diffusers 0.17.1__py3-none-any.whl → 0.18.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +26 -1
- diffusers/configuration_utils.py +34 -29
- diffusers/dependency_versions_table.py +4 -0
- diffusers/image_processor.py +125 -12
- diffusers/loaders.py +169 -203
- diffusers/models/attention.py +24 -1
- diffusers/models/attention_flax.py +10 -5
- diffusers/models/attention_processor.py +3 -0
- diffusers/models/autoencoder_kl.py +114 -33
- diffusers/models/controlnet.py +131 -14
- diffusers/models/controlnet_flax.py +37 -26
- diffusers/models/cross_attention.py +17 -17
- diffusers/models/embeddings.py +67 -0
- diffusers/models/modeling_flax_utils.py +64 -56
- diffusers/models/modeling_utils.py +193 -104
- diffusers/models/prior_transformer.py +207 -37
- diffusers/models/resnet.py +26 -26
- diffusers/models/transformer_2d.py +36 -41
- diffusers/models/transformer_temporal.py +24 -21
- diffusers/models/unet_1d.py +31 -25
- diffusers/models/unet_2d.py +43 -30
- diffusers/models/unet_2d_blocks.py +210 -89
- diffusers/models/unet_2d_blocks_flax.py +12 -12
- diffusers/models/unet_2d_condition.py +172 -64
- diffusers/models/unet_2d_condition_flax.py +38 -24
- diffusers/models/unet_3d_blocks.py +34 -31
- diffusers/models/unet_3d_condition.py +101 -34
- diffusers/models/vae.py +5 -5
- diffusers/models/vae_flax.py +37 -34
- diffusers/models/vq_model.py +23 -14
- diffusers/pipelines/__init__.py +24 -1
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +1 -1
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +5 -3
- diffusers/pipelines/consistency_models/__init__.py +1 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +337 -0
- diffusers/pipelines/controlnet/multicontrolnet.py +120 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +59 -17
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +60 -15
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +60 -17
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +1 -1
- diffusers/pipelines/kandinsky/__init__.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +4 -6
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +1 -0
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +1 -0
- diffusers/pipelines/kandinsky2_2/__init__.py +7 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +317 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +372 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +434 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +398 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +531 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +541 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +605 -0
- diffusers/pipelines/pipeline_flax_utils.py +2 -2
- diffusers/pipelines/pipeline_utils.py +124 -146
- diffusers/pipelines/shap_e/__init__.py +27 -0
- diffusers/pipelines/shap_e/camera.py +147 -0
- diffusers/pipelines/shap_e/pipeline_shap_e.py +390 -0
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +349 -0
- diffusers/pipelines/shap_e/renderer.py +709 -0
- diffusers/pipelines/stable_diffusion/__init__.py +2 -0
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +261 -66
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +3 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +5 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +4 -2
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +719 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +832 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +17 -7
- diffusers/pipelines/stable_diffusion_xl/__init__.py +26 -0
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +823 -0
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +896 -0
- diffusers/pipelines/stable_diffusion_xl/watermark.py +31 -0
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -1
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +5 -1
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +771 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +92 -6
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
- diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +209 -91
- diffusers/schedulers/__init__.py +3 -0
- diffusers/schedulers/scheduling_consistency_models.py +380 -0
- diffusers/schedulers/scheduling_ddim.py +28 -6
- diffusers/schedulers/scheduling_ddim_inverse.py +19 -4
- diffusers/schedulers/scheduling_ddim_parallel.py +642 -0
- diffusers/schedulers/scheduling_ddpm.py +53 -7
- diffusers/schedulers/scheduling_ddpm_parallel.py +604 -0
- diffusers/schedulers/scheduling_deis_multistep.py +66 -11
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +55 -13
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +19 -4
- diffusers/schedulers/scheduling_dpmsolver_sde.py +73 -11
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +23 -7
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +58 -9
- diffusers/schedulers/scheduling_euler_discrete.py +58 -8
- diffusers/schedulers/scheduling_heun_discrete.py +89 -14
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +73 -11
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +73 -11
- diffusers/schedulers/scheduling_lms_discrete.py +57 -8
- diffusers/schedulers/scheduling_pndm.py +46 -10
- diffusers/schedulers/scheduling_repaint.py +19 -4
- diffusers/schedulers/scheduling_sde_ve.py +5 -1
- diffusers/schedulers/scheduling_unclip.py +43 -4
- diffusers/schedulers/scheduling_unipc_multistep.py +48 -7
- diffusers/training_utils.py +1 -1
- diffusers/utils/__init__.py +2 -1
- diffusers/utils/dummy_pt_objects.py +60 -0
- diffusers/utils/dummy_torch_and_transformers_and_invisible_watermark_objects.py +32 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +180 -0
- diffusers/utils/hub_utils.py +1 -1
- diffusers/utils/import_utils.py +20 -3
- diffusers/utils/logging.py +15 -18
- diffusers/utils/outputs.py +3 -3
- diffusers/utils/testing_utils.py +15 -0
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/METADATA +4 -2
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/RECORD +120 -94
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/WHEEL +1 -1
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/LICENSE +0 -0
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,605 @@
|
|
1
|
+
from typing import List, Optional, Union
|
2
|
+
|
3
|
+
import PIL
|
4
|
+
import torch
|
5
|
+
from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection
|
6
|
+
|
7
|
+
from ...models import PriorTransformer
|
8
|
+
from ...pipelines import DiffusionPipeline
|
9
|
+
from ...schedulers import UnCLIPScheduler
|
10
|
+
from ...utils import (
|
11
|
+
is_accelerate_available,
|
12
|
+
logging,
|
13
|
+
randn_tensor,
|
14
|
+
replace_example_docstring,
|
15
|
+
)
|
16
|
+
from ..kandinsky import KandinskyPriorPipelineOutput
|
17
|
+
|
18
|
+
|
19
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
20
|
+
|
21
|
+
EXAMPLE_DOC_STRING = """
|
22
|
+
Examples:
|
23
|
+
```py
|
24
|
+
>>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorEmb2EmbPipeline
|
25
|
+
>>> import torch
|
26
|
+
|
27
|
+
>>> pipe_prior = KandinskyPriorPipeline.from_pretrained(
|
28
|
+
... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
|
29
|
+
... )
|
30
|
+
>>> pipe_prior.to("cuda")
|
31
|
+
|
32
|
+
>>> prompt = "red cat, 4k photo"
|
33
|
+
>>> img = load_image(
|
34
|
+
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
35
|
+
... "/kandinsky/cat.png"
|
36
|
+
... )
|
37
|
+
>>> image_emb, nagative_image_emb = pipe_prior(prompt, image=img, strength=0.2).to_tuple()
|
38
|
+
|
39
|
+
>>> pipe = KandinskyPipeline.from_pretrained(
|
40
|
+
... "kandinsky-community/kandinsky-2-2-decoder, torch_dtype=torch.float16"
|
41
|
+
... )
|
42
|
+
>>> pipe.to("cuda")
|
43
|
+
|
44
|
+
>>> image = pipe(
|
45
|
+
... image_embeds=image_emb,
|
46
|
+
... negative_image_embeds=negative_image_emb,
|
47
|
+
... height=768,
|
48
|
+
... width=768,
|
49
|
+
... num_inference_steps=100,
|
50
|
+
... ).images
|
51
|
+
|
52
|
+
>>> image[0].save("cat.png")
|
53
|
+
```
|
54
|
+
"""
|
55
|
+
|
56
|
+
EXAMPLE_INTERPOLATE_DOC_STRING = """
|
57
|
+
Examples:
|
58
|
+
```py
|
59
|
+
>>> from diffusers import KandinskyV22PriorEmb2EmbPipeline, KandinskyV22Pipeline
|
60
|
+
>>> from diffusers.utils import load_image
|
61
|
+
>>> import PIL
|
62
|
+
|
63
|
+
>>> import torch
|
64
|
+
>>> from torchvision import transforms
|
65
|
+
|
66
|
+
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
|
67
|
+
... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
|
68
|
+
... )
|
69
|
+
>>> pipe_prior.to("cuda")
|
70
|
+
|
71
|
+
>>> img1 = load_image(
|
72
|
+
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
73
|
+
... "/kandinsky/cat.png"
|
74
|
+
... )
|
75
|
+
|
76
|
+
>>> img2 = load_image(
|
77
|
+
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
78
|
+
... "/kandinsky/starry_night.jpeg"
|
79
|
+
... )
|
80
|
+
|
81
|
+
>>> images_texts = ["a cat", img1, img2]
|
82
|
+
>>> weights = [0.3, 0.3, 0.4]
|
83
|
+
>>> image_emb, zero_image_emb = pipe_prior.interpolate(images_texts, weights)
|
84
|
+
|
85
|
+
>>> pipe = KandinskyV22Pipeline.from_pretrained(
|
86
|
+
... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16
|
87
|
+
... )
|
88
|
+
>>> pipe.to("cuda")
|
89
|
+
|
90
|
+
>>> image = pipe(
|
91
|
+
... image_embeds=image_emb,
|
92
|
+
... negative_image_embeds=zero_image_emb,
|
93
|
+
... height=768,
|
94
|
+
... width=768,
|
95
|
+
... num_inference_steps=150,
|
96
|
+
... ).images[0]
|
97
|
+
|
98
|
+
>>> image.save("starry_cat.png")
|
99
|
+
```
|
100
|
+
"""
|
101
|
+
|
102
|
+
|
103
|
+
class KandinskyV22PriorEmb2EmbPipeline(DiffusionPipeline):
|
104
|
+
"""
|
105
|
+
Pipeline for generating image prior for Kandinsky
|
106
|
+
|
107
|
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
108
|
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
109
|
+
|
110
|
+
Args:
|
111
|
+
prior ([`PriorTransformer`]):
|
112
|
+
The canonincal unCLIP prior to approximate the image embedding from the text embedding.
|
113
|
+
image_encoder ([`CLIPVisionModelWithProjection`]):
|
114
|
+
Frozen image-encoder.
|
115
|
+
text_encoder ([`CLIPTextModelWithProjection`]):
|
116
|
+
Frozen text-encoder.
|
117
|
+
tokenizer (`CLIPTokenizer`):
|
118
|
+
Tokenizer of class
|
119
|
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
120
|
+
scheduler ([`UnCLIPScheduler`]):
|
121
|
+
A scheduler to be used in combination with `prior` to generate image embedding.
|
122
|
+
"""
|
123
|
+
|
124
|
+
def __init__(
|
125
|
+
self,
|
126
|
+
prior: PriorTransformer,
|
127
|
+
image_encoder: CLIPVisionModelWithProjection,
|
128
|
+
text_encoder: CLIPTextModelWithProjection,
|
129
|
+
tokenizer: CLIPTokenizer,
|
130
|
+
scheduler: UnCLIPScheduler,
|
131
|
+
image_processor: CLIPImageProcessor,
|
132
|
+
):
|
133
|
+
super().__init__()
|
134
|
+
|
135
|
+
self.register_modules(
|
136
|
+
prior=prior,
|
137
|
+
text_encoder=text_encoder,
|
138
|
+
tokenizer=tokenizer,
|
139
|
+
scheduler=scheduler,
|
140
|
+
image_encoder=image_encoder,
|
141
|
+
image_processor=image_processor,
|
142
|
+
)
|
143
|
+
|
144
|
+
def get_timesteps(self, num_inference_steps, strength, device):
|
145
|
+
# get the original timestep using init_timestep
|
146
|
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
147
|
+
|
148
|
+
t_start = max(num_inference_steps - init_timestep, 0)
|
149
|
+
timesteps = self.scheduler.timesteps[t_start:]
|
150
|
+
|
151
|
+
return timesteps, num_inference_steps - t_start
|
152
|
+
|
153
|
+
@torch.no_grad()
|
154
|
+
@replace_example_docstring(EXAMPLE_INTERPOLATE_DOC_STRING)
|
155
|
+
def interpolate(
|
156
|
+
self,
|
157
|
+
images_and_prompts: List[Union[str, PIL.Image.Image, torch.FloatTensor]],
|
158
|
+
weights: List[float],
|
159
|
+
num_images_per_prompt: int = 1,
|
160
|
+
num_inference_steps: int = 25,
|
161
|
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
162
|
+
latents: Optional[torch.FloatTensor] = None,
|
163
|
+
negative_prior_prompt: Optional[str] = None,
|
164
|
+
negative_prompt: Union[str] = "",
|
165
|
+
guidance_scale: float = 4.0,
|
166
|
+
device=None,
|
167
|
+
):
|
168
|
+
"""
|
169
|
+
Function invoked when using the prior pipeline for interpolation.
|
170
|
+
|
171
|
+
Args:
|
172
|
+
images_and_prompts (`List[Union[str, PIL.Image.Image, torch.FloatTensor]]`):
|
173
|
+
list of prompts and images to guide the image generation.
|
174
|
+
weights: (`List[float]`):
|
175
|
+
list of weights for each condition in `images_and_prompts`
|
176
|
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
177
|
+
The number of images to generate per prompt.
|
178
|
+
num_inference_steps (`int`, *optional*, defaults to 100):
|
179
|
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
180
|
+
expense of slower inference.
|
181
|
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
182
|
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
183
|
+
to make generation deterministic.
|
184
|
+
latents (`torch.FloatTensor`, *optional*):
|
185
|
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
186
|
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
187
|
+
tensor will ge generated by sampling using the supplied random `generator`.
|
188
|
+
negative_prior_prompt (`str`, *optional*):
|
189
|
+
The prompt not to guide the prior diffusion process. Ignored when not using guidance (i.e., ignored if
|
190
|
+
`guidance_scale` is less than `1`).
|
191
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
192
|
+
The prompt not to guide the image generation. Ignored when not using guidance (i.e., ignored if
|
193
|
+
`guidance_scale` is less than `1`).
|
194
|
+
guidance_scale (`float`, *optional*, defaults to 4.0):
|
195
|
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
196
|
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
197
|
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
198
|
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
199
|
+
usually at the expense of lower image quality.
|
200
|
+
|
201
|
+
Examples:
|
202
|
+
|
203
|
+
Returns:
|
204
|
+
[`KandinskyPriorPipelineOutput`] or `tuple`
|
205
|
+
"""
|
206
|
+
|
207
|
+
device = device or self.device
|
208
|
+
|
209
|
+
if len(images_and_prompts) != len(weights):
|
210
|
+
raise ValueError(
|
211
|
+
f"`images_and_prompts` contains {len(images_and_prompts)} items and `weights` contains {len(weights)} items - they should be lists of same length"
|
212
|
+
)
|
213
|
+
|
214
|
+
image_embeddings = []
|
215
|
+
for cond, weight in zip(images_and_prompts, weights):
|
216
|
+
if isinstance(cond, str):
|
217
|
+
image_emb = self(
|
218
|
+
cond,
|
219
|
+
num_inference_steps=num_inference_steps,
|
220
|
+
num_images_per_prompt=num_images_per_prompt,
|
221
|
+
generator=generator,
|
222
|
+
latents=latents,
|
223
|
+
negative_prompt=negative_prior_prompt,
|
224
|
+
guidance_scale=guidance_scale,
|
225
|
+
).image_embeds.unsqueeze(0)
|
226
|
+
|
227
|
+
elif isinstance(cond, (PIL.Image.Image, torch.Tensor)):
|
228
|
+
image_emb = self._encode_image(
|
229
|
+
cond, device=device, num_images_per_prompt=num_images_per_prompt
|
230
|
+
).unsqueeze(0)
|
231
|
+
|
232
|
+
else:
|
233
|
+
raise ValueError(
|
234
|
+
f"`images_and_prompts` can only contains elements to be of type `str`, `PIL.Image.Image` or `torch.Tensor` but is {type(cond)}"
|
235
|
+
)
|
236
|
+
|
237
|
+
image_embeddings.append(image_emb * weight)
|
238
|
+
|
239
|
+
image_emb = torch.cat(image_embeddings).sum(dim=0)
|
240
|
+
|
241
|
+
return KandinskyPriorPipelineOutput(image_embeds=image_emb, negative_image_embeds=torch.randn_like(image_emb))
|
242
|
+
|
243
|
+
def _encode_image(
|
244
|
+
self,
|
245
|
+
image: Union[torch.Tensor, List[PIL.Image.Image]],
|
246
|
+
device,
|
247
|
+
num_images_per_prompt,
|
248
|
+
):
|
249
|
+
if not isinstance(image, torch.Tensor):
|
250
|
+
image = self.image_processor(image, return_tensors="pt").pixel_values.to(
|
251
|
+
dtype=self.image_encoder.dtype, device=device
|
252
|
+
)
|
253
|
+
|
254
|
+
image_emb = self.image_encoder(image)["image_embeds"] # B, D
|
255
|
+
image_emb = image_emb.repeat_interleave(num_images_per_prompt, dim=0)
|
256
|
+
image_emb.to(device=device)
|
257
|
+
|
258
|
+
return image_emb
|
259
|
+
|
260
|
+
def prepare_latents(self, emb, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
|
261
|
+
emb = emb.to(device=device, dtype=dtype)
|
262
|
+
|
263
|
+
batch_size = batch_size * num_images_per_prompt
|
264
|
+
|
265
|
+
init_latents = emb
|
266
|
+
|
267
|
+
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
|
268
|
+
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
269
|
+
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
|
270
|
+
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
|
271
|
+
raise ValueError(
|
272
|
+
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
273
|
+
)
|
274
|
+
else:
|
275
|
+
init_latents = torch.cat([init_latents], dim=0)
|
276
|
+
|
277
|
+
shape = init_latents.shape
|
278
|
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
279
|
+
|
280
|
+
# get latents
|
281
|
+
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
282
|
+
latents = init_latents
|
283
|
+
|
284
|
+
return latents
|
285
|
+
|
286
|
+
# Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_prior.KandinskyPriorPipeline.get_zero_embed
|
287
|
+
def get_zero_embed(self, batch_size=1, device=None):
|
288
|
+
device = device or self.device
|
289
|
+
zero_img = torch.zeros(1, 3, self.image_encoder.config.image_size, self.image_encoder.config.image_size).to(
|
290
|
+
device=device, dtype=self.image_encoder.dtype
|
291
|
+
)
|
292
|
+
zero_image_emb = self.image_encoder(zero_img)["image_embeds"]
|
293
|
+
zero_image_emb = zero_image_emb.repeat(batch_size, 1)
|
294
|
+
return zero_image_emb
|
295
|
+
|
296
|
+
# Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_prior.KandinskyPriorPipeline.enable_sequential_cpu_offload
|
297
|
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
298
|
+
r"""
|
299
|
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's
|
300
|
+
models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only
|
301
|
+
when their specific submodule has its `forward` method called.
|
302
|
+
"""
|
303
|
+
if is_accelerate_available():
|
304
|
+
from accelerate import cpu_offload
|
305
|
+
else:
|
306
|
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
307
|
+
|
308
|
+
device = torch.device(f"cuda:{gpu_id}")
|
309
|
+
|
310
|
+
models = [
|
311
|
+
self.image_encoder,
|
312
|
+
self.text_encoder,
|
313
|
+
]
|
314
|
+
for cpu_offloaded_model in models:
|
315
|
+
if cpu_offloaded_model is not None:
|
316
|
+
cpu_offload(cpu_offloaded_model, device)
|
317
|
+
|
318
|
+
@property
|
319
|
+
# Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_prior.KandinskyPriorPipeline._execution_device
|
320
|
+
def _execution_device(self):
|
321
|
+
r"""
|
322
|
+
Returns the device on which the pipeline's models will be executed. After calling
|
323
|
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
324
|
+
hooks.
|
325
|
+
"""
|
326
|
+
if self.device != torch.device("meta") or not hasattr(self.text_encoder, "_hf_hook"):
|
327
|
+
return self.device
|
328
|
+
for module in self.text_encoder.modules():
|
329
|
+
if (
|
330
|
+
hasattr(module, "_hf_hook")
|
331
|
+
and hasattr(module._hf_hook, "execution_device")
|
332
|
+
and module._hf_hook.execution_device is not None
|
333
|
+
):
|
334
|
+
return torch.device(module._hf_hook.execution_device)
|
335
|
+
return self.device
|
336
|
+
|
337
|
+
# Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_prior.KandinskyPriorPipeline._encode_prompt
|
338
|
+
def _encode_prompt(
|
339
|
+
self,
|
340
|
+
prompt,
|
341
|
+
device,
|
342
|
+
num_images_per_prompt,
|
343
|
+
do_classifier_free_guidance,
|
344
|
+
negative_prompt=None,
|
345
|
+
):
|
346
|
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
347
|
+
# get prompt text embeddings
|
348
|
+
text_inputs = self.tokenizer(
|
349
|
+
prompt,
|
350
|
+
padding="max_length",
|
351
|
+
max_length=self.tokenizer.model_max_length,
|
352
|
+
truncation=True,
|
353
|
+
return_tensors="pt",
|
354
|
+
)
|
355
|
+
text_input_ids = text_inputs.input_ids
|
356
|
+
text_mask = text_inputs.attention_mask.bool().to(device)
|
357
|
+
|
358
|
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
359
|
+
|
360
|
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
361
|
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
|
362
|
+
logger.warning(
|
363
|
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
364
|
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
365
|
+
)
|
366
|
+
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
367
|
+
|
368
|
+
text_encoder_output = self.text_encoder(text_input_ids.to(device))
|
369
|
+
|
370
|
+
prompt_embeds = text_encoder_output.text_embeds
|
371
|
+
text_encoder_hidden_states = text_encoder_output.last_hidden_state
|
372
|
+
|
373
|
+
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
374
|
+
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
375
|
+
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)
|
376
|
+
|
377
|
+
if do_classifier_free_guidance:
|
378
|
+
uncond_tokens: List[str]
|
379
|
+
if negative_prompt is None:
|
380
|
+
uncond_tokens = [""] * batch_size
|
381
|
+
elif type(prompt) is not type(negative_prompt):
|
382
|
+
raise TypeError(
|
383
|
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
384
|
+
f" {type(prompt)}."
|
385
|
+
)
|
386
|
+
elif isinstance(negative_prompt, str):
|
387
|
+
uncond_tokens = [negative_prompt]
|
388
|
+
elif batch_size != len(negative_prompt):
|
389
|
+
raise ValueError(
|
390
|
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
391
|
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
392
|
+
" the batch size of `prompt`."
|
393
|
+
)
|
394
|
+
else:
|
395
|
+
uncond_tokens = negative_prompt
|
396
|
+
|
397
|
+
uncond_input = self.tokenizer(
|
398
|
+
uncond_tokens,
|
399
|
+
padding="max_length",
|
400
|
+
max_length=self.tokenizer.model_max_length,
|
401
|
+
truncation=True,
|
402
|
+
return_tensors="pt",
|
403
|
+
)
|
404
|
+
uncond_text_mask = uncond_input.attention_mask.bool().to(device)
|
405
|
+
negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device))
|
406
|
+
|
407
|
+
negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds
|
408
|
+
uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state
|
409
|
+
|
410
|
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
411
|
+
|
412
|
+
seq_len = negative_prompt_embeds.shape[1]
|
413
|
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt)
|
414
|
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len)
|
415
|
+
|
416
|
+
seq_len = uncond_text_encoder_hidden_states.shape[1]
|
417
|
+
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
|
418
|
+
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
|
419
|
+
batch_size * num_images_per_prompt, seq_len, -1
|
420
|
+
)
|
421
|
+
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0)
|
422
|
+
|
423
|
+
# done duplicates
|
424
|
+
|
425
|
+
# For classifier free guidance, we need to do two forward passes.
|
426
|
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
427
|
+
# to avoid doing two forward passes
|
428
|
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
429
|
+
text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])
|
430
|
+
|
431
|
+
text_mask = torch.cat([uncond_text_mask, text_mask])
|
432
|
+
|
433
|
+
return prompt_embeds, text_encoder_hidden_states, text_mask
|
434
|
+
|
435
|
+
@torch.no_grad()
|
436
|
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
437
|
+
def __call__(
|
438
|
+
self,
|
439
|
+
prompt: Union[str, List[str]],
|
440
|
+
image: Union[torch.Tensor, List[torch.Tensor], PIL.Image.Image, List[PIL.Image.Image]],
|
441
|
+
strength: float = 0.3,
|
442
|
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
443
|
+
num_images_per_prompt: int = 1,
|
444
|
+
num_inference_steps: int = 25,
|
445
|
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
446
|
+
latents: Optional[torch.FloatTensor] = None,
|
447
|
+
guidance_scale: float = 4.0,
|
448
|
+
output_type: Optional[str] = "pt", # pt only
|
449
|
+
return_dict: bool = True,
|
450
|
+
):
|
451
|
+
"""
|
452
|
+
Function invoked when calling the pipeline for generation.
|
453
|
+
|
454
|
+
Args:
|
455
|
+
prompt (`str` or `List[str]`):
|
456
|
+
The prompt or prompts to guide the image generation.
|
457
|
+
strength (`float`, *optional*, defaults to 0.8):
|
458
|
+
Conceptually, indicates how much to transform the reference `emb`. Must be between 0 and 1. `image`
|
459
|
+
will be used as a starting point, adding more noise to it the larger the `strength`. The number of
|
460
|
+
denoising steps depends on the amount of noise initially added.
|
461
|
+
emb (`torch.FloatTensor`):
|
462
|
+
The image embedding.
|
463
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
464
|
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
465
|
+
if `guidance_scale` is less than `1`).
|
466
|
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
467
|
+
The number of images to generate per prompt.
|
468
|
+
num_inference_steps (`int`, *optional*, defaults to 100):
|
469
|
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
470
|
+
expense of slower inference.
|
471
|
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
472
|
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
473
|
+
to make generation deterministic.
|
474
|
+
latents (`torch.FloatTensor`, *optional*):
|
475
|
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
476
|
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
477
|
+
tensor will ge generated by sampling using the supplied random `generator`.
|
478
|
+
guidance_scale (`float`, *optional*, defaults to 4.0):
|
479
|
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
480
|
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
481
|
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
482
|
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
483
|
+
usually at the expense of lower image quality.
|
484
|
+
output_type (`str`, *optional*, defaults to `"pt"`):
|
485
|
+
The output format of the generate image. Choose between: `"np"` (`np.array`) or `"pt"`
|
486
|
+
(`torch.Tensor`).
|
487
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
488
|
+
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
|
489
|
+
|
490
|
+
Examples:
|
491
|
+
|
492
|
+
Returns:
|
493
|
+
[`KandinskyPriorPipelineOutput`] or `tuple`
|
494
|
+
"""
|
495
|
+
|
496
|
+
if isinstance(prompt, str):
|
497
|
+
prompt = [prompt]
|
498
|
+
elif not isinstance(prompt, list):
|
499
|
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
500
|
+
|
501
|
+
if isinstance(negative_prompt, str):
|
502
|
+
negative_prompt = [negative_prompt]
|
503
|
+
elif not isinstance(negative_prompt, list) and negative_prompt is not None:
|
504
|
+
raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}")
|
505
|
+
|
506
|
+
# if the negative prompt is defined we double the batch size to
|
507
|
+
# directly retrieve the negative prompt embedding
|
508
|
+
if negative_prompt is not None:
|
509
|
+
prompt = prompt + negative_prompt
|
510
|
+
negative_prompt = 2 * negative_prompt
|
511
|
+
|
512
|
+
device = self._execution_device
|
513
|
+
|
514
|
+
batch_size = len(prompt)
|
515
|
+
batch_size = batch_size * num_images_per_prompt
|
516
|
+
|
517
|
+
do_classifier_free_guidance = guidance_scale > 1.0
|
518
|
+
prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt(
|
519
|
+
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
|
520
|
+
)
|
521
|
+
|
522
|
+
if not isinstance(image, List):
|
523
|
+
image = [image]
|
524
|
+
|
525
|
+
if isinstance(image[0], torch.Tensor):
|
526
|
+
image = torch.cat(image, dim=0)
|
527
|
+
|
528
|
+
if isinstance(image, torch.Tensor) and image.ndim == 2:
|
529
|
+
# allow user to pass image_embeds directly
|
530
|
+
image_embeds = image.repeat_interleave(num_images_per_prompt, dim=0)
|
531
|
+
elif isinstance(image, torch.Tensor) and image.ndim != 4:
|
532
|
+
raise ValueError(
|
533
|
+
f" if pass `image` as pytorch tensor, or a list of pytorch tensor, please make sure each tensor has shape [batch_size, channels, height, width], currently {image[0].unsqueeze(0).shape}"
|
534
|
+
)
|
535
|
+
else:
|
536
|
+
image_embeds = self._encode_image(image, device, num_images_per_prompt)
|
537
|
+
|
538
|
+
# prior
|
539
|
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
540
|
+
|
541
|
+
latents = image_embeds
|
542
|
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
543
|
+
latent_timestep = timesteps[:1].repeat(batch_size)
|
544
|
+
latents = self.prepare_latents(
|
545
|
+
latents,
|
546
|
+
latent_timestep,
|
547
|
+
batch_size // num_images_per_prompt,
|
548
|
+
num_images_per_prompt,
|
549
|
+
prompt_embeds.dtype,
|
550
|
+
device,
|
551
|
+
generator,
|
552
|
+
)
|
553
|
+
|
554
|
+
for i, t in enumerate(self.progress_bar(timesteps)):
|
555
|
+
# expand the latents if we are doing classifier free guidance
|
556
|
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
557
|
+
|
558
|
+
predicted_image_embedding = self.prior(
|
559
|
+
latent_model_input,
|
560
|
+
timestep=t,
|
561
|
+
proj_embedding=prompt_embeds,
|
562
|
+
encoder_hidden_states=text_encoder_hidden_states,
|
563
|
+
attention_mask=text_mask,
|
564
|
+
).predicted_image_embedding
|
565
|
+
|
566
|
+
if do_classifier_free_guidance:
|
567
|
+
predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2)
|
568
|
+
predicted_image_embedding = predicted_image_embedding_uncond + guidance_scale * (
|
569
|
+
predicted_image_embedding_text - predicted_image_embedding_uncond
|
570
|
+
)
|
571
|
+
|
572
|
+
if i + 1 == timesteps.shape[0]:
|
573
|
+
prev_timestep = None
|
574
|
+
else:
|
575
|
+
prev_timestep = timesteps[i + 1]
|
576
|
+
|
577
|
+
latents = self.scheduler.step(
|
578
|
+
predicted_image_embedding,
|
579
|
+
timestep=t,
|
580
|
+
sample=latents,
|
581
|
+
generator=generator,
|
582
|
+
prev_timestep=prev_timestep,
|
583
|
+
).prev_sample
|
584
|
+
|
585
|
+
latents = self.prior.post_process_latents(latents)
|
586
|
+
|
587
|
+
image_embeddings = latents
|
588
|
+
|
589
|
+
# if negative prompt has been defined, we retrieve split the image embedding into two
|
590
|
+
if negative_prompt is None:
|
591
|
+
zero_embeds = self.get_zero_embed(latents.shape[0], device=latents.device)
|
592
|
+
else:
|
593
|
+
image_embeddings, zero_embeds = image_embeddings.chunk(2)
|
594
|
+
|
595
|
+
if output_type not in ["pt", "np"]:
|
596
|
+
raise ValueError(f"Only the output types `pt` and `np` are supported not output_type={output_type}")
|
597
|
+
|
598
|
+
if output_type == "np":
|
599
|
+
image_embeddings = image_embeddings.cpu().numpy()
|
600
|
+
zero_embeds = zero_embeds.cpu().numpy()
|
601
|
+
|
602
|
+
if not return_dict:
|
603
|
+
return (image_embeddings, zero_embeds)
|
604
|
+
|
605
|
+
return KandinskyPriorPipelineOutput(image_embeds=image_embeddings, negative_image_embeds=zero_embeds)
|
@@ -83,8 +83,8 @@ class FlaxImagePipelineOutput(BaseOutput):
|
|
83
83
|
|
84
84
|
Args:
|
85
85
|
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
86
|
-
List of denoised PIL images of length `batch_size` or
|
87
|
-
num_channels)`.
|
86
|
+
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
|
87
|
+
num_channels)`.
|
88
88
|
"""
|
89
89
|
|
90
90
|
images: Union[List[PIL.Image.Image], np.ndarray]
|