diffusers 0.24.0__py3-none-any.whl → 0.25.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +11 -1
- diffusers/commands/fp16_safetensors.py +10 -11
- diffusers/configuration_utils.py +12 -8
- diffusers/dependency_versions_table.py +2 -1
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +286 -46
- diffusers/loaders/ip_adapter.py +11 -9
- diffusers/loaders/lora.py +198 -60
- diffusers/loaders/single_file.py +24 -18
- diffusers/loaders/textual_inversion.py +10 -14
- diffusers/loaders/unet.py +130 -37
- diffusers/models/__init__.py +18 -12
- diffusers/models/activations.py +9 -6
- diffusers/models/attention.py +137 -16
- diffusers/models/attention_processor.py +133 -46
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/{autoencoder_asym_kl.py → autoencoders/autoencoder_asym_kl.py} +4 -4
- diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +45 -6
- diffusers/models/{autoencoder_kl_temporal_decoder.py → autoencoders/autoencoder_kl_temporal_decoder.py} +8 -8
- diffusers/models/{autoencoder_tiny.py → autoencoders/autoencoder_tiny.py} +4 -4
- diffusers/models/{consistency_decoder_vae.py → autoencoders/consistency_decoder_vae.py} +14 -14
- diffusers/models/{vae.py → autoencoders/vae.py} +9 -5
- diffusers/models/downsampling.py +338 -0
- diffusers/models/embeddings.py +112 -29
- diffusers/models/modeling_flax_utils.py +12 -7
- diffusers/models/modeling_utils.py +10 -10
- diffusers/models/normalization.py +108 -2
- diffusers/models/resnet.py +15 -699
- diffusers/models/transformer_2d.py +2 -2
- diffusers/models/unet_2d_condition.py +37 -0
- diffusers/models/{unet_kandi3.py → unet_kandinsky3.py} +105 -159
- diffusers/models/upsampling.py +454 -0
- diffusers/models/uvit_2d.py +471 -0
- diffusers/models/vq_model.py +9 -2
- diffusers/pipelines/__init__.py +81 -73
- diffusers/pipelines/amused/__init__.py +62 -0
- diffusers/pipelines/amused/pipeline_amused.py +328 -0
- diffusers/pipelines/amused/pipeline_amused_img2img.py +347 -0
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +378 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +38 -10
- diffusers/pipelines/auto_pipeline.py +17 -13
- diffusers/pipelines/controlnet/pipeline_controlnet.py +27 -10
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +47 -5
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +25 -8
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +4 -6
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +26 -10
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +4 -3
- diffusers/pipelines/deprecated/__init__.py +153 -0
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion.py +91 -18
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_alt_diffusion_img2img.py +91 -18
- diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/pipeline_output.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/__init__.py +1 -1
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/mel.py +2 -2
- diffusers/pipelines/{audio_diffusion → deprecated/audio_diffusion}/pipeline_audio_diffusion.py +4 -4
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/__init__.py +1 -1
- diffusers/pipelines/{latent_diffusion_uncond → deprecated/latent_diffusion_uncond}/pipeline_latent_diffusion_uncond.py +4 -4
- diffusers/pipelines/{pndm → deprecated/pndm}/__init__.py +1 -1
- diffusers/pipelines/{pndm → deprecated/pndm}/pipeline_pndm.py +4 -4
- diffusers/pipelines/{repaint → deprecated/repaint}/__init__.py +1 -1
- diffusers/pipelines/{repaint → deprecated/repaint}/pipeline_repaint.py +5 -5
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/__init__.py +1 -1
- diffusers/pipelines/{score_sde_ve → deprecated/score_sde_ve}/pipeline_score_sde_ve.py +4 -4
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/__init__.py +6 -6
- diffusers/pipelines/{spectrogram_diffusion/continous_encoder.py → deprecated/spectrogram_diffusion/continuous_encoder.py} +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/midi_utils.py +1 -1
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/notes_encoder.py +2 -2
- diffusers/pipelines/{spectrogram_diffusion → deprecated/spectrogram_diffusion}/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/__init__.py +55 -0
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_cycle_diffusion.py +16 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_onnx_stable_diffusion_inpaint_legacy.py +6 -6
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_inpaint_legacy.py +11 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_model_editing.py +16 -11
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_paradigms.py +10 -10
- diffusers/pipelines/{stable_diffusion → deprecated/stable_diffusion_variants}/pipeline_stable_diffusion_pix2pix_zero.py +13 -13
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/__init__.py +1 -1
- diffusers/pipelines/{stochastic_karras_ve → deprecated/stochastic_karras_ve}/pipeline_stochastic_karras_ve.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/modeling_text_unet.py +54 -11
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion.py +4 -4
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_dual_guided.py +6 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_image_variation.py +6 -6
- diffusers/pipelines/{versatile_diffusion → deprecated/versatile_diffusion}/pipeline_versatile_diffusion_text_to_image.py +6 -6
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/__init__.py +3 -3
- diffusers/pipelines/{vq_diffusion → deprecated/vq_diffusion}/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/kandinsky3/__init__.py +4 -4
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +98 -0
- diffusers/pipelines/kandinsky3/{kandinsky3_pipeline.py → pipeline_kandinsky3.py} +172 -35
- diffusers/pipelines/kandinsky3/{kandinsky3img2img_pipeline.py → pipeline_kandinsky3_img2img.py} +228 -34
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +46 -5
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +47 -6
- diffusers/pipelines/onnx_utils.py +8 -5
- diffusers/pipelines/pipeline_flax_utils.py +7 -6
- diffusers/pipelines/pipeline_utils.py +30 -29
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +51 -2
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +3 -3
- diffusers/pipelines/stable_diffusion/__init__.py +1 -72
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +67 -75
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +92 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +138 -10
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +57 -7
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +3 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +6 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_attend_and_excite}/pipeline_stable_diffusion_attend_and_excite.py +5 -2
- diffusers/pipelines/stable_diffusion_diffedit/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_diffedit}/pipeline_stable_diffusion_diffedit.py +2 -3
- diffusers/pipelines/stable_diffusion_gligen/__init__.py +50 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen.py +2 -2
- diffusers/pipelines/{stable_diffusion → stable_diffusion_gligen}/pipeline_stable_diffusion_gligen_text_image.py +3 -3
- diffusers/pipelines/stable_diffusion_k_diffusion/__init__.py +60 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_k_diffusion}/pipeline_stable_diffusion_k_diffusion.py +6 -1
- diffusers/pipelines/stable_diffusion_ldm3d/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_ldm3d}/pipeline_stable_diffusion_ldm3d.py +50 -7
- diffusers/pipelines/stable_diffusion_panorama/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_panorama}/pipeline_stable_diffusion_panorama.py +56 -8
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +58 -6
- diffusers/pipelines/stable_diffusion_sag/__init__.py +48 -0
- diffusers/pipelines/{stable_diffusion → stable_diffusion_sag}/pipeline_stable_diffusion_sag.py +67 -10
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +97 -15
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +98 -14
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +97 -14
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +7 -5
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +12 -9
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +6 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +5 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +5 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +331 -9
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +468 -9
- diffusers/pipelines/unclip/pipeline_unclip.py +2 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +4 -0
- diffusers/schedulers/__init__.py +2 -0
- diffusers/schedulers/scheduling_amused.py +162 -0
- diffusers/schedulers/scheduling_consistency_models.py +2 -0
- diffusers/schedulers/scheduling_ddim_inverse.py +1 -4
- diffusers/schedulers/scheduling_ddpm.py +46 -0
- diffusers/schedulers/scheduling_ddpm_parallel.py +46 -0
- diffusers/schedulers/scheduling_deis_multistep.py +13 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +13 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +13 -1
- diffusers/schedulers/scheduling_dpmsolver_sde.py +2 -0
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +13 -1
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +58 -0
- diffusers/schedulers/scheduling_euler_discrete.py +62 -3
- diffusers/schedulers/scheduling_heun_discrete.py +2 -0
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +2 -0
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +2 -0
- diffusers/schedulers/scheduling_lms_discrete.py +2 -0
- diffusers/schedulers/scheduling_unipc_multistep.py +13 -1
- diffusers/schedulers/scheduling_utils.py +3 -1
- diffusers/schedulers/scheduling_utils_flax.py +3 -1
- diffusers/training_utils.py +1 -1
- diffusers/utils/__init__.py +0 -2
- diffusers/utils/constants.py +2 -5
- diffusers/utils/dummy_pt_objects.py +30 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +45 -0
- diffusers/utils/dynamic_modules_utils.py +14 -18
- diffusers/utils/hub_utils.py +24 -36
- diffusers/utils/logging.py +1 -1
- diffusers/utils/state_dict_utils.py +8 -0
- diffusers/utils/testing_utils.py +199 -1
- diffusers/utils/torch_utils.py +3 -3
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/METADATA +54 -53
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/RECORD +174 -155
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/WHEEL +1 -1
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/entry_points.txt +0 -1
- /diffusers/pipelines/{alt_diffusion → deprecated/alt_diffusion}/modeling_roberta_series.py +0 -0
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/LICENSE +0 -0
- {diffusers-0.24.0.dist-info → diffusers-0.25.0.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
|
|
1
|
-
from typing import Callable, List, Optional, Union
|
1
|
+
from typing import Callable, Dict, List, Optional, Union
|
2
2
|
|
3
3
|
import torch
|
4
4
|
from transformers import T5EncoderModel, T5Tokenizer
|
@@ -7,8 +7,10 @@ from ...loaders import LoraLoaderMixin
|
|
7
7
|
from ...models import Kandinsky3UNet, VQModel
|
8
8
|
from ...schedulers import DDPMScheduler
|
9
9
|
from ...utils import (
|
10
|
+
deprecate,
|
10
11
|
is_accelerate_available,
|
11
12
|
logging,
|
13
|
+
replace_example_docstring,
|
12
14
|
)
|
13
15
|
from ...utils.torch_utils import randn_tensor
|
14
16
|
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
@@ -16,6 +18,23 @@ from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
|
16
18
|
|
17
19
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
18
20
|
|
21
|
+
EXAMPLE_DOC_STRING = """
|
22
|
+
Examples:
|
23
|
+
```py
|
24
|
+
>>> from diffusers import AutoPipelineForText2Image
|
25
|
+
>>> import torch
|
26
|
+
|
27
|
+
>>> pipe = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16)
|
28
|
+
>>> pipe.enable_model_cpu_offload()
|
29
|
+
|
30
|
+
>>> prompt = "A photograph of the inside of a subway train. There are raccoons sitting on the seats. One of them is reading a newspaper. The window shows the city in the background."
|
31
|
+
|
32
|
+
>>> generator = torch.Generator(device="cpu").manual_seed(0)
|
33
|
+
>>> image = pipe(prompt, num_inference_steps=25, generator=generator).images[0]
|
34
|
+
```
|
35
|
+
|
36
|
+
"""
|
37
|
+
|
19
38
|
|
20
39
|
def downscale_height_and_width(height, width, scale_factor=8):
|
21
40
|
new_height = height // scale_factor**2
|
@@ -29,6 +48,13 @@ def downscale_height_and_width(height, width, scale_factor=8):
|
|
29
48
|
|
30
49
|
class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
31
50
|
model_cpu_offload_seq = "text_encoder->unet->movq"
|
51
|
+
_callback_tensor_inputs = [
|
52
|
+
"latents",
|
53
|
+
"prompt_embeds",
|
54
|
+
"negative_prompt_embeds",
|
55
|
+
"negative_attention_mask",
|
56
|
+
"attention_mask",
|
57
|
+
]
|
32
58
|
|
33
59
|
def __init__(
|
34
60
|
self,
|
@@ -50,7 +76,7 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
50
76
|
else:
|
51
77
|
raise ImportError("Please install accelerate via `pip install accelerate`")
|
52
78
|
|
53
|
-
for model in [self.text_encoder, self.unet]:
|
79
|
+
for model in [self.text_encoder, self.unet, self.movq]:
|
54
80
|
if model is not None:
|
55
81
|
remove_hook_from_module(model, recurse=True)
|
56
82
|
|
@@ -77,12 +103,14 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
77
103
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
78
104
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
79
105
|
_cut_context=False,
|
106
|
+
attention_mask: Optional[torch.FloatTensor] = None,
|
107
|
+
negative_attention_mask: Optional[torch.FloatTensor] = None,
|
80
108
|
):
|
81
109
|
r"""
|
82
110
|
Encodes the prompt into text encoder hidden states.
|
83
111
|
|
84
112
|
Args:
|
85
|
-
|
113
|
+
prompt (`str` or `List[str]`, *optional*):
|
86
114
|
prompt to be encoded
|
87
115
|
device: (`torch.device`, *optional*):
|
88
116
|
torch device to place the resulting embeddings on
|
@@ -101,6 +129,10 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
101
129
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
102
130
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
103
131
|
argument.
|
132
|
+
attention_mask (`torch.FloatTensor`, *optional*):
|
133
|
+
Pre-generated attention mask. Must provide if passing `prompt_embeds` directly.
|
134
|
+
negative_attention_mask (`torch.FloatTensor`, *optional*):
|
135
|
+
Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly.
|
104
136
|
"""
|
105
137
|
if prompt is not None and negative_prompt is not None:
|
106
138
|
if type(prompt) is not type(negative_prompt):
|
@@ -228,14 +260,21 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
228
260
|
negative_prompt=None,
|
229
261
|
prompt_embeds=None,
|
230
262
|
negative_prompt_embeds=None,
|
263
|
+
callback_on_step_end_tensor_inputs=None,
|
264
|
+
attention_mask=None,
|
265
|
+
negative_attention_mask=None,
|
231
266
|
):
|
232
|
-
if
|
233
|
-
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
234
|
-
):
|
267
|
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
235
268
|
raise ValueError(
|
236
269
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
237
270
|
f" {type(callback_steps)}."
|
238
271
|
)
|
272
|
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
273
|
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
274
|
+
):
|
275
|
+
raise ValueError(
|
276
|
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
277
|
+
)
|
239
278
|
|
240
279
|
if prompt is not None and prompt_embeds is not None:
|
241
280
|
raise ValueError(
|
@@ -262,8 +301,42 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
262
301
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
263
302
|
f" {negative_prompt_embeds.shape}."
|
264
303
|
)
|
304
|
+
if negative_prompt_embeds is not None and negative_attention_mask is None:
|
305
|
+
raise ValueError("Please provide `negative_attention_mask` along with `negative_prompt_embeds`")
|
306
|
+
|
307
|
+
if negative_prompt_embeds is not None and negative_attention_mask is not None:
|
308
|
+
if negative_prompt_embeds.shape[:2] != negative_attention_mask.shape:
|
309
|
+
raise ValueError(
|
310
|
+
"`negative_prompt_embeds` and `negative_attention_mask` must have the same batch_size and token length when passed directly, but"
|
311
|
+
f" got: `negative_prompt_embeds` {negative_prompt_embeds.shape[:2]} != `negative_attention_mask`"
|
312
|
+
f" {negative_attention_mask.shape}."
|
313
|
+
)
|
314
|
+
|
315
|
+
if prompt_embeds is not None and attention_mask is None:
|
316
|
+
raise ValueError("Please provide `attention_mask` along with `prompt_embeds`")
|
317
|
+
|
318
|
+
if prompt_embeds is not None and attention_mask is not None:
|
319
|
+
if prompt_embeds.shape[:2] != attention_mask.shape:
|
320
|
+
raise ValueError(
|
321
|
+
"`prompt_embeds` and `attention_mask` must have the same batch_size and token length when passed directly, but"
|
322
|
+
f" got: `prompt_embeds` {prompt_embeds.shape[:2]} != `attention_mask`"
|
323
|
+
f" {attention_mask.shape}."
|
324
|
+
)
|
325
|
+
|
326
|
+
@property
|
327
|
+
def guidance_scale(self):
|
328
|
+
return self._guidance_scale
|
329
|
+
|
330
|
+
@property
|
331
|
+
def do_classifier_free_guidance(self):
|
332
|
+
return self._guidance_scale > 1
|
333
|
+
|
334
|
+
@property
|
335
|
+
def num_timesteps(self):
|
336
|
+
return self._num_timesteps
|
265
337
|
|
266
338
|
@torch.no_grad()
|
339
|
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
267
340
|
def __call__(
|
268
341
|
self,
|
269
342
|
prompt: Union[str, List[str]] = None,
|
@@ -276,11 +349,14 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
276
349
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
277
350
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
278
351
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
352
|
+
attention_mask: Optional[torch.FloatTensor] = None,
|
353
|
+
negative_attention_mask: Optional[torch.FloatTensor] = None,
|
279
354
|
output_type: Optional[str] = "pil",
|
280
355
|
return_dict: bool = True,
|
281
|
-
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
282
|
-
callback_steps: int = 1,
|
283
356
|
latents=None,
|
357
|
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
358
|
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
359
|
+
**kwargs,
|
284
360
|
):
|
285
361
|
"""
|
286
362
|
Function invoked when calling the pipeline for generation.
|
@@ -289,7 +365,7 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
289
365
|
prompt (`str` or `List[str]`, *optional*):
|
290
366
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
291
367
|
instead.
|
292
|
-
num_inference_steps (`int`, *optional*, defaults to
|
368
|
+
num_inference_steps (`int`, *optional*, defaults to 25):
|
293
369
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
294
370
|
expense of slower inference.
|
295
371
|
timesteps (`List[int]`, *optional*):
|
@@ -324,6 +400,10 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
324
400
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
325
401
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
326
402
|
argument.
|
403
|
+
attention_mask (`torch.FloatTensor`, *optional*):
|
404
|
+
Pre-generated attention mask. Must provide if passing `prompt_embeds` directly.
|
405
|
+
negative_attention_mask (`torch.FloatTensor`, *optional*):
|
406
|
+
Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly.
|
327
407
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
328
408
|
The output format of the generate image. Choose between
|
329
409
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
@@ -343,12 +423,53 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
343
423
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
344
424
|
`self.processor` in
|
345
425
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
426
|
+
|
427
|
+
Examples:
|
428
|
+
|
429
|
+
Returns:
|
430
|
+
[`~pipelines.ImagePipelineOutput`] or `tuple`
|
431
|
+
|
346
432
|
"""
|
433
|
+
|
434
|
+
callback = kwargs.pop("callback", None)
|
435
|
+
callback_steps = kwargs.pop("callback_steps", None)
|
436
|
+
|
437
|
+
if callback is not None:
|
438
|
+
deprecate(
|
439
|
+
"callback",
|
440
|
+
"1.0.0",
|
441
|
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
442
|
+
)
|
443
|
+
if callback_steps is not None:
|
444
|
+
deprecate(
|
445
|
+
"callback_steps",
|
446
|
+
"1.0.0",
|
447
|
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
448
|
+
)
|
449
|
+
|
450
|
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
451
|
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
452
|
+
):
|
453
|
+
raise ValueError(
|
454
|
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
455
|
+
)
|
456
|
+
|
347
457
|
cut_context = True
|
348
458
|
device = self._execution_device
|
349
459
|
|
350
460
|
# 1. Check inputs. Raise error if not correct
|
351
|
-
self.check_inputs(
|
461
|
+
self.check_inputs(
|
462
|
+
prompt,
|
463
|
+
callback_steps,
|
464
|
+
negative_prompt,
|
465
|
+
prompt_embeds,
|
466
|
+
negative_prompt_embeds,
|
467
|
+
callback_on_step_end_tensor_inputs,
|
468
|
+
attention_mask,
|
469
|
+
negative_attention_mask,
|
470
|
+
)
|
471
|
+
|
472
|
+
self._guidance_scale = guidance_scale
|
352
473
|
|
353
474
|
if prompt is not None and isinstance(prompt, str):
|
354
475
|
batch_size = 1
|
@@ -357,24 +478,21 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
357
478
|
else:
|
358
479
|
batch_size = prompt_embeds.shape[0]
|
359
480
|
|
360
|
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
361
|
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
362
|
-
# corresponds to doing no classifier free guidance.
|
363
|
-
do_classifier_free_guidance = guidance_scale > 1.0
|
364
|
-
|
365
481
|
# 3. Encode input prompt
|
366
482
|
prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask = self.encode_prompt(
|
367
483
|
prompt,
|
368
|
-
do_classifier_free_guidance,
|
484
|
+
self.do_classifier_free_guidance,
|
369
485
|
num_images_per_prompt=num_images_per_prompt,
|
370
486
|
device=device,
|
371
487
|
negative_prompt=negative_prompt,
|
372
488
|
prompt_embeds=prompt_embeds,
|
373
489
|
negative_prompt_embeds=negative_prompt_embeds,
|
374
490
|
_cut_context=cut_context,
|
491
|
+
attention_mask=attention_mask,
|
492
|
+
negative_attention_mask=negative_attention_mask,
|
375
493
|
)
|
376
494
|
|
377
|
-
if do_classifier_free_guidance:
|
495
|
+
if self.do_classifier_free_guidance:
|
378
496
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
379
497
|
attention_mask = torch.cat([negative_attention_mask, attention_mask]).bool()
|
380
498
|
# 4. Prepare timesteps
|
@@ -397,11 +515,11 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
397
515
|
self.text_encoder_offload_hook.offload()
|
398
516
|
|
399
517
|
# 7. Denoising loop
|
400
|
-
|
401
|
-
|
518
|
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
519
|
+
self._num_timesteps = len(timesteps)
|
402
520
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
403
521
|
for i, t in enumerate(timesteps):
|
404
|
-
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
522
|
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
405
523
|
|
406
524
|
# predict the noise residual
|
407
525
|
noise_pred = self.unet(
|
@@ -412,7 +530,7 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
412
530
|
return_dict=False,
|
413
531
|
)[0]
|
414
532
|
|
415
|
-
if do_classifier_free_guidance:
|
533
|
+
if self.do_classifier_free_guidance:
|
416
534
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
417
535
|
|
418
536
|
noise_pred = (guidance_scale + 1.0) * noise_pred_text - guidance_scale * noise_pred_uncond
|
@@ -425,26 +543,45 @@ class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
425
543
|
latents,
|
426
544
|
generator=generator,
|
427
545
|
).prev_sample
|
428
|
-
progress_bar.update()
|
429
|
-
if callback is not None and i % callback_steps == 0:
|
430
|
-
step_idx = i // getattr(self.scheduler, "order", 1)
|
431
|
-
callback(step_idx, t, latents)
|
432
546
|
|
433
|
-
|
434
|
-
|
547
|
+
if callback_on_step_end is not None:
|
548
|
+
callback_kwargs = {}
|
549
|
+
for k in callback_on_step_end_tensor_inputs:
|
550
|
+
callback_kwargs[k] = locals()[k]
|
551
|
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
552
|
+
|
553
|
+
latents = callback_outputs.pop("latents", latents)
|
554
|
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
555
|
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
556
|
+
attention_mask = callback_outputs.pop("attention_mask", attention_mask)
|
557
|
+
negative_attention_mask = callback_outputs.pop("negative_attention_mask", negative_attention_mask)
|
435
558
|
|
436
|
-
|
559
|
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
560
|
+
progress_bar.update()
|
561
|
+
if callback is not None and i % callback_steps == 0:
|
562
|
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
563
|
+
callback(step_idx, t, latents)
|
564
|
+
|
565
|
+
# post-processing
|
566
|
+
if output_type not in ["pt", "np", "pil", "latent"]:
|
437
567
|
raise ValueError(
|
438
|
-
f"Only the output types `pt`, `pil` and `
|
568
|
+
f"Only the output types `pt`, `pil`, `np` and `latent` are supported not output_type={output_type}"
|
439
569
|
)
|
440
570
|
|
441
|
-
if output_type
|
442
|
-
image =
|
443
|
-
|
444
|
-
|
571
|
+
if not output_type == "latent":
|
572
|
+
image = self.movq.decode(latents, force_not_quantize=True)["sample"]
|
573
|
+
|
574
|
+
if output_type in ["np", "pil"]:
|
575
|
+
image = image * 0.5 + 0.5
|
576
|
+
image = image.clamp(0, 1)
|
577
|
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
578
|
+
|
579
|
+
if output_type == "pil":
|
580
|
+
image = self.numpy_to_pil(image)
|
581
|
+
else:
|
582
|
+
image = latents
|
445
583
|
|
446
|
-
|
447
|
-
image = self.numpy_to_pil(image)
|
584
|
+
self.maybe_free_model_hooks()
|
448
585
|
|
449
586
|
if not return_dict:
|
450
587
|
return (image,)
|