diffusers 0.17.1__py3-none-any.whl → 0.18.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +26 -1
- diffusers/configuration_utils.py +34 -29
- diffusers/dependency_versions_table.py +4 -0
- diffusers/image_processor.py +125 -12
- diffusers/loaders.py +169 -203
- diffusers/models/attention.py +24 -1
- diffusers/models/attention_flax.py +10 -5
- diffusers/models/attention_processor.py +3 -0
- diffusers/models/autoencoder_kl.py +114 -33
- diffusers/models/controlnet.py +131 -14
- diffusers/models/controlnet_flax.py +37 -26
- diffusers/models/cross_attention.py +17 -17
- diffusers/models/embeddings.py +67 -0
- diffusers/models/modeling_flax_utils.py +64 -56
- diffusers/models/modeling_utils.py +193 -104
- diffusers/models/prior_transformer.py +207 -37
- diffusers/models/resnet.py +26 -26
- diffusers/models/transformer_2d.py +36 -41
- diffusers/models/transformer_temporal.py +24 -21
- diffusers/models/unet_1d.py +31 -25
- diffusers/models/unet_2d.py +43 -30
- diffusers/models/unet_2d_blocks.py +210 -89
- diffusers/models/unet_2d_blocks_flax.py +12 -12
- diffusers/models/unet_2d_condition.py +172 -64
- diffusers/models/unet_2d_condition_flax.py +38 -24
- diffusers/models/unet_3d_blocks.py +34 -31
- diffusers/models/unet_3d_condition.py +101 -34
- diffusers/models/vae.py +5 -5
- diffusers/models/vae_flax.py +37 -34
- diffusers/models/vq_model.py +23 -14
- diffusers/pipelines/__init__.py +24 -1
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +1 -1
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +5 -3
- diffusers/pipelines/consistency_models/__init__.py +1 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +337 -0
- diffusers/pipelines/controlnet/multicontrolnet.py +120 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +59 -17
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +60 -15
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +60 -17
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +1 -1
- diffusers/pipelines/kandinsky/__init__.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +4 -6
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +1 -0
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +1 -0
- diffusers/pipelines/kandinsky2_2/__init__.py +7 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +317 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +372 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +434 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +398 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +531 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +541 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +605 -0
- diffusers/pipelines/pipeline_flax_utils.py +2 -2
- diffusers/pipelines/pipeline_utils.py +124 -146
- diffusers/pipelines/shap_e/__init__.py +27 -0
- diffusers/pipelines/shap_e/camera.py +147 -0
- diffusers/pipelines/shap_e/pipeline_shap_e.py +390 -0
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +349 -0
- diffusers/pipelines/shap_e/renderer.py +709 -0
- diffusers/pipelines/stable_diffusion/__init__.py +2 -0
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +261 -66
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +3 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +5 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +4 -2
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +719 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +832 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +17 -7
- diffusers/pipelines/stable_diffusion_xl/__init__.py +26 -0
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +823 -0
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +896 -0
- diffusers/pipelines/stable_diffusion_xl/watermark.py +31 -0
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -1
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +5 -1
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +771 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +92 -6
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
- diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +209 -91
- diffusers/schedulers/__init__.py +3 -0
- diffusers/schedulers/scheduling_consistency_models.py +380 -0
- diffusers/schedulers/scheduling_ddim.py +28 -6
- diffusers/schedulers/scheduling_ddim_inverse.py +19 -4
- diffusers/schedulers/scheduling_ddim_parallel.py +642 -0
- diffusers/schedulers/scheduling_ddpm.py +53 -7
- diffusers/schedulers/scheduling_ddpm_parallel.py +604 -0
- diffusers/schedulers/scheduling_deis_multistep.py +66 -11
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +55 -13
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +19 -4
- diffusers/schedulers/scheduling_dpmsolver_sde.py +73 -11
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +23 -7
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +58 -9
- diffusers/schedulers/scheduling_euler_discrete.py +58 -8
- diffusers/schedulers/scheduling_heun_discrete.py +89 -14
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +73 -11
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +73 -11
- diffusers/schedulers/scheduling_lms_discrete.py +57 -8
- diffusers/schedulers/scheduling_pndm.py +46 -10
- diffusers/schedulers/scheduling_repaint.py +19 -4
- diffusers/schedulers/scheduling_sde_ve.py +5 -1
- diffusers/schedulers/scheduling_unclip.py +43 -4
- diffusers/schedulers/scheduling_unipc_multistep.py +48 -7
- diffusers/training_utils.py +1 -1
- diffusers/utils/__init__.py +2 -1
- diffusers/utils/dummy_pt_objects.py +60 -0
- diffusers/utils/dummy_torch_and_transformers_and_invisible_watermark_objects.py +32 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +180 -0
- diffusers/utils/hub_utils.py +1 -1
- diffusers/utils/import_utils.py +20 -3
- diffusers/utils/logging.py +15 -18
- diffusers/utils/outputs.py +3 -3
- diffusers/utils/testing_utils.py +15 -0
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/METADATA +4 -2
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/RECORD +120 -94
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/WHEEL +1 -1
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/LICENSE +0 -0
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,771 @@
|
|
1
|
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import inspect
|
16
|
+
from typing import Any, Callable, Dict, List, Optional, Union
|
17
|
+
|
18
|
+
import numpy as np
|
19
|
+
import PIL
|
20
|
+
import torch
|
21
|
+
from transformers import CLIPTextModel, CLIPTokenizer
|
22
|
+
|
23
|
+
from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin
|
24
|
+
from ...models import AutoencoderKL, UNet3DConditionModel
|
25
|
+
from ...schedulers import KarrasDiffusionSchedulers
|
26
|
+
from ...utils import (
|
27
|
+
is_accelerate_available,
|
28
|
+
is_accelerate_version,
|
29
|
+
logging,
|
30
|
+
randn_tensor,
|
31
|
+
replace_example_docstring,
|
32
|
+
)
|
33
|
+
from ..pipeline_utils import DiffusionPipeline
|
34
|
+
from . import TextToVideoSDPipelineOutput
|
35
|
+
|
36
|
+
|
37
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
38
|
+
|
39
|
+
EXAMPLE_DOC_STRING = """
|
40
|
+
Examples:
|
41
|
+
```py
|
42
|
+
>>> import torch
|
43
|
+
>>> from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
44
|
+
>>> from diffusers.utils import export_to_video
|
45
|
+
|
46
|
+
>>> pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16)
|
47
|
+
>>> pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
48
|
+
>>> pipe.to("cuda")
|
49
|
+
|
50
|
+
>>> prompt = "spiderman running in the desert"
|
51
|
+
>>> video_frames = pipe(prompt, num_inference_steps=40, height=320, width=576, num_frames=24).frames
|
52
|
+
>>> # safe low-res video
|
53
|
+
>>> video_path = export_to_video(video_frames, output_video_path="./video_576_spiderman.mp4")
|
54
|
+
|
55
|
+
>>> # let's offload the text-to-image model
|
56
|
+
>>> pipe.to("cpu")
|
57
|
+
|
58
|
+
>>> # and load the image-to-image model
|
59
|
+
>>> pipe = DiffusionPipeline.from_pretrained(
|
60
|
+
... "cerspense/zeroscope_v2_XL", torch_dtype=torch.float16, revision="refs/pr/15"
|
61
|
+
... )
|
62
|
+
>>> pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
63
|
+
>>> pipe.enable_model_cpu_offload()
|
64
|
+
|
65
|
+
>>> # The VAE consumes A LOT of memory, let's make sure we run it in sliced mode
|
66
|
+
>>> pipe.vae.enable_slicing()
|
67
|
+
|
68
|
+
>>> # now let's upscale it
|
69
|
+
>>> video = [Image.fromarray(frame).resize((1024, 576)) for frame in video_frames]
|
70
|
+
|
71
|
+
>>> # and denoise it
|
72
|
+
>>> video_frames = pipe(prompt, video=video, strength=0.6).frames
|
73
|
+
>>> video_path = export_to_video(video_frames, output_video_path="./video_1024_spiderman.mp4")
|
74
|
+
>>> video_path
|
75
|
+
```
|
76
|
+
"""
|
77
|
+
|
78
|
+
|
79
|
+
def tensor2vid(video: torch.Tensor, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) -> List[np.ndarray]:
|
80
|
+
# This code is copied from https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/pipelines/multi_modal/text_to_video_synthesis_pipeline.py#L78
|
81
|
+
# reshape to ncfhw
|
82
|
+
mean = torch.tensor(mean, device=video.device).reshape(1, -1, 1, 1, 1)
|
83
|
+
std = torch.tensor(std, device=video.device).reshape(1, -1, 1, 1, 1)
|
84
|
+
# unnormalize back to [0,1]
|
85
|
+
video = video.mul_(std).add_(mean)
|
86
|
+
video.clamp_(0, 1)
|
87
|
+
# prepare the final outputs
|
88
|
+
i, c, f, h, w = video.shape
|
89
|
+
images = video.permute(2, 3, 0, 4, 1).reshape(
|
90
|
+
f, h, i * w, c
|
91
|
+
) # 1st (frames, h, batch_size, w, c) 2nd (frames, h, batch_size * w, c)
|
92
|
+
images = images.unbind(dim=0) # prepare a list of indvidual (consecutive frames)
|
93
|
+
images = [(image.cpu().numpy() * 255).astype("uint8") for image in images] # f h w c
|
94
|
+
return images
|
95
|
+
|
96
|
+
|
97
|
+
def preprocess_video(video):
|
98
|
+
supported_formats = (np.ndarray, torch.Tensor, PIL.Image.Image)
|
99
|
+
|
100
|
+
if isinstance(video, supported_formats):
|
101
|
+
video = [video]
|
102
|
+
elif not (isinstance(video, list) and all(isinstance(i, supported_formats) for i in video)):
|
103
|
+
raise ValueError(
|
104
|
+
f"Input is in incorrect format: {[type(i) for i in video]}. Currently, we only support {', '.join(supported_formats)}"
|
105
|
+
)
|
106
|
+
|
107
|
+
if isinstance(video[0], PIL.Image.Image):
|
108
|
+
video = [np.array(frame) for frame in video]
|
109
|
+
|
110
|
+
if isinstance(video[0], np.ndarray):
|
111
|
+
video = np.concatenate(video, axis=0) if video[0].ndim == 5 else np.stack(video, axis=0)
|
112
|
+
|
113
|
+
if video.dtype == np.uint8:
|
114
|
+
video = np.array(video).astype(np.float32) / 255.0
|
115
|
+
|
116
|
+
if video.ndim == 4:
|
117
|
+
video = video[None, ...]
|
118
|
+
|
119
|
+
video = torch.from_numpy(video.transpose(0, 4, 1, 2, 3))
|
120
|
+
|
121
|
+
elif isinstance(video[0], torch.Tensor):
|
122
|
+
video = torch.cat(video, axis=0) if video[0].ndim == 5 else torch.stack(video, axis=0)
|
123
|
+
|
124
|
+
# don't need any preprocess if the video is latents
|
125
|
+
channel = video.shape[1]
|
126
|
+
if channel == 4:
|
127
|
+
return video
|
128
|
+
|
129
|
+
# move channels before num_frames
|
130
|
+
video = video.permute(0, 2, 1, 3, 4)
|
131
|
+
|
132
|
+
# normalize video
|
133
|
+
video = 2.0 * video - 1.0
|
134
|
+
|
135
|
+
return video
|
136
|
+
|
137
|
+
|
138
|
+
class VideoToVideoSDPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
|
139
|
+
r"""
|
140
|
+
Pipeline for text-to-video generation.
|
141
|
+
|
142
|
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
143
|
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
144
|
+
|
145
|
+
Args:
|
146
|
+
vae ([`AutoencoderKL`]):
|
147
|
+
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
|
148
|
+
text_encoder ([`CLIPTextModel`]):
|
149
|
+
Frozen text-encoder. Same as Stable Diffusion 2.
|
150
|
+
tokenizer (`CLIPTokenizer`):
|
151
|
+
Tokenizer of class
|
152
|
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
153
|
+
unet ([`UNet3DConditionModel`]): Conditional U-Net architecture to denoise the encoded video latents.
|
154
|
+
scheduler ([`SchedulerMixin`]):
|
155
|
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
156
|
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
157
|
+
"""
|
158
|
+
|
159
|
+
def __init__(
|
160
|
+
self,
|
161
|
+
vae: AutoencoderKL,
|
162
|
+
text_encoder: CLIPTextModel,
|
163
|
+
tokenizer: CLIPTokenizer,
|
164
|
+
unet: UNet3DConditionModel,
|
165
|
+
scheduler: KarrasDiffusionSchedulers,
|
166
|
+
):
|
167
|
+
super().__init__()
|
168
|
+
|
169
|
+
self.register_modules(
|
170
|
+
vae=vae,
|
171
|
+
text_encoder=text_encoder,
|
172
|
+
tokenizer=tokenizer,
|
173
|
+
unet=unet,
|
174
|
+
scheduler=scheduler,
|
175
|
+
)
|
176
|
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
177
|
+
|
178
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
179
|
+
def enable_vae_slicing(self):
|
180
|
+
r"""
|
181
|
+
Enable sliced VAE decoding.
|
182
|
+
|
183
|
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
184
|
+
steps. This is useful to save some memory and allow larger batch sizes.
|
185
|
+
"""
|
186
|
+
self.vae.enable_slicing()
|
187
|
+
|
188
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
189
|
+
def disable_vae_slicing(self):
|
190
|
+
r"""
|
191
|
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
192
|
+
computing decoding in one step.
|
193
|
+
"""
|
194
|
+
self.vae.disable_slicing()
|
195
|
+
|
196
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
197
|
+
def enable_vae_tiling(self):
|
198
|
+
r"""
|
199
|
+
Enable tiled VAE decoding.
|
200
|
+
|
201
|
+
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
|
202
|
+
several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
|
203
|
+
"""
|
204
|
+
self.vae.enable_tiling()
|
205
|
+
|
206
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
207
|
+
def disable_vae_tiling(self):
|
208
|
+
r"""
|
209
|
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
|
210
|
+
computing decoding in one step.
|
211
|
+
"""
|
212
|
+
self.vae.disable_tiling()
|
213
|
+
|
214
|
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
215
|
+
r"""
|
216
|
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
217
|
+
text_encoder, vae have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded
|
218
|
+
to GPU only when their specific submodule has its `forward` method called. Note that offloading happens on a
|
219
|
+
submodule basis. Memory savings are higher than with `enable_model_cpu_offload`, but performance is lower.
|
220
|
+
"""
|
221
|
+
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
|
222
|
+
from accelerate import cpu_offload
|
223
|
+
else:
|
224
|
+
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
|
225
|
+
|
226
|
+
device = torch.device(f"cuda:{gpu_id}")
|
227
|
+
|
228
|
+
if self.device.type != "cpu":
|
229
|
+
self.to("cpu", silence_dtype_warnings=True)
|
230
|
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
231
|
+
|
232
|
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
233
|
+
cpu_offload(cpu_offloaded_model, device)
|
234
|
+
|
235
|
+
def enable_model_cpu_offload(self, gpu_id=0):
|
236
|
+
r"""
|
237
|
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
238
|
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
239
|
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
240
|
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
241
|
+
"""
|
242
|
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
243
|
+
from accelerate import cpu_offload_with_hook
|
244
|
+
else:
|
245
|
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
246
|
+
|
247
|
+
device = torch.device(f"cuda:{gpu_id}")
|
248
|
+
|
249
|
+
if self.device.type != "cpu":
|
250
|
+
self.to("cpu", silence_dtype_warnings=True)
|
251
|
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
252
|
+
|
253
|
+
hook = None
|
254
|
+
for cpu_offloaded_model in [self.text_encoder, self.vae, self.unet]:
|
255
|
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
256
|
+
|
257
|
+
# We'll offload the last model manually.
|
258
|
+
self.final_offload_hook = hook
|
259
|
+
|
260
|
+
@property
|
261
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
262
|
+
def _execution_device(self):
|
263
|
+
r"""
|
264
|
+
Returns the device on which the pipeline's models will be executed. After calling
|
265
|
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
266
|
+
hooks.
|
267
|
+
"""
|
268
|
+
if not hasattr(self.unet, "_hf_hook"):
|
269
|
+
return self.device
|
270
|
+
for module in self.unet.modules():
|
271
|
+
if (
|
272
|
+
hasattr(module, "_hf_hook")
|
273
|
+
and hasattr(module._hf_hook, "execution_device")
|
274
|
+
and module._hf_hook.execution_device is not None
|
275
|
+
):
|
276
|
+
return torch.device(module._hf_hook.execution_device)
|
277
|
+
return self.device
|
278
|
+
|
279
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
280
|
+
def _encode_prompt(
|
281
|
+
self,
|
282
|
+
prompt,
|
283
|
+
device,
|
284
|
+
num_images_per_prompt,
|
285
|
+
do_classifier_free_guidance,
|
286
|
+
negative_prompt=None,
|
287
|
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
288
|
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
289
|
+
lora_scale: Optional[float] = None,
|
290
|
+
):
|
291
|
+
r"""
|
292
|
+
Encodes the prompt into text encoder hidden states.
|
293
|
+
|
294
|
+
Args:
|
295
|
+
prompt (`str` or `List[str]`, *optional*):
|
296
|
+
prompt to be encoded
|
297
|
+
device: (`torch.device`):
|
298
|
+
torch device
|
299
|
+
num_images_per_prompt (`int`):
|
300
|
+
number of images that should be generated per prompt
|
301
|
+
do_classifier_free_guidance (`bool`):
|
302
|
+
whether to use classifier free guidance or not
|
303
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
304
|
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
305
|
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
306
|
+
less than `1`).
|
307
|
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
308
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
309
|
+
provided, text embeddings will be generated from `prompt` input argument.
|
310
|
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
311
|
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
312
|
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
313
|
+
argument.
|
314
|
+
lora_scale (`float`, *optional*):
|
315
|
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
316
|
+
"""
|
317
|
+
# set lora scale so that monkey patched LoRA
|
318
|
+
# function of text encoder can correctly access it
|
319
|
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
320
|
+
self._lora_scale = lora_scale
|
321
|
+
|
322
|
+
if prompt is not None and isinstance(prompt, str):
|
323
|
+
batch_size = 1
|
324
|
+
elif prompt is not None and isinstance(prompt, list):
|
325
|
+
batch_size = len(prompt)
|
326
|
+
else:
|
327
|
+
batch_size = prompt_embeds.shape[0]
|
328
|
+
|
329
|
+
if prompt_embeds is None:
|
330
|
+
# textual inversion: procecss multi-vector tokens if necessary
|
331
|
+
if isinstance(self, TextualInversionLoaderMixin):
|
332
|
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
333
|
+
|
334
|
+
text_inputs = self.tokenizer(
|
335
|
+
prompt,
|
336
|
+
padding="max_length",
|
337
|
+
max_length=self.tokenizer.model_max_length,
|
338
|
+
truncation=True,
|
339
|
+
return_tensors="pt",
|
340
|
+
)
|
341
|
+
text_input_ids = text_inputs.input_ids
|
342
|
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
343
|
+
|
344
|
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
345
|
+
text_input_ids, untruncated_ids
|
346
|
+
):
|
347
|
+
removed_text = self.tokenizer.batch_decode(
|
348
|
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
349
|
+
)
|
350
|
+
logger.warning(
|
351
|
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
352
|
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
353
|
+
)
|
354
|
+
|
355
|
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
356
|
+
attention_mask = text_inputs.attention_mask.to(device)
|
357
|
+
else:
|
358
|
+
attention_mask = None
|
359
|
+
|
360
|
+
prompt_embeds = self.text_encoder(
|
361
|
+
text_input_ids.to(device),
|
362
|
+
attention_mask=attention_mask,
|
363
|
+
)
|
364
|
+
prompt_embeds = prompt_embeds[0]
|
365
|
+
|
366
|
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
367
|
+
|
368
|
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
369
|
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
370
|
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
371
|
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
372
|
+
|
373
|
+
# get unconditional embeddings for classifier free guidance
|
374
|
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
375
|
+
uncond_tokens: List[str]
|
376
|
+
if negative_prompt is None:
|
377
|
+
uncond_tokens = [""] * batch_size
|
378
|
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
379
|
+
raise TypeError(
|
380
|
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
381
|
+
f" {type(prompt)}."
|
382
|
+
)
|
383
|
+
elif isinstance(negative_prompt, str):
|
384
|
+
uncond_tokens = [negative_prompt]
|
385
|
+
elif batch_size != len(negative_prompt):
|
386
|
+
raise ValueError(
|
387
|
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
388
|
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
389
|
+
" the batch size of `prompt`."
|
390
|
+
)
|
391
|
+
else:
|
392
|
+
uncond_tokens = negative_prompt
|
393
|
+
|
394
|
+
# textual inversion: procecss multi-vector tokens if necessary
|
395
|
+
if isinstance(self, TextualInversionLoaderMixin):
|
396
|
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
397
|
+
|
398
|
+
max_length = prompt_embeds.shape[1]
|
399
|
+
uncond_input = self.tokenizer(
|
400
|
+
uncond_tokens,
|
401
|
+
padding="max_length",
|
402
|
+
max_length=max_length,
|
403
|
+
truncation=True,
|
404
|
+
return_tensors="pt",
|
405
|
+
)
|
406
|
+
|
407
|
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
408
|
+
attention_mask = uncond_input.attention_mask.to(device)
|
409
|
+
else:
|
410
|
+
attention_mask = None
|
411
|
+
|
412
|
+
negative_prompt_embeds = self.text_encoder(
|
413
|
+
uncond_input.input_ids.to(device),
|
414
|
+
attention_mask=attention_mask,
|
415
|
+
)
|
416
|
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
417
|
+
|
418
|
+
if do_classifier_free_guidance:
|
419
|
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
420
|
+
seq_len = negative_prompt_embeds.shape[1]
|
421
|
+
|
422
|
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
423
|
+
|
424
|
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
425
|
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
426
|
+
|
427
|
+
# For classifier free guidance, we need to do two forward passes.
|
428
|
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
429
|
+
# to avoid doing two forward passes
|
430
|
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
431
|
+
|
432
|
+
return prompt_embeds
|
433
|
+
|
434
|
+
# Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents
|
435
|
+
def decode_latents(self, latents):
|
436
|
+
latents = 1 / self.vae.config.scaling_factor * latents
|
437
|
+
|
438
|
+
batch_size, channels, num_frames, height, width = latents.shape
|
439
|
+
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
|
440
|
+
|
441
|
+
image = self.vae.decode(latents).sample
|
442
|
+
video = (
|
443
|
+
image[None, :]
|
444
|
+
.reshape(
|
445
|
+
(
|
446
|
+
batch_size,
|
447
|
+
num_frames,
|
448
|
+
-1,
|
449
|
+
)
|
450
|
+
+ image.shape[2:]
|
451
|
+
)
|
452
|
+
.permute(0, 2, 1, 3, 4)
|
453
|
+
)
|
454
|
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
455
|
+
video = video.float()
|
456
|
+
return video
|
457
|
+
|
458
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
459
|
+
def prepare_extra_step_kwargs(self, generator, eta):
|
460
|
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
461
|
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
462
|
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
463
|
+
# and should be between [0, 1]
|
464
|
+
|
465
|
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
466
|
+
extra_step_kwargs = {}
|
467
|
+
if accepts_eta:
|
468
|
+
extra_step_kwargs["eta"] = eta
|
469
|
+
|
470
|
+
# check if the scheduler accepts generator
|
471
|
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
472
|
+
if accepts_generator:
|
473
|
+
extra_step_kwargs["generator"] = generator
|
474
|
+
return extra_step_kwargs
|
475
|
+
|
476
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.check_inputs
|
477
|
+
def check_inputs(
|
478
|
+
self, prompt, strength, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None
|
479
|
+
):
|
480
|
+
if strength < 0 or strength > 1:
|
481
|
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
482
|
+
|
483
|
+
if (callback_steps is None) or (
|
484
|
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
485
|
+
):
|
486
|
+
raise ValueError(
|
487
|
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
488
|
+
f" {type(callback_steps)}."
|
489
|
+
)
|
490
|
+
|
491
|
+
if prompt is not None and prompt_embeds is not None:
|
492
|
+
raise ValueError(
|
493
|
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
494
|
+
" only forward one of the two."
|
495
|
+
)
|
496
|
+
elif prompt is None and prompt_embeds is None:
|
497
|
+
raise ValueError(
|
498
|
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
499
|
+
)
|
500
|
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
501
|
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
502
|
+
|
503
|
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
504
|
+
raise ValueError(
|
505
|
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
506
|
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
507
|
+
)
|
508
|
+
|
509
|
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
510
|
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
511
|
+
raise ValueError(
|
512
|
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
513
|
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
514
|
+
f" {negative_prompt_embeds.shape}."
|
515
|
+
)
|
516
|
+
|
517
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
518
|
+
def get_timesteps(self, num_inference_steps, strength, device):
|
519
|
+
# get the original timestep using init_timestep
|
520
|
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
521
|
+
|
522
|
+
t_start = max(num_inference_steps - init_timestep, 0)
|
523
|
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
524
|
+
|
525
|
+
return timesteps, num_inference_steps - t_start
|
526
|
+
|
527
|
+
def prepare_latents(self, video, timestep, batch_size, dtype, device, generator=None):
|
528
|
+
video = video.to(device=device, dtype=dtype)
|
529
|
+
|
530
|
+
# change from (b, c, f, h, w) -> (b * f, c, w, h)
|
531
|
+
bsz, channel, frames, width, height = video.shape
|
532
|
+
video = video.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
|
533
|
+
|
534
|
+
if video.shape[1] == 4:
|
535
|
+
init_latents = video
|
536
|
+
else:
|
537
|
+
if isinstance(generator, list) and len(generator) != batch_size:
|
538
|
+
raise ValueError(
|
539
|
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
540
|
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
541
|
+
)
|
542
|
+
|
543
|
+
elif isinstance(generator, list):
|
544
|
+
init_latents = [
|
545
|
+
self.vae.encode(video[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
|
546
|
+
]
|
547
|
+
init_latents = torch.cat(init_latents, dim=0)
|
548
|
+
else:
|
549
|
+
init_latents = self.vae.encode(video).latent_dist.sample(generator)
|
550
|
+
|
551
|
+
init_latents = self.vae.config.scaling_factor * init_latents
|
552
|
+
|
553
|
+
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
|
554
|
+
raise ValueError(
|
555
|
+
f"Cannot duplicate `video` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
556
|
+
)
|
557
|
+
else:
|
558
|
+
init_latents = torch.cat([init_latents], dim=0)
|
559
|
+
|
560
|
+
shape = init_latents.shape
|
561
|
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
562
|
+
|
563
|
+
# get latents
|
564
|
+
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
565
|
+
latents = init_latents
|
566
|
+
|
567
|
+
latents = latents[None, :].reshape((bsz, frames, latents.shape[1]) + latents.shape[2:]).permute(0, 2, 1, 3, 4)
|
568
|
+
|
569
|
+
return latents
|
570
|
+
|
571
|
+
@torch.no_grad()
|
572
|
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
573
|
+
def __call__(
|
574
|
+
self,
|
575
|
+
prompt: Union[str, List[str]] = None,
|
576
|
+
video: Union[List[np.ndarray], torch.FloatTensor] = None,
|
577
|
+
strength: float = 0.6,
|
578
|
+
num_inference_steps: int = 50,
|
579
|
+
guidance_scale: float = 15.0,
|
580
|
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
581
|
+
eta: float = 0.0,
|
582
|
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
583
|
+
latents: Optional[torch.FloatTensor] = None,
|
584
|
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
585
|
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
586
|
+
output_type: Optional[str] = "np",
|
587
|
+
return_dict: bool = True,
|
588
|
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
589
|
+
callback_steps: int = 1,
|
590
|
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
591
|
+
):
|
592
|
+
r"""
|
593
|
+
Function invoked when calling the pipeline for generation.
|
594
|
+
|
595
|
+
Args:
|
596
|
+
prompt (`str` or `List[str]`, *optional*):
|
597
|
+
The prompt or prompts to guide the video generation. If not defined, one has to pass `prompt_embeds`.
|
598
|
+
instead.
|
599
|
+
video: (`List[np.ndarray]` or `torch.FloatTensor`):
|
600
|
+
`video` frames or tensor representing a video batch, that will be used as the starting point for the
|
601
|
+
process. Can also accpet video latents as `image`, if passing latents directly, it will not be encoded
|
602
|
+
again.
|
603
|
+
strength (`float`, *optional*, defaults to 0.8):
|
604
|
+
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
|
605
|
+
will be used as a starting point, adding more noise to it the larger the `strength`. The number of
|
606
|
+
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
|
607
|
+
be maximum and the denoising process will run for the full number of iterations specified in
|
608
|
+
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
|
609
|
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
610
|
+
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
|
611
|
+
expense of slower inference.
|
612
|
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
613
|
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
614
|
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
615
|
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
616
|
+
1`. Higher guidance scale encourages to generate videos that are closely linked to the text `prompt`,
|
617
|
+
usually at the expense of lower video quality.
|
618
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
619
|
+
The prompt or prompts not to guide the video generation. If not defined, one has to pass
|
620
|
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
621
|
+
less than `1`).
|
622
|
+
eta (`float`, *optional*, defaults to 0.0):
|
623
|
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
624
|
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
625
|
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
626
|
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
627
|
+
to make generation deterministic.
|
628
|
+
latents (`torch.FloatTensor`, *optional*):
|
629
|
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for video
|
630
|
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
631
|
+
tensor will ge generated by sampling using the supplied random `generator`. Latents should be of shape
|
632
|
+
`(batch_size, num_channel, num_frames, height, width)`.
|
633
|
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
634
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
635
|
+
provided, text embeddings will be generated from `prompt` input argument.
|
636
|
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
637
|
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
638
|
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
639
|
+
argument.
|
640
|
+
output_type (`str`, *optional*, defaults to `"np"`):
|
641
|
+
The output format of the generate video. Choose between `torch.FloatTensor` or `np.array`.
|
642
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
643
|
+
Whether or not to return a [`~pipelines.stable_diffusion.TextToVideoSDPipelineOutput`] instead of a
|
644
|
+
plain tuple.
|
645
|
+
callback (`Callable`, *optional*):
|
646
|
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
647
|
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
648
|
+
callback_steps (`int`, *optional*, defaults to 1):
|
649
|
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
650
|
+
called at every step.
|
651
|
+
cross_attention_kwargs (`dict`, *optional*):
|
652
|
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
653
|
+
`self.processor` in
|
654
|
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
655
|
+
|
656
|
+
Examples:
|
657
|
+
|
658
|
+
Returns:
|
659
|
+
[`~pipelines.stable_diffusion.TextToVideoSDPipelineOutput`] or `tuple`:
|
660
|
+
[`~pipelines.stable_diffusion.TextToVideoSDPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
661
|
+
When returning a tuple, the first element is a list with the generated frames.
|
662
|
+
"""
|
663
|
+
# 0. Default height and width to unet
|
664
|
+
num_images_per_prompt = 1
|
665
|
+
|
666
|
+
# 1. Check inputs. Raise error if not correct
|
667
|
+
self.check_inputs(prompt, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)
|
668
|
+
|
669
|
+
# 2. Define call parameters
|
670
|
+
if prompt is not None and isinstance(prompt, str):
|
671
|
+
batch_size = 1
|
672
|
+
elif prompt is not None and isinstance(prompt, list):
|
673
|
+
batch_size = len(prompt)
|
674
|
+
else:
|
675
|
+
batch_size = prompt_embeds.shape[0]
|
676
|
+
|
677
|
+
device = self._execution_device
|
678
|
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
679
|
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
680
|
+
# corresponds to doing no classifier free guidance.
|
681
|
+
do_classifier_free_guidance = guidance_scale > 1.0
|
682
|
+
|
683
|
+
# 3. Encode input prompt
|
684
|
+
text_encoder_lora_scale = (
|
685
|
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
686
|
+
)
|
687
|
+
prompt_embeds = self._encode_prompt(
|
688
|
+
prompt,
|
689
|
+
device,
|
690
|
+
num_images_per_prompt,
|
691
|
+
do_classifier_free_guidance,
|
692
|
+
negative_prompt,
|
693
|
+
prompt_embeds=prompt_embeds,
|
694
|
+
negative_prompt_embeds=negative_prompt_embeds,
|
695
|
+
lora_scale=text_encoder_lora_scale,
|
696
|
+
)
|
697
|
+
|
698
|
+
# 4. Preprocess video
|
699
|
+
video = preprocess_video(video)
|
700
|
+
|
701
|
+
# 5. Prepare timesteps
|
702
|
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
703
|
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
704
|
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
705
|
+
|
706
|
+
# 5. Prepare latent variables
|
707
|
+
latents = self.prepare_latents(video, latent_timestep, batch_size, prompt_embeds.dtype, device, generator)
|
708
|
+
|
709
|
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
710
|
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
711
|
+
|
712
|
+
# 7. Denoising loop
|
713
|
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
714
|
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
715
|
+
for i, t in enumerate(timesteps):
|
716
|
+
# expand the latents if we are doing classifier free guidance
|
717
|
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
718
|
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
719
|
+
|
720
|
+
# predict the noise residual
|
721
|
+
noise_pred = self.unet(
|
722
|
+
latent_model_input,
|
723
|
+
t,
|
724
|
+
encoder_hidden_states=prompt_embeds,
|
725
|
+
cross_attention_kwargs=cross_attention_kwargs,
|
726
|
+
return_dict=False,
|
727
|
+
)[0]
|
728
|
+
|
729
|
+
# perform guidance
|
730
|
+
if do_classifier_free_guidance:
|
731
|
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
732
|
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
733
|
+
|
734
|
+
# reshape latents
|
735
|
+
bsz, channel, frames, width, height = latents.shape
|
736
|
+
latents = latents.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
|
737
|
+
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
|
738
|
+
|
739
|
+
# compute the previous noisy sample x_t -> x_t-1
|
740
|
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
741
|
+
|
742
|
+
# reshape latents back
|
743
|
+
latents = latents[None, :].reshape(bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4)
|
744
|
+
|
745
|
+
# call the callback, if provided
|
746
|
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
747
|
+
progress_bar.update()
|
748
|
+
if callback is not None and i % callback_steps == 0:
|
749
|
+
callback(i, t, latents)
|
750
|
+
|
751
|
+
if output_type == "latent":
|
752
|
+
return TextToVideoSDPipelineOutput(frames=latents)
|
753
|
+
|
754
|
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
755
|
+
self.unet.to("cpu")
|
756
|
+
|
757
|
+
video_tensor = self.decode_latents(latents)
|
758
|
+
|
759
|
+
if output_type == "pt":
|
760
|
+
video = video_tensor
|
761
|
+
else:
|
762
|
+
video = tensor2vid(video_tensor)
|
763
|
+
|
764
|
+
# Offload last model to CPU
|
765
|
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
766
|
+
self.final_offload_hook.offload()
|
767
|
+
|
768
|
+
if not return_dict:
|
769
|
+
return (video,)
|
770
|
+
|
771
|
+
return TextToVideoSDPipelineOutput(frames=video)
|