diffusers 0.24.0__py3-none-any.whl → 0.25.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (174) hide show
  1. diffusers/__init__.py +11 -1
  2. diffusers/commands/fp16_safetensors.py +10 -11
  3. diffusers/configuration_utils.py +12 -8
  4. diffusers/dependency_versions_table.py +2 -1
  5. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  6. diffusers/image_processor.py +286 -46
  7. diffusers/loaders/ip_adapter.py +11 -9
  8. diffusers/loaders/lora.py +198 -60
  9. diffusers/loaders/single_file.py +24 -18
  10. diffusers/loaders/textual_inversion.py +10 -14
  11. diffusers/loaders/unet.py +130 -37
  12. diffusers/models/__init__.py +18 -12
  13. diffusers/models/activations.py +9 -6
  14. diffusers/models/attention.py +137 -16
  15. diffusers/models/attention_processor.py +133 -46
  16. diffusers/models/autoencoders/__init__.py +5 -0
  17. diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +4 -4
  18. diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +45 -6
  19. diffusers/models/{autoencoder_kl_temporal_decoder.py → autoencoders/autoencoder_kl_temporal_decoder.py} +8 -8
  20. diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +4 -4
  21. diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +14 -14
  22. diffusers/models/{vae.py → autoencoders/vae.py} +9 -5
  23. diffusers/models/downsampling.py +338 -0
  24. diffusers/models/embeddings.py +112 -29
  25. diffusers/models/modeling_flax_utils.py +12 -7
  26. diffusers/models/modeling_utils.py +10 -10
  27. diffusers/models/normalization.py +108 -2
  28. diffusers/models/resnet.py +15 -699
  29. diffusers/models/transformer_2d.py +2 -2
  30. diffusers/models/unet_2d_condition.py +37 -0
  31. diffusers/models/{unet_kandi3.py → unet_kandinsky3.py} +105 -159
  32. diffusers/models/upsampling.py +454 -0
  33. diffusers/models/uvit_2d.py +471 -0
  34. diffusers/models/vq_model.py +9 -2
  35. diffusers/pipelines/__init__.py +81 -73
  36. diffusers/pipelines/amused/__init__.py +62 -0
  37. diffusers/pipelines/amused/pipeline_amused.py +328 -0
  38. diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
  39. diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
  40. diffusers/pipelines/animatediff/pipeline_animatediff.py +38 -10
  41. diffusers/pipelines/auto_pipeline.py +17 -13
  42. diffusers/pipelines/controlnet/pipeline_controlnet.py +27 -10
  43. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +47 -5
  44. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +25 -8
  45. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +4 -6
  46. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +26 -10
  47. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +4 -3
  48. diffusers/pipelines/deprecated/__init__.py +153 -0
  49. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
  50. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +91 -18
  51. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +91 -18
  52. diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
  53. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
  54. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
  55. diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
  56. diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
  57. diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
  58. diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
  59. diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
  60. diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
  61. diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
  62. diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
  63. diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +4 -4
  64. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
  65. diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
  66. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
  67. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
  68. diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +7 -7
  69. diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
  70. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +16 -11
  71. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +6 -6
  72. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +11 -11
  73. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +16 -11
  74. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +10 -10
  75. diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +13 -13
  76. diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
  77. diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
  78. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
  79. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +54 -11
  80. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
  81. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +6 -6
  82. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +6 -6
  83. diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +6 -6
  84. diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
  85. diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
  86. diffusers/pipelines/kandinsky3/__init__.py +4 -4
  87. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
  88. diffusers/pipelines/kandinsky3/{kandinsky3_pipeline.py → pipeline_kandinsky3.py} +172 -35
  89. diffusers/pipelines/kandinsky3/{kandinsky3img2img_pipeline.py → pipeline_kandinsky3_img2img.py} +228 -34
  90. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +46 -5
  91. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +47 -6
  92. diffusers/pipelines/onnx_utils.py +8 -5
  93. diffusers/pipelines/pipeline_flax_utils.py +7 -6
  94. diffusers/pipelines/pipeline_utils.py +30 -29
  95. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +51 -2
  96. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
  97. diffusers/pipelines/stable_diffusion/__init__.py +1 -72
  98. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +67 -75
  99. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +92 -8
  100. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -8
  101. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +138 -10
  102. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +57 -7
  103. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +3 -0
  104. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +6 -0
  105. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
  106. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
  107. diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
  108. diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +5 -2
  109. diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
  110. diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +2 -3
  111. diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
  112. diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +2 -2
  113. diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +3 -3
  114. diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
  115. diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +6 -1
  116. diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
  117. diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +50 -7
  118. diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
  119. diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +56 -8
  120. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
  121. diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
  122. diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +67 -10
  123. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +97 -15
  124. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +98 -14
  125. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +97 -14
  126. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +7 -5
  127. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +12 -9
  128. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +6 -0
  129. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +5 -0
  130. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +5 -0
  131. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +331 -9
  132. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +468 -9
  133. diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
  134. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
  135. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  136. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +4 -0
  137. diffusers/schedulers/__init__.py +2 -0
  138. diffusers/schedulers/scheduling_amused.py +162 -0
  139. diffusers/schedulers/scheduling_consistency_models.py +2 -0
  140. diffusers/schedulers/scheduling_ddim_inverse.py +1 -4
  141. diffusers/schedulers/scheduling_ddpm.py +46 -0
  142. diffusers/schedulers/scheduling_ddpm_parallel.py +46 -0
  143. diffusers/schedulers/scheduling_deis_multistep.py +13 -1
  144. diffusers/schedulers/scheduling_dpmsolver_multistep.py +13 -1
  145. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +13 -1
  146. diffusers/schedulers/scheduling_dpmsolver_sde.py +2 -0
  147. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +13 -1
  148. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +58 -0
  149. diffusers/schedulers/scheduling_euler_discrete.py +62 -3
  150. diffusers/schedulers/scheduling_heun_discrete.py +2 -0
  151. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +2 -0
  152. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +2 -0
  153. diffusers/schedulers/scheduling_lms_discrete.py +2 -0
  154. diffusers/schedulers/scheduling_unipc_multistep.py +13 -1
  155. diffusers/schedulers/scheduling_utils.py +3 -1
  156. diffusers/schedulers/scheduling_utils_flax.py +3 -1
  157. diffusers/training_utils.py +1 -1
  158. diffusers/utils/__init__.py +0 -2
  159. diffusers/utils/constants.py +2 -5
  160. diffusers/utils/dummy_pt_objects.py +30 -0
  161. diffusers/utils/dummy_torch_and_transformers_objects.py +45 -0
  162. diffusers/utils/dynamic_modules_utils.py +14 -18
  163. diffusers/utils/hub_utils.py +24 -36
  164. diffusers/utils/logging.py +1 -1
  165. diffusers/utils/state_dict_utils.py +8 -0
  166. diffusers/utils/testing_utils.py +199 -1
  167. diffusers/utils/torch_utils.py +3 -3
  168. {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/METADATA +54 -53
  169. {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/RECORD +174 -155
  170. {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
  171. {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
  172. /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
  173. {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
  174. {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,471 @@
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from typing import Dict, Union
17
+
18
+ import torch
19
+ import torch.nn.functional as F
20
+ from torch import nn
21
+ from torch.utils.checkpoint import checkpoint
22
+
23
+ from ..configuration_utils import ConfigMixin, register_to_config
24
+ from .attention import BasicTransformerBlock, SkipFFTransformerBlock
25
+ from .attention_processor import (
26
+ ADDED_KV_ATTENTION_PROCESSORS,
27
+ CROSS_ATTENTION_PROCESSORS,
28
+ AttentionProcessor,
29
+ AttnAddedKVProcessor,
30
+ AttnProcessor,
31
+ )
32
+ from .embeddings import TimestepEmbedding, get_timestep_embedding
33
+ from .modeling_utils import ModelMixin
34
+ from .normalization import GlobalResponseNorm, RMSNorm
35
+ from .resnet import Downsample2D, Upsample2D
36
+
37
+
38
+ class UVit2DModel(ModelMixin, ConfigMixin):
39
+ _supports_gradient_checkpointing = True
40
+
41
+ @register_to_config
42
+ def __init__(
43
+ self,
44
+ # global config
45
+ hidden_size: int = 1024,
46
+ use_bias: bool = False,
47
+ hidden_dropout: float = 0.0,
48
+ # conditioning dimensions
49
+ cond_embed_dim: int = 768,
50
+ micro_cond_encode_dim: int = 256,
51
+ micro_cond_embed_dim: int = 1280,
52
+ encoder_hidden_size: int = 768,
53
+ # num tokens
54
+ vocab_size: int = 8256, # codebook_size + 1 (for the mask token) rounded
55
+ codebook_size: int = 8192,
56
+ # `UVit2DConvEmbed`
57
+ in_channels: int = 768,
58
+ block_out_channels: int = 768,
59
+ num_res_blocks: int = 3,
60
+ downsample: bool = False,
61
+ upsample: bool = False,
62
+ block_num_heads: int = 12,
63
+ # `TransformerLayer`
64
+ num_hidden_layers: int = 22,
65
+ num_attention_heads: int = 16,
66
+ # `Attention`
67
+ attention_dropout: float = 0.0,
68
+ # `FeedForward`
69
+ intermediate_size: int = 2816,
70
+ # `Norm`
71
+ layer_norm_eps: float = 1e-6,
72
+ ln_elementwise_affine: bool = True,
73
+ sample_size: int = 64,
74
+ ):
75
+ super().__init__()
76
+
77
+ self.encoder_proj = nn.Linear(encoder_hidden_size, hidden_size, bias=use_bias)
78
+ self.encoder_proj_layer_norm = RMSNorm(hidden_size, layer_norm_eps, ln_elementwise_affine)
79
+
80
+ self.embed = UVit2DConvEmbed(
81
+ in_channels, block_out_channels, vocab_size, ln_elementwise_affine, layer_norm_eps, use_bias
82
+ )
83
+
84
+ self.cond_embed = TimestepEmbedding(
85
+ micro_cond_embed_dim + cond_embed_dim, hidden_size, sample_proj_bias=use_bias
86
+ )
87
+
88
+ self.down_block = UVitBlock(
89
+ block_out_channels,
90
+ num_res_blocks,
91
+ hidden_size,
92
+ hidden_dropout,
93
+ ln_elementwise_affine,
94
+ layer_norm_eps,
95
+ use_bias,
96
+ block_num_heads,
97
+ attention_dropout,
98
+ downsample,
99
+ False,
100
+ )
101
+
102
+ self.project_to_hidden_norm = RMSNorm(block_out_channels, layer_norm_eps, ln_elementwise_affine)
103
+ self.project_to_hidden = nn.Linear(block_out_channels, hidden_size, bias=use_bias)
104
+
105
+ self.transformer_layers = nn.ModuleList(
106
+ [
107
+ BasicTransformerBlock(
108
+ dim=hidden_size,
109
+ num_attention_heads=num_attention_heads,
110
+ attention_head_dim=hidden_size // num_attention_heads,
111
+ dropout=hidden_dropout,
112
+ cross_attention_dim=hidden_size,
113
+ attention_bias=use_bias,
114
+ norm_type="ada_norm_continuous",
115
+ ada_norm_continous_conditioning_embedding_dim=hidden_size,
116
+ norm_elementwise_affine=ln_elementwise_affine,
117
+ norm_eps=layer_norm_eps,
118
+ ada_norm_bias=use_bias,
119
+ ff_inner_dim=intermediate_size,
120
+ ff_bias=use_bias,
121
+ attention_out_bias=use_bias,
122
+ )
123
+ for _ in range(num_hidden_layers)
124
+ ]
125
+ )
126
+
127
+ self.project_from_hidden_norm = RMSNorm(hidden_size, layer_norm_eps, ln_elementwise_affine)
128
+ self.project_from_hidden = nn.Linear(hidden_size, block_out_channels, bias=use_bias)
129
+
130
+ self.up_block = UVitBlock(
131
+ block_out_channels,
132
+ num_res_blocks,
133
+ hidden_size,
134
+ hidden_dropout,
135
+ ln_elementwise_affine,
136
+ layer_norm_eps,
137
+ use_bias,
138
+ block_num_heads,
139
+ attention_dropout,
140
+ downsample=False,
141
+ upsample=upsample,
142
+ )
143
+
144
+ self.mlm_layer = ConvMlmLayer(
145
+ block_out_channels, in_channels, use_bias, ln_elementwise_affine, layer_norm_eps, codebook_size
146
+ )
147
+
148
+ self.gradient_checkpointing = False
149
+
150
+ def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
151
+ pass
152
+
153
+ def forward(self, input_ids, encoder_hidden_states, pooled_text_emb, micro_conds, cross_attention_kwargs=None):
154
+ encoder_hidden_states = self.encoder_proj(encoder_hidden_states)
155
+ encoder_hidden_states = self.encoder_proj_layer_norm(encoder_hidden_states)
156
+
157
+ micro_cond_embeds = get_timestep_embedding(
158
+ micro_conds.flatten(), self.config.micro_cond_encode_dim, flip_sin_to_cos=True, downscale_freq_shift=0
159
+ )
160
+
161
+ micro_cond_embeds = micro_cond_embeds.reshape((input_ids.shape[0], -1))
162
+
163
+ pooled_text_emb = torch.cat([pooled_text_emb, micro_cond_embeds], dim=1)
164
+ pooled_text_emb = pooled_text_emb.to(dtype=self.dtype)
165
+ pooled_text_emb = self.cond_embed(pooled_text_emb).to(encoder_hidden_states.dtype)
166
+
167
+ hidden_states = self.embed(input_ids)
168
+
169
+ hidden_states = self.down_block(
170
+ hidden_states,
171
+ pooled_text_emb=pooled_text_emb,
172
+ encoder_hidden_states=encoder_hidden_states,
173
+ cross_attention_kwargs=cross_attention_kwargs,
174
+ )
175
+
176
+ batch_size, channels, height, width = hidden_states.shape
177
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_size, height * width, channels)
178
+
179
+ hidden_states = self.project_to_hidden_norm(hidden_states)
180
+ hidden_states = self.project_to_hidden(hidden_states)
181
+
182
+ for layer in self.transformer_layers:
183
+ if self.training and self.gradient_checkpointing:
184
+
185
+ def layer_(*args):
186
+ return checkpoint(layer, *args)
187
+
188
+ else:
189
+ layer_ = layer
190
+
191
+ hidden_states = layer_(
192
+ hidden_states,
193
+ encoder_hidden_states=encoder_hidden_states,
194
+ cross_attention_kwargs=cross_attention_kwargs,
195
+ added_cond_kwargs={"pooled_text_emb": pooled_text_emb},
196
+ )
197
+
198
+ hidden_states = self.project_from_hidden_norm(hidden_states)
199
+ hidden_states = self.project_from_hidden(hidden_states)
200
+
201
+ hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
202
+
203
+ hidden_states = self.up_block(
204
+ hidden_states,
205
+ pooled_text_emb=pooled_text_emb,
206
+ encoder_hidden_states=encoder_hidden_states,
207
+ cross_attention_kwargs=cross_attention_kwargs,
208
+ )
209
+
210
+ logits = self.mlm_layer(hidden_states)
211
+
212
+ return logits
213
+
214
+ @property
215
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
216
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
217
+ r"""
218
+ Returns:
219
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
220
+ indexed by its weight name.
221
+ """
222
+ # set recursively
223
+ processors = {}
224
+
225
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
226
+ if hasattr(module, "get_processor"):
227
+ processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
228
+
229
+ for sub_name, child in module.named_children():
230
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
231
+
232
+ return processors
233
+
234
+ for name, module in self.named_children():
235
+ fn_recursive_add_processors(name, module, processors)
236
+
237
+ return processors
238
+
239
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
240
+ def set_attn_processor(
241
+ self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
242
+ ):
243
+ r"""
244
+ Sets the attention processor to use to compute attention.
245
+
246
+ Parameters:
247
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
248
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
249
+ for **all** `Attention` layers.
250
+
251
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
252
+ processor. This is strongly recommended when setting trainable attention processors.
253
+
254
+ """
255
+ count = len(self.attn_processors.keys())
256
+
257
+ if isinstance(processor, dict) and len(processor) != count:
258
+ raise ValueError(
259
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
260
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
261
+ )
262
+
263
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
264
+ if hasattr(module, "set_processor"):
265
+ if not isinstance(processor, dict):
266
+ module.set_processor(processor, _remove_lora=_remove_lora)
267
+ else:
268
+ module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
269
+
270
+ for sub_name, child in module.named_children():
271
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
272
+
273
+ for name, module in self.named_children():
274
+ fn_recursive_attn_processor(name, module, processor)
275
+
276
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
277
+ def set_default_attn_processor(self):
278
+ """
279
+ Disables custom attention processors and sets the default attention implementation.
280
+ """
281
+ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
282
+ processor = AttnAddedKVProcessor()
283
+ elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
284
+ processor = AttnProcessor()
285
+ else:
286
+ raise ValueError(
287
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
288
+ )
289
+
290
+ self.set_attn_processor(processor, _remove_lora=True)
291
+
292
+
293
+ class UVit2DConvEmbed(nn.Module):
294
+ def __init__(self, in_channels, block_out_channels, vocab_size, elementwise_affine, eps, bias):
295
+ super().__init__()
296
+ self.embeddings = nn.Embedding(vocab_size, in_channels)
297
+ self.layer_norm = RMSNorm(in_channels, eps, elementwise_affine)
298
+ self.conv = nn.Conv2d(in_channels, block_out_channels, kernel_size=1, bias=bias)
299
+
300
+ def forward(self, input_ids):
301
+ embeddings = self.embeddings(input_ids)
302
+ embeddings = self.layer_norm(embeddings)
303
+ embeddings = embeddings.permute(0, 3, 1, 2)
304
+ embeddings = self.conv(embeddings)
305
+ return embeddings
306
+
307
+
308
+ class UVitBlock(nn.Module):
309
+ def __init__(
310
+ self,
311
+ channels,
312
+ num_res_blocks: int,
313
+ hidden_size,
314
+ hidden_dropout,
315
+ ln_elementwise_affine,
316
+ layer_norm_eps,
317
+ use_bias,
318
+ block_num_heads,
319
+ attention_dropout,
320
+ downsample: bool,
321
+ upsample: bool,
322
+ ):
323
+ super().__init__()
324
+
325
+ if downsample:
326
+ self.downsample = Downsample2D(
327
+ channels,
328
+ use_conv=True,
329
+ padding=0,
330
+ name="Conv2d_0",
331
+ kernel_size=2,
332
+ norm_type="rms_norm",
333
+ eps=layer_norm_eps,
334
+ elementwise_affine=ln_elementwise_affine,
335
+ bias=use_bias,
336
+ )
337
+ else:
338
+ self.downsample = None
339
+
340
+ self.res_blocks = nn.ModuleList(
341
+ [
342
+ ConvNextBlock(
343
+ channels,
344
+ layer_norm_eps,
345
+ ln_elementwise_affine,
346
+ use_bias,
347
+ hidden_dropout,
348
+ hidden_size,
349
+ )
350
+ for i in range(num_res_blocks)
351
+ ]
352
+ )
353
+
354
+ self.attention_blocks = nn.ModuleList(
355
+ [
356
+ SkipFFTransformerBlock(
357
+ channels,
358
+ block_num_heads,
359
+ channels // block_num_heads,
360
+ hidden_size,
361
+ use_bias,
362
+ attention_dropout,
363
+ channels,
364
+ attention_bias=use_bias,
365
+ attention_out_bias=use_bias,
366
+ )
367
+ for _ in range(num_res_blocks)
368
+ ]
369
+ )
370
+
371
+ if upsample:
372
+ self.upsample = Upsample2D(
373
+ channels,
374
+ use_conv_transpose=True,
375
+ kernel_size=2,
376
+ padding=0,
377
+ name="conv",
378
+ norm_type="rms_norm",
379
+ eps=layer_norm_eps,
380
+ elementwise_affine=ln_elementwise_affine,
381
+ bias=use_bias,
382
+ interpolate=False,
383
+ )
384
+ else:
385
+ self.upsample = None
386
+
387
+ def forward(self, x, pooled_text_emb, encoder_hidden_states, cross_attention_kwargs):
388
+ if self.downsample is not None:
389
+ x = self.downsample(x)
390
+
391
+ for res_block, attention_block in zip(self.res_blocks, self.attention_blocks):
392
+ x = res_block(x, pooled_text_emb)
393
+
394
+ batch_size, channels, height, width = x.shape
395
+ x = x.view(batch_size, channels, height * width).permute(0, 2, 1)
396
+ x = attention_block(
397
+ x, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs
398
+ )
399
+ x = x.permute(0, 2, 1).view(batch_size, channels, height, width)
400
+
401
+ if self.upsample is not None:
402
+ x = self.upsample(x)
403
+
404
+ return x
405
+
406
+
407
+ class ConvNextBlock(nn.Module):
408
+ def __init__(
409
+ self, channels, layer_norm_eps, ln_elementwise_affine, use_bias, hidden_dropout, hidden_size, res_ffn_factor=4
410
+ ):
411
+ super().__init__()
412
+ self.depthwise = nn.Conv2d(
413
+ channels,
414
+ channels,
415
+ kernel_size=3,
416
+ padding=1,
417
+ groups=channels,
418
+ bias=use_bias,
419
+ )
420
+ self.norm = RMSNorm(channels, layer_norm_eps, ln_elementwise_affine)
421
+ self.channelwise_linear_1 = nn.Linear(channels, int(channels * res_ffn_factor), bias=use_bias)
422
+ self.channelwise_act = nn.GELU()
423
+ self.channelwise_norm = GlobalResponseNorm(int(channels * res_ffn_factor))
424
+ self.channelwise_linear_2 = nn.Linear(int(channels * res_ffn_factor), channels, bias=use_bias)
425
+ self.channelwise_dropout = nn.Dropout(hidden_dropout)
426
+ self.cond_embeds_mapper = nn.Linear(hidden_size, channels * 2, use_bias)
427
+
428
+ def forward(self, x, cond_embeds):
429
+ x_res = x
430
+
431
+ x = self.depthwise(x)
432
+
433
+ x = x.permute(0, 2, 3, 1)
434
+ x = self.norm(x)
435
+
436
+ x = self.channelwise_linear_1(x)
437
+ x = self.channelwise_act(x)
438
+ x = self.channelwise_norm(x)
439
+ x = self.channelwise_linear_2(x)
440
+ x = self.channelwise_dropout(x)
441
+
442
+ x = x.permute(0, 3, 1, 2)
443
+
444
+ x = x + x_res
445
+
446
+ scale, shift = self.cond_embeds_mapper(F.silu(cond_embeds)).chunk(2, dim=1)
447
+ x = x * (1 + scale[:, :, None, None]) + shift[:, :, None, None]
448
+
449
+ return x
450
+
451
+
452
+ class ConvMlmLayer(nn.Module):
453
+ def __init__(
454
+ self,
455
+ block_out_channels: int,
456
+ in_channels: int,
457
+ use_bias: bool,
458
+ ln_elementwise_affine: bool,
459
+ layer_norm_eps: float,
460
+ codebook_size: int,
461
+ ):
462
+ super().__init__()
463
+ self.conv1 = nn.Conv2d(block_out_channels, in_channels, kernel_size=1, bias=use_bias)
464
+ self.layer_norm = RMSNorm(in_channels, layer_norm_eps, ln_elementwise_affine)
465
+ self.conv2 = nn.Conv2d(in_channels, codebook_size, kernel_size=1, bias=use_bias)
466
+
467
+ def forward(self, hidden_states):
468
+ hidden_states = self.conv1(hidden_states)
469
+ hidden_states = self.layer_norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
470
+ logits = self.conv2(hidden_states)
471
+ return logits
@@ -20,8 +20,8 @@ import torch.nn as nn
20
20
  from ..configuration_utils import ConfigMixin, register_to_config
21
21
  from ..utils import BaseOutput
22
22
  from ..utils.accelerate_utils import apply_forward_hook
23
+ from .autoencoders.vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
23
24
  from .modeling_utils import ModelMixin
24
- from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
25
25
 
26
26
 
27
27
  @dataclass
@@ -88,6 +88,9 @@ class VQModel(ModelMixin, ConfigMixin):
88
88
  vq_embed_dim: Optional[int] = None,
89
89
  scaling_factor: float = 0.18215,
90
90
  norm_type: str = "group", # group, spatial
91
+ mid_block_add_attention=True,
92
+ lookup_from_codebook=False,
93
+ force_upcast=False,
91
94
  ):
92
95
  super().__init__()
93
96
 
@@ -101,6 +104,7 @@ class VQModel(ModelMixin, ConfigMixin):
101
104
  act_fn=act_fn,
102
105
  norm_num_groups=norm_num_groups,
103
106
  double_z=False,
107
+ mid_block_add_attention=mid_block_add_attention,
104
108
  )
105
109
 
106
110
  vq_embed_dim = vq_embed_dim if vq_embed_dim is not None else latent_channels
@@ -119,6 +123,7 @@ class VQModel(ModelMixin, ConfigMixin):
119
123
  act_fn=act_fn,
120
124
  norm_num_groups=norm_num_groups,
121
125
  norm_type=norm_type,
126
+ mid_block_add_attention=mid_block_add_attention,
122
127
  )
123
128
 
124
129
  @apply_forward_hook
@@ -133,11 +138,13 @@ class VQModel(ModelMixin, ConfigMixin):
133
138
 
134
139
  @apply_forward_hook
135
140
  def decode(
136
- self, h: torch.FloatTensor, force_not_quantize: bool = False, return_dict: bool = True
141
+ self, h: torch.FloatTensor, force_not_quantize: bool = False, return_dict: bool = True, shape=None
137
142
  ) -> Union[DecoderOutput, torch.FloatTensor]:
138
143
  # also go through quantization layer
139
144
  if not force_not_quantize:
140
145
  quant, _, _ = self.quantize(h)
146
+ elif self.config.lookup_from_codebook:
147
+ quant = self.quantize.get_codebook_entry(h, shape)
141
148
  else:
142
149
  quant = h
143
150
  quant2 = self.post_quant_conv(quant)