diffusers/models/controlnets/controlnet_sana.py +290 -0
  66. diffusers/models/controlnets/controlnet_sd3.py +1 -1
  67. diffusers/models/controlnets/controlnet_sparsectrl.py +2 -2
  68. diffusers/models/controlnets/controlnet_union.py +1 -1
  69. diffusers/models/controlnets/controlnet_xs.py +7 -7
  70. diffusers/models/controlnets/multicontrolnet.py +4 -5
  71. diffusers/models/controlnets/multicontrolnet_union.py +5 -6
  72. diffusers/models/downsampling.py +2 -2
  73. diffusers/models/embeddings.py +10 -12
  74. diffusers/models/embeddings_flax.py +2 -2
  75. diffusers/models/lora.py +3 -3
  76. diffusers/models/modeling_utils.py +44 -14
  77. diffusers/models/normalization.py +4 -4
  78. diffusers/models/resnet.py +2 -2
  79. diffusers/models/resnet_flax.py +1 -1
  80. diffusers/models/transformers/__init__.py +5 -0
  81. diffusers/models/transformers/auraflow_transformer_2d.py +70 -24
  82. diffusers/models/transformers/cogvideox_transformer_3d.py +1 -1
  83. diffusers/models/transformers/consisid_transformer_3d.py +1 -1
  84. diffusers/models/transformers/dit_transformer_2d.py +2 -2
  85. diffusers/models/transformers/dual_transformer_2d.py +1 -1
  86. diffusers/models/transformers/hunyuan_transformer_2d.py +2 -2
  87. diffusers/models/transformers/latte_transformer_3d.py +4 -5
  88. diffusers/models/transformers/lumina_nextdit2d.py +2 -2
  89. diffusers/models/transformers/pixart_transformer_2d.py +3 -3
  90. diffusers/models/transformers/prior_transformer.py +1 -1
  91. diffusers/models/transformers/sana_transformer.py +8 -3
  92. diffusers/models/transformers/stable_audio_transformer.py +5 -9
  93. diffusers/models/transformers/t5_film_transformer.py +3 -3
  94. diffusers/models/transformers/transformer_2d.py +1 -1
  95. diffusers/models/transformers/transformer_allegro.py +1 -1
  96. diffusers/models/transformers/transformer_chroma.py +742 -0
  97. diffusers/models/transformers/transformer_cogview3plus.py +5 -10
  98. diffusers/models/transformers/transformer_cogview4.py +317 -25
  99. diffusers/models/transformers/transformer_cosmos.py +579 -0
  100. diffusers/models/transformers/transformer_flux.py +9 -11
  101. diffusers/models/transformers/transformer_hidream_image.py +942 -0
  102. diffusers/models/transformers/transformer_hunyuan_video.py +6 -8
  103. diffusers/models/transformers/transformer_hunyuan_video_framepack.py +416 -0
  104. diffusers/models/transformers/transformer_ltx.py +2 -2
  105. diffusers/models/transformers/transformer_lumina2.py +1 -1
  106. diffusers/models/transformers/transformer_mochi.py +1 -1
  107. diffusers/models/transformers/transformer_omnigen.py +2 -2
  108. diffusers/models/transformers/transformer_sd3.py +7 -7
  109. diffusers/models/transformers/transformer_temporal.py +1 -1
  110. diffusers/models/transformers/transformer_wan.py +24 -8
  111. diffusers/models/transformers/transformer_wan_vace.py +393 -0
  112. diffusers/models/unets/unet_1d.py +1 -1
  113. diffusers/models/unets/unet_1d_blocks.py +1 -1
  114. diffusers/models/unets/unet_2d.py +1 -1
  115. diffusers/models/unets/unet_2d_blocks.py +1 -1
  116. diffusers/models/unets/unet_2d_blocks_flax.py +8 -7
  117. diffusers/models/unets/unet_2d_condition.py +2 -2
  118. diffusers/models/unets/unet_2d_condition_flax.py +2 -2
  119. diffusers/models/unets/unet_3d_blocks.py +1 -1
  120. diffusers/models/unets/unet_3d_condition.py +3 -3
  121. diffusers/models/unets/unet_i2vgen_xl.py +3 -3
  122. diffusers/models/unets/unet_kandinsky3.py +1 -1
  123. diffusers/models/unets/unet_motion_model.py +2 -2
  124. diffusers/models/unets/unet_stable_cascade.py +1 -1
  125. diffusers/models/upsampling.py +2 -2
  126. diffusers/models/vae_flax.py +2 -2
  127. diffusers/models/vq_model.py +1 -1
  128. diffusers/pipelines/__init__.py +37 -6
  129. diffusers/pipelines/allegro/pipeline_allegro.py +11 -11
  130. diffusers/pipelines/amused/pipeline_amused.py +7 -6
  131. diffusers/pipelines/amused/pipeline_amused_img2img.py +6 -5
  132. diffusers/pipelines/amused/pipeline_amused_inpaint.py +6 -5
  133. diffusers/pipelines/animatediff/pipeline_animatediff.py +6 -6
  134. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +6 -6
  135. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +16 -15
  136. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +6 -6
  137. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +5 -5
  138. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +5 -5
  139. diffusers/pipelines/audioldm/pipeline_audioldm.py +8 -7
  140. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  141. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +23 -13
  142. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +48 -11
  143. diffusers/pipelines/auto_pipeline.py +6 -7
  144. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  145. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
  146. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +11 -10
  147. diffusers/pipelines/chroma/__init__.py +49 -0
  148. diffusers/pipelines/chroma/pipeline_chroma.py +949 -0
  149. diffusers/pipelines/chroma/pipeline_chroma_img2img.py +1034 -0
  150. diffusers/pipelines/chroma/pipeline_output.py +21 -0
  151. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +8 -8
  152. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +8 -8
  153. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +8 -8
  154. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +8 -8
  155. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +9 -9
  156. diffusers/pipelines/cogview4/pipeline_cogview4.py +7 -7
  157. diffusers/pipelines/cogview4/pipeline_cogview4_control.py +7 -7
  158. diffusers/pipelines/consisid/consisid_utils.py +2 -2
  159. diffusers/pipelines/consisid/pipeline_consisid.py +8 -8
  160. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  161. diffusers/pipelines/controlnet/pipeline_controlnet.py +7 -7
  162. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +8 -8
  163. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +7 -7
  164. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +7 -7
  165. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +14 -14
  166. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +10 -6
  167. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +13 -13
  168. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +14 -14
  169. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +5 -5
  170. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +13 -13
  171. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +1 -1
  172. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +8 -8
  173. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +7 -7
  174. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
  175. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -10
  176. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +9 -7
  177. diffusers/pipelines/cosmos/__init__.py +54 -0
  178. diffusers/pipelines/cosmos/pipeline_cosmos2_text2image.py +673 -0
  179. diffusers/pipelines/cosmos/pipeline_cosmos2_video2world.py +792 -0
  180. diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +664 -0
  181. diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +826 -0
  182. diffusers/pipelines/cosmos/pipeline_output.py +40 -0
  183. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +5 -4
  184. diffusers/pipelines/ddim/pipeline_ddim.py +4 -4
  185. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
  186. diffusers/pipelines/deepfloyd_if/pipeline_if.py +10 -10
  187. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +10 -10
  188. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +10 -10
  189. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +10 -10
  190. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +10 -10
  191. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +10 -10
  192. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +8 -8
  193. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +5 -5
  194. diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
  195. diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +3 -3
  196. diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
  197. diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +2 -2
  198. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +4 -3
  199. diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
  200. diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
  201. diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
  202. diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
  203. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
  204. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +7 -7
  205. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +9 -9
  206. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +10 -10
  207. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -8
  208. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -5
  209. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +18 -18
  210. diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
  211. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +2 -2
  212. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +6 -6
  213. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +5 -5
  214. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +5 -5
  215. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +5 -5
  216. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
  217. diffusers/pipelines/dit/pipeline_dit.py +1 -1
  218. diffusers/pipelines/easyanimate/pipeline_easyanimate.py +4 -4
  219. diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +4 -4
  220. diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +7 -6
  221. diffusers/pipelines/flux/modeling_flux.py +1 -1
  222. diffusers/pipelines/flux/pipeline_flux.py +10 -17
  223. diffusers/pipelines/flux/pipeline_flux_control.py +6 -6
  224. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -6
  225. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +6 -6
  226. diffusers/pipelines/flux/pipeline_flux_controlnet.py +6 -6
  227. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +30 -22
  228. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +2 -1
  229. diffusers/pipelines/flux/pipeline_flux_fill.py +6 -6
  230. diffusers/pipelines/flux/pipeline_flux_img2img.py +39 -6
  231. diffusers/pipelines/flux/pipeline_flux_inpaint.py +11 -6
  232. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +1 -1
  233. diffusers/pipelines/free_init_utils.py +2 -2
  234. diffusers/pipelines/free_noise_utils.py +3 -3
  235. diffusers/pipelines/hidream_image/__init__.py +47 -0
  236. diffusers/pipelines/hidream_image/pipeline_hidream_image.py +1026 -0
  237. diffusers/pipelines/hidream_image/pipeline_output.py +35 -0
  238. diffusers/pipelines/hunyuan_video/__init__.py +2 -0
  239. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +8 -8
  240. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +8 -8
  241. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_framepack.py +1114 -0
  242. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +71 -15
  243. diffusers/pipelines/hunyuan_video/pipeline_output.py +19 -0
  244. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +8 -8
  245. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +10 -8
  246. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +6 -6
  247. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +34 -34
  248. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +19 -26
  249. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +7 -7
  250. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +11 -11
  251. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  252. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +35 -35
  253. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +6 -6
  254. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +17 -39
  255. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +17 -45
  256. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +7 -7
  257. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +10 -10
  258. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +10 -10
  259. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +7 -7
  260. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +17 -38
  261. diffusers/pipelines/kolors/pipeline_kolors.py +10 -10
  262. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +12 -12
  263. diffusers/pipelines/kolors/text_encoder.py +3 -3
  264. diffusers/pipelines/kolors/tokenizer.py +1 -1
  265. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +2 -2
  266. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +2 -2
  267. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  268. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +3 -3
  269. diffusers/pipelines/latte/pipeline_latte.py +12 -12
  270. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +13 -13
  271. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +17 -16
  272. diffusers/pipelines/ltx/__init__.py +4 -0
  273. diffusers/pipelines/ltx/modeling_latent_upsampler.py +188 -0
  274. diffusers/pipelines/ltx/pipeline_ltx.py +51 -6
  275. diffusers/pipelines/ltx/pipeline_ltx_condition.py +107 -29
  276. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +50 -6
  277. diffusers/pipelines/ltx/pipeline_ltx_latent_upsample.py +277 -0
  278. diffusers/pipelines/lumina/pipeline_lumina.py +13 -13
  279. diffusers/pipelines/lumina2/pipeline_lumina2.py +10 -10
  280. diffusers/pipelines/marigold/marigold_image_processing.py +2 -2
  281. diffusers/pipelines/mochi/pipeline_mochi.py +6 -6
  282. diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -13
  283. diffusers/pipelines/omnigen/pipeline_omnigen.py +13 -11
  284. diffusers/pipelines/omnigen/processor_omnigen.py +8 -3
  285. diffusers/pipelines/onnx_utils.py +15 -2
  286. diffusers/pipelines/pag/pag_utils.py +2 -2
  287. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -8
  288. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +7 -7
  289. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +10 -6
  290. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +14 -14
  291. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +8 -8
  292. diffusers/pipelines/pag/pipeline_pag_kolors.py +10 -10
  293. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +11 -11
  294. diffusers/pipelines/pag/pipeline_pag_sana.py +18 -12
  295. diffusers/pipelines/pag/pipeline_pag_sd.py +8 -8
  296. diffusers/pipelines/pag/pipeline_pag_sd_3.py +7 -7
  297. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +7 -7
  298. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +6 -6
  299. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +5 -5
  300. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +8 -8
  301. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +16 -15
  302. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +18 -17
  303. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +12 -12
  304. diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
  305. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +8 -7
  306. diffusers/pipelines/pia/pipeline_pia.py +8 -6
  307. diffusers/pipelines/pipeline_flax_utils.py +3 -4
  308. diffusers/pipelines/pipeline_loading_utils.py +89 -13
  309. diffusers/pipelines/pipeline_utils.py +105 -33
  310. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +11 -11
  311. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +11 -11
  312. diffusers/pipelines/sana/__init__.py +4 -0
  313. diffusers/pipelines/sana/pipeline_sana.py +23 -21
  314. diffusers/pipelines/sana/pipeline_sana_controlnet.py +1106 -0
  315. diffusers/pipelines/sana/pipeline_sana_sprint.py +23 -19
  316. diffusers/pipelines/sana/pipeline_sana_sprint_img2img.py +981 -0
  317. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +7 -6
  318. diffusers/pipelines/shap_e/camera.py +1 -1
  319. diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
  320. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
  321. diffusers/pipelines/shap_e/renderer.py +3 -3
  322. diffusers/pipelines/stable_audio/modeling_stable_audio.py +1 -1
  323. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +5 -5
  324. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +8 -8
  325. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +13 -13
  326. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +9 -9
  327. diffusers/pipelines/stable_diffusion/__init__.py +0 -7
  328. diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
  329. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +11 -4
  330. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  331. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +1 -1
  332. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
  333. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +10 -10
  334. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +10 -10
  335. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +10 -10
  336. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +9 -9
  337. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +8 -8
  338. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -5
  339. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +5 -5
  340. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +5 -5
  341. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +5 -5
  342. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +5 -5
  343. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -4
  344. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -5
  345. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +7 -7
  346. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -5
  347. diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
  348. diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
  349. diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
  350. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +7 -7
  351. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +7 -7
  352. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +7 -7
  353. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +12 -8
  354. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +15 -9
  355. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +11 -9
  356. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -9
  357. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +18 -12
  358. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +11 -8
  359. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +11 -8
  360. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -12
  361. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +8 -6
  362. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  363. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +15 -11
  364. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  365. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -15
  366. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +18 -17
  367. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +12 -12
  368. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -15
  369. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +3 -3
  370. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +12 -12
  371. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -17
  372. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +12 -7
  373. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +12 -7
  374. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +15 -13
  375. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +24 -21
  376. diffusers/pipelines/unclip/pipeline_unclip.py +4 -3
  377. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +4 -3
  378. diffusers/pipelines/unclip/text_proj.py +2 -2
  379. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +2 -2
  380. diffusers/pipelines/unidiffuser/modeling_uvit.py +1 -1
  381. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +8 -7
  382. diffusers/pipelines/visualcloze/__init__.py +52 -0
  383. diffusers/pipelines/visualcloze/pipeline_visualcloze_combined.py +444 -0
  384. diffusers/pipelines/visualcloze/pipeline_visualcloze_generation.py +952 -0
  385. diffusers/pipelines/visualcloze/visualcloze_utils.py +251 -0
  386. diffusers/pipelines/wan/__init__.py +2 -0
  387. diffusers/pipelines/wan/pipeline_wan.py +17 -12
  388. diffusers/pipelines/wan/pipeline_wan_i2v.py +42 -20
  389. diffusers/pipelines/wan/pipeline_wan_vace.py +976 -0
  390. diffusers/pipelines/wan/pipeline_wan_video2video.py +18 -18
  391. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  392. diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +1 -1
  393. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  394. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
  395. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +16 -15
  396. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +6 -6
  397. diffusers/quantizers/__init__.py +179 -1
  398. diffusers/quantizers/base.py +6 -1
  399. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -0
  400. diffusers/quantizers/bitsandbytes/utils.py +10 -7
  401. diffusers/quantizers/gguf/gguf_quantizer.py +13 -4
  402. diffusers/quantizers/gguf/utils.py +16 -13
  403. diffusers/quantizers/quantization_config.py +18 -16
  404. diffusers/quantizers/quanto/quanto_quantizer.py +4 -0
  405. diffusers/quantizers/torchao/torchao_quantizer.py +5 -1
  406. diffusers/schedulers/__init__.py +3 -1
  407. diffusers/schedulers/deprecated/scheduling_karras_ve.py +4 -3
  408. diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
  409. diffusers/schedulers/scheduling_consistency_models.py +1 -1
  410. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +10 -5
  411. diffusers/schedulers/scheduling_ddim.py +8 -8
  412. diffusers/schedulers/scheduling_ddim_cogvideox.py +5 -5
  413. diffusers/schedulers/scheduling_ddim_flax.py +6 -6
  414. diffusers/schedulers/scheduling_ddim_inverse.py +6 -6
  415. diffusers/schedulers/scheduling_ddim_parallel.py +22 -22
  416. diffusers/schedulers/scheduling_ddpm.py +9 -9
  417. diffusers/schedulers/scheduling_ddpm_flax.py +7 -7
  418. diffusers/schedulers/scheduling_ddpm_parallel.py +18 -18
  419. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +2 -2
  420. diffusers/schedulers/scheduling_deis_multistep.py +8 -8
  421. diffusers/schedulers/scheduling_dpm_cogvideox.py +5 -5
  422. diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -12
  423. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +22 -20
  424. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +11 -11
  425. diffusers/schedulers/scheduling_dpmsolver_sde.py +2 -2
  426. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +13 -13
  427. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +13 -8
  428. diffusers/schedulers/scheduling_edm_euler.py +20 -11
  429. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +3 -3
  430. diffusers/schedulers/scheduling_euler_discrete.py +3 -3
  431. diffusers/schedulers/scheduling_euler_discrete_flax.py +3 -3
  432. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +20 -5
  433. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +1 -1
  434. diffusers/schedulers/scheduling_flow_match_lcm.py +561 -0
  435. diffusers/schedulers/scheduling_heun_discrete.py +2 -2
  436. diffusers/schedulers/scheduling_ipndm.py +2 -2
  437. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +2 -2
  438. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +2 -2
  439. diffusers/schedulers/scheduling_karras_ve_flax.py +5 -5
  440. diffusers/schedulers/scheduling_lcm.py +3 -3
  441. diffusers/schedulers/scheduling_lms_discrete.py +2 -2
  442. diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
  443. diffusers/schedulers/scheduling_pndm.py +4 -4
  444. diffusers/schedulers/scheduling_pndm_flax.py +4 -4
  445. diffusers/schedulers/scheduling_repaint.py +9 -9
  446. diffusers/schedulers/scheduling_sasolver.py +15 -15
  447. diffusers/schedulers/scheduling_scm.py +1 -1
  448. diffusers/schedulers/scheduling_sde_ve.py +1 -1
  449. diffusers/schedulers/scheduling_sde_ve_flax.py +2 -2
  450. diffusers/schedulers/scheduling_tcd.py +3 -3
  451. diffusers/schedulers/scheduling_unclip.py +5 -5
  452. diffusers/schedulers/scheduling_unipc_multistep.py +11 -11
  453. diffusers/schedulers/scheduling_utils.py +1 -1
  454. diffusers/schedulers/scheduling_utils_flax.py +1 -1
  455. diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
  456. diffusers/training_utils.py +13 -5
  457. diffusers/utils/__init__.py +5 -0
  458. diffusers/utils/accelerate_utils.py +1 -1
  459. diffusers/utils/doc_utils.py +1 -1
  460. diffusers/utils/dummy_pt_objects.py +120 -0
  461. diffusers/utils/dummy_torch_and_transformers_objects.py +225 -0
  462. diffusers/utils/dynamic_modules_utils.py +21 -3
  463. diffusers/utils/export_utils.py +1 -1
  464. diffusers/utils/import_utils.py +81 -18
  465. diffusers/utils/logging.py +1 -1
  466. diffusers/utils/outputs.py +2 -1
  467. diffusers/utils/peft_utils.py +91 -8
  468. diffusers/utils/state_dict_utils.py +20 -3
  469. diffusers/utils/testing_utils.py +59 -7
  470. diffusers/utils/torch_utils.py +25 -5
  471. diffusers/video_processor.py +2 -2
  472. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/METADATA +3 -3
  473. diffusers-0.34.0.dist-info/RECORD +639 -0
  474. diffusers-0.33.0.dist-info/RECORD +0 -608
  475. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/LICENSE +0 -0
  476. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/WHEEL +0 -0
  477. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/entry_points.txt +0 -0
  478. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,949 @@
1
+ # Copyright 2025 Black Forest Labs and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, T5EncoderModel, T5TokenizerFast
21
+
22
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
23
+ from ...loaders import FluxIPAdapterMixin, FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
24
+ from ...models import AutoencoderKL, ChromaTransformer2DModel
25
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
26
+ from ...utils import (
27
+ USE_PEFT_BACKEND,
28
+ is_torch_xla_available,
29
+ logging,
30
+ replace_example_docstring,
31
+ scale_lora_layers,
32
+ unscale_lora_layers,
33
+ )
34
+ from ...utils.torch_utils import randn_tensor
35
+ from ..pipeline_utils import DiffusionPipeline
36
+ from .pipeline_output import ChromaPipelineOutput
37
+
38
+
39
+ if is_torch_xla_available():
40
+ import torch_xla.core.xla_model as xm
41
+
42
+ XLA_AVAILABLE = True
43
+ else:
44
+ XLA_AVAILABLE = False
45
+
46
+
47
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
48
+
49
+ EXAMPLE_DOC_STRING = """
50
+ Examples:
51
+ ```py
52
+ >>> import torch
53
+ >>> from diffusers import ChromaPipeline
54
+
55
+ >>> model_id = "lodestones/Chroma"
56
+ >>> ckpt_path = "https://huggingface.co/lodestones/Chroma/blob/main/chroma-unlocked-v37.safetensors"
57
+ >>> transformer = ChromaTransformer2DModel.from_single_file(ckpt_path, torch_dtype=torch.bfloat16)
58
+ >>> pipe = ChromaPipeline.from_pretrained(
59
+ ... model_id,
60
+ ... transformer=transformer,
61
+ ... torch_dtype=torch.bfloat16,
62
+ ... )
63
+ >>> pipe.enable_model_cpu_offload()
64
+ >>> prompt = [
65
+ ... "A high-fashion close-up portrait of a blonde woman in clear sunglasses. The image uses a bold teal and red color split for dramatic lighting. The background is a simple teal-green. The photo is sharp and well-composed, and is designed for viewing with anaglyph 3D glasses for optimal effect. It looks professionally done."
66
+ ... ]
67
+ >>> negative_prompt = [
68
+ ... "low quality, ugly, unfinished, out of focus, deformed, disfigure, blurry, smudged, restricted palette, flat colors"
69
+ ... ]
70
+ >>> image = pipe(prompt, negative_prompt=negative_prompt).images[0]
71
+ >>> image.save("chroma.png")
72
+ ```
73
+ """
74
+
75
+
76
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
77
+ def calculate_shift(
78
+ image_seq_len,
79
+ base_seq_len: int = 256,
80
+ max_seq_len: int = 4096,
81
+ base_shift: float = 0.5,
82
+ max_shift: float = 1.15,
83
+ ):
84
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
85
+ b = base_shift - m * base_seq_len
86
+ mu = image_seq_len * m + b
87
+ return mu
88
+
89
+
90
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
91
+ def retrieve_timesteps(
92
+ scheduler,
93
+ num_inference_steps: Optional[int] = None,
94
+ device: Optional[Union[str, torch.device]] = None,
95
+ timesteps: Optional[List[int]] = None,
96
+ sigmas: Optional[List[float]] = None,
97
+ **kwargs,
98
+ ):
99
+ r"""
100
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
101
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
102
+
103
+ Args:
104
+ scheduler (`SchedulerMixin`):
105
+ The scheduler to get timesteps from.
106
+ num_inference_steps (`int`):
107
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
108
+ must be `None`.
109
+ device (`str` or `torch.device`, *optional*):
110
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
111
+ timesteps (`List[int]`, *optional*):
112
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
113
+ `num_inference_steps` and `sigmas` must be `None`.
114
+ sigmas (`List[float]`, *optional*):
115
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
116
+ `num_inference_steps` and `timesteps` must be `None`.
117
+
118
+ Returns:
119
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
120
+ second element is the number of inference steps.
121
+ """
122
+ if timesteps is not None and sigmas is not None:
123
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
124
+ if timesteps is not None:
125
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
126
+ if not accepts_timesteps:
127
+ raise ValueError(
128
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
129
+ f" timestep schedules. Please check whether you are using the correct scheduler."
130
+ )
131
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
132
+ timesteps = scheduler.timesteps
133
+ num_inference_steps = len(timesteps)
134
+ elif sigmas is not None:
135
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
136
+ if not accept_sigmas:
137
+ raise ValueError(
138
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
139
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
140
+ )
141
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
142
+ timesteps = scheduler.timesteps
143
+ num_inference_steps = len(timesteps)
144
+ else:
145
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
146
+ timesteps = scheduler.timesteps
147
+ return timesteps, num_inference_steps
148
+
149
+
150
+ class ChromaPipeline(
151
+ DiffusionPipeline,
152
+ FluxLoraLoaderMixin,
153
+ FromSingleFileMixin,
154
+ TextualInversionLoaderMixin,
155
+ FluxIPAdapterMixin,
156
+ ):
157
+ r"""
158
+ The Chroma pipeline for text-to-image generation.
159
+
160
+ Reference: https://huggingface.co/lodestones/Chroma/
161
+
162
+ Args:
163
+ transformer ([`ChromaTransformer2DModel`]):
164
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
165
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
166
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
167
+ vae ([`AutoencoderKL`]):
168
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representation
169
+ text_encoder ([`T5EncoderModel`]):
170
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
171
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
172
+ tokenizer (`T5TokenizerFast`):
173
+ Second Tokenizer of class
174
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
175
+ """
176
+
177
+ model_cpu_offload_seq = "text_encoder->image_encoder->transformer->vae"
178
+ _optional_components = ["image_encoder", "feature_extractor"]
179
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
180
+
181
+ def __init__(
182
+ self,
183
+ scheduler: FlowMatchEulerDiscreteScheduler,
184
+ vae: AutoencoderKL,
185
+ text_encoder: T5EncoderModel,
186
+ tokenizer: T5TokenizerFast,
187
+ transformer: ChromaTransformer2DModel,
188
+ image_encoder: CLIPVisionModelWithProjection = None,
189
+ feature_extractor: CLIPImageProcessor = None,
190
+ ):
191
+ super().__init__()
192
+
193
+ self.register_modules(
194
+ vae=vae,
195
+ text_encoder=text_encoder,
196
+ tokenizer=tokenizer,
197
+ transformer=transformer,
198
+ scheduler=scheduler,
199
+ image_encoder=image_encoder,
200
+ feature_extractor=feature_extractor,
201
+ )
202
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
203
+ # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
204
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
205
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
206
+ self.default_sample_size = 128
207
+
208
+ def _get_t5_prompt_embeds(
209
+ self,
210
+ prompt: Union[str, List[str]] = None,
211
+ num_images_per_prompt: int = 1,
212
+ max_sequence_length: int = 512,
213
+ device: Optional[torch.device] = None,
214
+ dtype: Optional[torch.dtype] = None,
215
+ ):
216
+ device = device or self._execution_device
217
+ dtype = dtype or self.text_encoder.dtype
218
+
219
+ prompt = [prompt] if isinstance(prompt, str) else prompt
220
+ batch_size = len(prompt)
221
+
222
+ if isinstance(self, TextualInversionLoaderMixin):
223
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
224
+
225
+ text_inputs = self.tokenizer(
226
+ prompt,
227
+ padding="max_length",
228
+ max_length=max_sequence_length,
229
+ truncation=True,
230
+ return_length=False,
231
+ return_overflowing_tokens=False,
232
+ return_tensors="pt",
233
+ )
234
+ text_input_ids = text_inputs.input_ids
235
+ attention_mask = text_inputs.attention_mask.clone()
236
+
237
+ # Chroma requires the attention mask to include one padding token
238
+ seq_lengths = attention_mask.sum(dim=1)
239
+ mask_indices = torch.arange(attention_mask.size(1)).unsqueeze(0).expand(batch_size, -1)
240
+ attention_mask = (mask_indices <= seq_lengths.unsqueeze(1)).long()
241
+
242
+ prompt_embeds = self.text_encoder(
243
+ text_input_ids.to(device), output_hidden_states=False, attention_mask=attention_mask.to(device)
244
+ )[0]
245
+
246
+ dtype = self.text_encoder.dtype
247
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
248
+ attention_mask = attention_mask.to(dtype=dtype, device=device)
249
+
250
+ _, seq_len, _ = prompt_embeds.shape
251
+
252
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
253
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
254
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
255
+
256
+ attention_mask = attention_mask.repeat(1, num_images_per_prompt)
257
+ attention_mask = attention_mask.view(batch_size * num_images_per_prompt, seq_len)
258
+
259
+ return prompt_embeds, attention_mask
260
+
261
+ def encode_prompt(
262
+ self,
263
+ prompt: Union[str, List[str]],
264
+ negative_prompt: Union[str, List[str]] = None,
265
+ device: Optional[torch.device] = None,
266
+ num_images_per_prompt: int = 1,
267
+ prompt_embeds: Optional[torch.Tensor] = None,
268
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
269
+ prompt_attention_mask: Optional[torch.Tensor] = None,
270
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
271
+ do_classifier_free_guidance: bool = True,
272
+ max_sequence_length: int = 512,
273
+ lora_scale: Optional[float] = None,
274
+ ):
275
+ r"""
276
+
277
+ Args:
278
+ prompt (`str` or `List[str]`, *optional*):
279
+ prompt to be encoded
280
+ negative_prompt (`str` or `List[str]`, *optional*):
281
+ The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
282
+ instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
283
+ device: (`torch.device`):
284
+ torch device
285
+ num_images_per_prompt (`int`):
286
+ number of images that should be generated per prompt
287
+ prompt_embeds (`torch.Tensor`, *optional*):
288
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
289
+ provided, text embeddings will be generated from `prompt` input argument.
290
+ lora_scale (`float`, *optional*):
291
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
292
+ """
293
+ device = device or self._execution_device
294
+
295
+ # set lora scale so that monkey patched LoRA
296
+ # function of text encoder can correctly access it
297
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
298
+ self._lora_scale = lora_scale
299
+
300
+ # dynamically adjust the LoRA scale
301
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
302
+ scale_lora_layers(self.text_encoder, lora_scale)
303
+
304
+ prompt = [prompt] if isinstance(prompt, str) else prompt
305
+
306
+ if prompt is not None:
307
+ batch_size = len(prompt)
308
+ else:
309
+ batch_size = prompt_embeds.shape[0]
310
+
311
+ if prompt_embeds is None:
312
+ prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds(
313
+ prompt=prompt,
314
+ num_images_per_prompt=num_images_per_prompt,
315
+ max_sequence_length=max_sequence_length,
316
+ device=device,
317
+ )
318
+
319
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
320
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
321
+ negative_text_ids = None
322
+
323
+ if do_classifier_free_guidance:
324
+ if negative_prompt_embeds is None:
325
+ negative_prompt = negative_prompt or ""
326
+ negative_prompt = (
327
+ batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
328
+ )
329
+
330
+ if prompt is not None and type(prompt) is not type(negative_prompt):
331
+ raise TypeError(
332
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
333
+ f" {type(prompt)}."
334
+ )
335
+ elif batch_size != len(negative_prompt):
336
+ raise ValueError(
337
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
338
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
339
+ " the batch size of `prompt`."
340
+ )
341
+
342
+ negative_prompt_embeds, negative_prompt_attention_mask = self._get_t5_prompt_embeds(
343
+ prompt=negative_prompt,
344
+ num_images_per_prompt=num_images_per_prompt,
345
+ max_sequence_length=max_sequence_length,
346
+ device=device,
347
+ )
348
+
349
+ negative_text_ids = torch.zeros(negative_prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
350
+
351
+ if self.text_encoder is not None:
352
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
353
+ # Retrieve the original scale by scaling back the LoRA layers
354
+ unscale_lora_layers(self.text_encoder, lora_scale)
355
+
356
+ return (
357
+ prompt_embeds,
358
+ text_ids,
359
+ prompt_attention_mask,
360
+ negative_prompt_embeds,
361
+ negative_text_ids,
362
+ negative_prompt_attention_mask,
363
+ )
364
+
365
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_image
366
+ def encode_image(self, image, device, num_images_per_prompt):
367
+ dtype = next(self.image_encoder.parameters()).dtype
368
+
369
+ if not isinstance(image, torch.Tensor):
370
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
371
+
372
+ image = image.to(device=device, dtype=dtype)
373
+ image_embeds = self.image_encoder(image).image_embeds
374
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
375
+ return image_embeds
376
+
377
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_ip_adapter_image_embeds
378
+ def prepare_ip_adapter_image_embeds(
379
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt
380
+ ):
381
+ image_embeds = []
382
+ if ip_adapter_image_embeds is None:
383
+ if not isinstance(ip_adapter_image, list):
384
+ ip_adapter_image = [ip_adapter_image]
385
+
386
+ if len(ip_adapter_image) != self.transformer.encoder_hid_proj.num_ip_adapters:
387
+ raise ValueError(
388
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
389
+ )
390
+
391
+ for single_ip_adapter_image in ip_adapter_image:
392
+ single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1)
393
+ image_embeds.append(single_image_embeds[None, :])
394
+ else:
395
+ if not isinstance(ip_adapter_image_embeds, list):
396
+ ip_adapter_image_embeds = [ip_adapter_image_embeds]
397
+
398
+ if len(ip_adapter_image_embeds) != self.transformer.encoder_hid_proj.num_ip_adapters:
399
+ raise ValueError(
400
+ f"`ip_adapter_image_embeds` must have same length as the number of IP Adapters. Got {len(ip_adapter_image_embeds)} image embeds and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
401
+ )
402
+
403
+ for single_image_embeds in ip_adapter_image_embeds:
404
+ image_embeds.append(single_image_embeds)
405
+
406
+ ip_adapter_image_embeds = []
407
+ for single_image_embeds in image_embeds:
408
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
409
+ single_image_embeds = single_image_embeds.to(device=device)
410
+ ip_adapter_image_embeds.append(single_image_embeds)
411
+
412
+ return ip_adapter_image_embeds
413
+
414
+ def check_inputs(
415
+ self,
416
+ prompt,
417
+ height,
418
+ width,
419
+ negative_prompt=None,
420
+ prompt_embeds=None,
421
+ prompt_attention_mask=None,
422
+ negative_prompt_embeds=None,
423
+ negative_prompt_attention_mask=None,
424
+ callback_on_step_end_tensor_inputs=None,
425
+ max_sequence_length=None,
426
+ ):
427
+ if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
428
+ logger.warning(
429
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
430
+ )
431
+
432
+ if callback_on_step_end_tensor_inputs is not None and not all(
433
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
434
+ ):
435
+ raise ValueError(
436
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
437
+ )
438
+
439
+ if prompt is not None and prompt_embeds is not None:
440
+ raise ValueError(
441
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
442
+ " only forward one of the two."
443
+ )
444
+ elif prompt is None and prompt_embeds is None:
445
+ raise ValueError(
446
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
447
+ )
448
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
449
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
450
+
451
+ if negative_prompt is not None and negative_prompt_embeds is not None:
452
+ raise ValueError(
453
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
454
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
455
+ )
456
+
457
+ if prompt_embeds is not None and prompt_attention_mask is None:
458
+ raise ValueError("Cannot provide `prompt_embeds` without also providing `prompt_attention_mask")
459
+
460
+ if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
461
+ raise ValueError(
462
+ "Cannot provide `negative_prompt_embeds` without also providing `negative_prompt_attention_mask"
463
+ )
464
+
465
+ if max_sequence_length is not None and max_sequence_length > 512:
466
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
467
+
468
+ @staticmethod
469
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
470
+ latent_image_ids = torch.zeros(height, width, 3)
471
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
472
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
473
+
474
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
475
+
476
+ latent_image_ids = latent_image_ids.reshape(
477
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
478
+ )
479
+
480
+ return latent_image_ids.to(device=device, dtype=dtype)
481
+
482
+ @staticmethod
483
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
484
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
485
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
486
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
487
+
488
+ return latents
489
+
490
+ @staticmethod
491
+ def _unpack_latents(latents, height, width, vae_scale_factor):
492
+ batch_size, num_patches, channels = latents.shape
493
+
494
+ # VAE applies 8x compression on images but we must also account for packing which requires
495
+ # latent height and width to be divisible by 2.
496
+ height = 2 * (int(height) // (vae_scale_factor * 2))
497
+ width = 2 * (int(width) // (vae_scale_factor * 2))
498
+
499
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
500
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
501
+
502
+ latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
503
+
504
+ return latents
505
+
506
+ def enable_vae_slicing(self):
507
+ r"""
508
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
509
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
510
+ """
511
+ self.vae.enable_slicing()
512
+
513
+ def disable_vae_slicing(self):
514
+ r"""
515
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
516
+ computing decoding in one step.
517
+ """
518
+ self.vae.disable_slicing()
519
+
520
+ def enable_vae_tiling(self):
521
+ r"""
522
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
523
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
524
+ processing larger images.
525
+ """
526
+ self.vae.enable_tiling()
527
+
528
+ def disable_vae_tiling(self):
529
+ r"""
530
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
531
+ computing decoding in one step.
532
+ """
533
+ self.vae.disable_tiling()
534
+
535
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_latents
536
+ def prepare_latents(
537
+ self,
538
+ batch_size,
539
+ num_channels_latents,
540
+ height,
541
+ width,
542
+ dtype,
543
+ device,
544
+ generator,
545
+ latents=None,
546
+ ):
547
+ # VAE applies 8x compression on images but we must also account for packing which requires
548
+ # latent height and width to be divisible by 2.
549
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
550
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
551
+
552
+ shape = (batch_size, num_channels_latents, height, width)
553
+
554
+ if latents is not None:
555
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
556
+ return latents.to(device=device, dtype=dtype), latent_image_ids
557
+
558
+ if isinstance(generator, list) and len(generator) != batch_size:
559
+ raise ValueError(
560
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
561
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
562
+ )
563
+
564
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
565
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
566
+
567
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
568
+
569
+ return latents, latent_image_ids
570
+
571
+ def _prepare_attention_mask(
572
+ self,
573
+ batch_size,
574
+ sequence_length,
575
+ dtype,
576
+ attention_mask=None,
577
+ ):
578
+ if attention_mask is None:
579
+ return attention_mask
580
+
581
+ # Extend the prompt attention mask to account for image tokens in the final sequence
582
+ attention_mask = torch.cat(
583
+ [attention_mask, torch.ones(batch_size, sequence_length, device=attention_mask.device)],
584
+ dim=1,
585
+ )
586
+ attention_mask = attention_mask.to(dtype)
587
+
588
+ return attention_mask
589
+
590
+ @property
591
+ def guidance_scale(self):
592
+ return self._guidance_scale
593
+
594
+ @property
595
+ def joint_attention_kwargs(self):
596
+ return self._joint_attention_kwargs
597
+
598
+ @property
599
+ def do_classifier_free_guidance(self):
600
+ return self._guidance_scale > 1
601
+
602
+ @property
603
+ def num_timesteps(self):
604
+ return self._num_timesteps
605
+
606
+ @property
607
+ def current_timestep(self):
608
+ return self._current_timestep
609
+
610
+ @property
611
+ def interrupt(self):
612
+ return self._interrupt
613
+
614
+ @torch.no_grad()
615
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
616
+ def __call__(
617
+ self,
618
+ prompt: Union[str, List[str]] = None,
619
+ negative_prompt: Union[str, List[str]] = None,
620
+ height: Optional[int] = None,
621
+ width: Optional[int] = None,
622
+ num_inference_steps: int = 35,
623
+ sigmas: Optional[List[float]] = None,
624
+ guidance_scale: float = 5.0,
625
+ num_images_per_prompt: Optional[int] = 1,
626
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
627
+ latents: Optional[torch.Tensor] = None,
628
+ prompt_embeds: Optional[torch.Tensor] = None,
629
+ ip_adapter_image: Optional[PipelineImageInput] = None,
630
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
631
+ negative_ip_adapter_image: Optional[PipelineImageInput] = None,
632
+ negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
633
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
634
+ prompt_attention_mask: Optional[torch.Tensor] = None,
635
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
636
+ output_type: Optional[str] = "pil",
637
+ return_dict: bool = True,
638
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
639
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
640
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
641
+ max_sequence_length: int = 512,
642
+ ):
643
+ r"""
644
+ Function invoked when calling the pipeline for generation.
645
+
646
+ Args:
647
+ prompt (`str` or `List[str]`, *optional*):
648
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
649
+ instead.
650
+ negative_prompt (`str` or `List[str]`, *optional*):
651
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
652
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
653
+ not greater than `1`).
654
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
655
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
656
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
657
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
658
+ num_inference_steps (`int`, *optional*, defaults to 50):
659
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
660
+ expense of slower inference.
661
+ sigmas (`List[float]`, *optional*):
662
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
663
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
664
+ will be used.
665
+ guidance_scale (`float`, *optional*, defaults to 3.5):
666
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
667
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
668
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
669
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
670
+ usually at the expense of lower image quality.
671
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
672
+ The number of images to generate per prompt.
673
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
674
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
675
+ to make generation deterministic.
676
+ latents (`torch.Tensor`, *optional*):
677
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
678
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
679
+ tensor will ge generated by sampling using the supplied random `generator`.
680
+ prompt_embeds (`torch.Tensor`, *optional*):
681
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
682
+ provided, text embeddings will be generated from `prompt` input argument.
683
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
684
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
685
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
686
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
687
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
688
+ negative_ip_adapter_image:
689
+ (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
690
+ negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
691
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
692
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
693
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
694
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
695
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
696
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
697
+ argument.
698
+ prompt_attention_mask (torch.Tensor, *optional*):
699
+ Attention mask for the prompt embeddings. Used to mask out padding tokens in the prompt sequence.
700
+ Chroma requires a single padding token remain unmasked. Please refer to
701
+ https://huggingface.co/lodestones/Chroma#tldr-masking-t5-padding-tokens-enhanced-fidelity-and-increased-stability-during-training
702
+ negative_prompt_attention_mask (torch.Tensor, *optional*):
703
+ Attention mask for the negative prompt embeddings. Used to mask out padding tokens in the negative
704
+ prompt sequence. Chroma requires a single padding token remain unmasked. PLease refer to
705
+ https://huggingface.co/lodestones/Chroma#tldr-masking-t5-padding-tokens-enhanced-fidelity-and-increased-stability-during-training
706
+ output_type (`str`, *optional*, defaults to `"pil"`):
707
+ The output format of the generate image. Choose between
708
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
709
+ return_dict (`bool`, *optional*, defaults to `True`):
710
+ Whether or not to return a [`~pipelines.flux.ChromaPipelineOutput`] instead of a plain tuple.
711
+ joint_attention_kwargs (`dict`, *optional*):
712
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
713
+ `self.processor` in
714
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
715
+ callback_on_step_end (`Callable`, *optional*):
716
+ A function that calls at the end of each denoising steps during the inference. The function is called
717
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
718
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
719
+ `callback_on_step_end_tensor_inputs`.
720
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
721
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
722
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
723
+ `._callback_tensor_inputs` attribute of your pipeline class.
724
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
725
+
726
+ Examples:
727
+
728
+ Returns:
729
+ [`~pipelines.chroma.ChromaPipelineOutput`] or `tuple`: [`~pipelines.chroma.ChromaPipelineOutput`] if
730
+ `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the
731
+ generated images.
732
+ """
733
+
734
+ height = height or self.default_sample_size * self.vae_scale_factor
735
+ width = width or self.default_sample_size * self.vae_scale_factor
736
+
737
+ # 1. Check inputs. Raise error if not correct
738
+ self.check_inputs(
739
+ prompt,
740
+ height,
741
+ width,
742
+ negative_prompt=negative_prompt,
743
+ prompt_embeds=prompt_embeds,
744
+ prompt_attention_mask=prompt_attention_mask,
745
+ negative_prompt_embeds=negative_prompt_embeds,
746
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
747
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
748
+ max_sequence_length=max_sequence_length,
749
+ )
750
+
751
+ self._guidance_scale = guidance_scale
752
+ self._joint_attention_kwargs = joint_attention_kwargs
753
+ self._current_timestep = None
754
+ self._interrupt = False
755
+
756
+ # 2. Define call parameters
757
+ if prompt is not None and isinstance(prompt, str):
758
+ batch_size = 1
759
+ elif prompt is not None and isinstance(prompt, list):
760
+ batch_size = len(prompt)
761
+ else:
762
+ batch_size = prompt_embeds.shape[0]
763
+
764
+ device = self._execution_device
765
+
766
+ lora_scale = (
767
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
768
+ )
769
+ (
770
+ prompt_embeds,
771
+ text_ids,
772
+ prompt_attention_mask,
773
+ negative_prompt_embeds,
774
+ negative_text_ids,
775
+ negative_prompt_attention_mask,
776
+ ) = self.encode_prompt(
777
+ prompt=prompt,
778
+ negative_prompt=negative_prompt,
779
+ prompt_embeds=prompt_embeds,
780
+ negative_prompt_embeds=negative_prompt_embeds,
781
+ prompt_attention_mask=prompt_attention_mask,
782
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
783
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
784
+ device=device,
785
+ num_images_per_prompt=num_images_per_prompt,
786
+ max_sequence_length=max_sequence_length,
787
+ lora_scale=lora_scale,
788
+ )
789
+
790
+ # 4. Prepare latent variables
791
+ num_channels_latents = self.transformer.config.in_channels // 4
792
+ latents, latent_image_ids = self.prepare_latents(
793
+ batch_size * num_images_per_prompt,
794
+ num_channels_latents,
795
+ height,
796
+ width,
797
+ prompt_embeds.dtype,
798
+ device,
799
+ generator,
800
+ latents,
801
+ )
802
+
803
+ # 5. Prepare timesteps
804
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
805
+ image_seq_len = latents.shape[1]
806
+ mu = calculate_shift(
807
+ image_seq_len,
808
+ self.scheduler.config.get("base_image_seq_len", 256),
809
+ self.scheduler.config.get("max_image_seq_len", 4096),
810
+ self.scheduler.config.get("base_shift", 0.5),
811
+ self.scheduler.config.get("max_shift", 1.15),
812
+ )
813
+
814
+ attention_mask = self._prepare_attention_mask(
815
+ batch_size=latents.shape[0],
816
+ sequence_length=image_seq_len,
817
+ dtype=latents.dtype,
818
+ attention_mask=prompt_attention_mask,
819
+ )
820
+ negative_attention_mask = self._prepare_attention_mask(
821
+ batch_size=latents.shape[0],
822
+ sequence_length=image_seq_len,
823
+ dtype=latents.dtype,
824
+ attention_mask=negative_prompt_attention_mask,
825
+ )
826
+
827
+ timesteps, num_inference_steps = retrieve_timesteps(
828
+ self.scheduler,
829
+ num_inference_steps,
830
+ device,
831
+ sigmas=sigmas,
832
+ mu=mu,
833
+ )
834
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
835
+ self._num_timesteps = len(timesteps)
836
+
837
+ if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
838
+ negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
839
+ ):
840
+ negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
841
+ negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
842
+
843
+ elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
844
+ negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
845
+ ):
846
+ ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
847
+ ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
848
+
849
+ if self.joint_attention_kwargs is None:
850
+ self._joint_attention_kwargs = {}
851
+
852
+ image_embeds = None
853
+ negative_image_embeds = None
854
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
855
+ image_embeds = self.prepare_ip_adapter_image_embeds(
856
+ ip_adapter_image,
857
+ ip_adapter_image_embeds,
858
+ device,
859
+ batch_size * num_images_per_prompt,
860
+ )
861
+ if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
862
+ negative_image_embeds = self.prepare_ip_adapter_image_embeds(
863
+ negative_ip_adapter_image,
864
+ negative_ip_adapter_image_embeds,
865
+ device,
866
+ batch_size * num_images_per_prompt,
867
+ )
868
+
869
+ # 6. Denoising loop
870
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
871
+ for i, t in enumerate(timesteps):
872
+ if self.interrupt:
873
+ continue
874
+
875
+ self._current_timestep = t
876
+ if image_embeds is not None:
877
+ self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
878
+
879
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
880
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
881
+
882
+ noise_pred = self.transformer(
883
+ hidden_states=latents,
884
+ timestep=timestep / 1000,
885
+ encoder_hidden_states=prompt_embeds,
886
+ txt_ids=text_ids,
887
+ img_ids=latent_image_ids,
888
+ attention_mask=attention_mask,
889
+ joint_attention_kwargs=self.joint_attention_kwargs,
890
+ return_dict=False,
891
+ )[0]
892
+
893
+ if self.do_classifier_free_guidance:
894
+ if negative_image_embeds is not None:
895
+ self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
896
+ neg_noise_pred = self.transformer(
897
+ hidden_states=latents,
898
+ timestep=timestep / 1000,
899
+ encoder_hidden_states=negative_prompt_embeds,
900
+ txt_ids=negative_text_ids,
901
+ img_ids=latent_image_ids,
902
+ attention_mask=negative_attention_mask,
903
+ joint_attention_kwargs=self.joint_attention_kwargs,
904
+ return_dict=False,
905
+ )[0]
906
+ noise_pred = neg_noise_pred + guidance_scale * (noise_pred - neg_noise_pred)
907
+
908
+ # compute the previous noisy sample x_t -> x_t-1
909
+ latents_dtype = latents.dtype
910
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
911
+
912
+ if latents.dtype != latents_dtype:
913
+ if torch.backends.mps.is_available():
914
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
915
+ latents = latents.to(latents_dtype)
916
+
917
+ if callback_on_step_end is not None:
918
+ callback_kwargs = {}
919
+ for k in callback_on_step_end_tensor_inputs:
920
+ callback_kwargs[k] = locals()[k]
921
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
922
+
923
+ latents = callback_outputs.pop("latents", latents)
924
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
925
+
926
+ # call the callback, if provided
927
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
928
+ progress_bar.update()
929
+
930
+ if XLA_AVAILABLE:
931
+ xm.mark_step()
932
+
933
+ self._current_timestep = None
934
+
935
+ if output_type == "latent":
936
+ image = latents
937
+ else:
938
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
939
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
940
+ image = self.vae.decode(latents, return_dict=False)[0]
941
+ image = self.image_processor.postprocess(image, output_type=output_type)
942
+
943
+ # Offload all models
944
+ self.maybe_free_model_hooks()
945
+
946
+ if not return_dict:
947
+ return (image,)
948
+
949
+ return ChromaPipelineOutput(images=image)