diffusers 0.33.0__py3-none-any.whl → 0.34.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (478) hide show
  1. diffusers/__init__.py +48 -1
  2. diffusers/commands/__init__.py +1 -1
  3. diffusers/commands/diffusers_cli.py +1 -1
  4. diffusers/commands/env.py +1 -1
  5. diffusers/commands/fp16_safetensors.py +1 -1
  6. diffusers/dependency_versions_check.py +1 -1
  7. diffusers/dependency_versions_table.py +1 -1
  8. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  9. diffusers/hooks/faster_cache.py +2 -2
  10. diffusers/hooks/group_offloading.py +128 -29
  11. diffusers/hooks/hooks.py +2 -2
  12. diffusers/hooks/layerwise_casting.py +3 -3
  13. diffusers/hooks/pyramid_attention_broadcast.py +1 -1
  14. diffusers/image_processor.py +7 -2
  15. diffusers/loaders/__init__.py +4 -0
  16. diffusers/loaders/ip_adapter.py +5 -14
  17. diffusers/loaders/lora_base.py +212 -111
  18. diffusers/loaders/lora_conversion_utils.py +275 -34
  19. diffusers/loaders/lora_pipeline.py +1554 -819
  20. diffusers/loaders/peft.py +52 -109
  21. diffusers/loaders/single_file.py +2 -2
  22. diffusers/loaders/single_file_model.py +20 -4
  23. diffusers/loaders/single_file_utils.py +225 -5
  24. diffusers/loaders/textual_inversion.py +3 -2
  25. diffusers/loaders/transformer_flux.py +1 -1
  26. diffusers/loaders/transformer_sd3.py +2 -2
  27. diffusers/loaders/unet.py +2 -16
  28. diffusers/loaders/unet_loader_utils.py +1 -1
  29. diffusers/loaders/utils.py +1 -1
  30. diffusers/models/__init__.py +15 -1
  31. diffusers/models/activations.py +5 -5
  32. diffusers/models/adapter.py +2 -3
  33. diffusers/models/attention.py +4 -4
  34. diffusers/models/attention_flax.py +10 -10
  35. diffusers/models/attention_processor.py +14 -10
  36. diffusers/models/auto_model.py +47 -10
  37. diffusers/models/autoencoders/__init__.py +1 -0
  38. diffusers/models/autoencoders/autoencoder_asym_kl.py +4 -4
  39. diffusers/models/autoencoders/autoencoder_dc.py +3 -3
  40. diffusers/models/autoencoders/autoencoder_kl.py +4 -4
  41. diffusers/models/autoencoders/autoencoder_kl_allegro.py +4 -4
  42. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +6 -6
  43. diffusers/models/autoencoders/autoencoder_kl_cosmos.py +1108 -0
  44. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +2 -2
  45. diffusers/models/autoencoders/autoencoder_kl_ltx.py +3 -3
  46. diffusers/models/autoencoders/autoencoder_kl_magvit.py +4 -4
  47. diffusers/models/autoencoders/autoencoder_kl_mochi.py +3 -3
  48. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +4 -4
  49. diffusers/models/autoencoders/autoencoder_kl_wan.py +256 -22
  50. diffusers/models/autoencoders/autoencoder_oobleck.py +1 -1
  51. diffusers/models/autoencoders/autoencoder_tiny.py +3 -3
  52. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  53. diffusers/models/autoencoders/vae.py +13 -2
  54. diffusers/models/autoencoders/vq_model.py +2 -2
  55. diffusers/models/cache_utils.py +1 -1
  56. diffusers/models/controlnet.py +1 -1
  57. diffusers/models/controlnet_flux.py +1 -1
  58. diffusers/models/controlnet_sd3.py +1 -1
  59. diffusers/models/controlnet_sparsectrl.py +1 -1
  60. diffusers/models/controlnets/__init__.py +1 -0
  61. diffusers/models/controlnets/controlnet.py +3 -3
  62. diffusers/models/controlnets/controlnet_flax.py +1 -1
  63. diffusers/models/controlnets/controlnet_flux.py +16 -15
  64. diffusers/models/controlnets/controlnet_hunyuan.py +2 -2
  65. diffusers/models/controlnets/controlnet_sana.py +290 -0
  66. diffusers/models/controlnets/controlnet_sd3.py +1 -1
  67. diffusers/models/controlnets/controlnet_sparsectrl.py +2 -2
  68. diffusers/models/controlnets/controlnet_union.py +1 -1
  69. diffusers/models/controlnets/controlnet_xs.py +7 -7
  70. diffusers/models/controlnets/multicontrolnet.py +4 -5
  71. diffusers/models/controlnets/multicontrolnet_union.py +5 -6
  72. diffusers/models/downsampling.py +2 -2
  73. diffusers/models/embeddings.py +10 -12
  74. diffusers/models/embeddings_flax.py +2 -2
  75. diffusers/models/lora.py +3 -3
  76. diffusers/models/modeling_utils.py +44 -14
  77. diffusers/models/normalization.py +4 -4
  78. diffusers/models/resnet.py +2 -2
  79. diffusers/models/resnet_flax.py +1 -1
  80. diffusers/models/transformers/__init__.py +5 -0
  81. diffusers/models/transformers/auraflow_transformer_2d.py +70 -24
  82. diffusers/models/transformers/cogvideox_transformer_3d.py +1 -1
  83. diffusers/models/transformers/consisid_transformer_3d.py +1 -1
  84. diffusers/models/transformers/dit_transformer_2d.py +2 -2
  85. diffusers/models/transformers/dual_transformer_2d.py +1 -1
  86. diffusers/models/transformers/hunyuan_transformer_2d.py +2 -2
  87. diffusers/models/transformers/latte_transformer_3d.py +4 -5
  88. diffusers/models/transformers/lumina_nextdit2d.py +2 -2
  89. diffusers/models/transformers/pixart_transformer_2d.py +3 -3
  90. diffusers/models/transformers/prior_transformer.py +1 -1
  91. diffusers/models/transformers/sana_transformer.py +8 -3
  92. diffusers/models/transformers/stable_audio_transformer.py +5 -9
  93. diffusers/models/transformers/t5_film_transformer.py +3 -3
  94. diffusers/models/transformers/transformer_2d.py +1 -1
  95. diffusers/models/transformers/transformer_allegro.py +1 -1
  96. diffusers/models/transformers/transformer_chroma.py +742 -0
  97. diffusers/models/transformers/transformer_cogview3plus.py +5 -10
  98. diffusers/models/transformers/transformer_cogview4.py +317 -25
  99. diffusers/models/transformers/transformer_cosmos.py +579 -0
  100. diffusers/models/transformers/transformer_flux.py +9 -11
  101. diffusers/models/transformers/transformer_hidream_image.py +942 -0
  102. diffusers/models/transformers/transformer_hunyuan_video.py +6 -8
  103. diffusers/models/transformers/transformer_hunyuan_video_framepack.py +416 -0
  104. diffusers/models/transformers/transformer_ltx.py +2 -2
  105. diffusers/models/transformers/transformer_lumina2.py +1 -1
  106. diffusers/models/transformers/transformer_mochi.py +1 -1
  107. diffusers/models/transformers/transformer_omnigen.py +2 -2
  108. diffusers/models/transformers/transformer_sd3.py +7 -7
  109. diffusers/models/transformers/transformer_temporal.py +1 -1
  110. diffusers/models/transformers/transformer_wan.py +24 -8
  111. diffusers/models/transformers/transformer_wan_vace.py +393 -0
  112. diffusers/models/unets/unet_1d.py +1 -1
  113. diffusers/models/unets/unet_1d_blocks.py +1 -1
  114. diffusers/models/unets/unet_2d.py +1 -1
  115. diffusers/models/unets/unet_2d_blocks.py +1 -1
  116. diffusers/models/unets/unet_2d_blocks_flax.py +8 -7
  117. diffusers/models/unets/unet_2d_condition.py +2 -2
  118. diffusers/models/unets/unet_2d_condition_flax.py +2 -2
  119. diffusers/models/unets/unet_3d_blocks.py +1 -1
  120. diffusers/models/unets/unet_3d_condition.py +3 -3
  121. diffusers/models/unets/unet_i2vgen_xl.py +3 -3
  122. diffusers/models/unets/unet_kandinsky3.py +1 -1
  123. diffusers/models/unets/unet_motion_model.py +2 -2
  124. diffusers/models/unets/unet_stable_cascade.py +1 -1
  125. diffusers/models/upsampling.py +2 -2
  126. diffusers/models/vae_flax.py +2 -2
  127. diffusers/models/vq_model.py +1 -1
  128. diffusers/pipelines/__init__.py +37 -6
  129. diffusers/pipelines/allegro/pipeline_allegro.py +11 -11
  130. diffusers/pipelines/amused/pipeline_amused.py +7 -6
  131. diffusers/pipelines/amused/pipeline_amused_img2img.py +6 -5
  132. diffusers/pipelines/amused/pipeline_amused_inpaint.py +6 -5
  133. diffusers/pipelines/animatediff/pipeline_animatediff.py +6 -6
  134. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +6 -6
  135. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +16 -15
  136. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +6 -6
  137. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +5 -5
  138. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +5 -5
  139. diffusers/pipelines/audioldm/pipeline_audioldm.py +8 -7
  140. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  141. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +23 -13
  142. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +48 -11
  143. diffusers/pipelines/auto_pipeline.py +6 -7
  144. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  145. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
  146. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +11 -10
  147. diffusers/pipelines/chroma/__init__.py +49 -0
  148. diffusers/pipelines/chroma/pipeline_chroma.py +949 -0
  149. diffusers/pipelines/chroma/pipeline_chroma_img2img.py +1034 -0
  150. diffusers/pipelines/chroma/pipeline_output.py +21 -0
  151. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +8 -8
  152. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +8 -8
  153. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +8 -8
  154. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +8 -8
  155. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +9 -9
  156. diffusers/pipelines/cogview4/pipeline_cogview4.py +7 -7
  157. diffusers/pipelines/cogview4/pipeline_cogview4_control.py +7 -7
  158. diffusers/pipelines/consisid/consisid_utils.py +2 -2
  159. diffusers/pipelines/consisid/pipeline_consisid.py +8 -8
  160. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  161. diffusers/pipelines/controlnet/pipeline_controlnet.py +7 -7
  162. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +8 -8
  163. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +7 -7
  164. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +7 -7
  165. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +14 -14
  166. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +10 -6
  167. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +13 -13
  168. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +14 -14
  169. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +5 -5
  170. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +13 -13
  171. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +1 -1
  172. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +8 -8
  173. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +7 -7
  174. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
  175. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -10
  176. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +9 -7
  177. diffusers/pipelines/cosmos/__init__.py +54 -0
  178. diffusers/pipelines/cosmos/pipeline_cosmos2_text2image.py +673 -0
  179. diffusers/pipelines/cosmos/pipeline_cosmos2_video2world.py +792 -0
  180. diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +664 -0
  181. diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +826 -0
  182. diffusers/pipelines/cosmos/pipeline_output.py +40 -0
  183. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +5 -4
  184. diffusers/pipelines/ddim/pipeline_ddim.py +4 -4
  185. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
  186. diffusers/pipelines/deepfloyd_if/pipeline_if.py +10 -10
  187. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +10 -10
  188. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +10 -10
  189. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +10 -10
  190. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +10 -10
  191. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +10 -10
  192. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +8 -8
  193. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +5 -5
  194. diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
  195. diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +3 -3
  196. diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
  197. diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +2 -2
  198. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +4 -3
  199. diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
  200. diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
  201. diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
  202. diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
  203. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
  204. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +7 -7
  205. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +9 -9
  206. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +10 -10
  207. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -8
  208. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -5
  209. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +18 -18
  210. diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
  211. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +2 -2
  212. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +6 -6
  213. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +5 -5
  214. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +5 -5
  215. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +5 -5
  216. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
  217. diffusers/pipelines/dit/pipeline_dit.py +1 -1
  218. diffusers/pipelines/easyanimate/pipeline_easyanimate.py +4 -4
  219. diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +4 -4
  220. diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +7 -6
  221. diffusers/pipelines/flux/modeling_flux.py +1 -1
  222. diffusers/pipelines/flux/pipeline_flux.py +10 -17
  223. diffusers/pipelines/flux/pipeline_flux_control.py +6 -6
  224. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -6
  225. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +6 -6
  226. diffusers/pipelines/flux/pipeline_flux_controlnet.py +6 -6
  227. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +30 -22
  228. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +2 -1
  229. diffusers/pipelines/flux/pipeline_flux_fill.py +6 -6
  230. diffusers/pipelines/flux/pipeline_flux_img2img.py +39 -6
  231. diffusers/pipelines/flux/pipeline_flux_inpaint.py +11 -6
  232. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +1 -1
  233. diffusers/pipelines/free_init_utils.py +2 -2
  234. diffusers/pipelines/free_noise_utils.py +3 -3
  235. diffusers/pipelines/hidream_image/__init__.py +47 -0
  236. diffusers/pipelines/hidream_image/pipeline_hidream_image.py +1026 -0
  237. diffusers/pipelines/hidream_image/pipeline_output.py +35 -0
  238. diffusers/pipelines/hunyuan_video/__init__.py +2 -0
  239. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +8 -8
  240. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +8 -8
  241. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_framepack.py +1114 -0
  242. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +71 -15
  243. diffusers/pipelines/hunyuan_video/pipeline_output.py +19 -0
  244. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +8 -8
  245. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +10 -8
  246. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +6 -6
  247. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +34 -34
  248. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +19 -26
  249. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +7 -7
  250. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +11 -11
  251. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  252. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +35 -35
  253. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +6 -6
  254. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +17 -39
  255. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +17 -45
  256. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +7 -7
  257. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +10 -10
  258. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +10 -10
  259. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +7 -7
  260. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +17 -38
  261. diffusers/pipelines/kolors/pipeline_kolors.py +10 -10
  262. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +12 -12
  263. diffusers/pipelines/kolors/text_encoder.py +3 -3
  264. diffusers/pipelines/kolors/tokenizer.py +1 -1
  265. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +2 -2
  266. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +2 -2
  267. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  268. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +3 -3
  269. diffusers/pipelines/latte/pipeline_latte.py +12 -12
  270. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +13 -13
  271. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +17 -16
  272. diffusers/pipelines/ltx/__init__.py +4 -0
  273. diffusers/pipelines/ltx/modeling_latent_upsampler.py +188 -0
  274. diffusers/pipelines/ltx/pipeline_ltx.py +51 -6
  275. diffusers/pipelines/ltx/pipeline_ltx_condition.py +107 -29
  276. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +50 -6
  277. diffusers/pipelines/ltx/pipeline_ltx_latent_upsample.py +277 -0
  278. diffusers/pipelines/lumina/pipeline_lumina.py +13 -13
  279. diffusers/pipelines/lumina2/pipeline_lumina2.py +10 -10
  280. diffusers/pipelines/marigold/marigold_image_processing.py +2 -2
  281. diffusers/pipelines/mochi/pipeline_mochi.py +6 -6
  282. diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -13
  283. diffusers/pipelines/omnigen/pipeline_omnigen.py +13 -11
  284. diffusers/pipelines/omnigen/processor_omnigen.py +8 -3
  285. diffusers/pipelines/onnx_utils.py +15 -2
  286. diffusers/pipelines/pag/pag_utils.py +2 -2
  287. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -8
  288. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +7 -7
  289. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +10 -6
  290. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +14 -14
  291. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +8 -8
  292. diffusers/pipelines/pag/pipeline_pag_kolors.py +10 -10
  293. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +11 -11
  294. diffusers/pipelines/pag/pipeline_pag_sana.py +18 -12
  295. diffusers/pipelines/pag/pipeline_pag_sd.py +8 -8
  296. diffusers/pipelines/pag/pipeline_pag_sd_3.py +7 -7
  297. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +7 -7
  298. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +6 -6
  299. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +5 -5
  300. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +8 -8
  301. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +16 -15
  302. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +18 -17
  303. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +12 -12
  304. diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
  305. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +8 -7
  306. diffusers/pipelines/pia/pipeline_pia.py +8 -6
  307. diffusers/pipelines/pipeline_flax_utils.py +3 -4
  308. diffusers/pipelines/pipeline_loading_utils.py +89 -13
  309. diffusers/pipelines/pipeline_utils.py +105 -33
  310. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +11 -11
  311. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +11 -11
  312. diffusers/pipelines/sana/__init__.py +4 -0
  313. diffusers/pipelines/sana/pipeline_sana.py +23 -21
  314. diffusers/pipelines/sana/pipeline_sana_controlnet.py +1106 -0
  315. diffusers/pipelines/sana/pipeline_sana_sprint.py +23 -19
  316. diffusers/pipelines/sana/pipeline_sana_sprint_img2img.py +981 -0
  317. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +7 -6
  318. diffusers/pipelines/shap_e/camera.py +1 -1
  319. diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
  320. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
  321. diffusers/pipelines/shap_e/renderer.py +3 -3
  322. diffusers/pipelines/stable_audio/modeling_stable_audio.py +1 -1
  323. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +5 -5
  324. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +8 -8
  325. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +13 -13
  326. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +9 -9
  327. diffusers/pipelines/stable_diffusion/__init__.py +0 -7
  328. diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
  329. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +11 -4
  330. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  331. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +1 -1
  332. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
  333. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +10 -10
  334. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +10 -10
  335. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +10 -10
  336. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +9 -9
  337. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +8 -8
  338. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -5
  339. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +5 -5
  340. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +5 -5
  341. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +5 -5
  342. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +5 -5
  343. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -4
  344. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -5
  345. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +7 -7
  346. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -5
  347. diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
  348. diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
  349. diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
  350. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +7 -7
  351. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +7 -7
  352. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +7 -7
  353. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +12 -8
  354. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +15 -9
  355. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +11 -9
  356. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -9
  357. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +18 -12
  358. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +11 -8
  359. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +11 -8
  360. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -12
  361. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +8 -6
  362. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  363. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +15 -11
  364. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  365. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -15
  366. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +18 -17
  367. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +12 -12
  368. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -15
  369. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +3 -3
  370. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +12 -12
  371. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -17
  372. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +12 -7
  373. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +12 -7
  374. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +15 -13
  375. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +24 -21
  376. diffusers/pipelines/unclip/pipeline_unclip.py +4 -3
  377. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +4 -3
  378. diffusers/pipelines/unclip/text_proj.py +2 -2
  379. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +2 -2
  380. diffusers/pipelines/unidiffuser/modeling_uvit.py +1 -1
  381. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +8 -7
  382. diffusers/pipelines/visualcloze/__init__.py +52 -0
  383. diffusers/pipelines/visualcloze/pipeline_visualcloze_combined.py +444 -0
  384. diffusers/pipelines/visualcloze/pipeline_visualcloze_generation.py +952 -0
  385. diffusers/pipelines/visualcloze/visualcloze_utils.py +251 -0
  386. diffusers/pipelines/wan/__init__.py +2 -0
  387. diffusers/pipelines/wan/pipeline_wan.py +17 -12
  388. diffusers/pipelines/wan/pipeline_wan_i2v.py +42 -20
  389. diffusers/pipelines/wan/pipeline_wan_vace.py +976 -0
  390. diffusers/pipelines/wan/pipeline_wan_video2video.py +18 -18
  391. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  392. diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +1 -1
  393. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  394. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
  395. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +16 -15
  396. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +6 -6
  397. diffusers/quantizers/__init__.py +179 -1
  398. diffusers/quantizers/base.py +6 -1
  399. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -0
  400. diffusers/quantizers/bitsandbytes/utils.py +10 -7
  401. diffusers/quantizers/gguf/gguf_quantizer.py +13 -4
  402. diffusers/quantizers/gguf/utils.py +16 -13
  403. diffusers/quantizers/quantization_config.py +18 -16
  404. diffusers/quantizers/quanto/quanto_quantizer.py +4 -0
  405. diffusers/quantizers/torchao/torchao_quantizer.py +5 -1
  406. diffusers/schedulers/__init__.py +3 -1
  407. diffusers/schedulers/deprecated/scheduling_karras_ve.py +4 -3
  408. diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
  409. diffusers/schedulers/scheduling_consistency_models.py +1 -1
  410. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +10 -5
  411. diffusers/schedulers/scheduling_ddim.py +8 -8
  412. diffusers/schedulers/scheduling_ddim_cogvideox.py +5 -5
  413. diffusers/schedulers/scheduling_ddim_flax.py +6 -6
  414. diffusers/schedulers/scheduling_ddim_inverse.py +6 -6
  415. diffusers/schedulers/scheduling_ddim_parallel.py +22 -22
  416. diffusers/schedulers/scheduling_ddpm.py +9 -9
  417. diffusers/schedulers/scheduling_ddpm_flax.py +7 -7
  418. diffusers/schedulers/scheduling_ddpm_parallel.py +18 -18
  419. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +2 -2
  420. diffusers/schedulers/scheduling_deis_multistep.py +8 -8
  421. diffusers/schedulers/scheduling_dpm_cogvideox.py +5 -5
  422. diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -12
  423. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +22 -20
  424. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +11 -11
  425. diffusers/schedulers/scheduling_dpmsolver_sde.py +2 -2
  426. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +13 -13
  427. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +13 -8
  428. diffusers/schedulers/scheduling_edm_euler.py +20 -11
  429. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +3 -3
  430. diffusers/schedulers/scheduling_euler_discrete.py +3 -3
  431. diffusers/schedulers/scheduling_euler_discrete_flax.py +3 -3
  432. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +20 -5
  433. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +1 -1
  434. diffusers/schedulers/scheduling_flow_match_lcm.py +561 -0
  435. diffusers/schedulers/scheduling_heun_discrete.py +2 -2
  436. diffusers/schedulers/scheduling_ipndm.py +2 -2
  437. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +2 -2
  438. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +2 -2
  439. diffusers/schedulers/scheduling_karras_ve_flax.py +5 -5
  440. diffusers/schedulers/scheduling_lcm.py +3 -3
  441. diffusers/schedulers/scheduling_lms_discrete.py +2 -2
  442. diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
  443. diffusers/schedulers/scheduling_pndm.py +4 -4
  444. diffusers/schedulers/scheduling_pndm_flax.py +4 -4
  445. diffusers/schedulers/scheduling_repaint.py +9 -9
  446. diffusers/schedulers/scheduling_sasolver.py +15 -15
  447. diffusers/schedulers/scheduling_scm.py +1 -1
  448. diffusers/schedulers/scheduling_sde_ve.py +1 -1
  449. diffusers/schedulers/scheduling_sde_ve_flax.py +2 -2
  450. diffusers/schedulers/scheduling_tcd.py +3 -3
  451. diffusers/schedulers/scheduling_unclip.py +5 -5
  452. diffusers/schedulers/scheduling_unipc_multistep.py +11 -11
  453. diffusers/schedulers/scheduling_utils.py +1 -1
  454. diffusers/schedulers/scheduling_utils_flax.py +1 -1
  455. diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
  456. diffusers/training_utils.py +13 -5
  457. diffusers/utils/__init__.py +5 -0
  458. diffusers/utils/accelerate_utils.py +1 -1
  459. diffusers/utils/doc_utils.py +1 -1
  460. diffusers/utils/dummy_pt_objects.py +120 -0
  461. diffusers/utils/dummy_torch_and_transformers_objects.py +225 -0
  462. diffusers/utils/dynamic_modules_utils.py +21 -3
  463. diffusers/utils/export_utils.py +1 -1
  464. diffusers/utils/import_utils.py +81 -18
  465. diffusers/utils/logging.py +1 -1
  466. diffusers/utils/outputs.py +2 -1
  467. diffusers/utils/peft_utils.py +91 -8
  468. diffusers/utils/state_dict_utils.py +20 -3
  469. diffusers/utils/testing_utils.py +59 -7
  470. diffusers/utils/torch_utils.py +25 -5
  471. diffusers/video_processor.py +2 -2
  472. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/METADATA +3 -3
  473. diffusers-0.34.0.dist-info/RECORD +639 -0
  474. diffusers-0.33.0.dist-info/RECORD +0 -608
  475. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/LICENSE +0 -0
  476. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/WHEEL +0 -0
  477. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/entry_points.txt +0 -0
  478. {diffusers-0.33.0.dist-info → diffusers-0.34.0.dist-info}/top_level.txt +0 -0
@@ -1,5 +1,5 @@
1
1
  # Copyright 2022 The Music Spectrogram Diffusion Authors.
2
- # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ # Copyright 2025 The HuggingFace Team. All rights reserved.
3
3
  #
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
5
5
  # you may not use this file except in compliance with the License.
@@ -1,5 +1,5 @@
1
1
  # Copyright 2022 The Music Spectrogram Diffusion Authors.
2
- # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ # Copyright 2025 The HuggingFace Team. All rights reserved.
3
3
  #
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
5
5
  # you may not use this file except in compliance with the License.
@@ -1,5 +1,5 @@
1
1
  # Copyright 2022 The Music Spectrogram Diffusion Authors.
2
- # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ # Copyright 2025 The HuggingFace Team. All rights reserved.
3
3
  #
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
5
5
  # you may not use this file except in compliance with the License.
@@ -1,4 +1,4 @@
1
- # Copyright 2024 The HuggingFace Team. All rights reserved.
1
+ # Copyright 2025 The HuggingFace Team. All rights reserved.
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -115,7 +115,7 @@ def compute_noise(scheduler, prev_latents, latents, timestep, noise_pred, eta):
115
115
  beta_prod_t = 1 - alpha_prod_t
116
116
 
117
117
  # 3. compute predicted original sample from predicted noise also called
118
- # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
118
+ # "predicted x_0" of formula (12) from https://huggingface.co/papers/2010.02502
119
119
  pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
120
120
 
121
121
  # 4. Clip "predicted x_0"
@@ -127,7 +127,7 @@ def compute_noise(scheduler, prev_latents, latents, timestep, noise_pred, eta):
127
127
  variance = scheduler._get_variance(timestep, prev_timestep)
128
128
  std_dev_t = eta * variance ** (0.5)
129
129
 
130
- # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
130
+ # 6. compute "direction pointing to x_t" of formula (12) from https://huggingface.co/papers/2010.02502
131
131
  pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * noise_pred
132
132
 
133
133
  noise = (prev_latents - (alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction)) / (
@@ -522,7 +522,7 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Sta
522
522
  def prepare_extra_step_kwargs(self, generator, eta):
523
523
  # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
524
524
  # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
525
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
525
+ # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
526
526
  # and should be between [0, 1]
527
527
 
528
528
  accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
@@ -678,8 +678,8 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Sta
678
678
  num_images_per_prompt (`int`, *optional*, defaults to 1):
679
679
  The number of images to generate per prompt.
680
680
  eta (`float`, *optional*, defaults to 0.0):
681
- Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
682
- to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
681
+ Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only
682
+ applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
683
683
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
684
684
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
685
685
  generation deterministic.
@@ -790,7 +790,7 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Sta
790
790
  batch_size = 1 if isinstance(prompt, str) else len(prompt)
791
791
  device = self._execution_device
792
792
  # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
793
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
793
+ # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
794
794
  # corresponds to doing no classifier free guidance.
795
795
  do_classifier_free_guidance = guidance_scale > 1.0
796
796
 
@@ -337,19 +337,19 @@ class OnnxStableDiffusionInpaintPipelineLegacy(DiffusionPipeline):
337
337
  The number of denoising steps. More denoising steps usually lead to a higher quality image at the
338
338
  expense of slower inference. This parameter will be modulated by `strength`.
339
339
  guidance_scale (`float`, *optional*, defaults to 7.5):
340
- Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
341
- `guidance_scale` is defined as `w` of equation 2. of [Imagen
342
- Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
343
- 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
344
- usually at the expense of lower image quality.
340
+ Guidance scale as defined in [Classifier-Free Diffusion
341
+ Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
342
+ of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
343
+ `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
344
+ the text `prompt`, usually at the expense of lower image quality.
345
345
  negative_prompt (`str` or `List[str]`, *optional*):
346
346
  The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
347
347
  if `guidance_scale` is less than `1`).
348
348
  num_images_per_prompt (`int`, *optional*, defaults to 1):
349
349
  The number of images to generate per prompt.
350
350
  eta (`float`, *optional*, defaults to 0.0):
351
- Corresponds to parameter eta (?) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
352
- [`schedulers.DDIMScheduler`], will be ignored for others.
351
+ Corresponds to parameter eta (?) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only
352
+ applies to [`schedulers.DDIMScheduler`], will be ignored for others.
353
353
  generator (`np.random.RandomState`, *optional*):
354
354
  A np.random.RandomState to make generation deterministic.
355
355
  prompt_embeds (`np.ndarray`, *optional*):
@@ -404,7 +404,7 @@ class OnnxStableDiffusionInpaintPipelineLegacy(DiffusionPipeline):
404
404
  image = preprocess(image)
405
405
 
406
406
  # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
407
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
407
+ # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
408
408
  # corresponds to doing no classifier free guidance.
409
409
  do_classifier_free_guidance = guidance_scale > 1.0
410
410
 
@@ -455,7 +455,7 @@ class OnnxStableDiffusionInpaintPipelineLegacy(DiffusionPipeline):
455
455
 
456
456
  # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
457
457
  # eta (?) is only used with the DDIMScheduler, it will be ignored for other schedulers.
458
- # eta corresponds to ? in DDIM paper: https://arxiv.org/abs/2010.02502
458
+ # eta corresponds to ? in DDIM paper: https://huggingface.co/papers/2010.02502
459
459
  # and should be between [0, 1]
460
460
  accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
461
461
  extra_step_kwargs = {}
@@ -1,4 +1,4 @@
1
- # Copyright 2024 The HuggingFace Team. All rights reserved.
1
+ # Copyright 2025 The HuggingFace Team. All rights reserved.
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -468,7 +468,7 @@ class StableDiffusionInpaintPipelineLegacy(
468
468
  def prepare_extra_step_kwargs(self, generator, eta):
469
469
  # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
470
470
  # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
471
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
471
+ # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
472
472
  # and should be between [0, 1]
473
473
 
474
474
  accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
@@ -605,11 +605,11 @@ class StableDiffusionInpaintPipelineLegacy(
605
605
  The reference number of denoising steps. More denoising steps usually lead to a higher quality image at
606
606
  the expense of slower inference. This parameter will be modulated by `strength`, as explained above.
607
607
  guidance_scale (`float`, *optional*, defaults to 7.5):
608
- Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
609
- `guidance_scale` is defined as `w` of equation 2. of [Imagen
610
- Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
611
- 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
612
- usually at the expense of lower image quality.
608
+ Guidance scale as defined in [Classifier-Free Diffusion
609
+ Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
610
+ of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
611
+ `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
612
+ the text `prompt`, usually at the expense of lower image quality.
613
613
  negative_prompt (`str` or `List[str]`, *optional*):
614
614
  The prompt or prompts not to guide the image generation. If not defined, one has to pass
615
615
  `negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale`
@@ -620,8 +620,8 @@ class StableDiffusionInpaintPipelineLegacy(
620
620
  Use predicted noise instead of random noise when constructing noisy versions of the original image in
621
621
  the reverse diffusion process
622
622
  eta (`float`, *optional*, defaults to 0.0):
623
- Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
624
- [`schedulers.DDIMScheduler`], will be ignored for others.
623
+ Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only
624
+ applies to [`schedulers.DDIMScheduler`], will be ignored for others.
625
625
  generator (`torch.Generator`, *optional*):
626
626
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
627
627
  to make generation deterministic.
@@ -672,7 +672,7 @@ class StableDiffusionInpaintPipelineLegacy(
672
672
 
673
673
  device = self._execution_device
674
674
  # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
675
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
675
+ # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
676
676
  # corresponds to doing no classifier free guidance.
677
677
  do_classifier_free_guidance = guidance_scale > 1.0
678
678
 
@@ -1,4 +1,4 @@
1
- # Copyright 2024 TIME Authors and The HuggingFace Team. All rights reserved."
1
+ # Copyright 2025 TIME Authors and The HuggingFace Team. All rights reserved."
2
2
  # Licensed under the Apache License, Version 2.0 (the "License");
3
3
  # you may not use this file except in compliance with the License.
4
4
  # You may obtain a copy of the License at
@@ -402,7 +402,7 @@ class StableDiffusionModelEditingPipeline(
402
402
  def prepare_extra_step_kwargs(self, generator, eta):
403
403
  # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
404
404
  # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
405
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
405
+ # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
406
406
  # and should be between [0, 1]
407
407
 
408
408
  accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
@@ -500,7 +500,8 @@ class StableDiffusionModelEditingPipeline(
500
500
  restart_params: bool = True,
501
501
  ):
502
502
  r"""
503
- Apply model editing via closed-form solution (see Eq. 5 in the TIME [paper](https://arxiv.org/abs/2303.08084)).
503
+ Apply model editing via closed-form solution (see Eq. 5 in the TIME
504
+ [paper](https://huggingface.co/papers/2303.08084)).
504
505
 
505
506
  Args:
506
507
  source_prompt (`str`):
@@ -509,7 +510,8 @@ class StableDiffusionModelEditingPipeline(
509
510
  The destination prompt. Must contain all words from `source_prompt` with additional ones to specify the
510
511
  target edit.
511
512
  lamb (`float`, *optional*, defaults to 0.1):
512
- The lambda parameter specifying the regularization intesity. Smaller values increase the editing power.
513
+ The lambda parameter specifying the regularization intensity. Smaller values increase the editing
514
+ power.
513
515
  restart_params (`bool`, *optional*, defaults to True):
514
516
  Restart the model parameters to their pre-trained version before editing. This is done to avoid edit
515
517
  compounding. When it is `False`, edits accumulate.
@@ -574,7 +576,7 @@ class StableDiffusionModelEditingPipeline(
574
576
  idxs_replace.append(76)
575
577
  idxs_replaces.append(idxs_replace)
576
578
 
577
- # prepare batch: for each pair of setences, old context and new values
579
+ # prepare batch: for each pair of sentences, old context and new values
578
580
  contexts, valuess = [], []
579
581
  for old_emb, new_emb, idxs_replace in zip(old_embs, new_embs, idxs_replaces):
580
582
  context = old_emb.detach()
@@ -653,8 +655,8 @@ class StableDiffusionModelEditingPipeline(
653
655
  num_images_per_prompt (`int`, *optional*, defaults to 1):
654
656
  The number of images to generate per prompt.
655
657
  eta (`float`, *optional*, defaults to 0.0):
656
- Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
657
- to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
658
+ Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only
659
+ applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
658
660
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
659
661
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
660
662
  generation deterministic.
@@ -731,7 +733,7 @@ class StableDiffusionModelEditingPipeline(
731
733
 
732
734
  device = self._execution_device
733
735
  # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
734
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
736
+ # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
735
737
  # corresponds to doing no classifier free guidance.
736
738
  do_classifier_free_guidance = guidance_scale > 1.0
737
739
 
@@ -1,4 +1,4 @@
1
- # Copyright 2024 ParaDiGMS authors and The HuggingFace Team. All rights reserved.
1
+ # Copyright 2025 ParaDiGMS authors and The HuggingFace Team. All rights reserved.
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -385,7 +385,7 @@ class StableDiffusionParadigmsPipeline(
385
385
  def prepare_extra_step_kwargs(self, generator, eta):
386
386
  # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
387
387
  # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
388
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
388
+ # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
389
389
  # and should be between [0, 1]
390
390
 
391
391
  accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
@@ -537,8 +537,8 @@ class StableDiffusionParadigmsPipeline(
537
537
  num_images_per_prompt (`int`, *optional*, defaults to 1):
538
538
  The number of images to generate per prompt.
539
539
  eta (`float`, *optional*, defaults to 0.0):
540
- Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
541
- to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
540
+ Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only
541
+ applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
542
542
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
543
543
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
544
544
  generation deterministic.
@@ -599,7 +599,7 @@ class StableDiffusionParadigmsPipeline(
599
599
 
600
600
  device = self._execution_device
601
601
  # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
602
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
602
+ # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
603
603
  # corresponds to doing no classifier free guidance.
604
604
  do_classifier_free_guidance = guidance_scale > 1.0
605
605
 
@@ -1,4 +1,4 @@
1
- # Copyright 2024 Pix2Pix Zero Authors and The HuggingFace Team. All rights reserved.
1
+ # Copyright 2025 Pix2Pix Zero Authors and The HuggingFace Team. All rights reserved.
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -616,7 +616,7 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline, StableDiffusionMixin
616
616
  def prepare_extra_step_kwargs(self, generator, eta):
617
617
  # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
618
618
  # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
619
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
619
+ # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
620
620
  # and should be between [0, 1]
621
621
 
622
622
  accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
@@ -848,10 +848,10 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline, StableDiffusionMixin
848
848
  instead.
849
849
  source_embeds (`torch.Tensor`):
850
850
  Source concept embeddings. Generation of the embeddings as per the [original
851
- paper](https://arxiv.org/abs/2302.03027). Used in discovering the edit direction.
851
+ paper](https://huggingface.co/papers/2302.03027). Used in discovering the edit direction.
852
852
  target_embeds (`torch.Tensor`):
853
853
  Target concept embeddings. Generation of the embeddings as per the [original
854
- paper](https://arxiv.org/abs/2302.03027). Used in discovering the edit direction.
854
+ paper](https://huggingface.co/papers/2302.03027). Used in discovering the edit direction.
855
855
  height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
856
856
  The height in pixels of the generated image.
857
857
  width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
@@ -860,11 +860,11 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline, StableDiffusionMixin
860
860
  The number of denoising steps. More denoising steps usually lead to a higher quality image at the
861
861
  expense of slower inference.
862
862
  guidance_scale (`float`, *optional*, defaults to 7.5):
863
- Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
864
- `guidance_scale` is defined as `w` of equation 2. of [Imagen
865
- Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
866
- 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
867
- usually at the expense of lower image quality.
863
+ Guidance scale as defined in [Classifier-Free Diffusion
864
+ Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
865
+ of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
866
+ `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
867
+ the text `prompt`, usually at the expense of lower image quality.
868
868
  negative_prompt (`str` or `List[str]`, *optional*):
869
869
  The prompt or prompts not to guide the image generation. If not defined, one has to pass
870
870
  `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
@@ -872,8 +872,8 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline, StableDiffusionMixin
872
872
  num_images_per_prompt (`int`, *optional*, defaults to 1):
873
873
  The number of images to generate per prompt.
874
874
  eta (`float`, *optional*, defaults to 0.0):
875
- Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
876
- [`schedulers.DDIMScheduler`], will be ignored for others.
875
+ Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only
876
+ applies to [`schedulers.DDIMScheduler`], will be ignored for others.
877
877
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
878
878
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
879
879
  to make generation deterministic.
@@ -939,7 +939,7 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline, StableDiffusionMixin
939
939
 
940
940
  device = self._execution_device
941
941
  # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
942
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
942
+ # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
943
943
  # corresponds to doing no classifier free guidance.
944
944
  do_classifier_free_guidance = guidance_scale > 1.0
945
945
 
@@ -1140,11 +1140,11 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline, StableDiffusionMixin
1140
1140
  The number of denoising steps. More denoising steps usually lead to a higher quality image at the
1141
1141
  expense of slower inference.
1142
1142
  guidance_scale (`float`, *optional*, defaults to 1):
1143
- Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
1144
- `guidance_scale` is defined as `w` of equation 2. of [Imagen
1145
- Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1146
- 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
1147
- usually at the expense of lower image quality.
1143
+ Guidance scale as defined in [Classifier-Free Diffusion
1144
+ Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
1145
+ of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
1146
+ `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
1147
+ the text `prompt`, usually at the expense of lower image quality.
1148
1148
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
1149
1149
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
1150
1150
  to make generation deterministic.
@@ -1199,7 +1199,7 @@ class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline, StableDiffusionMixin
1199
1199
 
1200
1200
  device = self._execution_device
1201
1201
  # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
1202
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
1202
+ # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
1203
1203
  # corresponds to doing no classifier free guidance.
1204
1204
  do_classifier_free_guidance = guidance_scale > 1.0
1205
1205
 
@@ -1,4 +1,4 @@
1
- # Copyright 2024 The HuggingFace Team. All rights reserved.
1
+ # Copyright 2025 The HuggingFace Team. All rights reserved.
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -964,7 +964,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
964
964
  fn_recursive_set_attention_slice(module, reversed_slice_size)
965
965
 
966
966
  def enable_freeu(self, s1, s2, b1, b2):
967
- r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
967
+ r"""Enables the FreeU mechanism from https://huggingface.co/papers/2309.11497.
968
968
 
969
969
  The suffixes after the scaling factors represent the stage blocks where they are being applied.
970
970
 
@@ -1097,7 +1097,7 @@ class UNetFlatConditionModel(ModelMixin, ConfigMixin):
1097
1097
  cross_attention_kwargs (`dict`, *optional*):
1098
1098
  A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
1099
1099
  added_cond_kwargs: (`dict`, *optional*):
1100
- A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
1100
+ A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
1101
1101
  are passed along to the UNet blocks.
1102
1102
  down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
1103
1103
  additional residuals to be added to UNet long skip connections from down blocks to up blocks for
@@ -118,8 +118,8 @@ class VersatileDiffusionPipeline(DiffusionPipeline):
118
118
  num_images_per_prompt (`int`, *optional*, defaults to 1):
119
119
  The number of images to generate per prompt.
120
120
  eta (`float`, *optional*, defaults to 0.0):
121
- Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
122
- to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
121
+ Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only
122
+ applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
123
123
  generator (`torch.Generator`, *optional*):
124
124
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
125
125
  generation deterministic.
@@ -230,8 +230,8 @@ class VersatileDiffusionPipeline(DiffusionPipeline):
230
230
  num_images_per_prompt (`int`, *optional*, defaults to 1):
231
231
  The number of images to generate per prompt.
232
232
  eta (`float`, *optional*, defaults to 0.0):
233
- Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
234
- to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
233
+ Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only
234
+ applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
235
235
  generator (`torch.Generator`, *optional*):
236
236
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
237
237
  generation deterministic.
@@ -339,8 +339,8 @@ class VersatileDiffusionPipeline(DiffusionPipeline):
339
339
  num_images_per_prompt (`int`, *optional*, defaults to 1):
340
340
  The number of images to generate per prompt.
341
341
  eta (`float`, *optional*, defaults to 0.0):
342
- Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
343
- to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
342
+ Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only
343
+ applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
344
344
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
345
345
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
346
346
  generation deterministic.
@@ -1,4 +1,4 @@
1
- # Copyright 2024 The HuggingFace Team. All rights reserved.
1
+ # Copyright 2025 The HuggingFace Team. All rights reserved.
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -315,7 +315,7 @@ class VersatileDiffusionDualGuidedPipeline(DiffusionPipeline):
315
315
  def prepare_extra_step_kwargs(self, generator, eta):
316
316
  # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
317
317
  # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
318
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
318
+ # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
319
319
  # and should be between [0, 1]
320
320
 
321
321
  accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
@@ -424,8 +424,8 @@ class VersatileDiffusionDualGuidedPipeline(DiffusionPipeline):
424
424
  num_images_per_prompt (`int`, *optional*, defaults to 1):
425
425
  The number of images to generate per prompt.
426
426
  eta (`float`, *optional*, defaults to 0.0):
427
- Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
428
- to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
427
+ Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only
428
+ applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
429
429
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
430
430
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
431
431
  generation deterministic.
@@ -493,7 +493,7 @@ class VersatileDiffusionDualGuidedPipeline(DiffusionPipeline):
493
493
  batch_size = len(prompt)
494
494
  device = self._execution_device
495
495
  # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
496
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
496
+ # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
497
497
  # corresponds to doing no classifier free guidance.
498
498
  do_classifier_free_guidance = guidance_scale > 1.0
499
499
 
@@ -1,4 +1,4 @@
1
- # Copyright 2024 The HuggingFace Team. All rights reserved.
1
+ # Copyright 2025 The HuggingFace Team. All rights reserved.
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -175,7 +175,7 @@ class VersatileDiffusionImageVariationPipeline(DiffusionPipeline):
175
175
  def prepare_extra_step_kwargs(self, generator, eta):
176
176
  # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
177
177
  # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
178
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
178
+ # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
179
179
  # and should be between [0, 1]
180
180
 
181
181
  accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
@@ -276,8 +276,8 @@ class VersatileDiffusionImageVariationPipeline(DiffusionPipeline):
276
276
  num_images_per_prompt (`int`, *optional*, defaults to 1):
277
277
  The number of images to generate per prompt.
278
278
  eta (`float`, *optional*, defaults to 0.0):
279
- Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
280
- to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
279
+ Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only
280
+ applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
281
281
  generator (`torch.Generator`, *optional*):
282
282
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
283
283
  generation deterministic.
@@ -338,7 +338,7 @@ class VersatileDiffusionImageVariationPipeline(DiffusionPipeline):
338
338
  batch_size = 1 if isinstance(image, PIL.Image.Image) else len(image)
339
339
  device = self._execution_device
340
340
  # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
341
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
341
+ # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
342
342
  # corresponds to doing no classifier free guidance.
343
343
  do_classifier_free_guidance = guidance_scale > 1.0
344
344
 
@@ -1,4 +1,4 @@
1
- # Copyright 2024 The HuggingFace Team. All rights reserved.
1
+ # Copyright 2025 The HuggingFace Team. All rights reserved.
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -232,7 +232,7 @@ class VersatileDiffusionTextToImagePipeline(DiffusionPipeline):
232
232
  def prepare_extra_step_kwargs(self, generator, eta):
233
233
  # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
234
234
  # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
235
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
235
+ # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
236
236
  # and should be between [0, 1]
237
237
 
238
238
  accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
@@ -362,8 +362,8 @@ class VersatileDiffusionTextToImagePipeline(DiffusionPipeline):
362
362
  num_images_per_prompt (`int`, *optional*, defaults to 1):
363
363
  The number of images to generate per prompt.
364
364
  eta (`float`, *optional*, defaults to 0.0):
365
- Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
366
- to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
365
+ Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only
366
+ applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
367
367
  generator (`torch.Generator`, *optional*):
368
368
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
369
369
  generation deterministic.
@@ -416,7 +416,7 @@ class VersatileDiffusionTextToImagePipeline(DiffusionPipeline):
416
416
  batch_size = 1 if isinstance(prompt, str) else len(prompt)
417
417
  device = self._execution_device
418
418
  # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
419
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
419
+ # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
420
420
  # corresponds to doing no classifier free guidance.
421
421
  do_classifier_free_guidance = guidance_scale > 1.0
422
422
 
@@ -1,4 +1,4 @@
1
- # Copyright 2024 Microsoft and The HuggingFace Team. All rights reserved.
1
+ # Copyright 2025 Microsoft and The HuggingFace Team. All rights reserved.
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -4,7 +4,7 @@
4
4
  # Copyright (c) 2021 OpenAI
5
5
  # MIT License
6
6
  #
7
- # Copyright 2024 The HuggingFace Team. All rights reserved.
7
+ # Copyright 2025 The HuggingFace Team. All rights reserved.
8
8
  #
9
9
  # Licensed under the Apache License, Version 2.0 (the "License");
10
10
  # you may not use this file except in compliance with the License.
@@ -101,7 +101,7 @@ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
101
101
  r"""
102
102
  Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
103
103
  Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
104
- Flawed](https://arxiv.org/pdf/2305.08891.pdf).
104
+ Flawed](https://huggingface.co/papers/2305.08891).
105
105
 
106
106
  Args:
107
107
  noise_cfg (`torch.Tensor`):
@@ -404,7 +404,7 @@ class EasyAnimatePipeline(DiffusionPipeline):
404
404
  def prepare_extra_step_kwargs(self, generator, eta):
405
405
  # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
406
406
  # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
407
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
407
+ # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
408
408
  # and should be between [0, 1]
409
409
 
410
410
  accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
@@ -507,7 +507,7 @@ class EasyAnimatePipeline(DiffusionPipeline):
507
507
  return self._guidance_rescale
508
508
 
509
509
  # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
510
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
510
+ # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
511
511
  # corresponds to doing no classifier free guidance.
512
512
  @property
513
513
  def do_classifier_free_guidance(self):
@@ -732,7 +732,7 @@ class EasyAnimatePipeline(DiffusionPipeline):
732
732
  noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
733
733
 
734
734
  if self.do_classifier_free_guidance and guidance_rescale > 0.0:
735
- # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
735
+ # Based on 3.4. in https://huggingface.co/papers/2305.08891
736
736
  noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
737
737
 
738
738
  # compute the previous noisy sample x_t -> x_t-1