diffusers 0.17.1__py3-none-any.whl → 0.18.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (120) hide show
  1. diffusers/__init__.py +26 -1
  2. diffusers/configuration_utils.py +34 -29
  3. diffusers/dependency_versions_table.py +4 -0
  4. diffusers/image_processor.py +125 -12
  5. diffusers/loaders.py +169 -203
  6. diffusers/models/attention.py +24 -1
  7. diffusers/models/attention_flax.py +10 -5
  8. diffusers/models/attention_processor.py +3 -0
  9. diffusers/models/autoencoder_kl.py +114 -33
  10. diffusers/models/controlnet.py +131 -14
  11. diffusers/models/controlnet_flax.py +37 -26
  12. diffusers/models/cross_attention.py +17 -17
  13. diffusers/models/embeddings.py +67 -0
  14. diffusers/models/modeling_flax_utils.py +64 -56
  15. diffusers/models/modeling_utils.py +193 -104
  16. diffusers/models/prior_transformer.py +207 -37
  17. diffusers/models/resnet.py +26 -26
  18. diffusers/models/transformer_2d.py +36 -41
  19. diffusers/models/transformer_temporal.py +24 -21
  20. diffusers/models/unet_1d.py +31 -25
  21. diffusers/models/unet_2d.py +43 -30
  22. diffusers/models/unet_2d_blocks.py +210 -89
  23. diffusers/models/unet_2d_blocks_flax.py +12 -12
  24. diffusers/models/unet_2d_condition.py +172 -64
  25. diffusers/models/unet_2d_condition_flax.py +38 -24
  26. diffusers/models/unet_3d_blocks.py +34 -31
  27. diffusers/models/unet_3d_condition.py +101 -34
  28. diffusers/models/vae.py +5 -5
  29. diffusers/models/vae_flax.py +37 -34
  30. diffusers/models/vq_model.py +23 -14
  31. diffusers/pipelines/__init__.py +24 -1
  32. diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +1 -1
  33. diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +5 -3
  34. diffusers/pipelines/consistency_models/__init__.py +1 -0
  35. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +337 -0
  36. diffusers/pipelines/controlnet/multicontrolnet.py +120 -1
  37. diffusers/pipelines/controlnet/pipeline_controlnet.py +59 -17
  38. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +60 -15
  39. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +60 -17
  40. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +1 -1
  41. diffusers/pipelines/kandinsky/__init__.py +1 -1
  42. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +4 -6
  43. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +1 -0
  44. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +1 -0
  45. diffusers/pipelines/kandinsky2_2/__init__.py +7 -0
  46. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +317 -0
  47. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +372 -0
  48. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +434 -0
  49. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +398 -0
  50. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +531 -0
  51. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +541 -0
  52. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +605 -0
  53. diffusers/pipelines/pipeline_flax_utils.py +2 -2
  54. diffusers/pipelines/pipeline_utils.py +124 -146
  55. diffusers/pipelines/shap_e/__init__.py +27 -0
  56. diffusers/pipelines/shap_e/camera.py +147 -0
  57. diffusers/pipelines/shap_e/pipeline_shap_e.py +390 -0
  58. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +349 -0
  59. diffusers/pipelines/shap_e/renderer.py +709 -0
  60. diffusers/pipelines/stable_diffusion/__init__.py +2 -0
  61. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +261 -66
  62. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +3 -3
  63. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +5 -3
  64. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +4 -2
  65. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
  66. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +1 -1
  67. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
  68. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +719 -0
  69. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -1
  70. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +832 -0
  71. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +17 -7
  72. diffusers/pipelines/stable_diffusion_xl/__init__.py +26 -0
  73. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +823 -0
  74. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +896 -0
  75. diffusers/pipelines/stable_diffusion_xl/watermark.py +31 -0
  76. diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -1
  77. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +5 -1
  78. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +771 -0
  79. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +92 -6
  80. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
  81. diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +209 -91
  82. diffusers/schedulers/__init__.py +3 -0
  83. diffusers/schedulers/scheduling_consistency_models.py +380 -0
  84. diffusers/schedulers/scheduling_ddim.py +28 -6
  85. diffusers/schedulers/scheduling_ddim_inverse.py +19 -4
  86. diffusers/schedulers/scheduling_ddim_parallel.py +642 -0
  87. diffusers/schedulers/scheduling_ddpm.py +53 -7
  88. diffusers/schedulers/scheduling_ddpm_parallel.py +604 -0
  89. diffusers/schedulers/scheduling_deis_multistep.py +66 -11
  90. diffusers/schedulers/scheduling_dpmsolver_multistep.py +55 -13
  91. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +19 -4
  92. diffusers/schedulers/scheduling_dpmsolver_sde.py +73 -11
  93. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +23 -7
  94. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +58 -9
  95. diffusers/schedulers/scheduling_euler_discrete.py +58 -8
  96. diffusers/schedulers/scheduling_heun_discrete.py +89 -14
  97. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +73 -11
  98. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +73 -11
  99. diffusers/schedulers/scheduling_lms_discrete.py +57 -8
  100. diffusers/schedulers/scheduling_pndm.py +46 -10
  101. diffusers/schedulers/scheduling_repaint.py +19 -4
  102. diffusers/schedulers/scheduling_sde_ve.py +5 -1
  103. diffusers/schedulers/scheduling_unclip.py +43 -4
  104. diffusers/schedulers/scheduling_unipc_multistep.py +48 -7
  105. diffusers/training_utils.py +1 -1
  106. diffusers/utils/__init__.py +2 -1
  107. diffusers/utils/dummy_pt_objects.py +60 -0
  108. diffusers/utils/dummy_torch_and_transformers_and_invisible_watermark_objects.py +32 -0
  109. diffusers/utils/dummy_torch_and_transformers_objects.py +180 -0
  110. diffusers/utils/hub_utils.py +1 -1
  111. diffusers/utils/import_utils.py +20 -3
  112. diffusers/utils/logging.py +15 -18
  113. diffusers/utils/outputs.py +3 -3
  114. diffusers/utils/testing_utils.py +15 -0
  115. {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/METADATA +4 -2
  116. {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/RECORD +120 -94
  117. {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/WHEEL +1 -1
  118. {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/LICENSE +0 -0
  119. {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/entry_points.txt +0 -0
  120. {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,642 @@
1
+ # Copyright 2023 ParaDiGMS authors and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
16
+ # and https://github.com/hojonathanho/diffusion
17
+
18
+ import math
19
+ from dataclasses import dataclass
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import numpy as np
23
+ import torch
24
+
25
+ from ..configuration_utils import ConfigMixin, register_to_config
26
+ from ..utils import BaseOutput, randn_tensor
27
+ from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
28
+
29
+
30
+ @dataclass
31
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput
32
+ class DDIMParallelSchedulerOutput(BaseOutput):
33
+ """
34
+ Output class for the scheduler's step function output.
35
+
36
+ Args:
37
+ prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
38
+ Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
39
+ denoising loop.
40
+ pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
41
+ The predicted denoised sample (x_{0}) based on the model output from the current timestep.
42
+ `pred_original_sample` can be used to preview progress or for guidance.
43
+ """
44
+
45
+ prev_sample: torch.FloatTensor
46
+ pred_original_sample: Optional[torch.FloatTensor] = None
47
+
48
+
49
+ # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
50
+ def betas_for_alpha_bar(
51
+ num_diffusion_timesteps,
52
+ max_beta=0.999,
53
+ alpha_transform_type="cosine",
54
+ ):
55
+ """
56
+ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
57
+ (1-beta) over time from t = [0,1].
58
+
59
+ Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
60
+ to that part of the diffusion process.
61
+
62
+
63
+ Args:
64
+ num_diffusion_timesteps (`int`): the number of betas to produce.
65
+ max_beta (`float`): the maximum beta to use; use values lower than 1 to
66
+ prevent singularities.
67
+ alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
68
+ Choose from `cosine` or `exp`
69
+
70
+ Returns:
71
+ betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
72
+ """
73
+ if alpha_transform_type == "cosine":
74
+
75
+ def alpha_bar_fn(t):
76
+ return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
77
+
78
+ elif alpha_transform_type == "exp":
79
+
80
+ def alpha_bar_fn(t):
81
+ return math.exp(t * -12.0)
82
+
83
+ else:
84
+ raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
85
+
86
+ betas = []
87
+ for i in range(num_diffusion_timesteps):
88
+ t1 = i / num_diffusion_timesteps
89
+ t2 = (i + 1) / num_diffusion_timesteps
90
+ betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
91
+ return torch.tensor(betas, dtype=torch.float32)
92
+
93
+
94
+ # Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
95
+ def rescale_zero_terminal_snr(betas):
96
+ """
97
+ Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
98
+
99
+
100
+ Args:
101
+ betas (`torch.FloatTensor`):
102
+ the betas that the scheduler is being initialized with.
103
+
104
+ Returns:
105
+ `torch.FloatTensor`: rescaled betas with zero terminal SNR
106
+ """
107
+ # Convert betas to alphas_bar_sqrt
108
+ alphas = 1.0 - betas
109
+ alphas_cumprod = torch.cumprod(alphas, dim=0)
110
+ alphas_bar_sqrt = alphas_cumprod.sqrt()
111
+
112
+ # Store old values.
113
+ alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
114
+ alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
115
+
116
+ # Shift so the last timestep is zero.
117
+ alphas_bar_sqrt -= alphas_bar_sqrt_T
118
+
119
+ # Scale so the first timestep is back to the old value.
120
+ alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
121
+
122
+ # Convert alphas_bar_sqrt to betas
123
+ alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
124
+ alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod
125
+ alphas = torch.cat([alphas_bar[0:1], alphas])
126
+ betas = 1 - alphas
127
+
128
+ return betas
129
+
130
+
131
+ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
132
+ """
133
+ Denoising diffusion implicit models is a scheduler that extends the denoising procedure introduced in denoising
134
+ diffusion probabilistic models (DDPMs) with non-Markovian guidance.
135
+
136
+ [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
137
+ function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
138
+ [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
139
+ [`~SchedulerMixin.from_pretrained`] functions.
140
+
141
+ For more details, see the original paper: https://arxiv.org/abs/2010.02502
142
+
143
+ Args:
144
+ num_train_timesteps (`int`): number of diffusion steps used to train the model.
145
+ beta_start (`float`): the starting `beta` value of inference.
146
+ beta_end (`float`): the final `beta` value.
147
+ beta_schedule (`str`):
148
+ the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
149
+ `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
150
+ trained_betas (`np.ndarray`, optional):
151
+ option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
152
+ clip_sample (`bool`, default `True`):
153
+ option to clip predicted sample for numerical stability.
154
+ clip_sample_range (`float`, default `1.0`):
155
+ the maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
156
+ set_alpha_to_one (`bool`, default `True`):
157
+ each diffusion step uses the value of alphas product at that step and at the previous one. For the final
158
+ step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
159
+ otherwise it uses the value of alpha at step 0.
160
+ steps_offset (`int`, default `0`):
161
+ an offset added to the inference steps. You can use a combination of `offset=1` and
162
+ `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
163
+ stable diffusion.
164
+ prediction_type (`str`, default `epsilon`, optional):
165
+ prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
166
+ process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
167
+ https://imagen.research.google/video/paper.pdf)
168
+ thresholding (`bool`, default `False`):
169
+ whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487).
170
+ Note that the thresholding method is unsuitable for latent-space diffusion models (such as
171
+ stable-diffusion).
172
+ dynamic_thresholding_ratio (`float`, default `0.995`):
173
+ the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen
174
+ (https://arxiv.org/abs/2205.11487). Valid only when `thresholding=True`.
175
+ sample_max_value (`float`, default `1.0`):
176
+ the threshold value for dynamic thresholding. Valid only when `thresholding=True`.
177
+ timestep_spacing (`str`, default `"leading"`):
178
+ The way the timesteps should be scaled. Refer to Table 2. of [Common Diffusion Noise Schedules and Sample
179
+ Steps are Flawed](https://arxiv.org/abs/2305.08891) for more information.
180
+ rescale_betas_zero_snr (`bool`, default `False`):
181
+ whether to rescale the betas to have zero terminal SNR (proposed by https://arxiv.org/pdf/2305.08891.pdf).
182
+ This can enable the model to generate very bright and dark samples instead of limiting it to samples with
183
+ medium brightness. Loosely related to
184
+ [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
185
+ """
186
+
187
+ _compatibles = [e.name for e in KarrasDiffusionSchedulers]
188
+ order = 1
189
+ _is_ode_scheduler = True
190
+
191
+ @register_to_config
192
+ # Copied from diffusers.schedulers.scheduling_ddim.DDIMScheduler.__init__
193
+ def __init__(
194
+ self,
195
+ num_train_timesteps: int = 1000,
196
+ beta_start: float = 0.0001,
197
+ beta_end: float = 0.02,
198
+ beta_schedule: str = "linear",
199
+ trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
200
+ clip_sample: bool = True,
201
+ set_alpha_to_one: bool = True,
202
+ steps_offset: int = 0,
203
+ prediction_type: str = "epsilon",
204
+ thresholding: bool = False,
205
+ dynamic_thresholding_ratio: float = 0.995,
206
+ clip_sample_range: float = 1.0,
207
+ sample_max_value: float = 1.0,
208
+ timestep_spacing: str = "leading",
209
+ rescale_betas_zero_snr: bool = False,
210
+ ):
211
+ if trained_betas is not None:
212
+ self.betas = torch.tensor(trained_betas, dtype=torch.float32)
213
+ elif beta_schedule == "linear":
214
+ self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
215
+ elif beta_schedule == "scaled_linear":
216
+ # this schedule is very specific to the latent diffusion model.
217
+ self.betas = (
218
+ torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
219
+ )
220
+ elif beta_schedule == "squaredcos_cap_v2":
221
+ # Glide cosine schedule
222
+ self.betas = betas_for_alpha_bar(num_train_timesteps)
223
+ else:
224
+ raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
225
+
226
+ # Rescale for zero SNR
227
+ if rescale_betas_zero_snr:
228
+ self.betas = rescale_zero_terminal_snr(self.betas)
229
+
230
+ self.alphas = 1.0 - self.betas
231
+ self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
232
+
233
+ # At every step in ddim, we are looking into the previous alphas_cumprod
234
+ # For the final step, there is no previous alphas_cumprod because we are already at 0
235
+ # `set_alpha_to_one` decides whether we set this parameter simply to one or
236
+ # whether we use the final alpha of the "non-previous" one.
237
+ self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
238
+
239
+ # standard deviation of the initial noise distribution
240
+ self.init_noise_sigma = 1.0
241
+
242
+ # setable values
243
+ self.num_inference_steps = None
244
+ self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
245
+
246
+ # Copied from diffusers.schedulers.scheduling_ddim.DDIMScheduler.scale_model_input
247
+ def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
248
+ """
249
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
250
+ current timestep.
251
+
252
+ Args:
253
+ sample (`torch.FloatTensor`): input sample
254
+ timestep (`int`, optional): current timestep
255
+
256
+ Returns:
257
+ `torch.FloatTensor`: scaled input sample
258
+ """
259
+ return sample
260
+
261
+ def _get_variance(self, timestep, prev_timestep=None):
262
+ if prev_timestep is None:
263
+ prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
264
+
265
+ alpha_prod_t = self.alphas_cumprod[timestep]
266
+ alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
267
+ beta_prod_t = 1 - alpha_prod_t
268
+ beta_prod_t_prev = 1 - alpha_prod_t_prev
269
+
270
+ variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
271
+
272
+ return variance
273
+
274
+ def _batch_get_variance(self, t, prev_t):
275
+ alpha_prod_t = self.alphas_cumprod[t]
276
+ alpha_prod_t_prev = self.alphas_cumprod[torch.clip(prev_t, min=0)]
277
+ alpha_prod_t_prev[prev_t < 0] = torch.tensor(1.0)
278
+ beta_prod_t = 1 - alpha_prod_t
279
+ beta_prod_t_prev = 1 - alpha_prod_t_prev
280
+
281
+ variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
282
+
283
+ return variance
284
+
285
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
286
+ def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
287
+ """
288
+ "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
289
+ prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
290
+ s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
291
+ pixels from saturation at each step. We find that dynamic thresholding results in significantly better
292
+ photorealism as well as better image-text alignment, especially when using very large guidance weights."
293
+
294
+ https://arxiv.org/abs/2205.11487
295
+ """
296
+ dtype = sample.dtype
297
+ batch_size, channels, height, width = sample.shape
298
+
299
+ if dtype not in (torch.float32, torch.float64):
300
+ sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
301
+
302
+ # Flatten sample for doing quantile calculation along each image
303
+ sample = sample.reshape(batch_size, channels * height * width)
304
+
305
+ abs_sample = sample.abs() # "a certain percentile absolute pixel value"
306
+
307
+ s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
308
+ s = torch.clamp(
309
+ s, min=1, max=self.config.sample_max_value
310
+ ) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
311
+
312
+ s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
313
+ sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
314
+
315
+ sample = sample.reshape(batch_size, channels, height, width)
316
+ sample = sample.to(dtype)
317
+
318
+ return sample
319
+
320
+ # Copied from diffusers.schedulers.scheduling_ddim.DDIMScheduler.set_timesteps
321
+ def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
322
+ """
323
+ Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
324
+
325
+ Args:
326
+ num_inference_steps (`int`):
327
+ the number of diffusion steps used when generating samples with a pre-trained model.
328
+ """
329
+
330
+ if num_inference_steps > self.config.num_train_timesteps:
331
+ raise ValueError(
332
+ f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
333
+ f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
334
+ f" maximal {self.config.num_train_timesteps} timesteps."
335
+ )
336
+
337
+ self.num_inference_steps = num_inference_steps
338
+
339
+ # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
340
+ if self.config.timestep_spacing == "linspace":
341
+ timesteps = (
342
+ np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
343
+ .round()[::-1]
344
+ .copy()
345
+ .astype(np.int64)
346
+ )
347
+ elif self.config.timestep_spacing == "leading":
348
+ step_ratio = self.config.num_train_timesteps // self.num_inference_steps
349
+ # creates integer timesteps by multiplying by ratio
350
+ # casting to int to avoid issues when num_inference_step is power of 3
351
+ timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
352
+ timesteps += self.config.steps_offset
353
+ elif self.config.timestep_spacing == "trailing":
354
+ step_ratio = self.config.num_train_timesteps / self.num_inference_steps
355
+ # creates integer timesteps by multiplying by ratio
356
+ # casting to int to avoid issues when num_inference_step is power of 3
357
+ timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
358
+ timesteps -= 1
359
+ else:
360
+ raise ValueError(
361
+ f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
362
+ )
363
+
364
+ self.timesteps = torch.from_numpy(timesteps).to(device)
365
+
366
+ def step(
367
+ self,
368
+ model_output: torch.FloatTensor,
369
+ timestep: int,
370
+ sample: torch.FloatTensor,
371
+ eta: float = 0.0,
372
+ use_clipped_model_output: bool = False,
373
+ generator=None,
374
+ variance_noise: Optional[torch.FloatTensor] = None,
375
+ return_dict: bool = True,
376
+ ) -> Union[DDIMParallelSchedulerOutput, Tuple]:
377
+ """
378
+ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
379
+ process from the learned model outputs (most often the predicted noise).
380
+
381
+ Args:
382
+ model_output (`torch.FloatTensor`): direct output from learned diffusion model.
383
+ timestep (`int`): current discrete timestep in the diffusion chain.
384
+ sample (`torch.FloatTensor`):
385
+ current instance of sample being created by diffusion process.
386
+ eta (`float`): weight of noise for added noise in diffusion step.
387
+ use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped
388
+ predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when
389
+ `self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would
390
+ coincide with the one provided as input and `use_clipped_model_output` will have not effect.
391
+ generator: random number generator.
392
+ variance_noise (`torch.FloatTensor`): instead of generating noise for the variance using `generator`, we
393
+ can directly provide the noise for the variance itself. This is useful for methods such as
394
+ CycleDiffusion. (https://arxiv.org/abs/2210.05559)
395
+ return_dict (`bool`): option for returning tuple rather than DDIMParallelSchedulerOutput class
396
+
397
+ Returns:
398
+ [`~schedulers.scheduling_utils.DDIMParallelSchedulerOutput`] or `tuple`:
399
+ [`~schedulers.scheduling_utils.DDIMParallelSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
400
+ When returning a tuple, the first element is the sample tensor.
401
+
402
+ """
403
+ if self.num_inference_steps is None:
404
+ raise ValueError(
405
+ "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
406
+ )
407
+
408
+ # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
409
+ # Ideally, read DDIM paper in-detail understanding
410
+
411
+ # Notation (<variable name> -> <name in paper>
412
+ # - pred_noise_t -> e_theta(x_t, t)
413
+ # - pred_original_sample -> f_theta(x_t, t) or x_0
414
+ # - std_dev_t -> sigma_t
415
+ # - eta -> η
416
+ # - pred_sample_direction -> "direction pointing to x_t"
417
+ # - pred_prev_sample -> "x_t-1"
418
+
419
+ # 1. get previous step value (=t-1)
420
+ prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
421
+
422
+ # 2. compute alphas, betas
423
+ alpha_prod_t = self.alphas_cumprod[timestep]
424
+ alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
425
+
426
+ beta_prod_t = 1 - alpha_prod_t
427
+
428
+ # 3. compute predicted original sample from predicted noise also called
429
+ # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
430
+ if self.config.prediction_type == "epsilon":
431
+ pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
432
+ pred_epsilon = model_output
433
+ elif self.config.prediction_type == "sample":
434
+ pred_original_sample = model_output
435
+ pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
436
+ elif self.config.prediction_type == "v_prediction":
437
+ pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
438
+ pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
439
+ else:
440
+ raise ValueError(
441
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
442
+ " `v_prediction`"
443
+ )
444
+
445
+ # 4. Clip or threshold "predicted x_0"
446
+ if self.config.thresholding:
447
+ pred_original_sample = self._threshold_sample(pred_original_sample)
448
+ elif self.config.clip_sample:
449
+ pred_original_sample = pred_original_sample.clamp(
450
+ -self.config.clip_sample_range, self.config.clip_sample_range
451
+ )
452
+
453
+ # 5. compute variance: "sigma_t(η)" -> see formula (16)
454
+ # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
455
+ variance = self._get_variance(timestep, prev_timestep)
456
+ std_dev_t = eta * variance ** (0.5)
457
+
458
+ if use_clipped_model_output:
459
+ # the pred_epsilon is always re-derived from the clipped x_0 in Glide
460
+ pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
461
+
462
+ # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
463
+ pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon
464
+
465
+ # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
466
+ prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
467
+
468
+ if eta > 0:
469
+ if variance_noise is not None and generator is not None:
470
+ raise ValueError(
471
+ "Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
472
+ " `variance_noise` stays `None`."
473
+ )
474
+
475
+ if variance_noise is None:
476
+ variance_noise = randn_tensor(
477
+ model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
478
+ )
479
+ variance = std_dev_t * variance_noise
480
+
481
+ prev_sample = prev_sample + variance
482
+
483
+ if not return_dict:
484
+ return (prev_sample,)
485
+
486
+ return DDIMParallelSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
487
+
488
+ def batch_step_no_noise(
489
+ self,
490
+ model_output: torch.FloatTensor,
491
+ timesteps: List[int],
492
+ sample: torch.FloatTensor,
493
+ eta: float = 0.0,
494
+ use_clipped_model_output: bool = False,
495
+ ) -> torch.FloatTensor:
496
+ """
497
+ Batched version of the `step` function, to be able to reverse the SDE for multiple samples/timesteps at once.
498
+ Also, does not add any noise to the predicted sample, which is necessary for parallel sampling where the noise
499
+ is pre-sampled by the pipeline.
500
+
501
+ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
502
+ process from the learned model outputs (most often the predicted noise).
503
+
504
+ Args:
505
+ model_output (`torch.FloatTensor`): direct output from learned diffusion model.
506
+ timesteps (`List[int]`):
507
+ current discrete timesteps in the diffusion chain. This is now a list of integers.
508
+ sample (`torch.FloatTensor`):
509
+ current instance of sample being created by diffusion process.
510
+ eta (`float`): weight of noise for added noise in diffusion step.
511
+ use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped
512
+ predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when
513
+ `self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would
514
+ coincide with the one provided as input and `use_clipped_model_output` will have not effect.
515
+
516
+ Returns:
517
+ `torch.FloatTensor`: sample tensor at previous timestep.
518
+
519
+ """
520
+ if self.num_inference_steps is None:
521
+ raise ValueError(
522
+ "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
523
+ )
524
+
525
+ assert eta == 0.0
526
+
527
+ # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
528
+ # Ideally, read DDIM paper in-detail understanding
529
+
530
+ # Notation (<variable name> -> <name in paper>
531
+ # - pred_noise_t -> e_theta(x_t, t)
532
+ # - pred_original_sample -> f_theta(x_t, t) or x_0
533
+ # - std_dev_t -> sigma_t
534
+ # - eta -> η
535
+ # - pred_sample_direction -> "direction pointing to x_t"
536
+ # - pred_prev_sample -> "x_t-1"
537
+
538
+ # 1. get previous step value (=t-1)
539
+ t = timesteps
540
+ prev_t = t - self.config.num_train_timesteps // self.num_inference_steps
541
+
542
+ t = t.view(-1, *([1] * (model_output.ndim - 1)))
543
+ prev_t = prev_t.view(-1, *([1] * (model_output.ndim - 1)))
544
+
545
+ # 1. compute alphas, betas
546
+ self.alphas_cumprod = self.alphas_cumprod.to(model_output.device)
547
+ self.final_alpha_cumprod = self.final_alpha_cumprod.to(model_output.device)
548
+ alpha_prod_t = self.alphas_cumprod[t]
549
+ alpha_prod_t_prev = self.alphas_cumprod[torch.clip(prev_t, min=0)]
550
+ alpha_prod_t_prev[prev_t < 0] = torch.tensor(1.0)
551
+
552
+ beta_prod_t = 1 - alpha_prod_t
553
+
554
+ # 3. compute predicted original sample from predicted noise also called
555
+ # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
556
+ if self.config.prediction_type == "epsilon":
557
+ pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
558
+ pred_epsilon = model_output
559
+ elif self.config.prediction_type == "sample":
560
+ pred_original_sample = model_output
561
+ pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
562
+ elif self.config.prediction_type == "v_prediction":
563
+ pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
564
+ pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
565
+ else:
566
+ raise ValueError(
567
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
568
+ " `v_prediction`"
569
+ )
570
+
571
+ # 4. Clip or threshold "predicted x_0"
572
+ if self.config.thresholding:
573
+ pred_original_sample = self._threshold_sample(pred_original_sample)
574
+ elif self.config.clip_sample:
575
+ pred_original_sample = pred_original_sample.clamp(
576
+ -self.config.clip_sample_range, self.config.clip_sample_range
577
+ )
578
+
579
+ # 5. compute variance: "sigma_t(η)" -> see formula (16)
580
+ # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
581
+ variance = self._batch_get_variance(t, prev_t).to(model_output.device).view(*alpha_prod_t_prev.shape)
582
+ std_dev_t = eta * variance ** (0.5)
583
+
584
+ if use_clipped_model_output:
585
+ # the pred_epsilon is always re-derived from the clipped x_0 in Glide
586
+ pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
587
+
588
+ # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
589
+ pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon
590
+
591
+ # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
592
+ prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
593
+
594
+ return prev_sample
595
+
596
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
597
+ def add_noise(
598
+ self,
599
+ original_samples: torch.FloatTensor,
600
+ noise: torch.FloatTensor,
601
+ timesteps: torch.IntTensor,
602
+ ) -> torch.FloatTensor:
603
+ # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
604
+ alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
605
+ timesteps = timesteps.to(original_samples.device)
606
+
607
+ sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
608
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
609
+ while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
610
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
611
+
612
+ sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
613
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
614
+ while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
615
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
616
+
617
+ noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
618
+ return noisy_samples
619
+
620
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
621
+ def get_velocity(
622
+ self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
623
+ ) -> torch.FloatTensor:
624
+ # Make sure alphas_cumprod and timestep have same device and dtype as sample
625
+ alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
626
+ timesteps = timesteps.to(sample.device)
627
+
628
+ sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
629
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
630
+ while len(sqrt_alpha_prod.shape) < len(sample.shape):
631
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
632
+
633
+ sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
634
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
635
+ while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
636
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
637
+
638
+ velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
639
+ return velocity
640
+
641
+ def __len__(self):
642
+ return self.config.num_train_timesteps