diffusers 0.24.0__py3-none-any.whl → 0.25.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +11 -1
- diffusers/commands/fp16_safetensors.py +10 -11
- diffusers/configuration_utils.py +12 -8
- diffusers/dependency_versions_table.py +2 -1
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +286 -46
- diffusers/loaders/ip_adapter.py +11 -9
- diffusers/loaders/lora.py +198 -60
- diffusers/loaders/single_file.py +24 -18
- diffusers/loaders/textual_inversion.py +10 -14
- diffusers/loaders/unet.py +130 -37
- diffusers/models/__init__.py +18 -12
- diffusers/models/activations.py +9 -6
- diffusers/models/attention.py +137 -16
- diffusers/models/attention_processor.py +133 -46
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +4 -4
- diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +45 -6
- diffusers/models/{autoencoder_kl_temporal_decoder.py → autoencoders/autoencoder_kl_temporal_decoder.py} +8 -8
- diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +4 -4
- diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +14 -14
- diffusers/models/{vae.py → autoencoders/vae.py} +9 -5
- diffusers/models/downsampling.py +338 -0
- diffusers/models/embeddings.py +112 -29
- diffusers/models/modeling_flax_utils.py +12 -7
- diffusers/models/modeling_utils.py +10 -10
- diffusers/models/normalization.py +108 -2
- diffusers/models/resnet.py +15 -699
- diffusers/models/transformer_2d.py +2 -2
- diffusers/models/unet_2d_condition.py +37 -0
- diffusers/models/{unet_kandi3.py → unet_kandinsky3.py} +105 -159
- diffusers/models/upsampling.py +454 -0
- diffusers/models/uvit_2d.py +471 -0
- diffusers/models/vq_model.py +9 -2
- diffusers/pipelines/__init__.py +81 -73
- diffusers/pipelines/amused/__init__.py +62 -0
- diffusers/pipelines/amused/pipeline_amused.py +328 -0
- diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +38 -10
- diffusers/pipelines/auto_pipeline.py +17 -13
- diffusers/pipelines/controlnet/pipeline_controlnet.py +27 -10
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +47 -5
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +25 -8
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +4 -6
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +26 -10
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +4 -3
- diffusers/pipelines/deprecated/__init__.py +153 -0
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +91 -18
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +91 -18
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
- diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
- diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
- diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
- diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +4 -4
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
- diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +16 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +6 -6
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +11 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +16 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +10 -10
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +13 -13
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +54 -11
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +6 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +6 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +6 -6
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/kandinsky3/__init__.py +4 -4
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
- diffusers/pipelines/kandinsky3/{kandinsky3_pipeline.py → pipeline_kandinsky3.py} +172 -35
- diffusers/pipelines/kandinsky3/{kandinsky3img2img_pipeline.py → pipeline_kandinsky3_img2img.py} +228 -34
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +46 -5
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +47 -6
- diffusers/pipelines/onnx_utils.py +8 -5
- diffusers/pipelines/pipeline_flax_utils.py +7 -6
- diffusers/pipelines/pipeline_utils.py +30 -29
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +51 -2
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
- diffusers/pipelines/stable_diffusion/__init__.py +1 -72
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +67 -75
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +92 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +138 -10
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +57 -7
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +3 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +6 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +5 -2
- diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +2 -3
- diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +2 -2
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +3 -3
- diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +6 -1
- diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +50 -7
- diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +56 -8
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
- diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +67 -10
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +97 -15
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +98 -14
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +97 -14
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +7 -5
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +12 -9
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +6 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +5 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +5 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +331 -9
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +468 -9
- diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +4 -0
- diffusers/schedulers/__init__.py +2 -0
- diffusers/schedulers/scheduling_amused.py +162 -0
- diffusers/schedulers/scheduling_consistency_models.py +2 -0
- diffusers/schedulers/scheduling_ddim_inverse.py +1 -4
- diffusers/schedulers/scheduling_ddpm.py +46 -0
- diffusers/schedulers/scheduling_ddpm_parallel.py +46 -0
- diffusers/schedulers/scheduling_deis_multistep.py +13 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +13 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +13 -1
- diffusers/schedulers/scheduling_dpmsolver_sde.py +2 -0
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +13 -1
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +58 -0
- diffusers/schedulers/scheduling_euler_discrete.py +62 -3
- diffusers/schedulers/scheduling_heun_discrete.py +2 -0
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +2 -0
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +2 -0
- diffusers/schedulers/scheduling_lms_discrete.py +2 -0
- diffusers/schedulers/scheduling_unipc_multistep.py +13 -1
- diffusers/schedulers/scheduling_utils.py +3 -1
- diffusers/schedulers/scheduling_utils_flax.py +3 -1
- diffusers/training_utils.py +1 -1
- diffusers/utils/__init__.py +0 -2
- diffusers/utils/constants.py +2 -5
- diffusers/utils/dummy_pt_objects.py +30 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +45 -0
- diffusers/utils/dynamic_modules_utils.py +14 -18
- diffusers/utils/hub_utils.py +24 -36
- diffusers/utils/logging.py +1 -1
- diffusers/utils/state_dict_utils.py +8 -0
- diffusers/utils/testing_utils.py +199 -1
- diffusers/utils/torch_utils.py +3 -3
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/METADATA +54 -53
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/RECORD +174 -155
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
- /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,5 @@
|
|
1
1
|
import copy
|
2
|
+
import inspect
|
2
3
|
from dataclasses import dataclass
|
3
4
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
4
5
|
|
@@ -15,11 +16,35 @@ from transformers import (
|
|
15
16
|
CLIPVisionModelWithProjection,
|
16
17
|
)
|
17
18
|
|
18
|
-
from
|
19
|
-
from
|
20
|
-
from
|
21
|
-
from
|
22
|
-
|
19
|
+
from ...image_processor import VaeImageProcessor
|
20
|
+
from ...loaders import StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
|
21
|
+
from ...models import AutoencoderKL, UNet2DConditionModel
|
22
|
+
from ...models.attention_processor import (
|
23
|
+
AttnProcessor2_0,
|
24
|
+
FusedAttnProcessor2_0,
|
25
|
+
LoRAAttnProcessor2_0,
|
26
|
+
LoRAXFormersAttnProcessor,
|
27
|
+
XFormersAttnProcessor,
|
28
|
+
)
|
29
|
+
from ...models.lora import adjust_lora_scale_text_encoder
|
30
|
+
from ...schedulers import KarrasDiffusionSchedulers
|
31
|
+
from ...utils import (
|
32
|
+
USE_PEFT_BACKEND,
|
33
|
+
BaseOutput,
|
34
|
+
is_invisible_watermark_available,
|
35
|
+
logging,
|
36
|
+
scale_lora_layers,
|
37
|
+
unscale_lora_layers,
|
38
|
+
)
|
39
|
+
from ...utils.torch_utils import randn_tensor
|
40
|
+
from ..pipeline_utils import DiffusionPipeline
|
41
|
+
|
42
|
+
|
43
|
+
if is_invisible_watermark_available():
|
44
|
+
from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
|
45
|
+
|
46
|
+
|
47
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
23
48
|
|
24
49
|
|
25
50
|
# Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.rearrange_0
|
@@ -300,7 +325,11 @@ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
|
300
325
|
return noise_cfg
|
301
326
|
|
302
327
|
|
303
|
-
class TextToVideoZeroSDXLPipeline(
|
328
|
+
class TextToVideoZeroSDXLPipeline(
|
329
|
+
DiffusionPipeline,
|
330
|
+
StableDiffusionXLLoraLoaderMixin,
|
331
|
+
TextualInversionLoaderMixin,
|
332
|
+
):
|
304
333
|
r"""
|
305
334
|
Pipeline for zero-shot text-to-video generation using Stable Diffusion XL.
|
306
335
|
|
@@ -332,6 +361,16 @@ class TextToVideoZeroSDXLPipeline(StableDiffusionXLPipeline):
|
|
332
361
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
333
362
|
"""
|
334
363
|
|
364
|
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
365
|
+
_optional_components = [
|
366
|
+
"tokenizer",
|
367
|
+
"tokenizer_2",
|
368
|
+
"text_encoder",
|
369
|
+
"text_encoder_2",
|
370
|
+
"image_encoder",
|
371
|
+
"feature_extractor",
|
372
|
+
]
|
373
|
+
|
335
374
|
def __init__(
|
336
375
|
self,
|
337
376
|
vae: AutoencoderKL,
|
@@ -346,7 +385,8 @@ class TextToVideoZeroSDXLPipeline(StableDiffusionXLPipeline):
|
|
346
385
|
force_zeros_for_empty_prompt: bool = True,
|
347
386
|
add_watermarker: Optional[bool] = None,
|
348
387
|
):
|
349
|
-
super().__init__(
|
388
|
+
super().__init__()
|
389
|
+
self.register_modules(
|
350
390
|
vae=vae,
|
351
391
|
text_encoder=text_encoder,
|
352
392
|
text_encoder_2=text_encoder_2,
|
@@ -356,16 +396,435 @@ class TextToVideoZeroSDXLPipeline(StableDiffusionXLPipeline):
|
|
356
396
|
scheduler=scheduler,
|
357
397
|
image_encoder=image_encoder,
|
358
398
|
feature_extractor=feature_extractor,
|
359
|
-
force_zeros_for_empty_prompt=force_zeros_for_empty_prompt,
|
360
|
-
add_watermarker=add_watermarker,
|
361
399
|
)
|
400
|
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
401
|
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
402
|
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
403
|
+
|
404
|
+
self.default_sample_size = self.unet.config.sample_size
|
405
|
+
|
406
|
+
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
|
407
|
+
|
408
|
+
if add_watermarker:
|
409
|
+
self.watermark = StableDiffusionXLWatermarker()
|
410
|
+
else:
|
411
|
+
self.watermark = None
|
412
|
+
|
362
413
|
processor = (
|
363
414
|
CrossFrameAttnProcessor2_0(batch_size=2)
|
364
415
|
if hasattr(F, "scaled_dot_product_attention")
|
365
416
|
else CrossFrameAttnProcessor(batch_size=2)
|
366
417
|
)
|
418
|
+
|
367
419
|
self.unet.set_attn_processor(processor)
|
368
420
|
|
421
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
422
|
+
def prepare_extra_step_kwargs(self, generator, eta):
|
423
|
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
424
|
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
425
|
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
426
|
+
# and should be between [0, 1]
|
427
|
+
|
428
|
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
429
|
+
extra_step_kwargs = {}
|
430
|
+
if accepts_eta:
|
431
|
+
extra_step_kwargs["eta"] = eta
|
432
|
+
|
433
|
+
# check if the scheduler accepts generator
|
434
|
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
435
|
+
if accepts_generator:
|
436
|
+
extra_step_kwargs["generator"] = generator
|
437
|
+
return extra_step_kwargs
|
438
|
+
|
439
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
440
|
+
def enable_vae_slicing(self):
|
441
|
+
r"""
|
442
|
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
443
|
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
444
|
+
"""
|
445
|
+
self.vae.enable_slicing()
|
446
|
+
|
447
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
448
|
+
def disable_vae_slicing(self):
|
449
|
+
r"""
|
450
|
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
451
|
+
computing decoding in one step.
|
452
|
+
"""
|
453
|
+
self.vae.disable_slicing()
|
454
|
+
|
455
|
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae
|
456
|
+
def upcast_vae(self):
|
457
|
+
dtype = self.vae.dtype
|
458
|
+
self.vae.to(dtype=torch.float32)
|
459
|
+
use_torch_2_0_or_xformers = isinstance(
|
460
|
+
self.vae.decoder.mid_block.attentions[0].processor,
|
461
|
+
(
|
462
|
+
AttnProcessor2_0,
|
463
|
+
XFormersAttnProcessor,
|
464
|
+
LoRAXFormersAttnProcessor,
|
465
|
+
LoRAAttnProcessor2_0,
|
466
|
+
FusedAttnProcessor2_0,
|
467
|
+
),
|
468
|
+
)
|
469
|
+
# if xformers or torch_2_0 is used attention block does not need
|
470
|
+
# to be in float32 which can save lots of memory
|
471
|
+
if use_torch_2_0_or_xformers:
|
472
|
+
self.vae.post_quant_conv.to(dtype)
|
473
|
+
self.vae.decoder.conv_in.to(dtype)
|
474
|
+
self.vae.decoder.mid_block.to(dtype)
|
475
|
+
|
476
|
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids
|
477
|
+
def _get_add_time_ids(
|
478
|
+
self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
|
479
|
+
):
|
480
|
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
481
|
+
|
482
|
+
passed_add_embed_dim = (
|
483
|
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
|
484
|
+
)
|
485
|
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
486
|
+
|
487
|
+
if expected_add_embed_dim != passed_add_embed_dim:
|
488
|
+
raise ValueError(
|
489
|
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
490
|
+
)
|
491
|
+
|
492
|
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
493
|
+
return add_time_ids
|
494
|
+
|
495
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
496
|
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
497
|
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
498
|
+
if isinstance(generator, list) and len(generator) != batch_size:
|
499
|
+
raise ValueError(
|
500
|
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
501
|
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
502
|
+
)
|
503
|
+
|
504
|
+
if latents is None:
|
505
|
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
506
|
+
else:
|
507
|
+
latents = latents.to(device)
|
508
|
+
|
509
|
+
# scale the initial noise by the standard deviation required by the scheduler
|
510
|
+
latents = latents * self.scheduler.init_noise_sigma
|
511
|
+
return latents
|
512
|
+
|
513
|
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.check_inputs
|
514
|
+
def check_inputs(
|
515
|
+
self,
|
516
|
+
prompt,
|
517
|
+
prompt_2,
|
518
|
+
height,
|
519
|
+
width,
|
520
|
+
callback_steps,
|
521
|
+
negative_prompt=None,
|
522
|
+
negative_prompt_2=None,
|
523
|
+
prompt_embeds=None,
|
524
|
+
negative_prompt_embeds=None,
|
525
|
+
pooled_prompt_embeds=None,
|
526
|
+
negative_pooled_prompt_embeds=None,
|
527
|
+
callback_on_step_end_tensor_inputs=None,
|
528
|
+
):
|
529
|
+
if height % 8 != 0 or width % 8 != 0:
|
530
|
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
531
|
+
|
532
|
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
533
|
+
raise ValueError(
|
534
|
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
535
|
+
f" {type(callback_steps)}."
|
536
|
+
)
|
537
|
+
|
538
|
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
539
|
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
540
|
+
):
|
541
|
+
raise ValueError(
|
542
|
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
543
|
+
)
|
544
|
+
|
545
|
+
if prompt is not None and prompt_embeds is not None:
|
546
|
+
raise ValueError(
|
547
|
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
548
|
+
" only forward one of the two."
|
549
|
+
)
|
550
|
+
elif prompt_2 is not None and prompt_embeds is not None:
|
551
|
+
raise ValueError(
|
552
|
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
553
|
+
" only forward one of the two."
|
554
|
+
)
|
555
|
+
elif prompt is None and prompt_embeds is None:
|
556
|
+
raise ValueError(
|
557
|
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
558
|
+
)
|
559
|
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
560
|
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
561
|
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
562
|
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
563
|
+
|
564
|
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
565
|
+
raise ValueError(
|
566
|
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
567
|
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
568
|
+
)
|
569
|
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
570
|
+
raise ValueError(
|
571
|
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
572
|
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
573
|
+
)
|
574
|
+
|
575
|
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
576
|
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
577
|
+
raise ValueError(
|
578
|
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
579
|
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
580
|
+
f" {negative_prompt_embeds.shape}."
|
581
|
+
)
|
582
|
+
|
583
|
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
584
|
+
raise ValueError(
|
585
|
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
586
|
+
)
|
587
|
+
|
588
|
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
589
|
+
raise ValueError(
|
590
|
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
591
|
+
)
|
592
|
+
|
593
|
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
594
|
+
def encode_prompt(
|
595
|
+
self,
|
596
|
+
prompt: str,
|
597
|
+
prompt_2: Optional[str] = None,
|
598
|
+
device: Optional[torch.device] = None,
|
599
|
+
num_images_per_prompt: int = 1,
|
600
|
+
do_classifier_free_guidance: bool = True,
|
601
|
+
negative_prompt: Optional[str] = None,
|
602
|
+
negative_prompt_2: Optional[str] = None,
|
603
|
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
604
|
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
605
|
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
606
|
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
607
|
+
lora_scale: Optional[float] = None,
|
608
|
+
clip_skip: Optional[int] = None,
|
609
|
+
):
|
610
|
+
r"""
|
611
|
+
Encodes the prompt into text encoder hidden states.
|
612
|
+
|
613
|
+
Args:
|
614
|
+
prompt (`str` or `List[str]`, *optional*):
|
615
|
+
prompt to be encoded
|
616
|
+
prompt_2 (`str` or `List[str]`, *optional*):
|
617
|
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
618
|
+
used in both text-encoders
|
619
|
+
device: (`torch.device`):
|
620
|
+
torch device
|
621
|
+
num_images_per_prompt (`int`):
|
622
|
+
number of images that should be generated per prompt
|
623
|
+
do_classifier_free_guidance (`bool`):
|
624
|
+
whether to use classifier free guidance or not
|
625
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
626
|
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
627
|
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
628
|
+
less than `1`).
|
629
|
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
630
|
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
631
|
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
632
|
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
633
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
634
|
+
provided, text embeddings will be generated from `prompt` input argument.
|
635
|
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
636
|
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
637
|
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
638
|
+
argument.
|
639
|
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
640
|
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
641
|
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
642
|
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
643
|
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
644
|
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
645
|
+
input argument.
|
646
|
+
lora_scale (`float`, *optional*):
|
647
|
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
648
|
+
clip_skip (`int`, *optional*):
|
649
|
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
650
|
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
651
|
+
"""
|
652
|
+
device = device or self._execution_device
|
653
|
+
|
654
|
+
# set lora scale so that monkey patched LoRA
|
655
|
+
# function of text encoder can correctly access it
|
656
|
+
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
|
657
|
+
self._lora_scale = lora_scale
|
658
|
+
|
659
|
+
# dynamically adjust the LoRA scale
|
660
|
+
if self.text_encoder is not None:
|
661
|
+
if not USE_PEFT_BACKEND:
|
662
|
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
663
|
+
else:
|
664
|
+
scale_lora_layers(self.text_encoder, lora_scale)
|
665
|
+
|
666
|
+
if self.text_encoder_2 is not None:
|
667
|
+
if not USE_PEFT_BACKEND:
|
668
|
+
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
669
|
+
else:
|
670
|
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
671
|
+
|
672
|
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
673
|
+
|
674
|
+
if prompt is not None:
|
675
|
+
batch_size = len(prompt)
|
676
|
+
else:
|
677
|
+
batch_size = prompt_embeds.shape[0]
|
678
|
+
|
679
|
+
# Define tokenizers and text encoders
|
680
|
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
681
|
+
text_encoders = (
|
682
|
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
683
|
+
)
|
684
|
+
|
685
|
+
if prompt_embeds is None:
|
686
|
+
prompt_2 = prompt_2 or prompt
|
687
|
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
688
|
+
|
689
|
+
# textual inversion: procecss multi-vector tokens if necessary
|
690
|
+
prompt_embeds_list = []
|
691
|
+
prompts = [prompt, prompt_2]
|
692
|
+
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
693
|
+
if isinstance(self, TextualInversionLoaderMixin):
|
694
|
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
695
|
+
|
696
|
+
text_inputs = tokenizer(
|
697
|
+
prompt,
|
698
|
+
padding="max_length",
|
699
|
+
max_length=tokenizer.model_max_length,
|
700
|
+
truncation=True,
|
701
|
+
return_tensors="pt",
|
702
|
+
)
|
703
|
+
|
704
|
+
text_input_ids = text_inputs.input_ids
|
705
|
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
706
|
+
|
707
|
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
708
|
+
text_input_ids, untruncated_ids
|
709
|
+
):
|
710
|
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
711
|
+
logger.warning(
|
712
|
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
713
|
+
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
714
|
+
)
|
715
|
+
|
716
|
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
717
|
+
|
718
|
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
719
|
+
pooled_prompt_embeds = prompt_embeds[0]
|
720
|
+
if clip_skip is None:
|
721
|
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
722
|
+
else:
|
723
|
+
# "2" because SDXL always indexes from the penultimate layer.
|
724
|
+
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
725
|
+
|
726
|
+
prompt_embeds_list.append(prompt_embeds)
|
727
|
+
|
728
|
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
729
|
+
|
730
|
+
# get unconditional embeddings for classifier free guidance
|
731
|
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
732
|
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
733
|
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
734
|
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
735
|
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
736
|
+
negative_prompt = negative_prompt or ""
|
737
|
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
738
|
+
|
739
|
+
# normalize str to list
|
740
|
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
741
|
+
negative_prompt_2 = (
|
742
|
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
743
|
+
)
|
744
|
+
|
745
|
+
uncond_tokens: List[str]
|
746
|
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
747
|
+
raise TypeError(
|
748
|
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
749
|
+
f" {type(prompt)}."
|
750
|
+
)
|
751
|
+
elif batch_size != len(negative_prompt):
|
752
|
+
raise ValueError(
|
753
|
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
754
|
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
755
|
+
" the batch size of `prompt`."
|
756
|
+
)
|
757
|
+
else:
|
758
|
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
759
|
+
|
760
|
+
negative_prompt_embeds_list = []
|
761
|
+
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
762
|
+
if isinstance(self, TextualInversionLoaderMixin):
|
763
|
+
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
764
|
+
|
765
|
+
max_length = prompt_embeds.shape[1]
|
766
|
+
uncond_input = tokenizer(
|
767
|
+
negative_prompt,
|
768
|
+
padding="max_length",
|
769
|
+
max_length=max_length,
|
770
|
+
truncation=True,
|
771
|
+
return_tensors="pt",
|
772
|
+
)
|
773
|
+
|
774
|
+
negative_prompt_embeds = text_encoder(
|
775
|
+
uncond_input.input_ids.to(device),
|
776
|
+
output_hidden_states=True,
|
777
|
+
)
|
778
|
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
779
|
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
780
|
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
781
|
+
|
782
|
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
783
|
+
|
784
|
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
785
|
+
|
786
|
+
if self.text_encoder_2 is not None:
|
787
|
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
788
|
+
else:
|
789
|
+
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
790
|
+
|
791
|
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
792
|
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
793
|
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
794
|
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
795
|
+
|
796
|
+
if do_classifier_free_guidance:
|
797
|
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
798
|
+
seq_len = negative_prompt_embeds.shape[1]
|
799
|
+
|
800
|
+
if self.text_encoder_2 is not None:
|
801
|
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
802
|
+
else:
|
803
|
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
804
|
+
|
805
|
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
806
|
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
807
|
+
|
808
|
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
809
|
+
bs_embed * num_images_per_prompt, -1
|
810
|
+
)
|
811
|
+
if do_classifier_free_guidance:
|
812
|
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
813
|
+
bs_embed * num_images_per_prompt, -1
|
814
|
+
)
|
815
|
+
|
816
|
+
if self.text_encoder is not None:
|
817
|
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
818
|
+
# Retrieve the original scale by scaling back the LoRA layers
|
819
|
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
820
|
+
|
821
|
+
if self.text_encoder_2 is not None:
|
822
|
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
823
|
+
# Retrieve the original scale by scaling back the LoRA layers
|
824
|
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
825
|
+
|
826
|
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
827
|
+
|
369
828
|
# Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.TextToVideoZeroPipeline.forward_loop
|
370
829
|
def forward_loop(self, x_t0, t0, t1, generator):
|
371
830
|
"""
|
@@ -477,8 +477,9 @@ class UnCLIPPipeline(DiffusionPipeline):
|
|
477
477
|
image = super_res_latents
|
478
478
|
# done super res
|
479
479
|
|
480
|
-
|
480
|
+
self.maybe_free_model_hooks()
|
481
481
|
|
482
|
+
# post processing
|
482
483
|
image = image * 0.5 + 0.5
|
483
484
|
image = image.clamp(0, 1)
|
484
485
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
@@ -19,8 +19,8 @@ import torch
|
|
19
19
|
import torch.nn as nn
|
20
20
|
|
21
21
|
from ...configuration_utils import ConfigMixin, register_to_config
|
22
|
+
from ...models.autoencoders.vae import DecoderOutput, VectorQuantizer
|
22
23
|
from ...models.modeling_utils import ModelMixin
|
23
|
-
from ...models.vae import DecoderOutput, VectorQuantizer
|
24
24
|
from ...models.vq_model import VQEncoderOutput
|
25
25
|
from ...utils.accelerate_utils import apply_forward_hook
|
26
26
|
|
@@ -69,6 +69,10 @@ class WuerstchenPriorPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
69
69
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
70
70
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
71
71
|
|
72
|
+
The pipeline also inherits the following loading methods:
|
73
|
+
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
74
|
+
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
75
|
+
|
72
76
|
Args:
|
73
77
|
prior ([`Prior`]):
|
74
78
|
The canonical unCLIP prior to approximate the image embedding from the text embedding.
|
diffusers/schedulers/__init__.py
CHANGED
@@ -39,6 +39,7 @@ except OptionalDependencyNotAvailable:
|
|
39
39
|
|
40
40
|
else:
|
41
41
|
_import_structure["deprecated"] = ["KarrasVeScheduler", "ScoreSdeVpScheduler"]
|
42
|
+
_import_structure["scheduling_amused"] = ["AmusedScheduler"]
|
42
43
|
_import_structure["scheduling_consistency_decoder"] = ["ConsistencyDecoderScheduler"]
|
43
44
|
_import_structure["scheduling_consistency_models"] = ["CMStochasticIterativeScheduler"]
|
44
45
|
_import_structure["scheduling_ddim"] = ["DDIMScheduler"]
|
@@ -129,6 +130,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
|
129
130
|
from ..utils.dummy_pt_objects import * # noqa F403
|
130
131
|
else:
|
131
132
|
from .deprecated import KarrasVeScheduler, ScoreSdeVpScheduler
|
133
|
+
from .scheduling_amused import AmusedScheduler
|
132
134
|
from .scheduling_consistency_decoder import ConsistencyDecoderScheduler
|
133
135
|
from .scheduling_consistency_models import CMStochasticIterativeScheduler
|
134
136
|
from .scheduling_ddim import DDIMScheduler
|