diffusers 0.24.0__py3-none-any.whl → 0.25.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +11 -1
- diffusers/commands/fp16_safetensors.py +10 -11
- diffusers/configuration_utils.py +12 -8
- diffusers/dependency_versions_table.py +2 -1
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +286 -46
- diffusers/loaders/ip_adapter.py +11 -9
- diffusers/loaders/lora.py +198 -60
- diffusers/loaders/single_file.py +24 -18
- diffusers/loaders/textual_inversion.py +10 -14
- diffusers/loaders/unet.py +130 -37
- diffusers/models/__init__.py +18 -12
- diffusers/models/activations.py +9 -6
- diffusers/models/attention.py +137 -16
- diffusers/models/attention_processor.py +133 -46
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +4 -4
- diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +45 -6
- diffusers/models/{autoencoder_kl_temporal_decoder.py → autoencoders/autoencoder_kl_temporal_decoder.py} +8 -8
- diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +4 -4
- diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +14 -14
- diffusers/models/{vae.py → autoencoders/vae.py} +9 -5
- diffusers/models/downsampling.py +338 -0
- diffusers/models/embeddings.py +112 -29
- diffusers/models/modeling_flax_utils.py +12 -7
- diffusers/models/modeling_utils.py +10 -10
- diffusers/models/normalization.py +108 -2
- diffusers/models/resnet.py +15 -699
- diffusers/models/transformer_2d.py +2 -2
- diffusers/models/unet_2d_condition.py +37 -0
- diffusers/models/{unet_kandi3.py → unet_kandinsky3.py} +105 -159
- diffusers/models/upsampling.py +454 -0
- diffusers/models/uvit_2d.py +471 -0
- diffusers/models/vq_model.py +9 -2
- diffusers/pipelines/__init__.py +81 -73
- diffusers/pipelines/amused/__init__.py +62 -0
- diffusers/pipelines/amused/pipeline_amused.py +328 -0
- diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +38 -10
- diffusers/pipelines/auto_pipeline.py +17 -13
- diffusers/pipelines/controlnet/pipeline_controlnet.py +27 -10
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +47 -5
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +25 -8
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +4 -6
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +26 -10
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +4 -3
- diffusers/pipelines/deprecated/__init__.py +153 -0
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +91 -18
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +91 -18
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
- diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
- diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
- diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
- diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +4 -4
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
- diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +16 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +6 -6
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +11 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +16 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +10 -10
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +13 -13
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +54 -11
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +6 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +6 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +6 -6
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/kandinsky3/__init__.py +4 -4
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
- diffusers/pipelines/kandinsky3/{kandinsky3_pipeline.py → pipeline_kandinsky3.py} +172 -35
- diffusers/pipelines/kandinsky3/{kandinsky3img2img_pipeline.py → pipeline_kandinsky3_img2img.py} +228 -34
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +46 -5
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +47 -6
- diffusers/pipelines/onnx_utils.py +8 -5
- diffusers/pipelines/pipeline_flax_utils.py +7 -6
- diffusers/pipelines/pipeline_utils.py +30 -29
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +51 -2
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
- diffusers/pipelines/stable_diffusion/__init__.py +1 -72
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +67 -75
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +92 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +138 -10
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +57 -7
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +3 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +6 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +5 -2
- diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +2 -3
- diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +2 -2
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +3 -3
- diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +6 -1
- diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +50 -7
- diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +56 -8
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
- diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +67 -10
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +97 -15
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +98 -14
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +97 -14
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +7 -5
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +12 -9
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +6 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +5 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +5 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +331 -9
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +468 -9
- diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +4 -0
- diffusers/schedulers/__init__.py +2 -0
- diffusers/schedulers/scheduling_amused.py +162 -0
- diffusers/schedulers/scheduling_consistency_models.py +2 -0
- diffusers/schedulers/scheduling_ddim_inverse.py +1 -4
- diffusers/schedulers/scheduling_ddpm.py +46 -0
- diffusers/schedulers/scheduling_ddpm_parallel.py +46 -0
- diffusers/schedulers/scheduling_deis_multistep.py +13 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +13 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +13 -1
- diffusers/schedulers/scheduling_dpmsolver_sde.py +2 -0
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +13 -1
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +58 -0
- diffusers/schedulers/scheduling_euler_discrete.py +62 -3
- diffusers/schedulers/scheduling_heun_discrete.py +2 -0
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +2 -0
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +2 -0
- diffusers/schedulers/scheduling_lms_discrete.py +2 -0
- diffusers/schedulers/scheduling_unipc_multistep.py +13 -1
- diffusers/schedulers/scheduling_utils.py +3 -1
- diffusers/schedulers/scheduling_utils_flax.py +3 -1
- diffusers/training_utils.py +1 -1
- diffusers/utils/__init__.py +0 -2
- diffusers/utils/constants.py +2 -5
- diffusers/utils/dummy_pt_objects.py +30 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +45 -0
- diffusers/utils/dynamic_modules_utils.py +14 -18
- diffusers/utils/hub_utils.py +24 -36
- diffusers/utils/logging.py +1 -1
- diffusers/utils/state_dict_utils.py +8 -0
- diffusers/utils/testing_utils.py +199 -1
- diffusers/utils/torch_utils.py +3 -3
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/METADATA +54 -53
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/RECORD +174 -155
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
- /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,5 @@
|
|
1
1
|
import copy
|
2
|
+
import inspect
|
2
3
|
from dataclasses import dataclass
|
3
4
|
from typing import Callable, List, Optional, Union
|
4
5
|
|
@@ -9,11 +10,18 @@ import torch.nn.functional as F
|
|
9
10
|
from torch.nn.functional import grid_sample
|
10
11
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
11
12
|
|
12
|
-
from
|
13
|
-
from
|
14
|
-
from
|
15
|
-
from
|
16
|
-
from
|
13
|
+
from ...image_processor import VaeImageProcessor
|
14
|
+
from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin
|
15
|
+
from ...models import AutoencoderKL, UNet2DConditionModel
|
16
|
+
from ...models.lora import adjust_lora_scale_text_encoder
|
17
|
+
from ...schedulers import KarrasDiffusionSchedulers
|
18
|
+
from ...utils import USE_PEFT_BACKEND, BaseOutput, logging, scale_lora_layers, unscale_lora_layers
|
19
|
+
from ...utils.torch_utils import randn_tensor
|
20
|
+
from ..pipeline_utils import DiffusionPipeline
|
21
|
+
from ..stable_diffusion import StableDiffusionSafetyChecker
|
22
|
+
|
23
|
+
|
24
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
17
25
|
|
18
26
|
|
19
27
|
def rearrange_0(tensor, f):
|
@@ -273,7 +281,7 @@ def create_motion_field_and_warp_latents(motion_field_strength_x, motion_field_s
|
|
273
281
|
return warped_latents
|
274
282
|
|
275
283
|
|
276
|
-
class TextToVideoZeroPipeline(
|
284
|
+
class TextToVideoZeroPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
|
277
285
|
r"""
|
278
286
|
Pipeline for zero-shot text-to-video generation using Stable Diffusion.
|
279
287
|
|
@@ -311,8 +319,15 @@ class TextToVideoZeroPipeline(StableDiffusionPipeline):
|
|
311
319
|
feature_extractor: CLIPImageProcessor,
|
312
320
|
requires_safety_checker: bool = True,
|
313
321
|
):
|
314
|
-
super().__init__(
|
315
|
-
|
322
|
+
super().__init__()
|
323
|
+
self.register_modules(
|
324
|
+
vae=vae,
|
325
|
+
text_encoder=text_encoder,
|
326
|
+
tokenizer=tokenizer,
|
327
|
+
unet=unet,
|
328
|
+
scheduler=scheduler,
|
329
|
+
safety_checker=safety_checker,
|
330
|
+
feature_extractor=feature_extractor,
|
316
331
|
)
|
317
332
|
processor = (
|
318
333
|
CrossFrameAttnProcessor2_0(batch_size=2)
|
@@ -321,6 +336,18 @@ class TextToVideoZeroPipeline(StableDiffusionPipeline):
|
|
321
336
|
)
|
322
337
|
self.unet.set_attn_processor(processor)
|
323
338
|
|
339
|
+
if safety_checker is None and requires_safety_checker:
|
340
|
+
logger.warning(
|
341
|
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
342
|
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
343
|
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
344
|
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
345
|
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
346
|
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
347
|
+
)
|
348
|
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
349
|
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
350
|
+
|
324
351
|
def forward_loop(self, x_t0, t0, t1, generator):
|
325
352
|
"""
|
326
353
|
Perform DDPM forward process from time t0 to t1. This is the same as adding noise with corresponding variance.
|
@@ -420,6 +447,77 @@ class TextToVideoZeroPipeline(StableDiffusionPipeline):
|
|
420
447
|
callback(step_idx, t, latents)
|
421
448
|
return latents.clone().detach()
|
422
449
|
|
450
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs
|
451
|
+
def check_inputs(
|
452
|
+
self,
|
453
|
+
prompt,
|
454
|
+
height,
|
455
|
+
width,
|
456
|
+
callback_steps,
|
457
|
+
negative_prompt=None,
|
458
|
+
prompt_embeds=None,
|
459
|
+
negative_prompt_embeds=None,
|
460
|
+
callback_on_step_end_tensor_inputs=None,
|
461
|
+
):
|
462
|
+
if height % 8 != 0 or width % 8 != 0:
|
463
|
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
464
|
+
|
465
|
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
466
|
+
raise ValueError(
|
467
|
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
468
|
+
f" {type(callback_steps)}."
|
469
|
+
)
|
470
|
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
471
|
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
472
|
+
):
|
473
|
+
raise ValueError(
|
474
|
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
475
|
+
)
|
476
|
+
|
477
|
+
if prompt is not None and prompt_embeds is not None:
|
478
|
+
raise ValueError(
|
479
|
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
480
|
+
" only forward one of the two."
|
481
|
+
)
|
482
|
+
elif prompt is None and prompt_embeds is None:
|
483
|
+
raise ValueError(
|
484
|
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
485
|
+
)
|
486
|
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
487
|
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
488
|
+
|
489
|
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
490
|
+
raise ValueError(
|
491
|
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
492
|
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
493
|
+
)
|
494
|
+
|
495
|
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
496
|
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
497
|
+
raise ValueError(
|
498
|
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
499
|
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
500
|
+
f" {negative_prompt_embeds.shape}."
|
501
|
+
)
|
502
|
+
|
503
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
504
|
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
505
|
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
506
|
+
if isinstance(generator, list) and len(generator) != batch_size:
|
507
|
+
raise ValueError(
|
508
|
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
509
|
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
510
|
+
)
|
511
|
+
|
512
|
+
if latents is None:
|
513
|
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
514
|
+
else:
|
515
|
+
latents = latents.to(device)
|
516
|
+
|
517
|
+
# scale the initial noise by the standard deviation required by the scheduler
|
518
|
+
latents = latents * self.scheduler.init_noise_sigma
|
519
|
+
return latents
|
520
|
+
|
423
521
|
@torch.no_grad()
|
424
522
|
def __call__(
|
425
523
|
self,
|
@@ -539,9 +637,10 @@ class TextToVideoZeroPipeline(StableDiffusionPipeline):
|
|
539
637
|
do_classifier_free_guidance = guidance_scale > 1.0
|
540
638
|
|
541
639
|
# Encode input prompt
|
542
|
-
|
640
|
+
prompt_embeds_tuple = self.encode_prompt(
|
543
641
|
prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
|
544
642
|
)
|
643
|
+
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
|
545
644
|
|
546
645
|
# Prepare timesteps
|
547
646
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
@@ -645,3 +744,226 @@ class TextToVideoZeroPipeline(StableDiffusionPipeline):
|
|
645
744
|
return (image, has_nsfw_concept)
|
646
745
|
|
647
746
|
return TextToVideoPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
747
|
+
|
748
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
749
|
+
def run_safety_checker(self, image, device, dtype):
|
750
|
+
if self.safety_checker is None:
|
751
|
+
has_nsfw_concept = None
|
752
|
+
else:
|
753
|
+
if torch.is_tensor(image):
|
754
|
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
755
|
+
else:
|
756
|
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
757
|
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
758
|
+
image, has_nsfw_concept = self.safety_checker(
|
759
|
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
760
|
+
)
|
761
|
+
return image, has_nsfw_concept
|
762
|
+
|
763
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
764
|
+
def prepare_extra_step_kwargs(self, generator, eta):
|
765
|
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
766
|
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
767
|
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
768
|
+
# and should be between [0, 1]
|
769
|
+
|
770
|
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
771
|
+
extra_step_kwargs = {}
|
772
|
+
if accepts_eta:
|
773
|
+
extra_step_kwargs["eta"] = eta
|
774
|
+
|
775
|
+
# check if the scheduler accepts generator
|
776
|
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
777
|
+
if accepts_generator:
|
778
|
+
extra_step_kwargs["generator"] = generator
|
779
|
+
return extra_step_kwargs
|
780
|
+
|
781
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
|
782
|
+
def encode_prompt(
|
783
|
+
self,
|
784
|
+
prompt,
|
785
|
+
device,
|
786
|
+
num_images_per_prompt,
|
787
|
+
do_classifier_free_guidance,
|
788
|
+
negative_prompt=None,
|
789
|
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
790
|
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
791
|
+
lora_scale: Optional[float] = None,
|
792
|
+
clip_skip: Optional[int] = None,
|
793
|
+
):
|
794
|
+
r"""
|
795
|
+
Encodes the prompt into text encoder hidden states.
|
796
|
+
|
797
|
+
Args:
|
798
|
+
prompt (`str` or `List[str]`, *optional*):
|
799
|
+
prompt to be encoded
|
800
|
+
device: (`torch.device`):
|
801
|
+
torch device
|
802
|
+
num_images_per_prompt (`int`):
|
803
|
+
number of images that should be generated per prompt
|
804
|
+
do_classifier_free_guidance (`bool`):
|
805
|
+
whether to use classifier free guidance or not
|
806
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
807
|
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
808
|
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
809
|
+
less than `1`).
|
810
|
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
811
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
812
|
+
provided, text embeddings will be generated from `prompt` input argument.
|
813
|
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
814
|
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
815
|
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
816
|
+
argument.
|
817
|
+
lora_scale (`float`, *optional*):
|
818
|
+
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
819
|
+
clip_skip (`int`, *optional*):
|
820
|
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
821
|
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
822
|
+
"""
|
823
|
+
# set lora scale so that monkey patched LoRA
|
824
|
+
# function of text encoder can correctly access it
|
825
|
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
826
|
+
self._lora_scale = lora_scale
|
827
|
+
|
828
|
+
# dynamically adjust the LoRA scale
|
829
|
+
if not USE_PEFT_BACKEND:
|
830
|
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
831
|
+
else:
|
832
|
+
scale_lora_layers(self.text_encoder, lora_scale)
|
833
|
+
|
834
|
+
if prompt is not None and isinstance(prompt, str):
|
835
|
+
batch_size = 1
|
836
|
+
elif prompt is not None and isinstance(prompt, list):
|
837
|
+
batch_size = len(prompt)
|
838
|
+
else:
|
839
|
+
batch_size = prompt_embeds.shape[0]
|
840
|
+
|
841
|
+
if prompt_embeds is None:
|
842
|
+
# textual inversion: procecss multi-vector tokens if necessary
|
843
|
+
if isinstance(self, TextualInversionLoaderMixin):
|
844
|
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
845
|
+
|
846
|
+
text_inputs = self.tokenizer(
|
847
|
+
prompt,
|
848
|
+
padding="max_length",
|
849
|
+
max_length=self.tokenizer.model_max_length,
|
850
|
+
truncation=True,
|
851
|
+
return_tensors="pt",
|
852
|
+
)
|
853
|
+
text_input_ids = text_inputs.input_ids
|
854
|
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
855
|
+
|
856
|
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
857
|
+
text_input_ids, untruncated_ids
|
858
|
+
):
|
859
|
+
removed_text = self.tokenizer.batch_decode(
|
860
|
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
861
|
+
)
|
862
|
+
logger.warning(
|
863
|
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
864
|
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
865
|
+
)
|
866
|
+
|
867
|
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
868
|
+
attention_mask = text_inputs.attention_mask.to(device)
|
869
|
+
else:
|
870
|
+
attention_mask = None
|
871
|
+
|
872
|
+
if clip_skip is None:
|
873
|
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
874
|
+
prompt_embeds = prompt_embeds[0]
|
875
|
+
else:
|
876
|
+
prompt_embeds = self.text_encoder(
|
877
|
+
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
878
|
+
)
|
879
|
+
# Access the `hidden_states` first, that contains a tuple of
|
880
|
+
# all the hidden states from the encoder layers. Then index into
|
881
|
+
# the tuple to access the hidden states from the desired layer.
|
882
|
+
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
883
|
+
# We also need to apply the final LayerNorm here to not mess with the
|
884
|
+
# representations. The `last_hidden_states` that we typically use for
|
885
|
+
# obtaining the final prompt representations passes through the LayerNorm
|
886
|
+
# layer.
|
887
|
+
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
888
|
+
|
889
|
+
if self.text_encoder is not None:
|
890
|
+
prompt_embeds_dtype = self.text_encoder.dtype
|
891
|
+
elif self.unet is not None:
|
892
|
+
prompt_embeds_dtype = self.unet.dtype
|
893
|
+
else:
|
894
|
+
prompt_embeds_dtype = prompt_embeds.dtype
|
895
|
+
|
896
|
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
897
|
+
|
898
|
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
899
|
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
900
|
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
901
|
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
902
|
+
|
903
|
+
# get unconditional embeddings for classifier free guidance
|
904
|
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
905
|
+
uncond_tokens: List[str]
|
906
|
+
if negative_prompt is None:
|
907
|
+
uncond_tokens = [""] * batch_size
|
908
|
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
909
|
+
raise TypeError(
|
910
|
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
911
|
+
f" {type(prompt)}."
|
912
|
+
)
|
913
|
+
elif isinstance(negative_prompt, str):
|
914
|
+
uncond_tokens = [negative_prompt]
|
915
|
+
elif batch_size != len(negative_prompt):
|
916
|
+
raise ValueError(
|
917
|
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
918
|
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
919
|
+
" the batch size of `prompt`."
|
920
|
+
)
|
921
|
+
else:
|
922
|
+
uncond_tokens = negative_prompt
|
923
|
+
|
924
|
+
# textual inversion: procecss multi-vector tokens if necessary
|
925
|
+
if isinstance(self, TextualInversionLoaderMixin):
|
926
|
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
927
|
+
|
928
|
+
max_length = prompt_embeds.shape[1]
|
929
|
+
uncond_input = self.tokenizer(
|
930
|
+
uncond_tokens,
|
931
|
+
padding="max_length",
|
932
|
+
max_length=max_length,
|
933
|
+
truncation=True,
|
934
|
+
return_tensors="pt",
|
935
|
+
)
|
936
|
+
|
937
|
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
938
|
+
attention_mask = uncond_input.attention_mask.to(device)
|
939
|
+
else:
|
940
|
+
attention_mask = None
|
941
|
+
|
942
|
+
negative_prompt_embeds = self.text_encoder(
|
943
|
+
uncond_input.input_ids.to(device),
|
944
|
+
attention_mask=attention_mask,
|
945
|
+
)
|
946
|
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
947
|
+
|
948
|
+
if do_classifier_free_guidance:
|
949
|
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
950
|
+
seq_len = negative_prompt_embeds.shape[1]
|
951
|
+
|
952
|
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
953
|
+
|
954
|
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
955
|
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
956
|
+
|
957
|
+
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
|
958
|
+
# Retrieve the original scale by scaling back the LoRA layers
|
959
|
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
960
|
+
|
961
|
+
return prompt_embeds, negative_prompt_embeds
|
962
|
+
|
963
|
+
def decode_latents(self, latents):
|
964
|
+
latents = 1 / self.vae.config.scaling_factor * latents
|
965
|
+
image = self.vae.decode(latents, return_dict=False)[0]
|
966
|
+
image = (image / 2 + 0.5).clamp(0, 1)
|
967
|
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
968
|
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
969
|
+
return image
|