diffusers 0.24.0__py3-none-any.whl → 0.25.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (174) hide show
  1. diffusers/__init__.py +11 -1
  2. diffusers/commands/fp16_safetensors.py +10 -11
  3. diffusers/configuration_utils.py +12 -8
  4. diffusers/dependency_versions_table.py +2 -1
  5. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  6. diffusers/image_processor.py +286 -46
  7. diffusers/loaders/ip_adapter.py +11 -9
  8. diffusers/loaders/lora.py +198 -60
  9. diffusers/loaders/single_file.py +24 -18
  10. diffusers/loaders/textual_inversion.py +10 -14
  11. diffusers/loaders/unet.py +130 -37
  12. diffusers/models/__init__.py +18 -12
  13. diffusers/models/activations.py +9 -6
  14. diffusers/models/attention.py +137 -16
  15. diffusers/models/attention_processor.py +133 -46
  16. diffusers/models/autoencoders/__init__.py +5 -0
  17. diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +4 -4
  18. diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +45 -6
  19. diffusers/models/{autoencoder_kl_temporal_decoder.py → autoencoders/autoencoder_kl_temporal_decoder.py} +8 -8
  20. diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +4 -4
  21. diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +14 -14
  22. diffusers/models/{vae.py → autoencoders/vae.py} +9 -5
  23. diffusers/models/downsampling.py +338 -0
  24. diffusers/models/embeddings.py +112 -29
  25. diffusers/models/modeling_flax_utils.py +12 -7
  26. diffusers/models/modeling_utils.py +10 -10
  27. diffusers/models/normalization.py +108 -2
  28. diffusers/models/resnet.py +15 -699
  29. diffusers/models/transformer_2d.py +2 -2
  30. diffusers/models/unet_2d_condition.py +37 -0
  31. diffusers/models/{unet_kandi3.py → unet_kandinsky3.py} +105 -159
  32. diffusers/models/upsampling.py +454 -0
  33. diffusers/models/uvit_2d.py +471 -0
  34. diffusers/models/vq_model.py +9 -2
  35. diffusers/pipelines/__init__.py +81 -73
  36. diffusers/pipelines/amused/__init__.py +62 -0
  37. diffusers/pipelines/amused/pipeline_amused.py +328 -0
  38. diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
  39. diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
  40. diffusers/pipelines/animatediff/pipeline_animatediff.py +38 -10
  41. diffusers/pipelines/auto_pipeline.py +17 -13
  42. diffusers/pipelines/controlnet/pipeline_controlnet.py +27 -10
  43. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +47 -5
  44. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +25 -8
  45. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +4 -6
  46. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +26 -10
  47. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +4 -3
  48. diffusers/pipelines/deprecated/__init__.py +153 -0
  49. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
  50. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +91 -18
  51. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +91 -18
  52. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
  53. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
  54. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
  55. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
  56. diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
  57. diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
  58. diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
  59. diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
  60. diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
  61. diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
  62. diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
  63. diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +4 -4
  64. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
  65. diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
  66. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
  67. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
  68. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +7 -7
  69. diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
  70. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +16 -11
  71. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +6 -6
  72. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +11 -11
  73. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +16 -11
  74. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +10 -10
  75. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +13 -13
  76. diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
  77. diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
  78. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
  79. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +54 -11
  80. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
  81. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +6 -6
  82. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +6 -6
  83. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +6 -6
  84. diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
  85. diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
  86. diffusers/pipelines/kandinsky3/__init__.py +4 -4
  87. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
  88. diffusers/pipelines/kandinsky3/{kandinsky3_pipeline.py → pipeline_kandinsky3.py} +172 -35
  89. diffusers/pipelines/kandinsky3/{kandinsky3img2img_pipeline.py → pipeline_kandinsky3_img2img.py} +228 -34
  90. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +46 -5
  91. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +47 -6
  92. diffusers/pipelines/onnx_utils.py +8 -5
  93. diffusers/pipelines/pipeline_flax_utils.py +7 -6
  94. diffusers/pipelines/pipeline_utils.py +30 -29
  95. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +51 -2
  96. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
  97. diffusers/pipelines/stable_diffusion/__init__.py +1 -72
  98. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +67 -75
  99. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +92 -8
  100. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -8
  101. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +138 -10
  102. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +57 -7
  103. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +3 -0
  104. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +6 -0
  105. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
  106. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
  107. diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
  108. diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +5 -2
  109. diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
  110. diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +2 -3
  111. diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
  112. diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +2 -2
  113. diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +3 -3
  114. diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
  115. diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +6 -1
  116. diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
  117. diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +50 -7
  118. diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
  119. diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +56 -8
  120. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
  121. diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
  122. diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +67 -10
  123. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +97 -15
  124. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +98 -14
  125. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +97 -14
  126. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +7 -5
  127. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +12 -9
  128. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +6 -0
  129. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +5 -0
  130. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +5 -0
  131. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +331 -9
  132. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +468 -9
  133. diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
  134. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
  135. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  136. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +4 -0
  137. diffusers/schedulers/__init__.py +2 -0
  138. diffusers/schedulers/scheduling_amused.py +162 -0
  139. diffusers/schedulers/scheduling_consistency_models.py +2 -0
  140. diffusers/schedulers/scheduling_ddim_inverse.py +1 -4
  141. diffusers/schedulers/scheduling_ddpm.py +46 -0
  142. diffusers/schedulers/scheduling_ddpm_parallel.py +46 -0
  143. diffusers/schedulers/scheduling_deis_multistep.py +13 -1
  144. diffusers/schedulers/scheduling_dpmsolver_multistep.py +13 -1
  145. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +13 -1
  146. diffusers/schedulers/scheduling_dpmsolver_sde.py +2 -0
  147. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +13 -1
  148. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +58 -0
  149. diffusers/schedulers/scheduling_euler_discrete.py +62 -3
  150. diffusers/schedulers/scheduling_heun_discrete.py +2 -0
  151. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +2 -0
  152. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +2 -0
  153. diffusers/schedulers/scheduling_lms_discrete.py +2 -0
  154. diffusers/schedulers/scheduling_unipc_multistep.py +13 -1
  155. diffusers/schedulers/scheduling_utils.py +3 -1
  156. diffusers/schedulers/scheduling_utils_flax.py +3 -1
  157. diffusers/training_utils.py +1 -1
  158. diffusers/utils/__init__.py +0 -2
  159. diffusers/utils/constants.py +2 -5
  160. diffusers/utils/dummy_pt_objects.py +30 -0
  161. diffusers/utils/dummy_torch_and_transformers_objects.py +45 -0
  162. diffusers/utils/dynamic_modules_utils.py +14 -18
  163. diffusers/utils/hub_utils.py +24 -36
  164. diffusers/utils/logging.py +1 -1
  165. diffusers/utils/state_dict_utils.py +8 -0
  166. diffusers/utils/testing_utils.py +199 -1
  167. diffusers/utils/torch_utils.py +3 -3
  168. {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/METADATA +54 -53
  169. {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/RECORD +174 -155
  170. {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
  171. {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
  172. /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
  173. {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
  174. {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -14,6 +14,7 @@
14
14
  from typing import Any, Dict, Optional
15
15
 
16
16
  import torch
17
+ import torch.nn.functional as F
17
18
  from torch import nn
18
19
 
19
20
  from ..utils import USE_PEFT_BACKEND
@@ -22,7 +23,7 @@ from .activations import GEGLU, GELU, ApproximateGELU
22
23
  from .attention_processor import Attention
23
24
  from .embeddings import SinusoidalPositionalEmbedding
24
25
  from .lora import LoRACompatibleLinear
25
- from .normalization import AdaLayerNorm, AdaLayerNormZero
26
+ from .normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
26
27
 
27
28
 
28
29
  def _chunked_feed_forward(
@@ -148,6 +149,11 @@ class BasicTransformerBlock(nn.Module):
148
149
  attention_type: str = "default",
149
150
  positional_embeddings: Optional[str] = None,
150
151
  num_positional_embeddings: Optional[int] = None,
152
+ ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
153
+ ada_norm_bias: Optional[int] = None,
154
+ ff_inner_dim: Optional[int] = None,
155
+ ff_bias: bool = True,
156
+ attention_out_bias: bool = True,
151
157
  ):
152
158
  super().__init__()
153
159
  self.only_cross_attention = only_cross_attention
@@ -156,6 +162,7 @@ class BasicTransformerBlock(nn.Module):
156
162
  self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
157
163
  self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
158
164
  self.use_layer_norm = norm_type == "layer_norm"
165
+ self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
159
166
 
160
167
  if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
161
168
  raise ValueError(
@@ -179,6 +186,15 @@ class BasicTransformerBlock(nn.Module):
179
186
  self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
180
187
  elif self.use_ada_layer_norm_zero:
181
188
  self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
189
+ elif self.use_ada_layer_norm_continuous:
190
+ self.norm1 = AdaLayerNormContinuous(
191
+ dim,
192
+ ada_norm_continous_conditioning_embedding_dim,
193
+ norm_elementwise_affine,
194
+ norm_eps,
195
+ ada_norm_bias,
196
+ "rms_norm",
197
+ )
182
198
  else:
183
199
  self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
184
200
 
@@ -190,6 +206,7 @@ class BasicTransformerBlock(nn.Module):
190
206
  bias=attention_bias,
191
207
  cross_attention_dim=cross_attention_dim if only_cross_attention else None,
192
208
  upcast_attention=upcast_attention,
209
+ out_bias=attention_out_bias,
193
210
  )
194
211
 
195
212
  # 2. Cross-Attn
@@ -197,11 +214,20 @@ class BasicTransformerBlock(nn.Module):
197
214
  # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
198
215
  # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
199
216
  # the second cross attention block.
200
- self.norm2 = (
201
- AdaLayerNorm(dim, num_embeds_ada_norm)
202
- if self.use_ada_layer_norm
203
- else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
204
- )
217
+ if self.use_ada_layer_norm:
218
+ self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
219
+ elif self.use_ada_layer_norm_continuous:
220
+ self.norm2 = AdaLayerNormContinuous(
221
+ dim,
222
+ ada_norm_continous_conditioning_embedding_dim,
223
+ norm_elementwise_affine,
224
+ norm_eps,
225
+ ada_norm_bias,
226
+ "rms_norm",
227
+ )
228
+ else:
229
+ self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
230
+
205
231
  self.attn2 = Attention(
206
232
  query_dim=dim,
207
233
  cross_attention_dim=cross_attention_dim if not double_self_attention else None,
@@ -210,20 +236,32 @@ class BasicTransformerBlock(nn.Module):
210
236
  dropout=dropout,
211
237
  bias=attention_bias,
212
238
  upcast_attention=upcast_attention,
239
+ out_bias=attention_out_bias,
213
240
  ) # is self-attn if encoder_hidden_states is none
214
241
  else:
215
242
  self.norm2 = None
216
243
  self.attn2 = None
217
244
 
218
245
  # 3. Feed-forward
219
- if not self.use_ada_layer_norm_single:
220
- self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
246
+ if self.use_ada_layer_norm_continuous:
247
+ self.norm3 = AdaLayerNormContinuous(
248
+ dim,
249
+ ada_norm_continous_conditioning_embedding_dim,
250
+ norm_elementwise_affine,
251
+ norm_eps,
252
+ ada_norm_bias,
253
+ "layer_norm",
254
+ )
255
+ elif not self.use_ada_layer_norm_single:
256
+ self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
221
257
 
222
258
  self.ff = FeedForward(
223
259
  dim,
224
260
  dropout=dropout,
225
261
  activation_fn=activation_fn,
226
262
  final_dropout=final_dropout,
263
+ inner_dim=ff_inner_dim,
264
+ bias=ff_bias,
227
265
  )
228
266
 
229
267
  # 4. Fuser
@@ -252,6 +290,7 @@ class BasicTransformerBlock(nn.Module):
252
290
  timestep: Optional[torch.LongTensor] = None,
253
291
  cross_attention_kwargs: Dict[str, Any] = None,
254
292
  class_labels: Optional[torch.LongTensor] = None,
293
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
255
294
  ) -> torch.FloatTensor:
256
295
  # Notice that normalization is always applied before the real computation in the following blocks.
257
296
  # 0. Self-Attention
@@ -265,6 +304,8 @@ class BasicTransformerBlock(nn.Module):
265
304
  )
266
305
  elif self.use_layer_norm:
267
306
  norm_hidden_states = self.norm1(hidden_states)
307
+ elif self.use_ada_layer_norm_continuous:
308
+ norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
268
309
  elif self.use_ada_layer_norm_single:
269
310
  shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
270
311
  self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
@@ -314,6 +355,8 @@ class BasicTransformerBlock(nn.Module):
314
355
  # For PixArt norm2 isn't applied here:
315
356
  # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
316
357
  norm_hidden_states = hidden_states
358
+ elif self.use_ada_layer_norm_continuous:
359
+ norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
317
360
  else:
318
361
  raise ValueError("Incorrect norm")
319
362
 
@@ -329,7 +372,9 @@ class BasicTransformerBlock(nn.Module):
329
372
  hidden_states = attn_output + hidden_states
330
373
 
331
374
  # 4. Feed-forward
332
- if not self.use_ada_layer_norm_single:
375
+ if self.use_ada_layer_norm_continuous:
376
+ norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
377
+ elif not self.use_ada_layer_norm_single:
333
378
  norm_hidden_states = self.norm3(hidden_states)
334
379
 
335
380
  if self.use_ada_layer_norm_zero:
@@ -453,7 +498,7 @@ class TemporalBasicTransformerBlock(nn.Module):
453
498
  hidden_states = self.norm_in(hidden_states)
454
499
 
455
500
  if self._chunk_size is not None:
456
- hidden_states = _chunked_feed_forward(self.ff, hidden_states, self._chunk_dim, self._chunk_size)
501
+ hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
457
502
  else:
458
503
  hidden_states = self.ff_in(hidden_states)
459
504
 
@@ -490,6 +535,78 @@ class TemporalBasicTransformerBlock(nn.Module):
490
535
  return hidden_states
491
536
 
492
537
 
538
+ class SkipFFTransformerBlock(nn.Module):
539
+ def __init__(
540
+ self,
541
+ dim: int,
542
+ num_attention_heads: int,
543
+ attention_head_dim: int,
544
+ kv_input_dim: int,
545
+ kv_input_dim_proj_use_bias: bool,
546
+ dropout=0.0,
547
+ cross_attention_dim: Optional[int] = None,
548
+ attention_bias: bool = False,
549
+ attention_out_bias: bool = True,
550
+ ):
551
+ super().__init__()
552
+ if kv_input_dim != dim:
553
+ self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
554
+ else:
555
+ self.kv_mapper = None
556
+
557
+ self.norm1 = RMSNorm(dim, 1e-06)
558
+
559
+ self.attn1 = Attention(
560
+ query_dim=dim,
561
+ heads=num_attention_heads,
562
+ dim_head=attention_head_dim,
563
+ dropout=dropout,
564
+ bias=attention_bias,
565
+ cross_attention_dim=cross_attention_dim,
566
+ out_bias=attention_out_bias,
567
+ )
568
+
569
+ self.norm2 = RMSNorm(dim, 1e-06)
570
+
571
+ self.attn2 = Attention(
572
+ query_dim=dim,
573
+ cross_attention_dim=cross_attention_dim,
574
+ heads=num_attention_heads,
575
+ dim_head=attention_head_dim,
576
+ dropout=dropout,
577
+ bias=attention_bias,
578
+ out_bias=attention_out_bias,
579
+ )
580
+
581
+ def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
582
+ cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
583
+
584
+ if self.kv_mapper is not None:
585
+ encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))
586
+
587
+ norm_hidden_states = self.norm1(hidden_states)
588
+
589
+ attn_output = self.attn1(
590
+ norm_hidden_states,
591
+ encoder_hidden_states=encoder_hidden_states,
592
+ **cross_attention_kwargs,
593
+ )
594
+
595
+ hidden_states = attn_output + hidden_states
596
+
597
+ norm_hidden_states = self.norm2(hidden_states)
598
+
599
+ attn_output = self.attn2(
600
+ norm_hidden_states,
601
+ encoder_hidden_states=encoder_hidden_states,
602
+ **cross_attention_kwargs,
603
+ )
604
+
605
+ hidden_states = attn_output + hidden_states
606
+
607
+ return hidden_states
608
+
609
+
493
610
  class FeedForward(nn.Module):
494
611
  r"""
495
612
  A feed-forward layer.
@@ -501,6 +618,7 @@ class FeedForward(nn.Module):
501
618
  dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
502
619
  activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
503
620
  final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
621
+ bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
504
622
  """
505
623
 
506
624
  def __init__(
@@ -511,20 +629,23 @@ class FeedForward(nn.Module):
511
629
  dropout: float = 0.0,
512
630
  activation_fn: str = "geglu",
513
631
  final_dropout: bool = False,
632
+ inner_dim=None,
633
+ bias: bool = True,
514
634
  ):
515
635
  super().__init__()
516
- inner_dim = int(dim * mult)
636
+ if inner_dim is None:
637
+ inner_dim = int(dim * mult)
517
638
  dim_out = dim_out if dim_out is not None else dim
518
639
  linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
519
640
 
520
641
  if activation_fn == "gelu":
521
- act_fn = GELU(dim, inner_dim)
642
+ act_fn = GELU(dim, inner_dim, bias=bias)
522
643
  if activation_fn == "gelu-approximate":
523
- act_fn = GELU(dim, inner_dim, approximate="tanh")
644
+ act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
524
645
  elif activation_fn == "geglu":
525
- act_fn = GEGLU(dim, inner_dim)
646
+ act_fn = GEGLU(dim, inner_dim, bias=bias)
526
647
  elif activation_fn == "geglu-approximate":
527
- act_fn = ApproximateGELU(dim, inner_dim)
648
+ act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
528
649
 
529
650
  self.net = nn.ModuleList([])
530
651
  # project in
@@ -532,7 +653,7 @@ class FeedForward(nn.Module):
532
653
  # project dropout
533
654
  self.net.append(nn.Dropout(dropout))
534
655
  # project out
535
- self.net.append(linear_cls(inner_dim, dim_out))
656
+ self.net.append(linear_cls(inner_dim, dim_out, bias=bias))
536
657
  # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
537
658
  if final_dropout:
538
659
  self.net.append(nn.Dropout(dropout))
@@ -16,7 +16,7 @@ from typing import Callable, Optional, Union
16
16
 
17
17
  import torch
18
18
  import torch.nn.functional as F
19
- from torch import einsum, nn
19
+ from torch import nn
20
20
 
21
21
  from ..utils import USE_PEFT_BACKEND, deprecate, logging
22
22
  from ..utils.import_utils import is_xformers_available
@@ -109,15 +109,19 @@ class Attention(nn.Module):
109
109
  residual_connection: bool = False,
110
110
  _from_deprecated_attn_block: bool = False,
111
111
  processor: Optional["AttnProcessor"] = None,
112
+ out_dim: int = None,
112
113
  ):
113
114
  super().__init__()
114
- self.inner_dim = dim_head * heads
115
+ self.inner_dim = out_dim if out_dim is not None else dim_head * heads
116
+ self.query_dim = query_dim
115
117
  self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
116
118
  self.upcast_attention = upcast_attention
117
119
  self.upcast_softmax = upcast_softmax
118
120
  self.rescale_output_factor = rescale_output_factor
119
121
  self.residual_connection = residual_connection
120
122
  self.dropout = dropout
123
+ self.fused_projections = False
124
+ self.out_dim = out_dim if out_dim is not None else query_dim
121
125
 
122
126
  # we make use of this private variable to know whether this class is loaded
123
127
  # with an deprecated state dict so that we can convert it on the fly
@@ -126,7 +130,7 @@ class Attention(nn.Module):
126
130
  self.scale_qk = scale_qk
127
131
  self.scale = dim_head**-0.5 if self.scale_qk else 1.0
128
132
 
129
- self.heads = heads
133
+ self.heads = out_dim // dim_head if out_dim is not None else heads
130
134
  # for slice_size > 0 the attention score computation
131
135
  # is split across the batch axis to save memory
132
136
  # You can set slice_size with `set_attention_slice`
@@ -178,6 +182,7 @@ class Attention(nn.Module):
178
182
  else:
179
183
  linear_cls = LoRACompatibleLinear
180
184
 
185
+ self.linear_cls = linear_cls
181
186
  self.to_q = linear_cls(query_dim, self.inner_dim, bias=bias)
182
187
 
183
188
  if not self.only_cross_attention:
@@ -193,7 +198,7 @@ class Attention(nn.Module):
193
198
  self.add_v_proj = linear_cls(added_kv_proj_dim, self.inner_dim)
194
199
 
195
200
  self.to_out = nn.ModuleList([])
196
- self.to_out.append(linear_cls(self.inner_dim, query_dim, bias=out_bias))
201
+ self.to_out.append(linear_cls(self.inner_dim, self.out_dim, bias=out_bias))
197
202
  self.to_out.append(nn.Dropout(dropout))
198
203
 
199
204
  # set attention processor
@@ -690,6 +695,32 @@ class Attention(nn.Module):
690
695
 
691
696
  return encoder_hidden_states
692
697
 
698
+ @torch.no_grad()
699
+ def fuse_projections(self, fuse=True):
700
+ is_cross_attention = self.cross_attention_dim != self.query_dim
701
+ device = self.to_q.weight.data.device
702
+ dtype = self.to_q.weight.data.dtype
703
+
704
+ if not is_cross_attention:
705
+ # fetch weight matrices.
706
+ concatenated_weights = torch.cat([self.to_q.weight.data, self.to_k.weight.data, self.to_v.weight.data])
707
+ in_features = concatenated_weights.shape[1]
708
+ out_features = concatenated_weights.shape[0]
709
+
710
+ # create a new single projection layer and copy over the weights.
711
+ self.to_qkv = self.linear_cls(in_features, out_features, bias=False, device=device, dtype=dtype)
712
+ self.to_qkv.weight.copy_(concatenated_weights)
713
+
714
+ else:
715
+ concatenated_weights = torch.cat([self.to_k.weight.data, self.to_v.weight.data])
716
+ in_features = concatenated_weights.shape[1]
717
+ out_features = concatenated_weights.shape[0]
718
+
719
+ self.to_kv = self.linear_cls(in_features, out_features, bias=False, device=device, dtype=dtype)
720
+ self.to_kv.weight.copy_(concatenated_weights)
721
+
722
+ self.fused_projections = fuse
723
+
693
724
 
694
725
  class AttnProcessor:
695
726
  r"""
@@ -1182,9 +1213,6 @@ class AttnProcessor2_0:
1182
1213
  scale: float = 1.0,
1183
1214
  ) -> torch.FloatTensor:
1184
1215
  residual = hidden_states
1185
-
1186
- args = () if USE_PEFT_BACKEND else (scale,)
1187
-
1188
1216
  if attn.spatial_norm is not None:
1189
1217
  hidden_states = attn.spatial_norm(hidden_states, temb)
1190
1218
 
@@ -1251,6 +1279,103 @@ class AttnProcessor2_0:
1251
1279
  return hidden_states
1252
1280
 
1253
1281
 
1282
+ class FusedAttnProcessor2_0:
1283
+ r"""
1284
+ Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
1285
+ It uses fused projection layers. For self-attention modules, all projection matrices (i.e., query,
1286
+ key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
1287
+
1288
+ <Tip warning={true}>
1289
+
1290
+ This API is currently 🧪 experimental in nature and can change in future.
1291
+
1292
+ </Tip>
1293
+ """
1294
+
1295
+ def __init__(self):
1296
+ if not hasattr(F, "scaled_dot_product_attention"):
1297
+ raise ImportError(
1298
+ "FusedAttnProcessor2_0 requires at least PyTorch 2.0, to use it. Please upgrade PyTorch to > 2.0."
1299
+ )
1300
+
1301
+ def __call__(
1302
+ self,
1303
+ attn: Attention,
1304
+ hidden_states: torch.FloatTensor,
1305
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
1306
+ attention_mask: Optional[torch.FloatTensor] = None,
1307
+ temb: Optional[torch.FloatTensor] = None,
1308
+ scale: float = 1.0,
1309
+ ) -> torch.FloatTensor:
1310
+ residual = hidden_states
1311
+ if attn.spatial_norm is not None:
1312
+ hidden_states = attn.spatial_norm(hidden_states, temb)
1313
+
1314
+ input_ndim = hidden_states.ndim
1315
+
1316
+ if input_ndim == 4:
1317
+ batch_size, channel, height, width = hidden_states.shape
1318
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
1319
+
1320
+ batch_size, sequence_length, _ = (
1321
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
1322
+ )
1323
+
1324
+ if attention_mask is not None:
1325
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
1326
+ # scaled_dot_product_attention expects attention_mask shape to be
1327
+ # (batch, heads, source_length, target_length)
1328
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
1329
+
1330
+ if attn.group_norm is not None:
1331
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
1332
+
1333
+ args = () if USE_PEFT_BACKEND else (scale,)
1334
+ if encoder_hidden_states is None:
1335
+ qkv = attn.to_qkv(hidden_states, *args)
1336
+ split_size = qkv.shape[-1] // 3
1337
+ query, key, value = torch.split(qkv, split_size, dim=-1)
1338
+ else:
1339
+ if attn.norm_cross:
1340
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
1341
+ query = attn.to_q(hidden_states, *args)
1342
+
1343
+ kv = attn.to_kv(encoder_hidden_states, *args)
1344
+ split_size = kv.shape[-1] // 2
1345
+ key, value = torch.split(kv, split_size, dim=-1)
1346
+
1347
+ inner_dim = key.shape[-1]
1348
+ head_dim = inner_dim // attn.heads
1349
+
1350
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
1351
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
1352
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
1353
+
1354
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
1355
+ # TODO: add support for attn.scale when we move to Torch 2.1
1356
+ hidden_states = F.scaled_dot_product_attention(
1357
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
1358
+ )
1359
+
1360
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
1361
+ hidden_states = hidden_states.to(query.dtype)
1362
+
1363
+ # linear proj
1364
+ hidden_states = attn.to_out[0](hidden_states, *args)
1365
+ # dropout
1366
+ hidden_states = attn.to_out[1](hidden_states)
1367
+
1368
+ if input_ndim == 4:
1369
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
1370
+
1371
+ if attn.residual_connection:
1372
+ hidden_states = hidden_states + residual
1373
+
1374
+ hidden_states = hidden_states / attn.rescale_output_factor
1375
+
1376
+ return hidden_states
1377
+
1378
+
1254
1379
  class CustomDiffusionXFormersAttnProcessor(nn.Module):
1255
1380
  r"""
1256
1381
  Processor for implementing memory efficient attention using xFormers for the Custom Diffusion method.
@@ -2219,44 +2344,6 @@ class IPAdapterAttnProcessor2_0(torch.nn.Module):
2219
2344
  return hidden_states
2220
2345
 
2221
2346
 
2222
- # TODO(Yiyi): This class should not exist, we can replace it with a normal attention processor I believe
2223
- # this way torch.compile and co. will work as well
2224
- class Kandi3AttnProcessor:
2225
- r"""
2226
- Default kandinsky3 proccesor for performing attention-related computations.
2227
- """
2228
-
2229
- @staticmethod
2230
- def _reshape(hid_states, h):
2231
- b, n, f = hid_states.shape
2232
- d = f // h
2233
- return hid_states.unsqueeze(-1).reshape(b, n, h, d).permute(0, 2, 1, 3)
2234
-
2235
- def __call__(
2236
- self,
2237
- attn,
2238
- x,
2239
- context,
2240
- context_mask=None,
2241
- ):
2242
- query = self._reshape(attn.to_q(x), h=attn.num_heads)
2243
- key = self._reshape(attn.to_k(context), h=attn.num_heads)
2244
- value = self._reshape(attn.to_v(context), h=attn.num_heads)
2245
-
2246
- attention_matrix = einsum("b h i d, b h j d -> b h i j", query, key)
2247
-
2248
- if context_mask is not None:
2249
- max_neg_value = -torch.finfo(attention_matrix.dtype).max
2250
- context_mask = context_mask.unsqueeze(1).unsqueeze(1)
2251
- attention_matrix = attention_matrix.masked_fill(~(context_mask != 0), max_neg_value)
2252
- attention_matrix = (attention_matrix * attn.scale).softmax(dim=-1)
2253
-
2254
- out = einsum("b h i j, b h j d -> b h i d", attention_matrix, value)
2255
- out = out.permute(0, 2, 1, 3).reshape(out.shape[0], out.shape[2], -1)
2256
- out = attn.to_out[0](out)
2257
- return out
2258
-
2259
-
2260
2347
  LORA_ATTENTION_PROCESSORS = (
2261
2348
  LoRAAttnProcessor,
2262
2349
  LoRAAttnProcessor2_0,
@@ -2282,12 +2369,12 @@ CROSS_ATTENTION_PROCESSORS = (
2282
2369
  LoRAXFormersAttnProcessor,
2283
2370
  IPAdapterAttnProcessor,
2284
2371
  IPAdapterAttnProcessor2_0,
2285
- Kandi3AttnProcessor,
2286
2372
  )
2287
2373
 
2288
2374
  AttentionProcessor = Union[
2289
2375
  AttnProcessor,
2290
2376
  AttnProcessor2_0,
2377
+ FusedAttnProcessor2_0,
2291
2378
  XFormersAttnProcessor,
2292
2379
  SlicedAttnProcessor,
2293
2380
  AttnAddedKVProcessor,
@@ -0,0 +1,5 @@
1
+ from .autoencoder_asym_kl import AsymmetricAutoencoderKL
2
+ from .autoencoder_kl import AutoencoderKL
3
+ from .autoencoder_kl_temporal_decoder import AutoencoderKLTemporalDecoder
4
+ from .autoencoder_tiny import AutoencoderTiny
5
+ from .consistency_decoder_vae import ConsistencyDecoderVAE
@@ -16,10 +16,10 @@ from typing import Optional, Tuple, Union
16
16
  import torch
17
17
  import torch.nn as nn
18
18
 
19
- from ..configuration_utils import ConfigMixin, register_to_config
20
- from ..utils.accelerate_utils import apply_forward_hook
21
- from .modeling_outputs import AutoencoderKLOutput
22
- from .modeling_utils import ModelMixin
19
+ from ...configuration_utils import ConfigMixin, register_to_config
20
+ from ...utils.accelerate_utils import apply_forward_hook
21
+ from ..modeling_outputs import AutoencoderKLOutput
22
+ from ..modeling_utils import ModelMixin
23
23
  from .vae import DecoderOutput, DiagonalGaussianDistribution, Encoder, MaskConditionDecoder
24
24
 
25
25
 
@@ -16,18 +16,19 @@ from typing import Dict, Optional, Tuple, Union
16
16
  import torch
17
17
  import torch.nn as nn
18
18
 
19
- from ..configuration_utils import ConfigMixin, register_to_config
20
- from ..loaders import FromOriginalVAEMixin
21
- from ..utils.accelerate_utils import apply_forward_hook
22
- from .attention_processor import (
19
+ from ...configuration_utils import ConfigMixin, register_to_config
20
+ from ...loaders import FromOriginalVAEMixin
21
+ from ...utils.accelerate_utils import apply_forward_hook
22
+ from ..attention_processor import (
23
23
  ADDED_KV_ATTENTION_PROCESSORS,
24
24
  CROSS_ATTENTION_PROCESSORS,
25
+ Attention,
25
26
  AttentionProcessor,
26
27
  AttnAddedKVProcessor,
27
28
  AttnProcessor,
28
29
  )
29
- from .modeling_outputs import AutoencoderKLOutput
30
- from .modeling_utils import ModelMixin
30
+ from ..modeling_outputs import AutoencoderKLOutput
31
+ from ..modeling_utils import ModelMixin
31
32
  from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
32
33
 
33
34
 
@@ -448,3 +449,41 @@ class AutoencoderKL(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
448
449
  return (dec,)
449
450
 
450
451
  return DecoderOutput(sample=dec)
452
+
453
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
454
+ def fuse_qkv_projections(self):
455
+ """
456
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
457
+ key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
458
+
459
+ <Tip warning={true}>
460
+
461
+ This API is 🧪 experimental.
462
+
463
+ </Tip>
464
+ """
465
+ self.original_attn_processors = None
466
+
467
+ for _, attn_processor in self.attn_processors.items():
468
+ if "Added" in str(attn_processor.__class__.__name__):
469
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
470
+
471
+ self.original_attn_processors = self.attn_processors
472
+
473
+ for module in self.modules():
474
+ if isinstance(module, Attention):
475
+ module.fuse_projections(fuse=True)
476
+
477
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
478
+ def unfuse_qkv_projections(self):
479
+ """Disables the fused QKV projection if enabled.
480
+
481
+ <Tip warning={true}>
482
+
483
+ This API is 🧪 experimental.
484
+
485
+ </Tip>
486
+
487
+ """
488
+ if self.original_attn_processors is not None:
489
+ self.set_attn_processor(self.original_attn_processors)
@@ -16,14 +16,14 @@ from typing import Dict, Optional, Tuple, Union
16
16
  import torch
17
17
  import torch.nn as nn
18
18
 
19
- from ..configuration_utils import ConfigMixin, register_to_config
20
- from ..loaders import FromOriginalVAEMixin
21
- from ..utils import is_torch_version
22
- from ..utils.accelerate_utils import apply_forward_hook
23
- from .attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor
24
- from .modeling_outputs import AutoencoderKLOutput
25
- from .modeling_utils import ModelMixin
26
- from .unet_3d_blocks import MidBlockTemporalDecoder, UpBlockTemporalDecoder
19
+ from ...configuration_utils import ConfigMixin, register_to_config
20
+ from ...loaders import FromOriginalVAEMixin
21
+ from ...utils import is_torch_version
22
+ from ...utils.accelerate_utils import apply_forward_hook
23
+ from ..attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor
24
+ from ..modeling_outputs import AutoencoderKLOutput
25
+ from ..modeling_utils import ModelMixin
26
+ from ..unet_3d_blocks import MidBlockTemporalDecoder, UpBlockTemporalDecoder
27
27
  from .vae import DecoderOutput, DiagonalGaussianDistribution, Encoder
28
28
 
29
29
 
@@ -18,10 +18,10 @@ from typing import Optional, Tuple, Union
18
18
 
19
19
  import torch
20
20
 
21
- from ..configuration_utils import ConfigMixin, register_to_config
22
- from ..utils import BaseOutput
23
- from ..utils.accelerate_utils import apply_forward_hook
24
- from .modeling_utils import ModelMixin
21
+ from ...configuration_utils import ConfigMixin, register_to_config
22
+ from ...utils import BaseOutput
23
+ from ...utils.accelerate_utils import apply_forward_hook
24
+ from ..modeling_utils import ModelMixin
25
25
  from .vae import DecoderOutput, DecoderTiny, EncoderTiny
26
26
 
27
27