diffusers 0.24.0__py3-none-any.whl → 0.25.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +11 -1
- diffusers/commands/fp16_safetensors.py +10 -11
- diffusers/configuration_utils.py +12 -8
- diffusers/dependency_versions_table.py +2 -1
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +286 -46
- diffusers/loaders/ip_adapter.py +11 -9
- diffusers/loaders/lora.py +198 -60
- diffusers/loaders/single_file.py +24 -18
- diffusers/loaders/textual_inversion.py +10 -14
- diffusers/loaders/unet.py +130 -37
- diffusers/models/__init__.py +18 -12
- diffusers/models/activations.py +9 -6
- diffusers/models/attention.py +137 -16
- diffusers/models/attention_processor.py +133 -46
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +4 -4
- diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +45 -6
- diffusers/models/{autoencoder_kl_temporal_decoder.py → autoencoders/autoencoder_kl_temporal_decoder.py} +8 -8
- diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +4 -4
- diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +14 -14
- diffusers/models/{vae.py → autoencoders/vae.py} +9 -5
- diffusers/models/downsampling.py +338 -0
- diffusers/models/embeddings.py +112 -29
- diffusers/models/modeling_flax_utils.py +12 -7
- diffusers/models/modeling_utils.py +10 -10
- diffusers/models/normalization.py +108 -2
- diffusers/models/resnet.py +15 -699
- diffusers/models/transformer_2d.py +2 -2
- diffusers/models/unet_2d_condition.py +37 -0
- diffusers/models/{unet_kandi3.py → unet_kandinsky3.py} +105 -159
- diffusers/models/upsampling.py +454 -0
- diffusers/models/uvit_2d.py +471 -0
- diffusers/models/vq_model.py +9 -2
- diffusers/pipelines/__init__.py +81 -73
- diffusers/pipelines/amused/__init__.py +62 -0
- diffusers/pipelines/amused/pipeline_amused.py +328 -0
- diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +38 -10
- diffusers/pipelines/auto_pipeline.py +17 -13
- diffusers/pipelines/controlnet/pipeline_controlnet.py +27 -10
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +47 -5
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +25 -8
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +4 -6
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +26 -10
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +4 -3
- diffusers/pipelines/deprecated/__init__.py +153 -0
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +91 -18
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +91 -18
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
- diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
- diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
- diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
- diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +4 -4
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
- diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +16 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +6 -6
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +11 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +16 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +10 -10
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +13 -13
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +54 -11
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +6 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +6 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +6 -6
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/kandinsky3/__init__.py +4 -4
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
- diffusers/pipelines/kandinsky3/{kandinsky3_pipeline.py → pipeline_kandinsky3.py} +172 -35
- diffusers/pipelines/kandinsky3/{kandinsky3img2img_pipeline.py → pipeline_kandinsky3_img2img.py} +228 -34
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +46 -5
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +47 -6
- diffusers/pipelines/onnx_utils.py +8 -5
- diffusers/pipelines/pipeline_flax_utils.py +7 -6
- diffusers/pipelines/pipeline_utils.py +30 -29
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +51 -2
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
- diffusers/pipelines/stable_diffusion/__init__.py +1 -72
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +67 -75
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +92 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +138 -10
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +57 -7
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +3 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +6 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +5 -2
- diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +2 -3
- diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +2 -2
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +3 -3
- diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +6 -1
- diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +50 -7
- diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +56 -8
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
- diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +67 -10
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +97 -15
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +98 -14
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +97 -14
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +7 -5
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +12 -9
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +6 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +5 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +5 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +331 -9
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +468 -9
- diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +4 -0
- diffusers/schedulers/__init__.py +2 -0
- diffusers/schedulers/scheduling_amused.py +162 -0
- diffusers/schedulers/scheduling_consistency_models.py +2 -0
- diffusers/schedulers/scheduling_ddim_inverse.py +1 -4
- diffusers/schedulers/scheduling_ddpm.py +46 -0
- diffusers/schedulers/scheduling_ddpm_parallel.py +46 -0
- diffusers/schedulers/scheduling_deis_multistep.py +13 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +13 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +13 -1
- diffusers/schedulers/scheduling_dpmsolver_sde.py +2 -0
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +13 -1
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +58 -0
- diffusers/schedulers/scheduling_euler_discrete.py +62 -3
- diffusers/schedulers/scheduling_heun_discrete.py +2 -0
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +2 -0
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +2 -0
- diffusers/schedulers/scheduling_lms_discrete.py +2 -0
- diffusers/schedulers/scheduling_unipc_multistep.py +13 -1
- diffusers/schedulers/scheduling_utils.py +3 -1
- diffusers/schedulers/scheduling_utils_flax.py +3 -1
- diffusers/training_utils.py +1 -1
- diffusers/utils/__init__.py +0 -2
- diffusers/utils/constants.py +2 -5
- diffusers/utils/dummy_pt_objects.py +30 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +45 -0
- diffusers/utils/dynamic_modules_utils.py +14 -18
- diffusers/utils/hub_utils.py +24 -36
- diffusers/utils/logging.py +1 -1
- diffusers/utils/state_dict_utils.py +8 -0
- diffusers/utils/testing_utils.py +199 -1
- diffusers/utils/torch_utils.py +3 -3
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/METADATA +54 -53
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/RECORD +174 -155
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
- /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -24,7 +24,7 @@ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPV
|
|
24
24
|
|
25
25
|
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
26
26
|
from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
27
|
-
from ...models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
|
27
|
+
from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
|
28
28
|
from ...models.lora import adjust_lora_scale_text_encoder
|
29
29
|
from ...schedulers import KarrasDiffusionSchedulers
|
30
30
|
from ...utils import (
|
@@ -147,6 +147,9 @@ class StableDiffusionControlNetPipeline(
|
|
147
147
|
|
148
148
|
The pipeline also inherits the following loading methods:
|
149
149
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
150
|
+
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
151
|
+
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
152
|
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
150
153
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
151
154
|
|
152
155
|
Args:
|
@@ -173,7 +176,7 @@ class StableDiffusionControlNetPipeline(
|
|
173
176
|
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
174
177
|
"""
|
175
178
|
|
176
|
-
model_cpu_offload_seq = "text_encoder->unet->vae"
|
179
|
+
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
177
180
|
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
178
181
|
_exclude_from_cpu_offload = ["safety_checker"]
|
179
182
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
@@ -479,18 +482,29 @@ class StableDiffusionControlNetPipeline(
|
|
479
482
|
return prompt_embeds, negative_prompt_embeds
|
480
483
|
|
481
484
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
482
|
-
def encode_image(self, image, device, num_images_per_prompt):
|
485
|
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
483
486
|
dtype = next(self.image_encoder.parameters()).dtype
|
484
487
|
|
485
488
|
if not isinstance(image, torch.Tensor):
|
486
489
|
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
487
490
|
|
488
491
|
image = image.to(device=device, dtype=dtype)
|
489
|
-
|
490
|
-
|
492
|
+
if output_hidden_states:
|
493
|
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
494
|
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
495
|
+
uncond_image_enc_hidden_states = self.image_encoder(
|
496
|
+
torch.zeros_like(image), output_hidden_states=True
|
497
|
+
).hidden_states[-2]
|
498
|
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
499
|
+
num_images_per_prompt, dim=0
|
500
|
+
)
|
501
|
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
502
|
+
else:
|
503
|
+
image_embeds = self.image_encoder(image).image_embeds
|
504
|
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
505
|
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
491
506
|
|
492
|
-
|
493
|
-
return image_embeds, uncond_image_embeds
|
507
|
+
return image_embeds, uncond_image_embeds
|
494
508
|
|
495
509
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
496
510
|
def run_safety_checker(self, image, device, dtype):
|
@@ -619,7 +633,7 @@ class StableDiffusionControlNetPipeline(
|
|
619
633
|
# When `image` is a nested list:
|
620
634
|
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
|
621
635
|
elif any(isinstance(i, list) for i in image):
|
622
|
-
raise ValueError("A single batch of multiple conditionings
|
636
|
+
raise ValueError("A single batch of multiple conditionings is not supported at the moment.")
|
623
637
|
elif len(image) != len(self.controlnet.nets):
|
624
638
|
raise ValueError(
|
625
639
|
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
|
@@ -645,7 +659,7 @@ class StableDiffusionControlNetPipeline(
|
|
645
659
|
):
|
646
660
|
if isinstance(controlnet_conditioning_scale, list):
|
647
661
|
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
|
648
|
-
raise ValueError("A single batch of multiple conditionings
|
662
|
+
raise ValueError("A single batch of multiple conditionings is not supported at the moment.")
|
649
663
|
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
|
650
664
|
self.controlnet.nets
|
651
665
|
):
|
@@ -1067,7 +1081,10 @@ class StableDiffusionControlNetPipeline(
|
|
1067
1081
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
1068
1082
|
|
1069
1083
|
if ip_adapter_image is not None:
|
1070
|
-
|
1084
|
+
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
|
1085
|
+
image_embeds, negative_image_embeds = self.encode_image(
|
1086
|
+
ip_adapter_image, device, num_images_per_prompt, output_hidden_state
|
1087
|
+
)
|
1071
1088
|
if self.do_classifier_free_guidance:
|
1072
1089
|
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
1073
1090
|
|
@@ -19,10 +19,10 @@ import numpy as np
|
|
19
19
|
import PIL.Image
|
20
20
|
import torch
|
21
21
|
import torch.nn.functional as F
|
22
|
-
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
22
|
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
23
23
|
|
24
24
|
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
25
|
-
from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
25
|
+
from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
26
26
|
from ...models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
|
27
27
|
from ...models.lora import adjust_lora_scale_text_encoder
|
28
28
|
from ...schedulers import KarrasDiffusionSchedulers
|
@@ -130,7 +130,7 @@ def prepare_image(image):
|
|
130
130
|
|
131
131
|
|
132
132
|
class StableDiffusionControlNetImg2ImgPipeline(
|
133
|
-
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
|
133
|
+
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
|
134
134
|
):
|
135
135
|
r"""
|
136
136
|
Pipeline for image-to-image generation using Stable Diffusion with ControlNet guidance.
|
@@ -140,6 +140,10 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
140
140
|
|
141
141
|
The pipeline also inherits the following loading methods:
|
142
142
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
143
|
+
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
144
|
+
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
145
|
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
146
|
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
143
147
|
|
144
148
|
Args:
|
145
149
|
vae ([`AutoencoderKL`]):
|
@@ -166,7 +170,7 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
166
170
|
"""
|
167
171
|
|
168
172
|
model_cpu_offload_seq = "text_encoder->unet->vae"
|
169
|
-
_optional_components = ["safety_checker", "feature_extractor"]
|
173
|
+
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
170
174
|
_exclude_from_cpu_offload = ["safety_checker"]
|
171
175
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
172
176
|
|
@@ -180,6 +184,7 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
180
184
|
scheduler: KarrasDiffusionSchedulers,
|
181
185
|
safety_checker: StableDiffusionSafetyChecker,
|
182
186
|
feature_extractor: CLIPImageProcessor,
|
187
|
+
image_encoder: CLIPVisionModelWithProjection = None,
|
183
188
|
requires_safety_checker: bool = True,
|
184
189
|
):
|
185
190
|
super().__init__()
|
@@ -212,6 +217,7 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
212
217
|
scheduler=scheduler,
|
213
218
|
safety_checker=safety_checker,
|
214
219
|
feature_extractor=feature_extractor,
|
220
|
+
image_encoder=image_encoder,
|
215
221
|
)
|
216
222
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
217
223
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
|
@@ -468,6 +474,31 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
468
474
|
|
469
475
|
return prompt_embeds, negative_prompt_embeds
|
470
476
|
|
477
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
478
|
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
479
|
+
dtype = next(self.image_encoder.parameters()).dtype
|
480
|
+
|
481
|
+
if not isinstance(image, torch.Tensor):
|
482
|
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
483
|
+
|
484
|
+
image = image.to(device=device, dtype=dtype)
|
485
|
+
if output_hidden_states:
|
486
|
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
487
|
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
488
|
+
uncond_image_enc_hidden_states = self.image_encoder(
|
489
|
+
torch.zeros_like(image), output_hidden_states=True
|
490
|
+
).hidden_states[-2]
|
491
|
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
492
|
+
num_images_per_prompt, dim=0
|
493
|
+
)
|
494
|
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
495
|
+
else:
|
496
|
+
image_embeds = self.image_encoder(image).image_embeds
|
497
|
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
498
|
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
499
|
+
|
500
|
+
return image_embeds, uncond_image_embeds
|
501
|
+
|
471
502
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
472
503
|
def run_safety_checker(self, image, device, dtype):
|
473
504
|
if self.safety_checker is None:
|
@@ -861,6 +892,7 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
861
892
|
latents: Optional[torch.FloatTensor] = None,
|
862
893
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
863
894
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
895
|
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
864
896
|
output_type: Optional[str] = "pil",
|
865
897
|
return_dict: bool = True,
|
866
898
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
@@ -922,6 +954,7 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
922
954
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
923
955
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
924
956
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
957
|
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
925
958
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
926
959
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
927
960
|
return_dict (`bool`, *optional*, defaults to `True`):
|
@@ -1053,6 +1086,11 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
1053
1086
|
if self.do_classifier_free_guidance:
|
1054
1087
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
1055
1088
|
|
1089
|
+
if ip_adapter_image is not None:
|
1090
|
+
image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
|
1091
|
+
if self.do_classifier_free_guidance:
|
1092
|
+
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
1093
|
+
|
1056
1094
|
# 4. Prepare image
|
1057
1095
|
image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
1058
1096
|
|
@@ -1111,7 +1149,10 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
1111
1149
|
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1112
1150
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1113
1151
|
|
1114
|
-
# 7.1
|
1152
|
+
# 7.1 Add image embeds for IP-Adapter
|
1153
|
+
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
|
1154
|
+
|
1155
|
+
# 7.2 Create tensor stating which controlnets to keep
|
1115
1156
|
controlnet_keep = []
|
1116
1157
|
for i in range(len(timesteps)):
|
1117
1158
|
keeps = [
|
@@ -1171,6 +1212,7 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
1171
1212
|
cross_attention_kwargs=self.cross_attention_kwargs,
|
1172
1213
|
down_block_additional_residuals=down_block_res_samples,
|
1173
1214
|
mid_block_additional_residual=mid_block_res_sample,
|
1215
|
+
added_cond_kwargs=added_cond_kwargs,
|
1174
1216
|
return_dict=False,
|
1175
1217
|
)[0]
|
1176
1218
|
|
@@ -25,7 +25,7 @@ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPV
|
|
25
25
|
|
26
26
|
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
27
27
|
from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
28
|
-
from ...models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
|
28
|
+
from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
|
29
29
|
from ...models.lora import adjust_lora_scale_text_encoder
|
30
30
|
from ...schedulers import KarrasDiffusionSchedulers
|
31
31
|
from ...utils import (
|
@@ -251,6 +251,9 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
251
251
|
|
252
252
|
The pipeline also inherits the following loading methods:
|
253
253
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
254
|
+
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
255
|
+
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
256
|
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
254
257
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
255
258
|
|
256
259
|
<Tip>
|
@@ -288,7 +291,7 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
288
291
|
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
289
292
|
"""
|
290
293
|
|
291
|
-
model_cpu_offload_seq = "text_encoder->unet->vae"
|
294
|
+
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
292
295
|
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
293
296
|
_exclude_from_cpu_offload = ["safety_checker"]
|
294
297
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
@@ -597,18 +600,29 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
597
600
|
return prompt_embeds, negative_prompt_embeds
|
598
601
|
|
599
602
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
600
|
-
def encode_image(self, image, device, num_images_per_prompt):
|
603
|
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
601
604
|
dtype = next(self.image_encoder.parameters()).dtype
|
602
605
|
|
603
606
|
if not isinstance(image, torch.Tensor):
|
604
607
|
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
605
608
|
|
606
609
|
image = image.to(device=device, dtype=dtype)
|
607
|
-
|
608
|
-
|
610
|
+
if output_hidden_states:
|
611
|
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
612
|
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
613
|
+
uncond_image_enc_hidden_states = self.image_encoder(
|
614
|
+
torch.zeros_like(image), output_hidden_states=True
|
615
|
+
).hidden_states[-2]
|
616
|
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
617
|
+
num_images_per_prompt, dim=0
|
618
|
+
)
|
619
|
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
620
|
+
else:
|
621
|
+
image_embeds = self.image_encoder(image).image_embeds
|
622
|
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
623
|
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
609
624
|
|
610
|
-
|
611
|
-
return image_embeds, uncond_image_embeds
|
625
|
+
return image_embeds, uncond_image_embeds
|
612
626
|
|
613
627
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
614
628
|
def run_safety_checker(self, image, device, dtype):
|
@@ -1284,7 +1298,10 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
1284
1298
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
1285
1299
|
|
1286
1300
|
if ip_adapter_image is not None:
|
1287
|
-
|
1301
|
+
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
|
1302
|
+
image_embeds, negative_image_embeds = self.encode_image(
|
1303
|
+
ip_adapter_image, device, num_images_per_prompt, output_hidden_state
|
1304
|
+
)
|
1288
1305
|
if self.do_classifier_free_guidance:
|
1289
1306
|
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
1290
1307
|
|
@@ -148,12 +148,10 @@ class StableDiffusionXLControlNetInpaintPipeline(
|
|
148
148
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
149
149
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
150
150
|
|
151
|
-
|
152
|
-
-
|
153
|
-
-
|
154
|
-
|
155
|
-
as well as the following saving methods:
|
156
|
-
- *LoRA*: [`loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`]
|
151
|
+
The pipeline also inherits the following loading methods:
|
152
|
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
153
|
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
154
|
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
157
155
|
|
158
156
|
Args:
|
159
157
|
vae ([`AutoencoderKL`]):
|
@@ -37,7 +37,7 @@ from ...loaders import (
|
|
37
37
|
StableDiffusionXLLoraLoaderMixin,
|
38
38
|
TextualInversionLoaderMixin,
|
39
39
|
)
|
40
|
-
from ...models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
|
40
|
+
from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
|
41
41
|
from ...models.attention_processor import (
|
42
42
|
AttnProcessor2_0,
|
43
43
|
LoRAAttnProcessor2_0,
|
@@ -129,8 +129,10 @@ class StableDiffusionXLControlNetPipeline(
|
|
129
129
|
|
130
130
|
The pipeline also inherits the following loading methods:
|
131
131
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
132
|
-
- [
|
133
|
-
- [
|
132
|
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
133
|
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
134
|
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
135
|
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
134
136
|
|
135
137
|
Args:
|
136
138
|
vae ([`AutoencoderKL`]):
|
@@ -163,7 +165,7 @@ class StableDiffusionXLControlNetPipeline(
|
|
163
165
|
"""
|
164
166
|
|
165
167
|
# leave controlnet out on purpose because it iterates with unet
|
166
|
-
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
168
|
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
|
167
169
|
_optional_components = [
|
168
170
|
"tokenizer",
|
169
171
|
"tokenizer_2",
|
@@ -489,18 +491,29 @@ class StableDiffusionXLControlNetPipeline(
|
|
489
491
|
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
490
492
|
|
491
493
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
492
|
-
def encode_image(self, image, device, num_images_per_prompt):
|
494
|
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
493
495
|
dtype = next(self.image_encoder.parameters()).dtype
|
494
496
|
|
495
497
|
if not isinstance(image, torch.Tensor):
|
496
498
|
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
497
499
|
|
498
500
|
image = image.to(device=device, dtype=dtype)
|
499
|
-
|
500
|
-
|
501
|
+
if output_hidden_states:
|
502
|
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
503
|
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
504
|
+
uncond_image_enc_hidden_states = self.image_encoder(
|
505
|
+
torch.zeros_like(image), output_hidden_states=True
|
506
|
+
).hidden_states[-2]
|
507
|
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
508
|
+
num_images_per_prompt, dim=0
|
509
|
+
)
|
510
|
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
511
|
+
else:
|
512
|
+
image_embeds = self.image_encoder(image).image_embeds
|
513
|
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
514
|
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
501
515
|
|
502
|
-
|
503
|
-
return image_embeds, uncond_image_embeds
|
516
|
+
return image_embeds, uncond_image_embeds
|
504
517
|
|
505
518
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
506
519
|
def prepare_extra_step_kwargs(self, generator, eta):
|
@@ -1169,7 +1182,10 @@ class StableDiffusionXLControlNetPipeline(
|
|
1169
1182
|
|
1170
1183
|
# 3.2 Encode ip_adapter_image
|
1171
1184
|
if ip_adapter_image is not None:
|
1172
|
-
|
1185
|
+
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
|
1186
|
+
image_embeds, negative_image_embeds = self.encode_image(
|
1187
|
+
ip_adapter_image, device, num_images_per_prompt, output_hidden_state
|
1188
|
+
)
|
1173
1189
|
if self.do_classifier_free_guidance:
|
1174
1190
|
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
1175
1191
|
|
@@ -155,9 +155,10 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
155
155
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
156
156
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
157
157
|
|
158
|
-
|
159
|
-
-
|
160
|
-
-
|
158
|
+
The pipeline also inherits the following loading methods:
|
159
|
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
160
|
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
161
|
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
161
162
|
|
162
163
|
Args:
|
163
164
|
vae ([`AutoencoderKL`]):
|
@@ -0,0 +1,153 @@
|
|
1
|
+
from typing import TYPE_CHECKING
|
2
|
+
|
3
|
+
from ...utils import (
|
4
|
+
DIFFUSERS_SLOW_IMPORT,
|
5
|
+
OptionalDependencyNotAvailable,
|
6
|
+
_LazyModule,
|
7
|
+
get_objects_from_module,
|
8
|
+
is_librosa_available,
|
9
|
+
is_note_seq_available,
|
10
|
+
is_torch_available,
|
11
|
+
is_transformers_available,
|
12
|
+
)
|
13
|
+
|
14
|
+
|
15
|
+
_dummy_objects = {}
|
16
|
+
_import_structure = {}
|
17
|
+
|
18
|
+
try:
|
19
|
+
if not is_torch_available():
|
20
|
+
raise OptionalDependencyNotAvailable()
|
21
|
+
except OptionalDependencyNotAvailable:
|
22
|
+
from ...utils import dummy_pt_objects
|
23
|
+
|
24
|
+
_dummy_objects.update(get_objects_from_module(dummy_pt_objects))
|
25
|
+
else:
|
26
|
+
_import_structure["latent_diffusion_uncond"] = ["LDMPipeline"]
|
27
|
+
_import_structure["pndm"] = ["PNDMPipeline"]
|
28
|
+
_import_structure["repaint"] = ["RePaintPipeline"]
|
29
|
+
_import_structure["score_sde_ve"] = ["ScoreSdeVePipeline"]
|
30
|
+
_import_structure["stochastic_karras_ve"] = ["KarrasVePipeline"]
|
31
|
+
|
32
|
+
try:
|
33
|
+
if not (is_transformers_available() and is_torch_available()):
|
34
|
+
raise OptionalDependencyNotAvailable()
|
35
|
+
except OptionalDependencyNotAvailable:
|
36
|
+
from ...utils import dummy_torch_and_transformers_objects
|
37
|
+
|
38
|
+
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
39
|
+
else:
|
40
|
+
_import_structure["alt_diffusion"] = [
|
41
|
+
"AltDiffusionImg2ImgPipeline",
|
42
|
+
"AltDiffusionPipeline",
|
43
|
+
"AltDiffusionPipelineOutput",
|
44
|
+
]
|
45
|
+
_import_structure["versatile_diffusion"] = [
|
46
|
+
"VersatileDiffusionDualGuidedPipeline",
|
47
|
+
"VersatileDiffusionImageVariationPipeline",
|
48
|
+
"VersatileDiffusionPipeline",
|
49
|
+
"VersatileDiffusionTextToImagePipeline",
|
50
|
+
]
|
51
|
+
_import_structure["vq_diffusion"] = ["VQDiffusionPipeline"]
|
52
|
+
_import_structure["stable_diffusion_variants"] = [
|
53
|
+
"CycleDiffusionPipeline",
|
54
|
+
"StableDiffusionInpaintPipelineLegacy",
|
55
|
+
"StableDiffusionPix2PixZeroPipeline",
|
56
|
+
"StableDiffusionParadigmsPipeline",
|
57
|
+
"StableDiffusionModelEditingPipeline",
|
58
|
+
]
|
59
|
+
|
60
|
+
try:
|
61
|
+
if not (is_torch_available() and is_librosa_available()):
|
62
|
+
raise OptionalDependencyNotAvailable()
|
63
|
+
except OptionalDependencyNotAvailable:
|
64
|
+
from ...utils import dummy_torch_and_librosa_objects # noqa F403
|
65
|
+
|
66
|
+
_dummy_objects.update(get_objects_from_module(dummy_torch_and_librosa_objects))
|
67
|
+
|
68
|
+
else:
|
69
|
+
_import_structure["audio_diffusion"] = ["AudioDiffusionPipeline", "Mel"]
|
70
|
+
|
71
|
+
try:
|
72
|
+
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
|
73
|
+
raise OptionalDependencyNotAvailable()
|
74
|
+
except OptionalDependencyNotAvailable:
|
75
|
+
from ...utils import dummy_transformers_and_torch_and_note_seq_objects # noqa F403
|
76
|
+
|
77
|
+
_dummy_objects.update(get_objects_from_module(dummy_transformers_and_torch_and_note_seq_objects))
|
78
|
+
|
79
|
+
else:
|
80
|
+
_import_structure["spectrogram_diffusion"] = ["MidiProcessor", "SpectrogramDiffusionPipeline"]
|
81
|
+
|
82
|
+
|
83
|
+
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
84
|
+
try:
|
85
|
+
if not is_torch_available():
|
86
|
+
raise OptionalDependencyNotAvailable()
|
87
|
+
except OptionalDependencyNotAvailable:
|
88
|
+
from ...utils.dummy_pt_objects import *
|
89
|
+
|
90
|
+
else:
|
91
|
+
from .latent_diffusion_uncond import LDMPipeline
|
92
|
+
from .pndm import PNDMPipeline
|
93
|
+
from .repaint import RePaintPipeline
|
94
|
+
from .score_sde_ve import ScoreSdeVePipeline
|
95
|
+
from .stochastic_karras_ve import KarrasVePipeline
|
96
|
+
|
97
|
+
try:
|
98
|
+
if not (is_transformers_available() and is_torch_available()):
|
99
|
+
raise OptionalDependencyNotAvailable()
|
100
|
+
except OptionalDependencyNotAvailable:
|
101
|
+
from ...utils.dummy_torch_and_transformers_objects import *
|
102
|
+
|
103
|
+
else:
|
104
|
+
from .alt_diffusion import AltDiffusionImg2ImgPipeline, AltDiffusionPipeline, AltDiffusionPipelineOutput
|
105
|
+
from .audio_diffusion import AudioDiffusionPipeline, Mel
|
106
|
+
from .spectrogram_diffusion import SpectrogramDiffusionPipeline
|
107
|
+
from .stable_diffusion_variants import (
|
108
|
+
CycleDiffusionPipeline,
|
109
|
+
StableDiffusionInpaintPipelineLegacy,
|
110
|
+
StableDiffusionModelEditingPipeline,
|
111
|
+
StableDiffusionParadigmsPipeline,
|
112
|
+
StableDiffusionPix2PixZeroPipeline,
|
113
|
+
)
|
114
|
+
from .stochastic_karras_ve import KarrasVePipeline
|
115
|
+
from .versatile_diffusion import (
|
116
|
+
VersatileDiffusionDualGuidedPipeline,
|
117
|
+
VersatileDiffusionImageVariationPipeline,
|
118
|
+
VersatileDiffusionPipeline,
|
119
|
+
VersatileDiffusionTextToImagePipeline,
|
120
|
+
)
|
121
|
+
from .vq_diffusion import VQDiffusionPipeline
|
122
|
+
|
123
|
+
try:
|
124
|
+
if not (is_torch_available() and is_librosa_available()):
|
125
|
+
raise OptionalDependencyNotAvailable()
|
126
|
+
except OptionalDependencyNotAvailable:
|
127
|
+
from ...utils.dummy_torch_and_librosa_objects import *
|
128
|
+
else:
|
129
|
+
from .audio_diffusion import AudioDiffusionPipeline, Mel
|
130
|
+
|
131
|
+
try:
|
132
|
+
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
|
133
|
+
raise OptionalDependencyNotAvailable()
|
134
|
+
except OptionalDependencyNotAvailable:
|
135
|
+
from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
|
136
|
+
else:
|
137
|
+
from .spectrogram_diffusion import (
|
138
|
+
MidiProcessor,
|
139
|
+
SpectrogramDiffusionPipeline,
|
140
|
+
)
|
141
|
+
|
142
|
+
|
143
|
+
else:
|
144
|
+
import sys
|
145
|
+
|
146
|
+
sys.modules[__name__] = _LazyModule(
|
147
|
+
__name__,
|
148
|
+
globals()["__file__"],
|
149
|
+
_import_structure,
|
150
|
+
module_spec=__spec__,
|
151
|
+
)
|
152
|
+
for name, value in _dummy_objects.items():
|
153
|
+
setattr(sys.modules[__name__], name, value)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
from typing import TYPE_CHECKING
|
2
2
|
|
3
|
-
from
|
3
|
+
from ....utils import (
|
4
4
|
DIFFUSERS_SLOW_IMPORT,
|
5
5
|
OptionalDependencyNotAvailable,
|
6
6
|
_LazyModule,
|
@@ -17,7 +17,7 @@ try:
|
|
17
17
|
if not (is_transformers_available() and is_torch_available()):
|
18
18
|
raise OptionalDependencyNotAvailable()
|
19
19
|
except OptionalDependencyNotAvailable:
|
20
|
-
from
|
20
|
+
from ....utils import dummy_torch_and_transformers_objects
|
21
21
|
|
22
22
|
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
23
23
|
else:
|
@@ -32,7 +32,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
|
32
32
|
if not (is_transformers_available() and is_torch_available()):
|
33
33
|
raise OptionalDependencyNotAvailable()
|
34
34
|
except OptionalDependencyNotAvailable:
|
35
|
-
from
|
35
|
+
from ....utils.dummy_torch_and_transformers_objects import *
|
36
36
|
|
37
37
|
else:
|
38
38
|
from .modeling_roberta_series import RobertaSeriesModelWithTransformation
|