diffusers 0.17.1__py3-none-any.whl → 0.18.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +26 -1
- diffusers/configuration_utils.py +34 -29
- diffusers/dependency_versions_table.py +4 -0
- diffusers/image_processor.py +125 -12
- diffusers/loaders.py +169 -203
- diffusers/models/attention.py +24 -1
- diffusers/models/attention_flax.py +10 -5
- diffusers/models/attention_processor.py +3 -0
- diffusers/models/autoencoder_kl.py +114 -33
- diffusers/models/controlnet.py +131 -14
- diffusers/models/controlnet_flax.py +37 -26
- diffusers/models/cross_attention.py +17 -17
- diffusers/models/embeddings.py +67 -0
- diffusers/models/modeling_flax_utils.py +64 -56
- diffusers/models/modeling_utils.py +193 -104
- diffusers/models/prior_transformer.py +207 -37
- diffusers/models/resnet.py +26 -26
- diffusers/models/transformer_2d.py +36 -41
- diffusers/models/transformer_temporal.py +24 -21
- diffusers/models/unet_1d.py +31 -25
- diffusers/models/unet_2d.py +43 -30
- diffusers/models/unet_2d_blocks.py +210 -89
- diffusers/models/unet_2d_blocks_flax.py +12 -12
- diffusers/models/unet_2d_condition.py +172 -64
- diffusers/models/unet_2d_condition_flax.py +38 -24
- diffusers/models/unet_3d_blocks.py +34 -31
- diffusers/models/unet_3d_condition.py +101 -34
- diffusers/models/vae.py +5 -5
- diffusers/models/vae_flax.py +37 -34
- diffusers/models/vq_model.py +23 -14
- diffusers/pipelines/__init__.py +24 -1
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +1 -1
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +5 -3
- diffusers/pipelines/consistency_models/__init__.py +1 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +337 -0
- diffusers/pipelines/controlnet/multicontrolnet.py +120 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +59 -17
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +60 -15
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +60 -17
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +1 -1
- diffusers/pipelines/kandinsky/__init__.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +4 -6
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +1 -0
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +1 -0
- diffusers/pipelines/kandinsky2_2/__init__.py +7 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +317 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +372 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +434 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +398 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +531 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +541 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +605 -0
- diffusers/pipelines/pipeline_flax_utils.py +2 -2
- diffusers/pipelines/pipeline_utils.py +124 -146
- diffusers/pipelines/shap_e/__init__.py +27 -0
- diffusers/pipelines/shap_e/camera.py +147 -0
- diffusers/pipelines/shap_e/pipeline_shap_e.py +390 -0
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +349 -0
- diffusers/pipelines/shap_e/renderer.py +709 -0
- diffusers/pipelines/stable_diffusion/__init__.py +2 -0
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +261 -66
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +3 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +5 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +4 -2
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +719 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +832 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +17 -7
- diffusers/pipelines/stable_diffusion_xl/__init__.py +26 -0
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +823 -0
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +896 -0
- diffusers/pipelines/stable_diffusion_xl/watermark.py +31 -0
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -1
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +5 -1
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +771 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +92 -6
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
- diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +209 -91
- diffusers/schedulers/__init__.py +3 -0
- diffusers/schedulers/scheduling_consistency_models.py +380 -0
- diffusers/schedulers/scheduling_ddim.py +28 -6
- diffusers/schedulers/scheduling_ddim_inverse.py +19 -4
- diffusers/schedulers/scheduling_ddim_parallel.py +642 -0
- diffusers/schedulers/scheduling_ddpm.py +53 -7
- diffusers/schedulers/scheduling_ddpm_parallel.py +604 -0
- diffusers/schedulers/scheduling_deis_multistep.py +66 -11
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +55 -13
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +19 -4
- diffusers/schedulers/scheduling_dpmsolver_sde.py +73 -11
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +23 -7
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +58 -9
- diffusers/schedulers/scheduling_euler_discrete.py +58 -8
- diffusers/schedulers/scheduling_heun_discrete.py +89 -14
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +73 -11
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +73 -11
- diffusers/schedulers/scheduling_lms_discrete.py +57 -8
- diffusers/schedulers/scheduling_pndm.py +46 -10
- diffusers/schedulers/scheduling_repaint.py +19 -4
- diffusers/schedulers/scheduling_sde_ve.py +5 -1
- diffusers/schedulers/scheduling_unclip.py +43 -4
- diffusers/schedulers/scheduling_unipc_multistep.py +48 -7
- diffusers/training_utils.py +1 -1
- diffusers/utils/__init__.py +2 -1
- diffusers/utils/dummy_pt_objects.py +60 -0
- diffusers/utils/dummy_torch_and_transformers_and_invisible_watermark_objects.py +32 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +180 -0
- diffusers/utils/hub_utils.py +1 -1
- diffusers/utils/import_utils.py +20 -3
- diffusers/utils/logging.py +15 -18
- diffusers/utils/outputs.py +3 -3
- diffusers/utils/testing_utils.py +15 -0
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/METADATA +4 -2
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/RECORD +120 -94
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/WHEEL +1 -1
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/LICENSE +0 -0
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/top_level.txt +0 -0
diffusers/schedulers/__init__.py
CHANGED
@@ -28,9 +28,12 @@ try:
|
|
28
28
|
except OptionalDependencyNotAvailable:
|
29
29
|
from ..utils.dummy_pt_objects import * # noqa F403
|
30
30
|
else:
|
31
|
+
from .scheduling_consistency_models import CMStochasticIterativeScheduler
|
31
32
|
from .scheduling_ddim import DDIMScheduler
|
32
33
|
from .scheduling_ddim_inverse import DDIMInverseScheduler
|
34
|
+
from .scheduling_ddim_parallel import DDIMParallelScheduler
|
33
35
|
from .scheduling_ddpm import DDPMScheduler
|
36
|
+
from .scheduling_ddpm_parallel import DDPMParallelScheduler
|
34
37
|
from .scheduling_deis_multistep import DEISMultistepScheduler
|
35
38
|
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
|
36
39
|
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
|
@@ -0,0 +1,380 @@
|
|
1
|
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from dataclasses import dataclass
|
16
|
+
from typing import List, Optional, Tuple, Union
|
17
|
+
|
18
|
+
import numpy as np
|
19
|
+
import torch
|
20
|
+
|
21
|
+
from ..configuration_utils import ConfigMixin, register_to_config
|
22
|
+
from ..utils import BaseOutput, logging, randn_tensor
|
23
|
+
from .scheduling_utils import SchedulerMixin
|
24
|
+
|
25
|
+
|
26
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
27
|
+
|
28
|
+
|
29
|
+
@dataclass
|
30
|
+
class CMStochasticIterativeSchedulerOutput(BaseOutput):
|
31
|
+
"""
|
32
|
+
Output class for the scheduler's step function output.
|
33
|
+
|
34
|
+
Args:
|
35
|
+
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
36
|
+
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
|
37
|
+
denoising loop.
|
38
|
+
"""
|
39
|
+
|
40
|
+
prev_sample: torch.FloatTensor
|
41
|
+
|
42
|
+
|
43
|
+
class CMStochasticIterativeScheduler(SchedulerMixin, ConfigMixin):
|
44
|
+
"""
|
45
|
+
Multistep and onestep sampling for consistency models from Song et al. 2023 [1]. This implements Algorithm 1 in the
|
46
|
+
paper [1].
|
47
|
+
|
48
|
+
[1] Song, Yang and Dhariwal, Prafulla and Chen, Mark and Sutskever, Ilya. "Consistency Models"
|
49
|
+
https://arxiv.org/pdf/2303.01469 [2] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based
|
50
|
+
Generative Models." https://arxiv.org/abs/2206.00364
|
51
|
+
|
52
|
+
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
|
53
|
+
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
|
54
|
+
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
|
55
|
+
[`~SchedulerMixin.from_pretrained`] functions.
|
56
|
+
|
57
|
+
Args:
|
58
|
+
num_train_timesteps (`int`): number of diffusion steps used to train the model.
|
59
|
+
sigma_min (`float`):
|
60
|
+
Minimum noise magnitude in the sigma schedule. This was set to 0.002 in the original implementation.
|
61
|
+
sigma_max (`float`):
|
62
|
+
Maximum noise magnitude in the sigma schedule. This was set to 80.0 in the original implementation.
|
63
|
+
sigma_data (`float`):
|
64
|
+
The standard deviation of the data distribution, following the EDM paper [2]. This was set to 0.5 in the
|
65
|
+
original implementation, which is also the original value suggested in the EDM paper.
|
66
|
+
s_noise (`float`):
|
67
|
+
The amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000,
|
68
|
+
1.011]. This was set to 1.0 in the original implementation.
|
69
|
+
rho (`float`):
|
70
|
+
The rho parameter used for calculating the Karras sigma schedule, introduced in the EDM paper [2]. This was
|
71
|
+
set to 7.0 in the original implementation, which is also the original value suggested in the EDM paper.
|
72
|
+
clip_denoised (`bool`):
|
73
|
+
Whether to clip the denoised outputs to `(-1, 1)`. Defaults to `True`.
|
74
|
+
timesteps (`List` or `np.ndarray` or `torch.Tensor`, *optional*):
|
75
|
+
Optionally, an explicit timestep schedule can be specified. The timesteps are expected to be in increasing
|
76
|
+
order.
|
77
|
+
"""
|
78
|
+
|
79
|
+
order = 1
|
80
|
+
|
81
|
+
@register_to_config
|
82
|
+
def __init__(
|
83
|
+
self,
|
84
|
+
num_train_timesteps: int = 40,
|
85
|
+
sigma_min: float = 0.002,
|
86
|
+
sigma_max: float = 80.0,
|
87
|
+
sigma_data: float = 0.5,
|
88
|
+
s_noise: float = 1.0,
|
89
|
+
rho: float = 7.0,
|
90
|
+
clip_denoised: bool = True,
|
91
|
+
):
|
92
|
+
# standard deviation of the initial noise distribution
|
93
|
+
self.init_noise_sigma = sigma_max
|
94
|
+
|
95
|
+
ramp = np.linspace(0, 1, num_train_timesteps)
|
96
|
+
sigmas = self._convert_to_karras(ramp)
|
97
|
+
timesteps = self.sigma_to_t(sigmas)
|
98
|
+
|
99
|
+
# setable values
|
100
|
+
self.num_inference_steps = None
|
101
|
+
self.sigmas = torch.from_numpy(sigmas)
|
102
|
+
self.timesteps = torch.from_numpy(timesteps)
|
103
|
+
self.custom_timesteps = False
|
104
|
+
self.is_scale_input_called = False
|
105
|
+
|
106
|
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
107
|
+
if schedule_timesteps is None:
|
108
|
+
schedule_timesteps = self.timesteps
|
109
|
+
|
110
|
+
indices = (schedule_timesteps == timestep).nonzero()
|
111
|
+
return indices.item()
|
112
|
+
|
113
|
+
def scale_model_input(
|
114
|
+
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
|
115
|
+
) -> torch.FloatTensor:
|
116
|
+
"""
|
117
|
+
Scales the consistency model input by `(sigma**2 + sigma_data**2) ** 0.5`, following the EDM model.
|
118
|
+
|
119
|
+
Args:
|
120
|
+
sample (`torch.FloatTensor`): input sample
|
121
|
+
timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain
|
122
|
+
Returns:
|
123
|
+
`torch.FloatTensor`: scaled input sample
|
124
|
+
"""
|
125
|
+
# Get sigma corresponding to timestep
|
126
|
+
if isinstance(timestep, torch.Tensor):
|
127
|
+
timestep = timestep.to(self.timesteps.device)
|
128
|
+
step_idx = self.index_for_timestep(timestep)
|
129
|
+
sigma = self.sigmas[step_idx]
|
130
|
+
|
131
|
+
sample = sample / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
|
132
|
+
|
133
|
+
self.is_scale_input_called = True
|
134
|
+
return sample
|
135
|
+
|
136
|
+
def sigma_to_t(self, sigmas: Union[float, np.ndarray]):
|
137
|
+
"""
|
138
|
+
Gets scaled timesteps from the Karras sigmas, for input to the consistency model.
|
139
|
+
|
140
|
+
Args:
|
141
|
+
sigmas (`float` or `np.ndarray`): single Karras sigma or array of Karras sigmas
|
142
|
+
Returns:
|
143
|
+
`float` or `np.ndarray`: scaled input timestep or scaled input timestep array
|
144
|
+
"""
|
145
|
+
if not isinstance(sigmas, np.ndarray):
|
146
|
+
sigmas = np.array(sigmas, dtype=np.float64)
|
147
|
+
|
148
|
+
timesteps = 1000 * 0.25 * np.log(sigmas + 1e-44)
|
149
|
+
|
150
|
+
return timesteps
|
151
|
+
|
152
|
+
def set_timesteps(
|
153
|
+
self,
|
154
|
+
num_inference_steps: Optional[int] = None,
|
155
|
+
device: Union[str, torch.device] = None,
|
156
|
+
timesteps: Optional[List[int]] = None,
|
157
|
+
):
|
158
|
+
"""
|
159
|
+
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
|
160
|
+
|
161
|
+
Args:
|
162
|
+
num_inference_steps (`int`):
|
163
|
+
the number of diffusion steps used when generating samples with a pre-trained model.
|
164
|
+
device (`str` or `torch.device`, optional):
|
165
|
+
the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
166
|
+
timesteps (`List[int]`, optional):
|
167
|
+
custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
168
|
+
timestep spacing strategy of equal spacing between timesteps is used. If passed, `num_inference_steps`
|
169
|
+
must be `None`.
|
170
|
+
"""
|
171
|
+
if num_inference_steps is None and timesteps is None:
|
172
|
+
raise ValueError("Exactly one of `num_inference_steps` or `timesteps` must be supplied.")
|
173
|
+
|
174
|
+
if num_inference_steps is not None and timesteps is not None:
|
175
|
+
raise ValueError("Can only pass one of `num_inference_steps` or `timesteps`.")
|
176
|
+
|
177
|
+
# Follow DDPMScheduler custom timesteps logic
|
178
|
+
if timesteps is not None:
|
179
|
+
for i in range(1, len(timesteps)):
|
180
|
+
if timesteps[i] >= timesteps[i - 1]:
|
181
|
+
raise ValueError("`timesteps` must be in descending order.")
|
182
|
+
|
183
|
+
if timesteps[0] >= self.config.num_train_timesteps:
|
184
|
+
raise ValueError(
|
185
|
+
f"`timesteps` must start before `self.config.train_timesteps`:"
|
186
|
+
f" {self.config.num_train_timesteps}."
|
187
|
+
)
|
188
|
+
|
189
|
+
timesteps = np.array(timesteps, dtype=np.int64)
|
190
|
+
self.custom_timesteps = True
|
191
|
+
else:
|
192
|
+
if num_inference_steps > self.config.num_train_timesteps:
|
193
|
+
raise ValueError(
|
194
|
+
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
195
|
+
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
196
|
+
f" maximal {self.config.num_train_timesteps} timesteps."
|
197
|
+
)
|
198
|
+
|
199
|
+
self.num_inference_steps = num_inference_steps
|
200
|
+
|
201
|
+
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
|
202
|
+
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
|
203
|
+
self.custom_timesteps = False
|
204
|
+
|
205
|
+
# Map timesteps to Karras sigmas directly for multistep sampling
|
206
|
+
# See https://github.com/openai/consistency_models/blob/main/cm/karras_diffusion.py#L675
|
207
|
+
num_train_timesteps = self.config.num_train_timesteps
|
208
|
+
ramp = timesteps[::-1].copy()
|
209
|
+
ramp = ramp / (num_train_timesteps - 1)
|
210
|
+
sigmas = self._convert_to_karras(ramp)
|
211
|
+
timesteps = self.sigma_to_t(sigmas)
|
212
|
+
|
213
|
+
sigmas = np.concatenate([sigmas, [self.sigma_min]]).astype(np.float32)
|
214
|
+
self.sigmas = torch.from_numpy(sigmas).to(device=device)
|
215
|
+
|
216
|
+
if str(device).startswith("mps"):
|
217
|
+
# mps does not support float64
|
218
|
+
self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
|
219
|
+
else:
|
220
|
+
self.timesteps = torch.from_numpy(timesteps).to(device=device)
|
221
|
+
|
222
|
+
# Modified _convert_to_karras implementation that takes in ramp as argument
|
223
|
+
def _convert_to_karras(self, ramp):
|
224
|
+
"""Constructs the noise schedule of Karras et al. (2022)."""
|
225
|
+
|
226
|
+
sigma_min: float = self.config.sigma_min
|
227
|
+
sigma_max: float = self.config.sigma_max
|
228
|
+
|
229
|
+
rho = self.config.rho
|
230
|
+
min_inv_rho = sigma_min ** (1 / rho)
|
231
|
+
max_inv_rho = sigma_max ** (1 / rho)
|
232
|
+
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
233
|
+
return sigmas
|
234
|
+
|
235
|
+
def get_scalings(self, sigma):
|
236
|
+
sigma_data = self.config.sigma_data
|
237
|
+
|
238
|
+
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
|
239
|
+
c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
240
|
+
return c_skip, c_out
|
241
|
+
|
242
|
+
def get_scalings_for_boundary_condition(self, sigma):
|
243
|
+
"""
|
244
|
+
Gets the scalings used in the consistency model parameterization, following Appendix C of the original paper.
|
245
|
+
This enforces the consistency model boundary condition.
|
246
|
+
|
247
|
+
Note that `epsilon` in the equations for c_skip and c_out is set to sigma_min.
|
248
|
+
|
249
|
+
Args:
|
250
|
+
sigma (`torch.FloatTensor`):
|
251
|
+
The current sigma in the Karras sigma schedule.
|
252
|
+
Returns:
|
253
|
+
`tuple`:
|
254
|
+
A two-element tuple where c_skip (which weights the current sample) is the first element and c_out
|
255
|
+
(which weights the consistency model output) is the second element.
|
256
|
+
"""
|
257
|
+
sigma_min = self.config.sigma_min
|
258
|
+
sigma_data = self.config.sigma_data
|
259
|
+
|
260
|
+
c_skip = sigma_data**2 / ((sigma - sigma_min) ** 2 + sigma_data**2)
|
261
|
+
c_out = (sigma - sigma_min) * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
262
|
+
return c_skip, c_out
|
263
|
+
|
264
|
+
def step(
|
265
|
+
self,
|
266
|
+
model_output: torch.FloatTensor,
|
267
|
+
timestep: Union[float, torch.FloatTensor],
|
268
|
+
sample: torch.FloatTensor,
|
269
|
+
generator: Optional[torch.Generator] = None,
|
270
|
+
return_dict: bool = True,
|
271
|
+
) -> Union[CMStochasticIterativeSchedulerOutput, Tuple]:
|
272
|
+
"""
|
273
|
+
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
|
274
|
+
process from the learned model outputs (most often the predicted noise).
|
275
|
+
|
276
|
+
Args:
|
277
|
+
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
|
278
|
+
timestep (`float`): current timestep in the diffusion chain.
|
279
|
+
sample (`torch.FloatTensor`):
|
280
|
+
current instance of sample being created by diffusion process.
|
281
|
+
generator (`torch.Generator`, *optional*): Random number generator.
|
282
|
+
return_dict (`bool`): option for returning tuple rather than EulerDiscreteSchedulerOutput class
|
283
|
+
Returns:
|
284
|
+
[`~schedulers.scheduling_utils.CMStochasticIterativeSchedulerOutput`] or `tuple`:
|
285
|
+
[`~schedulers.scheduling_utils.CMStochasticIterativeSchedulerOutput`] if `return_dict` is True, otherwise a
|
286
|
+
`tuple`. When returning a tuple, the first element is the sample tensor.
|
287
|
+
"""
|
288
|
+
|
289
|
+
if (
|
290
|
+
isinstance(timestep, int)
|
291
|
+
or isinstance(timestep, torch.IntTensor)
|
292
|
+
or isinstance(timestep, torch.LongTensor)
|
293
|
+
):
|
294
|
+
raise ValueError(
|
295
|
+
(
|
296
|
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
297
|
+
f" `{self.__class__}.step()` is not supported. Make sure to pass"
|
298
|
+
" one of the `scheduler.timesteps` as a timestep."
|
299
|
+
),
|
300
|
+
)
|
301
|
+
|
302
|
+
if not self.is_scale_input_called:
|
303
|
+
logger.warning(
|
304
|
+
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
|
305
|
+
"See `StableDiffusionPipeline` for a usage example."
|
306
|
+
)
|
307
|
+
|
308
|
+
if isinstance(timestep, torch.Tensor):
|
309
|
+
timestep = timestep.to(self.timesteps.device)
|
310
|
+
|
311
|
+
sigma_min = self.config.sigma_min
|
312
|
+
sigma_max = self.config.sigma_max
|
313
|
+
|
314
|
+
step_index = self.index_for_timestep(timestep)
|
315
|
+
|
316
|
+
# sigma_next corresponds to next_t in original implementation
|
317
|
+
sigma = self.sigmas[step_index]
|
318
|
+
if step_index + 1 < self.config.num_train_timesteps:
|
319
|
+
sigma_next = self.sigmas[step_index + 1]
|
320
|
+
else:
|
321
|
+
# Set sigma_next to sigma_min
|
322
|
+
sigma_next = self.sigmas[-1]
|
323
|
+
|
324
|
+
# Get scalings for boundary conditions
|
325
|
+
c_skip, c_out = self.get_scalings_for_boundary_condition(sigma)
|
326
|
+
|
327
|
+
# 1. Denoise model output using boundary conditions
|
328
|
+
denoised = c_out * model_output + c_skip * sample
|
329
|
+
if self.config.clip_denoised:
|
330
|
+
denoised = denoised.clamp(-1, 1)
|
331
|
+
|
332
|
+
# 2. Sample z ~ N(0, s_noise^2 * I)
|
333
|
+
# Noise is not used for onestep sampling.
|
334
|
+
if len(self.timesteps) > 1:
|
335
|
+
noise = randn_tensor(
|
336
|
+
model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
|
337
|
+
)
|
338
|
+
else:
|
339
|
+
noise = torch.zeros_like(model_output)
|
340
|
+
z = noise * self.config.s_noise
|
341
|
+
|
342
|
+
sigma_hat = sigma_next.clamp(min=sigma_min, max=sigma_max)
|
343
|
+
|
344
|
+
# 3. Return noisy sample
|
345
|
+
# tau = sigma_hat, eps = sigma_min
|
346
|
+
prev_sample = denoised + z * (sigma_hat**2 - sigma_min**2) ** 0.5
|
347
|
+
|
348
|
+
if not return_dict:
|
349
|
+
return (prev_sample,)
|
350
|
+
|
351
|
+
return CMStochasticIterativeSchedulerOutput(prev_sample=prev_sample)
|
352
|
+
|
353
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
|
354
|
+
def add_noise(
|
355
|
+
self,
|
356
|
+
original_samples: torch.FloatTensor,
|
357
|
+
noise: torch.FloatTensor,
|
358
|
+
timesteps: torch.FloatTensor,
|
359
|
+
) -> torch.FloatTensor:
|
360
|
+
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
361
|
+
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
362
|
+
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
363
|
+
# mps does not support float64
|
364
|
+
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
|
365
|
+
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
|
366
|
+
else:
|
367
|
+
schedule_timesteps = self.timesteps.to(original_samples.device)
|
368
|
+
timesteps = timesteps.to(original_samples.device)
|
369
|
+
|
370
|
+
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
|
371
|
+
|
372
|
+
sigma = sigmas[step_indices].flatten()
|
373
|
+
while len(sigma.shape) < len(original_samples.shape):
|
374
|
+
sigma = sigma.unsqueeze(-1)
|
375
|
+
|
376
|
+
noisy_samples = original_samples + noise * sigma
|
377
|
+
return noisy_samples
|
378
|
+
|
379
|
+
def __len__(self):
|
380
|
+
return self.config.num_train_timesteps
|
@@ -47,7 +47,11 @@ class DDIMSchedulerOutput(BaseOutput):
|
|
47
47
|
|
48
48
|
|
49
49
|
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
50
|
-
def betas_for_alpha_bar(
|
50
|
+
def betas_for_alpha_bar(
|
51
|
+
num_diffusion_timesteps,
|
52
|
+
max_beta=0.999,
|
53
|
+
alpha_transform_type="cosine",
|
54
|
+
):
|
51
55
|
"""
|
52
56
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
53
57
|
(1-beta) over time from t = [0,1].
|
@@ -60,19 +64,30 @@ def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor
|
|
60
64
|
num_diffusion_timesteps (`int`): the number of betas to produce.
|
61
65
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
62
66
|
prevent singularities.
|
67
|
+
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
|
68
|
+
Choose from `cosine` or `exp`
|
63
69
|
|
64
70
|
Returns:
|
65
71
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
66
72
|
"""
|
73
|
+
if alpha_transform_type == "cosine":
|
67
74
|
|
68
|
-
|
69
|
-
|
75
|
+
def alpha_bar_fn(t):
|
76
|
+
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
|
77
|
+
|
78
|
+
elif alpha_transform_type == "exp":
|
79
|
+
|
80
|
+
def alpha_bar_fn(t):
|
81
|
+
return math.exp(t * -12.0)
|
82
|
+
|
83
|
+
else:
|
84
|
+
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
|
70
85
|
|
71
86
|
betas = []
|
72
87
|
for i in range(num_diffusion_timesteps):
|
73
88
|
t1 = i / num_diffusion_timesteps
|
74
89
|
t2 = (i + 1) / num_diffusion_timesteps
|
75
|
-
betas.append(min(1 -
|
90
|
+
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
|
76
91
|
return torch.tensor(betas, dtype=torch.float32)
|
77
92
|
|
78
93
|
|
@@ -302,8 +317,15 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
|
|
302
317
|
|
303
318
|
self.num_inference_steps = num_inference_steps
|
304
319
|
|
305
|
-
# "leading"
|
306
|
-
if self.config.timestep_spacing == "
|
320
|
+
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
|
321
|
+
if self.config.timestep_spacing == "linspace":
|
322
|
+
timesteps = (
|
323
|
+
np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
|
324
|
+
.round()[::-1]
|
325
|
+
.copy()
|
326
|
+
.astype(np.int64)
|
327
|
+
)
|
328
|
+
elif self.config.timestep_spacing == "leading":
|
307
329
|
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
|
308
330
|
# creates integer timesteps by multiplying by ratio
|
309
331
|
# casting to int to avoid issues when num_inference_step is power of 3
|
@@ -46,7 +46,11 @@ class DDIMSchedulerOutput(BaseOutput):
|
|
46
46
|
|
47
47
|
|
48
48
|
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
49
|
-
def betas_for_alpha_bar(
|
49
|
+
def betas_for_alpha_bar(
|
50
|
+
num_diffusion_timesteps,
|
51
|
+
max_beta=0.999,
|
52
|
+
alpha_transform_type="cosine",
|
53
|
+
):
|
50
54
|
"""
|
51
55
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
52
56
|
(1-beta) over time from t = [0,1].
|
@@ -59,19 +63,30 @@ def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor
|
|
59
63
|
num_diffusion_timesteps (`int`): the number of betas to produce.
|
60
64
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
61
65
|
prevent singularities.
|
66
|
+
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
|
67
|
+
Choose from `cosine` or `exp`
|
62
68
|
|
63
69
|
Returns:
|
64
70
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
65
71
|
"""
|
72
|
+
if alpha_transform_type == "cosine":
|
66
73
|
|
67
|
-
|
68
|
-
|
74
|
+
def alpha_bar_fn(t):
|
75
|
+
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
|
76
|
+
|
77
|
+
elif alpha_transform_type == "exp":
|
78
|
+
|
79
|
+
def alpha_bar_fn(t):
|
80
|
+
return math.exp(t * -12.0)
|
81
|
+
|
82
|
+
else:
|
83
|
+
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
|
69
84
|
|
70
85
|
betas = []
|
71
86
|
for i in range(num_diffusion_timesteps):
|
72
87
|
t1 = i / num_diffusion_timesteps
|
73
88
|
t2 = (i + 1) / num_diffusion_timesteps
|
74
|
-
betas.append(min(1 -
|
89
|
+
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
|
75
90
|
return torch.tensor(betas, dtype=torch.float32)
|
76
91
|
|
77
92
|
|