diffusers 0.17.1__py3-none-any.whl → 0.18.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +26 -1
- diffusers/configuration_utils.py +34 -29
- diffusers/dependency_versions_table.py +4 -0
- diffusers/image_processor.py +125 -12
- diffusers/loaders.py +169 -203
- diffusers/models/attention.py +24 -1
- diffusers/models/attention_flax.py +10 -5
- diffusers/models/attention_processor.py +3 -0
- diffusers/models/autoencoder_kl.py +114 -33
- diffusers/models/controlnet.py +131 -14
- diffusers/models/controlnet_flax.py +37 -26
- diffusers/models/cross_attention.py +17 -17
- diffusers/models/embeddings.py +67 -0
- diffusers/models/modeling_flax_utils.py +64 -56
- diffusers/models/modeling_utils.py +193 -104
- diffusers/models/prior_transformer.py +207 -37
- diffusers/models/resnet.py +26 -26
- diffusers/models/transformer_2d.py +36 -41
- diffusers/models/transformer_temporal.py +24 -21
- diffusers/models/unet_1d.py +31 -25
- diffusers/models/unet_2d.py +43 -30
- diffusers/models/unet_2d_blocks.py +210 -89
- diffusers/models/unet_2d_blocks_flax.py +12 -12
- diffusers/models/unet_2d_condition.py +172 -64
- diffusers/models/unet_2d_condition_flax.py +38 -24
- diffusers/models/unet_3d_blocks.py +34 -31
- diffusers/models/unet_3d_condition.py +101 -34
- diffusers/models/vae.py +5 -5
- diffusers/models/vae_flax.py +37 -34
- diffusers/models/vq_model.py +23 -14
- diffusers/pipelines/__init__.py +24 -1
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +1 -1
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +5 -3
- diffusers/pipelines/consistency_models/__init__.py +1 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +337 -0
- diffusers/pipelines/controlnet/multicontrolnet.py +120 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +59 -17
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +60 -15
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +60 -17
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +1 -1
- diffusers/pipelines/kandinsky/__init__.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +4 -6
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +1 -0
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +1 -0
- diffusers/pipelines/kandinsky2_2/__init__.py +7 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +317 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +372 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +434 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +398 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +531 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +541 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +605 -0
- diffusers/pipelines/pipeline_flax_utils.py +2 -2
- diffusers/pipelines/pipeline_utils.py +124 -146
- diffusers/pipelines/shap_e/__init__.py +27 -0
- diffusers/pipelines/shap_e/camera.py +147 -0
- diffusers/pipelines/shap_e/pipeline_shap_e.py +390 -0
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +349 -0
- diffusers/pipelines/shap_e/renderer.py +709 -0
- diffusers/pipelines/stable_diffusion/__init__.py +2 -0
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +261 -66
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +3 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +5 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +4 -2
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +719 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +832 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +17 -7
- diffusers/pipelines/stable_diffusion_xl/__init__.py +26 -0
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +823 -0
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +896 -0
- diffusers/pipelines/stable_diffusion_xl/watermark.py +31 -0
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -1
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +5 -1
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +771 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +92 -6
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
- diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +209 -91
- diffusers/schedulers/__init__.py +3 -0
- diffusers/schedulers/scheduling_consistency_models.py +380 -0
- diffusers/schedulers/scheduling_ddim.py +28 -6
- diffusers/schedulers/scheduling_ddim_inverse.py +19 -4
- diffusers/schedulers/scheduling_ddim_parallel.py +642 -0
- diffusers/schedulers/scheduling_ddpm.py +53 -7
- diffusers/schedulers/scheduling_ddpm_parallel.py +604 -0
- diffusers/schedulers/scheduling_deis_multistep.py +66 -11
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +55 -13
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +19 -4
- diffusers/schedulers/scheduling_dpmsolver_sde.py +73 -11
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +23 -7
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +58 -9
- diffusers/schedulers/scheduling_euler_discrete.py +58 -8
- diffusers/schedulers/scheduling_heun_discrete.py +89 -14
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +73 -11
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +73 -11
- diffusers/schedulers/scheduling_lms_discrete.py +57 -8
- diffusers/schedulers/scheduling_pndm.py +46 -10
- diffusers/schedulers/scheduling_repaint.py +19 -4
- diffusers/schedulers/scheduling_sde_ve.py +5 -1
- diffusers/schedulers/scheduling_unclip.py +43 -4
- diffusers/schedulers/scheduling_unipc_multistep.py +48 -7
- diffusers/training_utils.py +1 -1
- diffusers/utils/__init__.py +2 -1
- diffusers/utils/dummy_pt_objects.py +60 -0
- diffusers/utils/dummy_torch_and_transformers_and_invisible_watermark_objects.py +32 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +180 -0
- diffusers/utils/hub_utils.py +1 -1
- diffusers/utils/import_utils.py +20 -3
- diffusers/utils/logging.py +15 -18
- diffusers/utils/outputs.py +3 -3
- diffusers/utils/testing_utils.py +15 -0
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/METADATA +4 -2
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/RECORD +120 -94
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/WHEEL +1 -1
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/LICENSE +0 -0
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,604 @@
|
|
1
|
+
# Copyright 2023 ParaDiGMS authors and The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
|
16
|
+
|
17
|
+
import math
|
18
|
+
from dataclasses import dataclass
|
19
|
+
from typing import List, Optional, Tuple, Union
|
20
|
+
|
21
|
+
import numpy as np
|
22
|
+
import torch
|
23
|
+
|
24
|
+
from ..configuration_utils import ConfigMixin, register_to_config
|
25
|
+
from ..utils import BaseOutput, randn_tensor
|
26
|
+
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
|
27
|
+
|
28
|
+
|
29
|
+
@dataclass
|
30
|
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput
|
31
|
+
class DDPMParallelSchedulerOutput(BaseOutput):
|
32
|
+
"""
|
33
|
+
Output class for the scheduler's step function output.
|
34
|
+
|
35
|
+
Args:
|
36
|
+
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
37
|
+
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
|
38
|
+
denoising loop.
|
39
|
+
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
40
|
+
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
|
41
|
+
`pred_original_sample` can be used to preview progress or for guidance.
|
42
|
+
"""
|
43
|
+
|
44
|
+
prev_sample: torch.FloatTensor
|
45
|
+
pred_original_sample: Optional[torch.FloatTensor] = None
|
46
|
+
|
47
|
+
|
48
|
+
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
49
|
+
def betas_for_alpha_bar(
|
50
|
+
num_diffusion_timesteps,
|
51
|
+
max_beta=0.999,
|
52
|
+
alpha_transform_type="cosine",
|
53
|
+
):
|
54
|
+
"""
|
55
|
+
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
56
|
+
(1-beta) over time from t = [0,1].
|
57
|
+
|
58
|
+
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
59
|
+
to that part of the diffusion process.
|
60
|
+
|
61
|
+
|
62
|
+
Args:
|
63
|
+
num_diffusion_timesteps (`int`): the number of betas to produce.
|
64
|
+
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
65
|
+
prevent singularities.
|
66
|
+
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
|
67
|
+
Choose from `cosine` or `exp`
|
68
|
+
|
69
|
+
Returns:
|
70
|
+
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
71
|
+
"""
|
72
|
+
if alpha_transform_type == "cosine":
|
73
|
+
|
74
|
+
def alpha_bar_fn(t):
|
75
|
+
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
|
76
|
+
|
77
|
+
elif alpha_transform_type == "exp":
|
78
|
+
|
79
|
+
def alpha_bar_fn(t):
|
80
|
+
return math.exp(t * -12.0)
|
81
|
+
|
82
|
+
else:
|
83
|
+
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
|
84
|
+
|
85
|
+
betas = []
|
86
|
+
for i in range(num_diffusion_timesteps):
|
87
|
+
t1 = i / num_diffusion_timesteps
|
88
|
+
t2 = (i + 1) / num_diffusion_timesteps
|
89
|
+
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
|
90
|
+
return torch.tensor(betas, dtype=torch.float32)
|
91
|
+
|
92
|
+
|
93
|
+
class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
|
94
|
+
"""
|
95
|
+
Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
|
96
|
+
Langevin dynamics sampling.
|
97
|
+
|
98
|
+
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
|
99
|
+
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
|
100
|
+
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
|
101
|
+
[`~SchedulerMixin.from_pretrained`] functions.
|
102
|
+
|
103
|
+
For more details, see the original paper: https://arxiv.org/abs/2006.11239
|
104
|
+
|
105
|
+
Args:
|
106
|
+
num_train_timesteps (`int`): number of diffusion steps used to train the model.
|
107
|
+
beta_start (`float`): the starting `beta` value of inference.
|
108
|
+
beta_end (`float`): the final `beta` value.
|
109
|
+
beta_schedule (`str`):
|
110
|
+
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
111
|
+
`linear`, `scaled_linear`, `squaredcos_cap_v2` or `sigmoid`.
|
112
|
+
trained_betas (`np.ndarray`, optional):
|
113
|
+
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
|
114
|
+
variance_type (`str`):
|
115
|
+
options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
|
116
|
+
`fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
|
117
|
+
clip_sample (`bool`, default `True`):
|
118
|
+
option to clip predicted sample for numerical stability.
|
119
|
+
clip_sample_range (`float`, default `1.0`):
|
120
|
+
the maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
|
121
|
+
prediction_type (`str`, default `epsilon`, optional):
|
122
|
+
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
|
123
|
+
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
|
124
|
+
https://imagen.research.google/video/paper.pdf)
|
125
|
+
thresholding (`bool`, default `False`):
|
126
|
+
whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487).
|
127
|
+
Note that the thresholding method is unsuitable for latent-space diffusion models (such as
|
128
|
+
stable-diffusion).
|
129
|
+
dynamic_thresholding_ratio (`float`, default `0.995`):
|
130
|
+
the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen
|
131
|
+
(https://arxiv.org/abs/2205.11487). Valid only when `thresholding=True`.
|
132
|
+
sample_max_value (`float`, default `1.0`):
|
133
|
+
the threshold value for dynamic thresholding. Valid only when `thresholding=True`.
|
134
|
+
timestep_spacing (`str`, default `"leading"`):
|
135
|
+
The way the timesteps should be scaled. Refer to Table 2. of [Common Diffusion Noise Schedules and Sample
|
136
|
+
Steps are Flawed](https://arxiv.org/abs/2305.08891) for more information.
|
137
|
+
steps_offset (`int`, default `0`):
|
138
|
+
an offset added to the inference steps. You can use a combination of `offset=1` and
|
139
|
+
`set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
|
140
|
+
stable diffusion.
|
141
|
+
"""
|
142
|
+
|
143
|
+
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
144
|
+
order = 1
|
145
|
+
_is_ode_scheduler = False
|
146
|
+
|
147
|
+
@register_to_config
|
148
|
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.__init__
|
149
|
+
def __init__(
|
150
|
+
self,
|
151
|
+
num_train_timesteps: int = 1000,
|
152
|
+
beta_start: float = 0.0001,
|
153
|
+
beta_end: float = 0.02,
|
154
|
+
beta_schedule: str = "linear",
|
155
|
+
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
156
|
+
variance_type: str = "fixed_small",
|
157
|
+
clip_sample: bool = True,
|
158
|
+
prediction_type: str = "epsilon",
|
159
|
+
thresholding: bool = False,
|
160
|
+
dynamic_thresholding_ratio: float = 0.995,
|
161
|
+
clip_sample_range: float = 1.0,
|
162
|
+
sample_max_value: float = 1.0,
|
163
|
+
timestep_spacing: str = "leading",
|
164
|
+
steps_offset: int = 0,
|
165
|
+
):
|
166
|
+
if trained_betas is not None:
|
167
|
+
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
168
|
+
elif beta_schedule == "linear":
|
169
|
+
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
170
|
+
elif beta_schedule == "scaled_linear":
|
171
|
+
# this schedule is very specific to the latent diffusion model.
|
172
|
+
self.betas = (
|
173
|
+
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
174
|
+
)
|
175
|
+
elif beta_schedule == "squaredcos_cap_v2":
|
176
|
+
# Glide cosine schedule
|
177
|
+
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
178
|
+
elif beta_schedule == "sigmoid":
|
179
|
+
# GeoDiff sigmoid schedule
|
180
|
+
betas = torch.linspace(-6, 6, num_train_timesteps)
|
181
|
+
self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
|
182
|
+
else:
|
183
|
+
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
184
|
+
|
185
|
+
self.alphas = 1.0 - self.betas
|
186
|
+
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
187
|
+
self.one = torch.tensor(1.0)
|
188
|
+
|
189
|
+
# standard deviation of the initial noise distribution
|
190
|
+
self.init_noise_sigma = 1.0
|
191
|
+
|
192
|
+
# setable values
|
193
|
+
self.custom_timesteps = False
|
194
|
+
self.num_inference_steps = None
|
195
|
+
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
|
196
|
+
|
197
|
+
self.variance_type = variance_type
|
198
|
+
|
199
|
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.scale_model_input
|
200
|
+
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
|
201
|
+
"""
|
202
|
+
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
203
|
+
current timestep.
|
204
|
+
|
205
|
+
Args:
|
206
|
+
sample (`torch.FloatTensor`): input sample
|
207
|
+
timestep (`int`, optional): current timestep
|
208
|
+
|
209
|
+
Returns:
|
210
|
+
`torch.FloatTensor`: scaled input sample
|
211
|
+
"""
|
212
|
+
return sample
|
213
|
+
|
214
|
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.set_timesteps
|
215
|
+
def set_timesteps(
|
216
|
+
self,
|
217
|
+
num_inference_steps: Optional[int] = None,
|
218
|
+
device: Union[str, torch.device] = None,
|
219
|
+
timesteps: Optional[List[int]] = None,
|
220
|
+
):
|
221
|
+
"""
|
222
|
+
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
|
223
|
+
|
224
|
+
Args:
|
225
|
+
num_inference_steps (`Optional[int]`):
|
226
|
+
the number of diffusion steps used when generating samples with a pre-trained model. If passed, then
|
227
|
+
`timesteps` must be `None`.
|
228
|
+
device (`str` or `torch.device`, optional):
|
229
|
+
the device to which the timesteps are moved to.
|
230
|
+
custom_timesteps (`List[int]`, optional):
|
231
|
+
custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
232
|
+
timestep spacing strategy of equal spacing between timesteps is used. If passed, `num_inference_steps`
|
233
|
+
must be `None`.
|
234
|
+
|
235
|
+
"""
|
236
|
+
if num_inference_steps is not None and timesteps is not None:
|
237
|
+
raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")
|
238
|
+
|
239
|
+
if timesteps is not None:
|
240
|
+
for i in range(1, len(timesteps)):
|
241
|
+
if timesteps[i] >= timesteps[i - 1]:
|
242
|
+
raise ValueError("`custom_timesteps` must be in descending order.")
|
243
|
+
|
244
|
+
if timesteps[0] >= self.config.num_train_timesteps:
|
245
|
+
raise ValueError(
|
246
|
+
f"`timesteps` must start before `self.config.train_timesteps`:"
|
247
|
+
f" {self.config.num_train_timesteps}."
|
248
|
+
)
|
249
|
+
|
250
|
+
timesteps = np.array(timesteps, dtype=np.int64)
|
251
|
+
self.custom_timesteps = True
|
252
|
+
else:
|
253
|
+
if num_inference_steps > self.config.num_train_timesteps:
|
254
|
+
raise ValueError(
|
255
|
+
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
256
|
+
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
257
|
+
f" maximal {self.config.num_train_timesteps} timesteps."
|
258
|
+
)
|
259
|
+
|
260
|
+
self.num_inference_steps = num_inference_steps
|
261
|
+
self.custom_timesteps = False
|
262
|
+
|
263
|
+
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
|
264
|
+
if self.config.timestep_spacing == "linspace":
|
265
|
+
timesteps = (
|
266
|
+
np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
|
267
|
+
.round()[::-1]
|
268
|
+
.copy()
|
269
|
+
.astype(np.int64)
|
270
|
+
)
|
271
|
+
elif self.config.timestep_spacing == "leading":
|
272
|
+
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
|
273
|
+
# creates integer timesteps by multiplying by ratio
|
274
|
+
# casting to int to avoid issues when num_inference_step is power of 3
|
275
|
+
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
|
276
|
+
timesteps += self.config.steps_offset
|
277
|
+
elif self.config.timestep_spacing == "trailing":
|
278
|
+
step_ratio = self.config.num_train_timesteps / self.num_inference_steps
|
279
|
+
# creates integer timesteps by multiplying by ratio
|
280
|
+
# casting to int to avoid issues when num_inference_step is power of 3
|
281
|
+
timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
|
282
|
+
timesteps -= 1
|
283
|
+
else:
|
284
|
+
raise ValueError(
|
285
|
+
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
|
286
|
+
)
|
287
|
+
|
288
|
+
self.timesteps = torch.from_numpy(timesteps).to(device)
|
289
|
+
|
290
|
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._get_variance
|
291
|
+
def _get_variance(self, t, predicted_variance=None, variance_type=None):
|
292
|
+
prev_t = self.previous_timestep(t)
|
293
|
+
|
294
|
+
alpha_prod_t = self.alphas_cumprod[t]
|
295
|
+
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
|
296
|
+
current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev
|
297
|
+
|
298
|
+
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
|
299
|
+
# and sample from it to get previous sample
|
300
|
+
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
|
301
|
+
variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t
|
302
|
+
|
303
|
+
# we always take the log of variance, so clamp it to ensure it's not 0
|
304
|
+
variance = torch.clamp(variance, min=1e-20)
|
305
|
+
|
306
|
+
if variance_type is None:
|
307
|
+
variance_type = self.config.variance_type
|
308
|
+
|
309
|
+
# hacks - were probably added for training stability
|
310
|
+
if variance_type == "fixed_small":
|
311
|
+
variance = variance
|
312
|
+
# for rl-diffuser https://arxiv.org/abs/2205.09991
|
313
|
+
elif variance_type == "fixed_small_log":
|
314
|
+
variance = torch.log(variance)
|
315
|
+
variance = torch.exp(0.5 * variance)
|
316
|
+
elif variance_type == "fixed_large":
|
317
|
+
variance = current_beta_t
|
318
|
+
elif variance_type == "fixed_large_log":
|
319
|
+
# Glide max_log
|
320
|
+
variance = torch.log(current_beta_t)
|
321
|
+
elif variance_type == "learned":
|
322
|
+
return predicted_variance
|
323
|
+
elif variance_type == "learned_range":
|
324
|
+
min_log = torch.log(variance)
|
325
|
+
max_log = torch.log(current_beta_t)
|
326
|
+
frac = (predicted_variance + 1) / 2
|
327
|
+
variance = frac * max_log + (1 - frac) * min_log
|
328
|
+
|
329
|
+
return variance
|
330
|
+
|
331
|
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
332
|
+
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
333
|
+
"""
|
334
|
+
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
335
|
+
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
336
|
+
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
337
|
+
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
338
|
+
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
339
|
+
|
340
|
+
https://arxiv.org/abs/2205.11487
|
341
|
+
"""
|
342
|
+
dtype = sample.dtype
|
343
|
+
batch_size, channels, height, width = sample.shape
|
344
|
+
|
345
|
+
if dtype not in (torch.float32, torch.float64):
|
346
|
+
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
|
347
|
+
|
348
|
+
# Flatten sample for doing quantile calculation along each image
|
349
|
+
sample = sample.reshape(batch_size, channels * height * width)
|
350
|
+
|
351
|
+
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
352
|
+
|
353
|
+
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
|
354
|
+
s = torch.clamp(
|
355
|
+
s, min=1, max=self.config.sample_max_value
|
356
|
+
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
357
|
+
|
358
|
+
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
359
|
+
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
|
360
|
+
|
361
|
+
sample = sample.reshape(batch_size, channels, height, width)
|
362
|
+
sample = sample.to(dtype)
|
363
|
+
|
364
|
+
return sample
|
365
|
+
|
366
|
+
def step(
|
367
|
+
self,
|
368
|
+
model_output: torch.FloatTensor,
|
369
|
+
timestep: int,
|
370
|
+
sample: torch.FloatTensor,
|
371
|
+
generator=None,
|
372
|
+
return_dict: bool = True,
|
373
|
+
) -> Union[DDPMParallelSchedulerOutput, Tuple]:
|
374
|
+
"""
|
375
|
+
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
|
376
|
+
process from the learned model outputs (most often the predicted noise).
|
377
|
+
|
378
|
+
Args:
|
379
|
+
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
|
380
|
+
timestep (`int`): current discrete timestep in the diffusion chain.
|
381
|
+
sample (`torch.FloatTensor`):
|
382
|
+
current instance of sample being created by diffusion process.
|
383
|
+
generator: random number generator.
|
384
|
+
return_dict (`bool`): option for returning tuple rather than DDPMParallelSchedulerOutput class
|
385
|
+
|
386
|
+
Returns:
|
387
|
+
[`~schedulers.scheduling_utils.DDPMParallelSchedulerOutput`] or `tuple`:
|
388
|
+
[`~schedulers.scheduling_utils.DDPMParallelSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
|
389
|
+
When returning a tuple, the first element is the sample tensor.
|
390
|
+
|
391
|
+
"""
|
392
|
+
t = timestep
|
393
|
+
|
394
|
+
prev_t = self.previous_timestep(t)
|
395
|
+
|
396
|
+
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
|
397
|
+
model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
|
398
|
+
else:
|
399
|
+
predicted_variance = None
|
400
|
+
|
401
|
+
# 1. compute alphas, betas
|
402
|
+
alpha_prod_t = self.alphas_cumprod[t]
|
403
|
+
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
|
404
|
+
beta_prod_t = 1 - alpha_prod_t
|
405
|
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
406
|
+
current_alpha_t = alpha_prod_t / alpha_prod_t_prev
|
407
|
+
current_beta_t = 1 - current_alpha_t
|
408
|
+
|
409
|
+
# 2. compute predicted original sample from predicted noise also called
|
410
|
+
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
|
411
|
+
if self.config.prediction_type == "epsilon":
|
412
|
+
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
413
|
+
elif self.config.prediction_type == "sample":
|
414
|
+
pred_original_sample = model_output
|
415
|
+
elif self.config.prediction_type == "v_prediction":
|
416
|
+
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
|
417
|
+
else:
|
418
|
+
raise ValueError(
|
419
|
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
|
420
|
+
" `v_prediction` for the DDPMScheduler."
|
421
|
+
)
|
422
|
+
|
423
|
+
# 3. Clip or threshold "predicted x_0"
|
424
|
+
if self.config.thresholding:
|
425
|
+
pred_original_sample = self._threshold_sample(pred_original_sample)
|
426
|
+
elif self.config.clip_sample:
|
427
|
+
pred_original_sample = pred_original_sample.clamp(
|
428
|
+
-self.config.clip_sample_range, self.config.clip_sample_range
|
429
|
+
)
|
430
|
+
|
431
|
+
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
|
432
|
+
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
|
433
|
+
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
|
434
|
+
current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
|
435
|
+
|
436
|
+
# 5. Compute predicted previous sample µ_t
|
437
|
+
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
|
438
|
+
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
|
439
|
+
|
440
|
+
# 6. Add noise
|
441
|
+
variance = 0
|
442
|
+
if t > 0:
|
443
|
+
device = model_output.device
|
444
|
+
variance_noise = randn_tensor(
|
445
|
+
model_output.shape, generator=generator, device=device, dtype=model_output.dtype
|
446
|
+
)
|
447
|
+
if self.variance_type == "fixed_small_log":
|
448
|
+
variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
|
449
|
+
elif self.variance_type == "learned_range":
|
450
|
+
variance = self._get_variance(t, predicted_variance=predicted_variance)
|
451
|
+
variance = torch.exp(0.5 * variance) * variance_noise
|
452
|
+
else:
|
453
|
+
variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
|
454
|
+
|
455
|
+
pred_prev_sample = pred_prev_sample + variance
|
456
|
+
|
457
|
+
if not return_dict:
|
458
|
+
return (pred_prev_sample,)
|
459
|
+
|
460
|
+
return DDPMParallelSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
|
461
|
+
|
462
|
+
def batch_step_no_noise(
|
463
|
+
self,
|
464
|
+
model_output: torch.FloatTensor,
|
465
|
+
timesteps: List[int],
|
466
|
+
sample: torch.FloatTensor,
|
467
|
+
) -> torch.FloatTensor:
|
468
|
+
"""
|
469
|
+
Batched version of the `step` function, to be able to reverse the SDE for multiple samples/timesteps at once.
|
470
|
+
Also, does not add any noise to the predicted sample, which is necessary for parallel sampling where the noise
|
471
|
+
is pre-sampled by the pipeline.
|
472
|
+
|
473
|
+
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
|
474
|
+
process from the learned model outputs (most often the predicted noise).
|
475
|
+
|
476
|
+
Args:
|
477
|
+
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
|
478
|
+
timesteps (`List[int]`):
|
479
|
+
current discrete timesteps in the diffusion chain. This is now a list of integers.
|
480
|
+
sample (`torch.FloatTensor`):
|
481
|
+
current instance of sample being created by diffusion process.
|
482
|
+
|
483
|
+
Returns:
|
484
|
+
`torch.FloatTensor`: sample tensor at previous timestep.
|
485
|
+
"""
|
486
|
+
t = timesteps
|
487
|
+
num_inference_steps = self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
|
488
|
+
prev_t = t - self.config.num_train_timesteps // num_inference_steps
|
489
|
+
|
490
|
+
t = t.view(-1, *([1] * (model_output.ndim - 1)))
|
491
|
+
prev_t = prev_t.view(-1, *([1] * (model_output.ndim - 1)))
|
492
|
+
|
493
|
+
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
|
494
|
+
model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
|
495
|
+
else:
|
496
|
+
pass
|
497
|
+
|
498
|
+
# 1. compute alphas, betas
|
499
|
+
self.alphas_cumprod = self.alphas_cumprod.to(model_output.device)
|
500
|
+
alpha_prod_t = self.alphas_cumprod[t]
|
501
|
+
alpha_prod_t_prev = self.alphas_cumprod[torch.clip(prev_t, min=0)]
|
502
|
+
alpha_prod_t_prev[prev_t < 0] = torch.tensor(1.0)
|
503
|
+
|
504
|
+
beta_prod_t = 1 - alpha_prod_t
|
505
|
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
506
|
+
current_alpha_t = alpha_prod_t / alpha_prod_t_prev
|
507
|
+
current_beta_t = 1 - current_alpha_t
|
508
|
+
|
509
|
+
# 2. compute predicted original sample from predicted noise also called
|
510
|
+
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
|
511
|
+
if self.config.prediction_type == "epsilon":
|
512
|
+
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
513
|
+
elif self.config.prediction_type == "sample":
|
514
|
+
pred_original_sample = model_output
|
515
|
+
elif self.config.prediction_type == "v_prediction":
|
516
|
+
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
|
517
|
+
else:
|
518
|
+
raise ValueError(
|
519
|
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
|
520
|
+
" `v_prediction` for the DDPMParallelScheduler."
|
521
|
+
)
|
522
|
+
|
523
|
+
# 3. Clip or threshold "predicted x_0"
|
524
|
+
if self.config.thresholding:
|
525
|
+
pred_original_sample = self._threshold_sample(pred_original_sample)
|
526
|
+
elif self.config.clip_sample:
|
527
|
+
pred_original_sample = pred_original_sample.clamp(
|
528
|
+
-self.config.clip_sample_range, self.config.clip_sample_range
|
529
|
+
)
|
530
|
+
|
531
|
+
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
|
532
|
+
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
|
533
|
+
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
|
534
|
+
current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
|
535
|
+
|
536
|
+
# 5. Compute predicted previous sample µ_t
|
537
|
+
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
|
538
|
+
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
|
539
|
+
|
540
|
+
return pred_prev_sample
|
541
|
+
|
542
|
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
|
543
|
+
def add_noise(
|
544
|
+
self,
|
545
|
+
original_samples: torch.FloatTensor,
|
546
|
+
noise: torch.FloatTensor,
|
547
|
+
timesteps: torch.IntTensor,
|
548
|
+
) -> torch.FloatTensor:
|
549
|
+
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
550
|
+
alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
|
551
|
+
timesteps = timesteps.to(original_samples.device)
|
552
|
+
|
553
|
+
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
554
|
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
555
|
+
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
556
|
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
557
|
+
|
558
|
+
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
559
|
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
560
|
+
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
561
|
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
562
|
+
|
563
|
+
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
564
|
+
return noisy_samples
|
565
|
+
|
566
|
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
|
567
|
+
def get_velocity(
|
568
|
+
self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
|
569
|
+
) -> torch.FloatTensor:
|
570
|
+
# Make sure alphas_cumprod and timestep have same device and dtype as sample
|
571
|
+
alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
|
572
|
+
timesteps = timesteps.to(sample.device)
|
573
|
+
|
574
|
+
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
575
|
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
576
|
+
while len(sqrt_alpha_prod.shape) < len(sample.shape):
|
577
|
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
578
|
+
|
579
|
+
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
580
|
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
581
|
+
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
|
582
|
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
583
|
+
|
584
|
+
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
|
585
|
+
return velocity
|
586
|
+
|
587
|
+
def __len__(self):
|
588
|
+
return self.config.num_train_timesteps
|
589
|
+
|
590
|
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.previous_timestep
|
591
|
+
def previous_timestep(self, timestep):
|
592
|
+
if self.custom_timesteps:
|
593
|
+
index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
|
594
|
+
if index == self.timesteps.shape[0] - 1:
|
595
|
+
prev_t = torch.tensor(-1)
|
596
|
+
else:
|
597
|
+
prev_t = self.timesteps[index + 1]
|
598
|
+
else:
|
599
|
+
num_inference_steps = (
|
600
|
+
self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
|
601
|
+
)
|
602
|
+
prev_t = timestep - self.config.num_train_timesteps // num_inference_steps
|
603
|
+
|
604
|
+
return prev_t
|