diffusers 0.24.0__py3-none-any.whl → 0.25.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (174) hide show
  1. diffusers/__init__.py +11 -1
  2. diffusers/commands/fp16_safetensors.py +10 -11
  3. diffusers/configuration_utils.py +12 -8
  4. diffusers/dependency_versions_table.py +2 -1
  5. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  6. diffusers/image_processor.py +286 -46
  7. diffusers/loaders/ip_adapter.py +11 -9
  8. diffusers/loaders/lora.py +198 -60
  9. diffusers/loaders/single_file.py +24 -18
  10. diffusers/loaders/textual_inversion.py +10 -14
  11. diffusers/loaders/unet.py +130 -37
  12. diffusers/models/__init__.py +18 -12
  13. diffusers/models/activations.py +9 -6
  14. diffusers/models/attention.py +137 -16
  15. diffusers/models/attention_processor.py +133 -46
  16. diffusers/models/autoencoders/__init__.py +5 -0
  17. diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +4 -4
  18. diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +45 -6
  19. diffusers/models/{autoencoder_kl_temporal_decoder.py → autoencoders/autoencoder_kl_temporal_decoder.py} +8 -8
  20. diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +4 -4
  21. diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +14 -14
  22. diffusers/models/{vae.py → autoencoders/vae.py} +9 -5
  23. diffusers/models/downsampling.py +338 -0
  24. diffusers/models/embeddings.py +112 -29
  25. diffusers/models/modeling_flax_utils.py +12 -7
  26. diffusers/models/modeling_utils.py +10 -10
  27. diffusers/models/normalization.py +108 -2
  28. diffusers/models/resnet.py +15 -699
  29. diffusers/models/transformer_2d.py +2 -2
  30. diffusers/models/unet_2d_condition.py +37 -0
  31. diffusers/models/{unet_kandi3.py → unet_kandinsky3.py} +105 -159
  32. diffusers/models/upsampling.py +454 -0
  33. diffusers/models/uvit_2d.py +471 -0
  34. diffusers/models/vq_model.py +9 -2
  35. diffusers/pipelines/__init__.py +81 -73
  36. diffusers/pipelines/amused/__init__.py +62 -0
  37. diffusers/pipelines/amused/pipeline_amused.py +328 -0
  38. diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
  39. diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
  40. diffusers/pipelines/animatediff/pipeline_animatediff.py +38 -10
  41. diffusers/pipelines/auto_pipeline.py +17 -13
  42. diffusers/pipelines/controlnet/pipeline_controlnet.py +27 -10
  43. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +47 -5
  44. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +25 -8
  45. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +4 -6
  46. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +26 -10
  47. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +4 -3
  48. diffusers/pipelines/deprecated/__init__.py +153 -0
  49. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
  50. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +91 -18
  51. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +91 -18
  52. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
  53. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
  54. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
  55. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
  56. diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
  57. diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
  58. diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
  59. diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
  60. diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
  61. diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
  62. diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
  63. diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +4 -4
  64. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
  65. diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
  66. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
  67. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
  68. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +7 -7
  69. diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
  70. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +16 -11
  71. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +6 -6
  72. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +11 -11
  73. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +16 -11
  74. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +10 -10
  75. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +13 -13
  76. diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
  77. diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
  78. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
  79. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +54 -11
  80. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
  81. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +6 -6
  82. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +6 -6
  83. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +6 -6
  84. diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
  85. diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
  86. diffusers/pipelines/kandinsky3/__init__.py +4 -4
  87. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
  88. diffusers/pipelines/kandinsky3/{kandinsky3_pipeline.py → pipeline_kandinsky3.py} +172 -35
  89. diffusers/pipelines/kandinsky3/{kandinsky3img2img_pipeline.py → pipeline_kandinsky3_img2img.py} +228 -34
  90. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +46 -5
  91. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +47 -6
  92. diffusers/pipelines/onnx_utils.py +8 -5
  93. diffusers/pipelines/pipeline_flax_utils.py +7 -6
  94. diffusers/pipelines/pipeline_utils.py +30 -29
  95. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +51 -2
  96. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
  97. diffusers/pipelines/stable_diffusion/__init__.py +1 -72
  98. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +67 -75
  99. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +92 -8
  100. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -8
  101. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +138 -10
  102. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +57 -7
  103. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +3 -0
  104. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +6 -0
  105. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
  106. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
  107. diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
  108. diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +5 -2
  109. diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
  110. diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +2 -3
  111. diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
  112. diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +2 -2
  113. diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +3 -3
  114. diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
  115. diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +6 -1
  116. diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
  117. diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +50 -7
  118. diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
  119. diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +56 -8
  120. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
  121. diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
  122. diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +67 -10
  123. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +97 -15
  124. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +98 -14
  125. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +97 -14
  126. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +7 -5
  127. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +12 -9
  128. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +6 -0
  129. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +5 -0
  130. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +5 -0
  131. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +331 -9
  132. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +468 -9
  133. diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
  134. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
  135. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  136. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +4 -0
  137. diffusers/schedulers/__init__.py +2 -0
  138. diffusers/schedulers/scheduling_amused.py +162 -0
  139. diffusers/schedulers/scheduling_consistency_models.py +2 -0
  140. diffusers/schedulers/scheduling_ddim_inverse.py +1 -4
  141. diffusers/schedulers/scheduling_ddpm.py +46 -0
  142. diffusers/schedulers/scheduling_ddpm_parallel.py +46 -0
  143. diffusers/schedulers/scheduling_deis_multistep.py +13 -1
  144. diffusers/schedulers/scheduling_dpmsolver_multistep.py +13 -1
  145. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +13 -1
  146. diffusers/schedulers/scheduling_dpmsolver_sde.py +2 -0
  147. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +13 -1
  148. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +58 -0
  149. diffusers/schedulers/scheduling_euler_discrete.py +62 -3
  150. diffusers/schedulers/scheduling_heun_discrete.py +2 -0
  151. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +2 -0
  152. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +2 -0
  153. diffusers/schedulers/scheduling_lms_discrete.py +2 -0
  154. diffusers/schedulers/scheduling_unipc_multistep.py +13 -1
  155. diffusers/schedulers/scheduling_utils.py +3 -1
  156. diffusers/schedulers/scheduling_utils_flax.py +3 -1
  157. diffusers/training_utils.py +1 -1
  158. diffusers/utils/__init__.py +0 -2
  159. diffusers/utils/constants.py +2 -5
  160. diffusers/utils/dummy_pt_objects.py +30 -0
  161. diffusers/utils/dummy_torch_and_transformers_objects.py +45 -0
  162. diffusers/utils/dynamic_modules_utils.py +14 -18
  163. diffusers/utils/hub_utils.py +24 -36
  164. diffusers/utils/logging.py +1 -1
  165. diffusers/utils/state_dict_utils.py +8 -0
  166. diffusers/utils/testing_utils.py +199 -1
  167. diffusers/utils/torch_utils.py +3 -3
  168. {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/METADATA +54 -53
  169. {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/RECORD +174 -155
  170. {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
  171. {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
  172. /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
  173. {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
  174. {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -23,562 +23,23 @@ import torch.nn.functional as F
23
23
  from ..utils import USE_PEFT_BACKEND
24
24
  from .activations import get_activation
25
25
  from .attention_processor import SpatialNorm
26
+ from .downsampling import ( # noqa
27
+ Downsample1D,
28
+ Downsample2D,
29
+ FirDownsample2D,
30
+ KDownsample2D,
31
+ downsample_2d,
32
+ )
26
33
  from .lora import LoRACompatibleConv, LoRACompatibleLinear
27
34
  from .normalization import AdaGroupNorm
28
-
29
-
30
- class Upsample1D(nn.Module):
31
- """A 1D upsampling layer with an optional convolution.
32
-
33
- Parameters:
34
- channels (`int`):
35
- number of channels in the inputs and outputs.
36
- use_conv (`bool`, default `False`):
37
- option to use a convolution.
38
- use_conv_transpose (`bool`, default `False`):
39
- option to use a convolution transpose.
40
- out_channels (`int`, optional):
41
- number of output channels. Defaults to `channels`.
42
- name (`str`, default `conv`):
43
- name of the upsampling 1D layer.
44
- """
45
-
46
- def __init__(
47
- self,
48
- channels: int,
49
- use_conv: bool = False,
50
- use_conv_transpose: bool = False,
51
- out_channels: Optional[int] = None,
52
- name: str = "conv",
53
- ):
54
- super().__init__()
55
- self.channels = channels
56
- self.out_channels = out_channels or channels
57
- self.use_conv = use_conv
58
- self.use_conv_transpose = use_conv_transpose
59
- self.name = name
60
-
61
- self.conv = None
62
- if use_conv_transpose:
63
- self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1)
64
- elif use_conv:
65
- self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1)
66
-
67
- def forward(self, inputs: torch.Tensor) -> torch.Tensor:
68
- assert inputs.shape[1] == self.channels
69
- if self.use_conv_transpose:
70
- return self.conv(inputs)
71
-
72
- outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest")
73
-
74
- if self.use_conv:
75
- outputs = self.conv(outputs)
76
-
77
- return outputs
78
-
79
-
80
- class Downsample1D(nn.Module):
81
- """A 1D downsampling layer with an optional convolution.
82
-
83
- Parameters:
84
- channels (`int`):
85
- number of channels in the inputs and outputs.
86
- use_conv (`bool`, default `False`):
87
- option to use a convolution.
88
- out_channels (`int`, optional):
89
- number of output channels. Defaults to `channels`.
90
- padding (`int`, default `1`):
91
- padding for the convolution.
92
- name (`str`, default `conv`):
93
- name of the downsampling 1D layer.
94
- """
95
-
96
- def __init__(
97
- self,
98
- channels: int,
99
- use_conv: bool = False,
100
- out_channels: Optional[int] = None,
101
- padding: int = 1,
102
- name: str = "conv",
103
- ):
104
- super().__init__()
105
- self.channels = channels
106
- self.out_channels = out_channels or channels
107
- self.use_conv = use_conv
108
- self.padding = padding
109
- stride = 2
110
- self.name = name
111
-
112
- if use_conv:
113
- self.conv = nn.Conv1d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
114
- else:
115
- assert self.channels == self.out_channels
116
- self.conv = nn.AvgPool1d(kernel_size=stride, stride=stride)
117
-
118
- def forward(self, inputs: torch.Tensor) -> torch.Tensor:
119
- assert inputs.shape[1] == self.channels
120
- return self.conv(inputs)
121
-
122
-
123
- class Upsample2D(nn.Module):
124
- """A 2D upsampling layer with an optional convolution.
125
-
126
- Parameters:
127
- channels (`int`):
128
- number of channels in the inputs and outputs.
129
- use_conv (`bool`, default `False`):
130
- option to use a convolution.
131
- use_conv_transpose (`bool`, default `False`):
132
- option to use a convolution transpose.
133
- out_channels (`int`, optional):
134
- number of output channels. Defaults to `channels`.
135
- name (`str`, default `conv`):
136
- name of the upsampling 2D layer.
137
- """
138
-
139
- def __init__(
140
- self,
141
- channels: int,
142
- use_conv: bool = False,
143
- use_conv_transpose: bool = False,
144
- out_channels: Optional[int] = None,
145
- name: str = "conv",
146
- ):
147
- super().__init__()
148
- self.channels = channels
149
- self.out_channels = out_channels or channels
150
- self.use_conv = use_conv
151
- self.use_conv_transpose = use_conv_transpose
152
- self.name = name
153
- conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
154
-
155
- conv = None
156
- if use_conv_transpose:
157
- conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1)
158
- elif use_conv:
159
- conv = conv_cls(self.channels, self.out_channels, 3, padding=1)
160
-
161
- # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
162
- if name == "conv":
163
- self.conv = conv
164
- else:
165
- self.Conv2d_0 = conv
166
-
167
- def forward(
168
- self,
169
- hidden_states: torch.FloatTensor,
170
- output_size: Optional[int] = None,
171
- scale: float = 1.0,
172
- ) -> torch.FloatTensor:
173
- assert hidden_states.shape[1] == self.channels
174
-
175
- if self.use_conv_transpose:
176
- return self.conv(hidden_states)
177
-
178
- # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
179
- # TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
180
- # https://github.com/pytorch/pytorch/issues/86679
181
- dtype = hidden_states.dtype
182
- if dtype == torch.bfloat16:
183
- hidden_states = hidden_states.to(torch.float32)
184
-
185
- # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
186
- if hidden_states.shape[0] >= 64:
187
- hidden_states = hidden_states.contiguous()
188
-
189
- # if `output_size` is passed we force the interpolation output
190
- # size and do not make use of `scale_factor=2`
191
- if output_size is None:
192
- hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
193
- else:
194
- hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
195
-
196
- # If the input is bfloat16, we cast back to bfloat16
197
- if dtype == torch.bfloat16:
198
- hidden_states = hidden_states.to(dtype)
199
-
200
- # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
201
- if self.use_conv:
202
- if self.name == "conv":
203
- if isinstance(self.conv, LoRACompatibleConv) and not USE_PEFT_BACKEND:
204
- hidden_states = self.conv(hidden_states, scale)
205
- else:
206
- hidden_states = self.conv(hidden_states)
207
- else:
208
- if isinstance(self.Conv2d_0, LoRACompatibleConv) and not USE_PEFT_BACKEND:
209
- hidden_states = self.Conv2d_0(hidden_states, scale)
210
- else:
211
- hidden_states = self.Conv2d_0(hidden_states)
212
-
213
- return hidden_states
214
-
215
-
216
- class Downsample2D(nn.Module):
217
- """A 2D downsampling layer with an optional convolution.
218
-
219
- Parameters:
220
- channels (`int`):
221
- number of channels in the inputs and outputs.
222
- use_conv (`bool`, default `False`):
223
- option to use a convolution.
224
- out_channels (`int`, optional):
225
- number of output channels. Defaults to `channels`.
226
- padding (`int`, default `1`):
227
- padding for the convolution.
228
- name (`str`, default `conv`):
229
- name of the downsampling 2D layer.
230
- """
231
-
232
- def __init__(
233
- self,
234
- channels: int,
235
- use_conv: bool = False,
236
- out_channels: Optional[int] = None,
237
- padding: int = 1,
238
- name: str = "conv",
239
- ):
240
- super().__init__()
241
- self.channels = channels
242
- self.out_channels = out_channels or channels
243
- self.use_conv = use_conv
244
- self.padding = padding
245
- stride = 2
246
- self.name = name
247
- conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
248
-
249
- if use_conv:
250
- conv = conv_cls(self.channels, self.out_channels, 3, stride=stride, padding=padding)
251
- else:
252
- assert self.channels == self.out_channels
253
- conv = nn.AvgPool2d(kernel_size=stride, stride=stride)
254
-
255
- # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
256
- if name == "conv":
257
- self.Conv2d_0 = conv
258
- self.conv = conv
259
- elif name == "Conv2d_0":
260
- self.conv = conv
261
- else:
262
- self.conv = conv
263
-
264
- def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor:
265
- assert hidden_states.shape[1] == self.channels
266
-
267
- if self.use_conv and self.padding == 0:
268
- pad = (0, 1, 0, 1)
269
- hidden_states = F.pad(hidden_states, pad, mode="constant", value=0)
270
-
271
- assert hidden_states.shape[1] == self.channels
272
-
273
- if not USE_PEFT_BACKEND:
274
- if isinstance(self.conv, LoRACompatibleConv):
275
- hidden_states = self.conv(hidden_states, scale)
276
- else:
277
- hidden_states = self.conv(hidden_states)
278
- else:
279
- hidden_states = self.conv(hidden_states)
280
-
281
- return hidden_states
282
-
283
-
284
- class FirUpsample2D(nn.Module):
285
- """A 2D FIR upsampling layer with an optional convolution.
286
-
287
- Parameters:
288
- channels (`int`, optional):
289
- number of channels in the inputs and outputs.
290
- use_conv (`bool`, default `False`):
291
- option to use a convolution.
292
- out_channels (`int`, optional):
293
- number of output channels. Defaults to `channels`.
294
- fir_kernel (`tuple`, default `(1, 3, 3, 1)`):
295
- kernel for the FIR filter.
296
- """
297
-
298
- def __init__(
299
- self,
300
- channels: Optional[int] = None,
301
- out_channels: Optional[int] = None,
302
- use_conv: bool = False,
303
- fir_kernel: Tuple[int, int, int, int] = (1, 3, 3, 1),
304
- ):
305
- super().__init__()
306
- out_channels = out_channels if out_channels else channels
307
- if use_conv:
308
- self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
309
- self.use_conv = use_conv
310
- self.fir_kernel = fir_kernel
311
- self.out_channels = out_channels
312
-
313
- def _upsample_2d(
314
- self,
315
- hidden_states: torch.FloatTensor,
316
- weight: Optional[torch.FloatTensor] = None,
317
- kernel: Optional[torch.FloatTensor] = None,
318
- factor: int = 2,
319
- gain: float = 1,
320
- ) -> torch.FloatTensor:
321
- """Fused `upsample_2d()` followed by `Conv2d()`.
322
-
323
- Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
324
- efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of
325
- arbitrary order.
326
-
327
- Args:
328
- hidden_states (`torch.FloatTensor`):
329
- Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
330
- weight (`torch.FloatTensor`, *optional*):
331
- Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be
332
- performed by `inChannels = x.shape[0] // numGroups`.
333
- kernel (`torch.FloatTensor`, *optional*):
334
- FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which
335
- corresponds to nearest-neighbor upsampling.
336
- factor (`int`, *optional*): Integer upsampling factor (default: 2).
337
- gain (`float`, *optional*): Scaling factor for signal magnitude (default: 1.0).
338
-
339
- Returns:
340
- output (`torch.FloatTensor`):
341
- Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same
342
- datatype as `hidden_states`.
343
- """
344
-
345
- assert isinstance(factor, int) and factor >= 1
346
-
347
- # Setup filter kernel.
348
- if kernel is None:
349
- kernel = [1] * factor
350
-
351
- # setup kernel
352
- kernel = torch.tensor(kernel, dtype=torch.float32)
353
- if kernel.ndim == 1:
354
- kernel = torch.outer(kernel, kernel)
355
- kernel /= torch.sum(kernel)
356
-
357
- kernel = kernel * (gain * (factor**2))
358
-
359
- if self.use_conv:
360
- convH = weight.shape[2]
361
- convW = weight.shape[3]
362
- inC = weight.shape[1]
363
-
364
- pad_value = (kernel.shape[0] - factor) - (convW - 1)
365
-
366
- stride = (factor, factor)
367
- # Determine data dimensions.
368
- output_shape = (
369
- (hidden_states.shape[2] - 1) * factor + convH,
370
- (hidden_states.shape[3] - 1) * factor + convW,
371
- )
372
- output_padding = (
373
- output_shape[0] - (hidden_states.shape[2] - 1) * stride[0] - convH,
374
- output_shape[1] - (hidden_states.shape[3] - 1) * stride[1] - convW,
375
- )
376
- assert output_padding[0] >= 0 and output_padding[1] >= 0
377
- num_groups = hidden_states.shape[1] // inC
378
-
379
- # Transpose weights.
380
- weight = torch.reshape(weight, (num_groups, -1, inC, convH, convW))
381
- weight = torch.flip(weight, dims=[3, 4]).permute(0, 2, 1, 3, 4)
382
- weight = torch.reshape(weight, (num_groups * inC, -1, convH, convW))
383
-
384
- inverse_conv = F.conv_transpose2d(
385
- hidden_states,
386
- weight,
387
- stride=stride,
388
- output_padding=output_padding,
389
- padding=0,
390
- )
391
-
392
- output = upfirdn2d_native(
393
- inverse_conv,
394
- torch.tensor(kernel, device=inverse_conv.device),
395
- pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2 + 1),
396
- )
397
- else:
398
- pad_value = kernel.shape[0] - factor
399
- output = upfirdn2d_native(
400
- hidden_states,
401
- torch.tensor(kernel, device=hidden_states.device),
402
- up=factor,
403
- pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2),
404
- )
405
-
406
- return output
407
-
408
- def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
409
- if self.use_conv:
410
- height = self._upsample_2d(hidden_states, self.Conv2d_0.weight, kernel=self.fir_kernel)
411
- height = height + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
412
- else:
413
- height = self._upsample_2d(hidden_states, kernel=self.fir_kernel, factor=2)
414
-
415
- return height
416
-
417
-
418
- class FirDownsample2D(nn.Module):
419
- """A 2D FIR downsampling layer with an optional convolution.
420
-
421
- Parameters:
422
- channels (`int`):
423
- number of channels in the inputs and outputs.
424
- use_conv (`bool`, default `False`):
425
- option to use a convolution.
426
- out_channels (`int`, optional):
427
- number of output channels. Defaults to `channels`.
428
- fir_kernel (`tuple`, default `(1, 3, 3, 1)`):
429
- kernel for the FIR filter.
430
- """
431
-
432
- def __init__(
433
- self,
434
- channels: Optional[int] = None,
435
- out_channels: Optional[int] = None,
436
- use_conv: bool = False,
437
- fir_kernel: Tuple[int, int, int, int] = (1, 3, 3, 1),
438
- ):
439
- super().__init__()
440
- out_channels = out_channels if out_channels else channels
441
- if use_conv:
442
- self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
443
- self.fir_kernel = fir_kernel
444
- self.use_conv = use_conv
445
- self.out_channels = out_channels
446
-
447
- def _downsample_2d(
448
- self,
449
- hidden_states: torch.FloatTensor,
450
- weight: Optional[torch.FloatTensor] = None,
451
- kernel: Optional[torch.FloatTensor] = None,
452
- factor: int = 2,
453
- gain: float = 1,
454
- ) -> torch.FloatTensor:
455
- """Fused `Conv2d()` followed by `downsample_2d()`.
456
- Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
457
- efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of
458
- arbitrary order.
459
-
460
- Args:
461
- hidden_states (`torch.FloatTensor`):
462
- Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
463
- weight (`torch.FloatTensor`, *optional*):
464
- Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be
465
- performed by `inChannels = x.shape[0] // numGroups`.
466
- kernel (`torch.FloatTensor`, *optional*):
467
- FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which
468
- corresponds to average pooling.
469
- factor (`int`, *optional*, default to `2`):
470
- Integer downsampling factor.
471
- gain (`float`, *optional*, default to `1.0`):
472
- Scaling factor for signal magnitude.
473
-
474
- Returns:
475
- output (`torch.FloatTensor`):
476
- Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and same
477
- datatype as `x`.
478
- """
479
-
480
- assert isinstance(factor, int) and factor >= 1
481
- if kernel is None:
482
- kernel = [1] * factor
483
-
484
- # setup kernel
485
- kernel = torch.tensor(kernel, dtype=torch.float32)
486
- if kernel.ndim == 1:
487
- kernel = torch.outer(kernel, kernel)
488
- kernel /= torch.sum(kernel)
489
-
490
- kernel = kernel * gain
491
-
492
- if self.use_conv:
493
- _, _, convH, convW = weight.shape
494
- pad_value = (kernel.shape[0] - factor) + (convW - 1)
495
- stride_value = [factor, factor]
496
- upfirdn_input = upfirdn2d_native(
497
- hidden_states,
498
- torch.tensor(kernel, device=hidden_states.device),
499
- pad=((pad_value + 1) // 2, pad_value // 2),
500
- )
501
- output = F.conv2d(upfirdn_input, weight, stride=stride_value, padding=0)
502
- else:
503
- pad_value = kernel.shape[0] - factor
504
- output = upfirdn2d_native(
505
- hidden_states,
506
- torch.tensor(kernel, device=hidden_states.device),
507
- down=factor,
508
- pad=((pad_value + 1) // 2, pad_value // 2),
509
- )
510
-
511
- return output
512
-
513
- def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
514
- if self.use_conv:
515
- downsample_input = self._downsample_2d(hidden_states, weight=self.Conv2d_0.weight, kernel=self.fir_kernel)
516
- hidden_states = downsample_input + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
517
- else:
518
- hidden_states = self._downsample_2d(hidden_states, kernel=self.fir_kernel, factor=2)
519
-
520
- return hidden_states
521
-
522
-
523
- # downsample/upsample layer used in k-upscaler, might be able to use FirDownsample2D/DirUpsample2D instead
524
- class KDownsample2D(nn.Module):
525
- r"""A 2D K-downsampling layer.
526
-
527
- Parameters:
528
- pad_mode (`str`, *optional*, default to `"reflect"`): the padding mode to use.
529
- """
530
-
531
- def __init__(self, pad_mode: str = "reflect"):
532
- super().__init__()
533
- self.pad_mode = pad_mode
534
- kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]])
535
- self.pad = kernel_1d.shape[1] // 2 - 1
536
- self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False)
537
-
538
- def forward(self, inputs: torch.Tensor) -> torch.Tensor:
539
- inputs = F.pad(inputs, (self.pad,) * 4, self.pad_mode)
540
- weight = inputs.new_zeros(
541
- [
542
- inputs.shape[1],
543
- inputs.shape[1],
544
- self.kernel.shape[0],
545
- self.kernel.shape[1],
546
- ]
547
- )
548
- indices = torch.arange(inputs.shape[1], device=inputs.device)
549
- kernel = self.kernel.to(weight)[None, :].expand(inputs.shape[1], -1, -1)
550
- weight[indices, indices] = kernel
551
- return F.conv2d(inputs, weight, stride=2)
552
-
553
-
554
- class KUpsample2D(nn.Module):
555
- r"""A 2D K-upsampling layer.
556
-
557
- Parameters:
558
- pad_mode (`str`, *optional*, default to `"reflect"`): the padding mode to use.
559
- """
560
-
561
- def __init__(self, pad_mode: str = "reflect"):
562
- super().__init__()
563
- self.pad_mode = pad_mode
564
- kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]]) * 2
565
- self.pad = kernel_1d.shape[1] // 2 - 1
566
- self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False)
567
-
568
- def forward(self, inputs: torch.Tensor) -> torch.Tensor:
569
- inputs = F.pad(inputs, ((self.pad + 1) // 2,) * 4, self.pad_mode)
570
- weight = inputs.new_zeros(
571
- [
572
- inputs.shape[1],
573
- inputs.shape[1],
574
- self.kernel.shape[0],
575
- self.kernel.shape[1],
576
- ]
577
- )
578
- indices = torch.arange(inputs.shape[1], device=inputs.device)
579
- kernel = self.kernel.to(weight)[None, :].expand(inputs.shape[1], -1, -1)
580
- weight[indices, indices] = kernel
581
- return F.conv_transpose2d(inputs, weight, stride=2, padding=self.pad * 2 + 1)
35
+ from .upsampling import ( # noqa
36
+ FirUpsample2D,
37
+ KUpsample2D,
38
+ Upsample1D,
39
+ Upsample2D,
40
+ upfirdn2d_native,
41
+ upsample_2d,
42
+ )
582
43
 
583
44
 
584
45
  class ResnetBlock2D(nn.Module):
@@ -894,151 +355,6 @@ class ResidualTemporalBlock1D(nn.Module):
894
355
  return out + self.residual_conv(inputs)
895
356
 
896
357
 
897
- def upsample_2d(
898
- hidden_states: torch.FloatTensor,
899
- kernel: Optional[torch.FloatTensor] = None,
900
- factor: int = 2,
901
- gain: float = 1,
902
- ) -> torch.FloatTensor:
903
- r"""Upsample2D a batch of 2D images with the given filter.
904
- Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
905
- filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
906
- `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is
907
- a: multiple of the upsampling factor.
908
-
909
- Args:
910
- hidden_states (`torch.FloatTensor`):
911
- Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
912
- kernel (`torch.FloatTensor`, *optional*):
913
- FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which
914
- corresponds to nearest-neighbor upsampling.
915
- factor (`int`, *optional*, default to `2`):
916
- Integer upsampling factor.
917
- gain (`float`, *optional*, default to `1.0`):
918
- Scaling factor for signal magnitude (default: 1.0).
919
-
920
- Returns:
921
- output (`torch.FloatTensor`):
922
- Tensor of the shape `[N, C, H * factor, W * factor]`
923
- """
924
- assert isinstance(factor, int) and factor >= 1
925
- if kernel is None:
926
- kernel = [1] * factor
927
-
928
- kernel = torch.tensor(kernel, dtype=torch.float32)
929
- if kernel.ndim == 1:
930
- kernel = torch.outer(kernel, kernel)
931
- kernel /= torch.sum(kernel)
932
-
933
- kernel = kernel * (gain * (factor**2))
934
- pad_value = kernel.shape[0] - factor
935
- output = upfirdn2d_native(
936
- hidden_states,
937
- kernel.to(device=hidden_states.device),
938
- up=factor,
939
- pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2),
940
- )
941
- return output
942
-
943
-
944
- def downsample_2d(
945
- hidden_states: torch.FloatTensor,
946
- kernel: Optional[torch.FloatTensor] = None,
947
- factor: int = 2,
948
- gain: float = 1,
949
- ) -> torch.FloatTensor:
950
- r"""Downsample2D a batch of 2D images with the given filter.
951
- Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
952
- given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
953
- specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
954
- shape is a multiple of the downsampling factor.
955
-
956
- Args:
957
- hidden_states (`torch.FloatTensor`)
958
- Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
959
- kernel (`torch.FloatTensor`, *optional*):
960
- FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which
961
- corresponds to average pooling.
962
- factor (`int`, *optional*, default to `2`):
963
- Integer downsampling factor.
964
- gain (`float`, *optional*, default to `1.0`):
965
- Scaling factor for signal magnitude.
966
-
967
- Returns:
968
- output (`torch.FloatTensor`):
969
- Tensor of the shape `[N, C, H // factor, W // factor]`
970
- """
971
-
972
- assert isinstance(factor, int) and factor >= 1
973
- if kernel is None:
974
- kernel = [1] * factor
975
-
976
- kernel = torch.tensor(kernel, dtype=torch.float32)
977
- if kernel.ndim == 1:
978
- kernel = torch.outer(kernel, kernel)
979
- kernel /= torch.sum(kernel)
980
-
981
- kernel = kernel * gain
982
- pad_value = kernel.shape[0] - factor
983
- output = upfirdn2d_native(
984
- hidden_states,
985
- kernel.to(device=hidden_states.device),
986
- down=factor,
987
- pad=((pad_value + 1) // 2, pad_value // 2),
988
- )
989
- return output
990
-
991
-
992
- def upfirdn2d_native(
993
- tensor: torch.Tensor,
994
- kernel: torch.Tensor,
995
- up: int = 1,
996
- down: int = 1,
997
- pad: Tuple[int, int] = (0, 0),
998
- ) -> torch.Tensor:
999
- up_x = up_y = up
1000
- down_x = down_y = down
1001
- pad_x0 = pad_y0 = pad[0]
1002
- pad_x1 = pad_y1 = pad[1]
1003
-
1004
- _, channel, in_h, in_w = tensor.shape
1005
- tensor = tensor.reshape(-1, in_h, in_w, 1)
1006
-
1007
- _, in_h, in_w, minor = tensor.shape
1008
- kernel_h, kernel_w = kernel.shape
1009
-
1010
- out = tensor.view(-1, in_h, 1, in_w, 1, minor)
1011
- out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
1012
- out = out.view(-1, in_h * up_y, in_w * up_x, minor)
1013
-
1014
- out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
1015
- out = out.to(tensor.device) # Move back to mps if necessary
1016
- out = out[
1017
- :,
1018
- max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
1019
- max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
1020
- :,
1021
- ]
1022
-
1023
- out = out.permute(0, 3, 1, 2)
1024
- out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
1025
- w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
1026
- out = F.conv2d(out, w)
1027
- out = out.reshape(
1028
- -1,
1029
- minor,
1030
- in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
1031
- in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
1032
- )
1033
- out = out.permute(0, 2, 3, 1)
1034
- out = out[:, ::down_y, ::down_x, :]
1035
-
1036
- out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
1037
- out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
1038
-
1039
- return out.view(-1, channel, out_h, out_w)
1040
-
1041
-
1042
358
  class TemporalConvLayer(nn.Module):
1043
359
  """
1044
360
  Temporal convolutional layer that can be used for video (sequence of images) input Code mostly copied from: