diffusers 0.17.1__py3-none-any.whl → 0.18.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +26 -1
- diffusers/configuration_utils.py +34 -29
- diffusers/dependency_versions_table.py +4 -0
- diffusers/image_processor.py +125 -12
- diffusers/loaders.py +169 -203
- diffusers/models/attention.py +24 -1
- diffusers/models/attention_flax.py +10 -5
- diffusers/models/attention_processor.py +3 -0
- diffusers/models/autoencoder_kl.py +114 -33
- diffusers/models/controlnet.py +131 -14
- diffusers/models/controlnet_flax.py +37 -26
- diffusers/models/cross_attention.py +17 -17
- diffusers/models/embeddings.py +67 -0
- diffusers/models/modeling_flax_utils.py +64 -56
- diffusers/models/modeling_utils.py +193 -104
- diffusers/models/prior_transformer.py +207 -37
- diffusers/models/resnet.py +26 -26
- diffusers/models/transformer_2d.py +36 -41
- diffusers/models/transformer_temporal.py +24 -21
- diffusers/models/unet_1d.py +31 -25
- diffusers/models/unet_2d.py +43 -30
- diffusers/models/unet_2d_blocks.py +210 -89
- diffusers/models/unet_2d_blocks_flax.py +12 -12
- diffusers/models/unet_2d_condition.py +172 -64
- diffusers/models/unet_2d_condition_flax.py +38 -24
- diffusers/models/unet_3d_blocks.py +34 -31
- diffusers/models/unet_3d_condition.py +101 -34
- diffusers/models/vae.py +5 -5
- diffusers/models/vae_flax.py +37 -34
- diffusers/models/vq_model.py +23 -14
- diffusers/pipelines/__init__.py +24 -1
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +1 -1
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +5 -3
- diffusers/pipelines/consistency_models/__init__.py +1 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +337 -0
- diffusers/pipelines/controlnet/multicontrolnet.py +120 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +59 -17
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +60 -15
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +60 -17
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +1 -1
- diffusers/pipelines/kandinsky/__init__.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +4 -6
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +1 -0
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +1 -0
- diffusers/pipelines/kandinsky2_2/__init__.py +7 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +317 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +372 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +434 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +398 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +531 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +541 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +605 -0
- diffusers/pipelines/pipeline_flax_utils.py +2 -2
- diffusers/pipelines/pipeline_utils.py +124 -146
- diffusers/pipelines/shap_e/__init__.py +27 -0
- diffusers/pipelines/shap_e/camera.py +147 -0
- diffusers/pipelines/shap_e/pipeline_shap_e.py +390 -0
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +349 -0
- diffusers/pipelines/shap_e/renderer.py +709 -0
- diffusers/pipelines/stable_diffusion/__init__.py +2 -0
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +261 -66
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +3 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +5 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +4 -2
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +719 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +832 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +17 -7
- diffusers/pipelines/stable_diffusion_xl/__init__.py +26 -0
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +823 -0
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +896 -0
- diffusers/pipelines/stable_diffusion_xl/watermark.py +31 -0
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -1
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +5 -1
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +771 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +92 -6
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
- diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +209 -91
- diffusers/schedulers/__init__.py +3 -0
- diffusers/schedulers/scheduling_consistency_models.py +380 -0
- diffusers/schedulers/scheduling_ddim.py +28 -6
- diffusers/schedulers/scheduling_ddim_inverse.py +19 -4
- diffusers/schedulers/scheduling_ddim_parallel.py +642 -0
- diffusers/schedulers/scheduling_ddpm.py +53 -7
- diffusers/schedulers/scheduling_ddpm_parallel.py +604 -0
- diffusers/schedulers/scheduling_deis_multistep.py +66 -11
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +55 -13
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +19 -4
- diffusers/schedulers/scheduling_dpmsolver_sde.py +73 -11
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +23 -7
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +58 -9
- diffusers/schedulers/scheduling_euler_discrete.py +58 -8
- diffusers/schedulers/scheduling_heun_discrete.py +89 -14
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +73 -11
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +73 -11
- diffusers/schedulers/scheduling_lms_discrete.py +57 -8
- diffusers/schedulers/scheduling_pndm.py +46 -10
- diffusers/schedulers/scheduling_repaint.py +19 -4
- diffusers/schedulers/scheduling_sde_ve.py +5 -1
- diffusers/schedulers/scheduling_unclip.py +43 -4
- diffusers/schedulers/scheduling_unipc_multistep.py +48 -7
- diffusers/training_utils.py +1 -1
- diffusers/utils/__init__.py +2 -1
- diffusers/utils/dummy_pt_objects.py +60 -0
- diffusers/utils/dummy_torch_and_transformers_and_invisible_watermark_objects.py +32 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +180 -0
- diffusers/utils/hub_utils.py +1 -1
- diffusers/utils/import_utils.py +20 -3
- diffusers/utils/logging.py +15 -18
- diffusers/utils/outputs.py +3 -3
- diffusers/utils/testing_utils.py +15 -0
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/METADATA +4 -2
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/RECORD +120 -94
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/WHEEL +1 -1
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/LICENSE +0 -0
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,832 @@
|
|
1
|
+
# Copyright 2023 ParaDiGMS authors and The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import inspect
|
16
|
+
from typing import Any, Callable, Dict, List, Optional, Union
|
17
|
+
|
18
|
+
import torch
|
19
|
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
20
|
+
|
21
|
+
from ...image_processor import VaeImageProcessor
|
22
|
+
from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
23
|
+
from ...models import AutoencoderKL, UNet2DConditionModel
|
24
|
+
from ...schedulers import KarrasDiffusionSchedulers
|
25
|
+
from ...utils import (
|
26
|
+
is_accelerate_available,
|
27
|
+
is_accelerate_version,
|
28
|
+
logging,
|
29
|
+
randn_tensor,
|
30
|
+
replace_example_docstring,
|
31
|
+
)
|
32
|
+
from ..pipeline_utils import DiffusionPipeline
|
33
|
+
from . import StableDiffusionPipelineOutput
|
34
|
+
from .safety_checker import StableDiffusionSafetyChecker
|
35
|
+
|
36
|
+
|
37
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
38
|
+
|
39
|
+
EXAMPLE_DOC_STRING = """
|
40
|
+
Examples:
|
41
|
+
```py
|
42
|
+
>>> import torch
|
43
|
+
>>> from diffusers import DDPMParallelScheduler
|
44
|
+
>>> from diffusers import StableDiffusionParadigmsPipeline
|
45
|
+
|
46
|
+
>>> scheduler = DDPMParallelScheduler.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="scheduler")
|
47
|
+
|
48
|
+
>>> pipe = StableDiffusionParadigmsPipeline.from_pretrained(
|
49
|
+
... "runwayml/stable-diffusion-v1-5", scheduler=scheduler, torch_dtype=torch.float16
|
50
|
+
... )
|
51
|
+
>>> pipe = pipe.to("cuda")
|
52
|
+
|
53
|
+
>>> ngpu, batch_per_device = torch.cuda.device_count(), 5
|
54
|
+
>>> pipe.wrapped_unet = torch.nn.DataParallel(pipe.unet, device_ids=[d for d in range(ngpu)])
|
55
|
+
|
56
|
+
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
57
|
+
>>> image = pipe(prompt, parallel=ngpu * batch_per_device, num_inference_steps=1000).images[0]
|
58
|
+
```
|
59
|
+
"""
|
60
|
+
|
61
|
+
|
62
|
+
class StableDiffusionParadigmsPipeline(
|
63
|
+
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
|
64
|
+
):
|
65
|
+
r"""
|
66
|
+
Parallelized version of StableDiffusionPipeline, based on the paper https://arxiv.org/abs/2305.16317 This pipeline
|
67
|
+
parallelizes the denoising steps to generate a single image faster (more akin to model parallelism).
|
68
|
+
|
69
|
+
Pipeline for text-to-image generation using Stable Diffusion.
|
70
|
+
|
71
|
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
72
|
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
73
|
+
|
74
|
+
In addition the pipeline inherits the following loading methods:
|
75
|
+
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
|
76
|
+
- *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`]
|
77
|
+
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
|
78
|
+
|
79
|
+
as well as the following saving methods:
|
80
|
+
- *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`]
|
81
|
+
|
82
|
+
Args:
|
83
|
+
vae ([`AutoencoderKL`]):
|
84
|
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
85
|
+
text_encoder ([`CLIPTextModel`]):
|
86
|
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
87
|
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
88
|
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
89
|
+
tokenizer (`CLIPTokenizer`):
|
90
|
+
Tokenizer of class
|
91
|
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
92
|
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
93
|
+
scheduler ([`SchedulerMixin`]):
|
94
|
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
95
|
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
96
|
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
97
|
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
98
|
+
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
99
|
+
feature_extractor ([`CLIPImageProcessor`]):
|
100
|
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
101
|
+
"""
|
102
|
+
_optional_components = ["safety_checker", "feature_extractor"]
|
103
|
+
|
104
|
+
def __init__(
|
105
|
+
self,
|
106
|
+
vae: AutoencoderKL,
|
107
|
+
text_encoder: CLIPTextModel,
|
108
|
+
tokenizer: CLIPTokenizer,
|
109
|
+
unet: UNet2DConditionModel,
|
110
|
+
scheduler: KarrasDiffusionSchedulers,
|
111
|
+
safety_checker: StableDiffusionSafetyChecker,
|
112
|
+
feature_extractor: CLIPImageProcessor,
|
113
|
+
requires_safety_checker: bool = True,
|
114
|
+
):
|
115
|
+
super().__init__()
|
116
|
+
|
117
|
+
if safety_checker is None and requires_safety_checker:
|
118
|
+
logger.warning(
|
119
|
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
120
|
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
121
|
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
122
|
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
123
|
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
124
|
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
125
|
+
)
|
126
|
+
|
127
|
+
if safety_checker is not None and feature_extractor is None:
|
128
|
+
raise ValueError(
|
129
|
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
130
|
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
131
|
+
)
|
132
|
+
|
133
|
+
self.register_modules(
|
134
|
+
vae=vae,
|
135
|
+
text_encoder=text_encoder,
|
136
|
+
tokenizer=tokenizer,
|
137
|
+
unet=unet,
|
138
|
+
scheduler=scheduler,
|
139
|
+
safety_checker=safety_checker,
|
140
|
+
feature_extractor=feature_extractor,
|
141
|
+
)
|
142
|
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
143
|
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
144
|
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
145
|
+
|
146
|
+
# attribute to wrap the unet with torch.nn.DataParallel when running multiple denoising steps on multiple GPUs
|
147
|
+
self.wrapped_unet = self.unet
|
148
|
+
|
149
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
150
|
+
def enable_vae_slicing(self):
|
151
|
+
r"""
|
152
|
+
Enable sliced VAE decoding.
|
153
|
+
|
154
|
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
155
|
+
steps. This is useful to save some memory and allow larger batch sizes.
|
156
|
+
"""
|
157
|
+
self.vae.enable_slicing()
|
158
|
+
|
159
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
160
|
+
def disable_vae_slicing(self):
|
161
|
+
r"""
|
162
|
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
163
|
+
computing decoding in one step.
|
164
|
+
"""
|
165
|
+
self.vae.disable_slicing()
|
166
|
+
|
167
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
168
|
+
def enable_vae_tiling(self):
|
169
|
+
r"""
|
170
|
+
Enable tiled VAE decoding.
|
171
|
+
|
172
|
+
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
|
173
|
+
several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
|
174
|
+
"""
|
175
|
+
self.vae.enable_tiling()
|
176
|
+
|
177
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
178
|
+
def disable_vae_tiling(self):
|
179
|
+
r"""
|
180
|
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
|
181
|
+
computing decoding in one step.
|
182
|
+
"""
|
183
|
+
self.vae.disable_tiling()
|
184
|
+
|
185
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_sequential_cpu_offload
|
186
|
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
187
|
+
r"""
|
188
|
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
189
|
+
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
190
|
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
191
|
+
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
192
|
+
`enable_model_cpu_offload`, but performance is lower.
|
193
|
+
"""
|
194
|
+
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
|
195
|
+
from accelerate import cpu_offload
|
196
|
+
else:
|
197
|
+
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
|
198
|
+
|
199
|
+
device = torch.device(f"cuda:{gpu_id}")
|
200
|
+
|
201
|
+
if self.device.type != "cpu":
|
202
|
+
self.to("cpu", silence_dtype_warnings=True)
|
203
|
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
204
|
+
|
205
|
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
206
|
+
cpu_offload(cpu_offloaded_model, device)
|
207
|
+
|
208
|
+
if self.safety_checker is not None:
|
209
|
+
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)
|
210
|
+
|
211
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_model_cpu_offload
|
212
|
+
def enable_model_cpu_offload(self, gpu_id=0):
|
213
|
+
r"""
|
214
|
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
215
|
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
216
|
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
217
|
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
218
|
+
"""
|
219
|
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
220
|
+
from accelerate import cpu_offload_with_hook
|
221
|
+
else:
|
222
|
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
223
|
+
|
224
|
+
device = torch.device(f"cuda:{gpu_id}")
|
225
|
+
|
226
|
+
if self.device.type != "cpu":
|
227
|
+
self.to("cpu", silence_dtype_warnings=True)
|
228
|
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
229
|
+
|
230
|
+
hook = None
|
231
|
+
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
|
232
|
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
233
|
+
|
234
|
+
if self.safety_checker is not None:
|
235
|
+
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
|
236
|
+
|
237
|
+
# We'll offload the last model manually.
|
238
|
+
self.final_offload_hook = hook
|
239
|
+
|
240
|
+
@property
|
241
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
242
|
+
def _execution_device(self):
|
243
|
+
r"""
|
244
|
+
Returns the device on which the pipeline's models will be executed. After calling
|
245
|
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
246
|
+
hooks.
|
247
|
+
"""
|
248
|
+
if not hasattr(self.unet, "_hf_hook"):
|
249
|
+
return self.device
|
250
|
+
for module in self.unet.modules():
|
251
|
+
if (
|
252
|
+
hasattr(module, "_hf_hook")
|
253
|
+
and hasattr(module._hf_hook, "execution_device")
|
254
|
+
and module._hf_hook.execution_device is not None
|
255
|
+
):
|
256
|
+
return torch.device(module._hf_hook.execution_device)
|
257
|
+
return self.device
|
258
|
+
|
259
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
260
|
+
def _encode_prompt(
|
261
|
+
self,
|
262
|
+
prompt,
|
263
|
+
device,
|
264
|
+
num_images_per_prompt,
|
265
|
+
do_classifier_free_guidance,
|
266
|
+
negative_prompt=None,
|
267
|
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
268
|
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
269
|
+
lora_scale: Optional[float] = None,
|
270
|
+
):
|
271
|
+
r"""
|
272
|
+
Encodes the prompt into text encoder hidden states.
|
273
|
+
|
274
|
+
Args:
|
275
|
+
prompt (`str` or `List[str]`, *optional*):
|
276
|
+
prompt to be encoded
|
277
|
+
device: (`torch.device`):
|
278
|
+
torch device
|
279
|
+
num_images_per_prompt (`int`):
|
280
|
+
number of images that should be generated per prompt
|
281
|
+
do_classifier_free_guidance (`bool`):
|
282
|
+
whether to use classifier free guidance or not
|
283
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
284
|
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
285
|
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
286
|
+
less than `1`).
|
287
|
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
288
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
289
|
+
provided, text embeddings will be generated from `prompt` input argument.
|
290
|
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
291
|
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
292
|
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
293
|
+
argument.
|
294
|
+
lora_scale (`float`, *optional*):
|
295
|
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
296
|
+
"""
|
297
|
+
# set lora scale so that monkey patched LoRA
|
298
|
+
# function of text encoder can correctly access it
|
299
|
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
300
|
+
self._lora_scale = lora_scale
|
301
|
+
|
302
|
+
if prompt is not None and isinstance(prompt, str):
|
303
|
+
batch_size = 1
|
304
|
+
elif prompt is not None and isinstance(prompt, list):
|
305
|
+
batch_size = len(prompt)
|
306
|
+
else:
|
307
|
+
batch_size = prompt_embeds.shape[0]
|
308
|
+
|
309
|
+
if prompt_embeds is None:
|
310
|
+
# textual inversion: procecss multi-vector tokens if necessary
|
311
|
+
if isinstance(self, TextualInversionLoaderMixin):
|
312
|
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
313
|
+
|
314
|
+
text_inputs = self.tokenizer(
|
315
|
+
prompt,
|
316
|
+
padding="max_length",
|
317
|
+
max_length=self.tokenizer.model_max_length,
|
318
|
+
truncation=True,
|
319
|
+
return_tensors="pt",
|
320
|
+
)
|
321
|
+
text_input_ids = text_inputs.input_ids
|
322
|
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
323
|
+
|
324
|
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
325
|
+
text_input_ids, untruncated_ids
|
326
|
+
):
|
327
|
+
removed_text = self.tokenizer.batch_decode(
|
328
|
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
329
|
+
)
|
330
|
+
logger.warning(
|
331
|
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
332
|
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
333
|
+
)
|
334
|
+
|
335
|
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
336
|
+
attention_mask = text_inputs.attention_mask.to(device)
|
337
|
+
else:
|
338
|
+
attention_mask = None
|
339
|
+
|
340
|
+
prompt_embeds = self.text_encoder(
|
341
|
+
text_input_ids.to(device),
|
342
|
+
attention_mask=attention_mask,
|
343
|
+
)
|
344
|
+
prompt_embeds = prompt_embeds[0]
|
345
|
+
|
346
|
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
347
|
+
|
348
|
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
349
|
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
350
|
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
351
|
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
352
|
+
|
353
|
+
# get unconditional embeddings for classifier free guidance
|
354
|
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
355
|
+
uncond_tokens: List[str]
|
356
|
+
if negative_prompt is None:
|
357
|
+
uncond_tokens = [""] * batch_size
|
358
|
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
359
|
+
raise TypeError(
|
360
|
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
361
|
+
f" {type(prompt)}."
|
362
|
+
)
|
363
|
+
elif isinstance(negative_prompt, str):
|
364
|
+
uncond_tokens = [negative_prompt]
|
365
|
+
elif batch_size != len(negative_prompt):
|
366
|
+
raise ValueError(
|
367
|
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
368
|
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
369
|
+
" the batch size of `prompt`."
|
370
|
+
)
|
371
|
+
else:
|
372
|
+
uncond_tokens = negative_prompt
|
373
|
+
|
374
|
+
# textual inversion: procecss multi-vector tokens if necessary
|
375
|
+
if isinstance(self, TextualInversionLoaderMixin):
|
376
|
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
377
|
+
|
378
|
+
max_length = prompt_embeds.shape[1]
|
379
|
+
uncond_input = self.tokenizer(
|
380
|
+
uncond_tokens,
|
381
|
+
padding="max_length",
|
382
|
+
max_length=max_length,
|
383
|
+
truncation=True,
|
384
|
+
return_tensors="pt",
|
385
|
+
)
|
386
|
+
|
387
|
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
388
|
+
attention_mask = uncond_input.attention_mask.to(device)
|
389
|
+
else:
|
390
|
+
attention_mask = None
|
391
|
+
|
392
|
+
negative_prompt_embeds = self.text_encoder(
|
393
|
+
uncond_input.input_ids.to(device),
|
394
|
+
attention_mask=attention_mask,
|
395
|
+
)
|
396
|
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
397
|
+
|
398
|
+
if do_classifier_free_guidance:
|
399
|
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
400
|
+
seq_len = negative_prompt_embeds.shape[1]
|
401
|
+
|
402
|
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
403
|
+
|
404
|
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
405
|
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
406
|
+
|
407
|
+
# For classifier free guidance, we need to do two forward passes.
|
408
|
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
409
|
+
# to avoid doing two forward passes
|
410
|
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
411
|
+
|
412
|
+
return prompt_embeds
|
413
|
+
|
414
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
415
|
+
def run_safety_checker(self, image, device, dtype):
|
416
|
+
if self.safety_checker is None:
|
417
|
+
has_nsfw_concept = None
|
418
|
+
else:
|
419
|
+
if torch.is_tensor(image):
|
420
|
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
421
|
+
else:
|
422
|
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
423
|
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
424
|
+
image, has_nsfw_concept = self.safety_checker(
|
425
|
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
426
|
+
)
|
427
|
+
return image, has_nsfw_concept
|
428
|
+
|
429
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
430
|
+
def prepare_extra_step_kwargs(self, generator, eta):
|
431
|
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
432
|
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
433
|
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
434
|
+
# and should be between [0, 1]
|
435
|
+
|
436
|
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
437
|
+
extra_step_kwargs = {}
|
438
|
+
if accepts_eta:
|
439
|
+
extra_step_kwargs["eta"] = eta
|
440
|
+
|
441
|
+
# check if the scheduler accepts generator
|
442
|
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
443
|
+
if accepts_generator:
|
444
|
+
extra_step_kwargs["generator"] = generator
|
445
|
+
return extra_step_kwargs
|
446
|
+
|
447
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs
|
448
|
+
def check_inputs(
|
449
|
+
self,
|
450
|
+
prompt,
|
451
|
+
height,
|
452
|
+
width,
|
453
|
+
callback_steps,
|
454
|
+
negative_prompt=None,
|
455
|
+
prompt_embeds=None,
|
456
|
+
negative_prompt_embeds=None,
|
457
|
+
):
|
458
|
+
if height % 8 != 0 or width % 8 != 0:
|
459
|
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
460
|
+
|
461
|
+
if (callback_steps is None) or (
|
462
|
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
463
|
+
):
|
464
|
+
raise ValueError(
|
465
|
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
466
|
+
f" {type(callback_steps)}."
|
467
|
+
)
|
468
|
+
|
469
|
+
if prompt is not None and prompt_embeds is not None:
|
470
|
+
raise ValueError(
|
471
|
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
472
|
+
" only forward one of the two."
|
473
|
+
)
|
474
|
+
elif prompt is None and prompt_embeds is None:
|
475
|
+
raise ValueError(
|
476
|
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
477
|
+
)
|
478
|
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
479
|
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
480
|
+
|
481
|
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
482
|
+
raise ValueError(
|
483
|
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
484
|
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
485
|
+
)
|
486
|
+
|
487
|
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
488
|
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
489
|
+
raise ValueError(
|
490
|
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
491
|
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
492
|
+
f" {negative_prompt_embeds.shape}."
|
493
|
+
)
|
494
|
+
|
495
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
496
|
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
497
|
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
498
|
+
if isinstance(generator, list) and len(generator) != batch_size:
|
499
|
+
raise ValueError(
|
500
|
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
501
|
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
502
|
+
)
|
503
|
+
|
504
|
+
if latents is None:
|
505
|
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
506
|
+
else:
|
507
|
+
latents = latents.to(device)
|
508
|
+
|
509
|
+
# scale the initial noise by the standard deviation required by the scheduler
|
510
|
+
latents = latents * self.scheduler.init_noise_sigma
|
511
|
+
return latents
|
512
|
+
|
513
|
+
def _cumsum(self, input, dim, debug=False):
|
514
|
+
if debug:
|
515
|
+
# cumsum_cuda_kernel does not have a deterministic implementation
|
516
|
+
# so perform cumsum on cpu for debugging purposes
|
517
|
+
return torch.cumsum(input.cpu().float(), dim=dim).to(input.device)
|
518
|
+
else:
|
519
|
+
return torch.cumsum(input, dim=dim)
|
520
|
+
|
521
|
+
@torch.no_grad()
|
522
|
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
523
|
+
def __call__(
|
524
|
+
self,
|
525
|
+
prompt: Union[str, List[str]] = None,
|
526
|
+
height: Optional[int] = None,
|
527
|
+
width: Optional[int] = None,
|
528
|
+
num_inference_steps: int = 50,
|
529
|
+
parallel: int = 10,
|
530
|
+
tolerance: float = 0.1,
|
531
|
+
guidance_scale: float = 7.5,
|
532
|
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
533
|
+
num_images_per_prompt: Optional[int] = 1,
|
534
|
+
eta: float = 0.0,
|
535
|
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
536
|
+
latents: Optional[torch.FloatTensor] = None,
|
537
|
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
538
|
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
539
|
+
output_type: Optional[str] = "pil",
|
540
|
+
return_dict: bool = True,
|
541
|
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
542
|
+
callback_steps: int = 1,
|
543
|
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
544
|
+
debug: bool = False,
|
545
|
+
):
|
546
|
+
r"""
|
547
|
+
Function invoked when calling the pipeline for generation.
|
548
|
+
|
549
|
+
Args:
|
550
|
+
prompt (`str` or `List[str]`, *optional*):
|
551
|
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
552
|
+
instead.
|
553
|
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
554
|
+
The height in pixels of the generated image.
|
555
|
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
556
|
+
The width in pixels of the generated image.
|
557
|
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
558
|
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
559
|
+
expense of slower inference.
|
560
|
+
parallel (`int`, *optional*, defaults to 10):
|
561
|
+
The batch size to use when doing parallel sampling. More parallelism may lead to faster inference but
|
562
|
+
requires higher memory usage and also can require more total FLOPs.
|
563
|
+
tolerance (`float`, *optional*, defaults to 0.1):
|
564
|
+
The error tolerance for determining when to slide the batch window forward for parallel sampling. Lower
|
565
|
+
tolerance usually leads to less/no degradation. Higher tolerance is faster but can risk degradation of
|
566
|
+
sample quality. The tolerance is specified as a ratio of the scheduler's noise magnitude.
|
567
|
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
568
|
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
569
|
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
570
|
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
571
|
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
572
|
+
usually at the expense of lower image quality.
|
573
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
574
|
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
575
|
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
576
|
+
less than `1`).
|
577
|
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
578
|
+
The number of images to generate per prompt.
|
579
|
+
eta (`float`, *optional*, defaults to 0.0):
|
580
|
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
581
|
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
582
|
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
583
|
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
584
|
+
to make generation deterministic.
|
585
|
+
latents (`torch.FloatTensor`, *optional*):
|
586
|
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
587
|
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
588
|
+
tensor will ge generated by sampling using the supplied random `generator`.
|
589
|
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
590
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
591
|
+
provided, text embeddings will be generated from `prompt` input argument.
|
592
|
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
593
|
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
594
|
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
595
|
+
argument.
|
596
|
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
597
|
+
The output format of the generate image. Choose between
|
598
|
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
599
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
600
|
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
601
|
+
plain tuple.
|
602
|
+
callback (`Callable`, *optional*):
|
603
|
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
604
|
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
605
|
+
callback_steps (`int`, *optional*, defaults to 1):
|
606
|
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
607
|
+
called at every step.
|
608
|
+
cross_attention_kwargs (`dict`, *optional*):
|
609
|
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
610
|
+
`self.processor` in
|
611
|
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
612
|
+
debug (`bool`, *optional*, defaults to `False`):
|
613
|
+
Whether or not to run in debug mode. In debug mode, torch.cumsum is evaluated using the CPU.
|
614
|
+
|
615
|
+
Examples:
|
616
|
+
|
617
|
+
Returns:
|
618
|
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
619
|
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
620
|
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
621
|
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
622
|
+
(nsfw) content, according to the `safety_checker`.
|
623
|
+
"""
|
624
|
+
# 0. Default height and width to unet
|
625
|
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
626
|
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
627
|
+
|
628
|
+
# 1. Check inputs. Raise error if not correct
|
629
|
+
self.check_inputs(
|
630
|
+
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
|
631
|
+
)
|
632
|
+
|
633
|
+
# 2. Define call parameters
|
634
|
+
if prompt is not None and isinstance(prompt, str):
|
635
|
+
batch_size = 1
|
636
|
+
elif prompt is not None and isinstance(prompt, list):
|
637
|
+
batch_size = len(prompt)
|
638
|
+
else:
|
639
|
+
batch_size = prompt_embeds.shape[0]
|
640
|
+
|
641
|
+
device = self._execution_device
|
642
|
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
643
|
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
644
|
+
# corresponds to doing no classifier free guidance.
|
645
|
+
do_classifier_free_guidance = guidance_scale > 1.0
|
646
|
+
|
647
|
+
# 3. Encode input prompt
|
648
|
+
prompt_embeds = self._encode_prompt(
|
649
|
+
prompt,
|
650
|
+
device,
|
651
|
+
num_images_per_prompt,
|
652
|
+
do_classifier_free_guidance,
|
653
|
+
negative_prompt,
|
654
|
+
prompt_embeds=prompt_embeds,
|
655
|
+
negative_prompt_embeds=negative_prompt_embeds,
|
656
|
+
)
|
657
|
+
|
658
|
+
# 4. Prepare timesteps
|
659
|
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
660
|
+
|
661
|
+
# 5. Prepare latent variables
|
662
|
+
num_channels_latents = self.unet.config.in_channels
|
663
|
+
latents = self.prepare_latents(
|
664
|
+
batch_size * num_images_per_prompt,
|
665
|
+
num_channels_latents,
|
666
|
+
height,
|
667
|
+
width,
|
668
|
+
prompt_embeds.dtype,
|
669
|
+
device,
|
670
|
+
generator,
|
671
|
+
latents,
|
672
|
+
)
|
673
|
+
|
674
|
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
675
|
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
676
|
+
extra_step_kwargs.pop("generator", None)
|
677
|
+
|
678
|
+
# # 7. Denoising loop
|
679
|
+
scheduler = self.scheduler
|
680
|
+
parallel = min(parallel, len(scheduler.timesteps))
|
681
|
+
|
682
|
+
begin_idx = 0
|
683
|
+
end_idx = parallel
|
684
|
+
latents_time_evolution_buffer = torch.stack([latents] * (len(scheduler.timesteps) + 1))
|
685
|
+
|
686
|
+
# We must make sure the noise of stochastic schedulers such as DDPM is sampled only once per timestep.
|
687
|
+
# Sampling inside the parallel denoising loop will mess this up, so we pre-sample the noise vectors outside the denoising loop.
|
688
|
+
noise_array = torch.zeros_like(latents_time_evolution_buffer)
|
689
|
+
for j in range(len(scheduler.timesteps)):
|
690
|
+
base_noise = randn_tensor(
|
691
|
+
shape=latents.shape, generator=generator, device=latents.device, dtype=prompt_embeds.dtype
|
692
|
+
)
|
693
|
+
noise = (self.scheduler._get_variance(scheduler.timesteps[j]) ** 0.5) * base_noise
|
694
|
+
noise_array[j] = noise.clone()
|
695
|
+
|
696
|
+
# We specify the error tolerance as a ratio of the scheduler's noise magnitude. We similarly compute the error tolerance
|
697
|
+
# outside of the denoising loop to avoid recomputing it at every step.
|
698
|
+
# We will be dividing the norm of the noise, so we store its inverse here to avoid a division at every step.
|
699
|
+
inverse_variance_norm = 1.0 / torch.tensor(
|
700
|
+
[scheduler._get_variance(scheduler.timesteps[j]) for j in range(len(scheduler.timesteps))] + [0]
|
701
|
+
).to(noise_array.device)
|
702
|
+
latent_dim = noise_array[0, 0].numel()
|
703
|
+
inverse_variance_norm = inverse_variance_norm[:, None] / latent_dim
|
704
|
+
|
705
|
+
scaled_tolerance = tolerance**2
|
706
|
+
|
707
|
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
708
|
+
steps = 0
|
709
|
+
while begin_idx < len(scheduler.timesteps):
|
710
|
+
# these have shape (parallel_dim, 2*batch_size, ...)
|
711
|
+
# parallel_len is at most parallel, but could be less if we are at the end of the timesteps
|
712
|
+
# we are processing batch window of timesteps spanning [begin_idx, end_idx)
|
713
|
+
parallel_len = end_idx - begin_idx
|
714
|
+
|
715
|
+
block_prompt_embeds = torch.stack([prompt_embeds] * parallel_len)
|
716
|
+
block_latents = latents_time_evolution_buffer[begin_idx:end_idx]
|
717
|
+
block_t = scheduler.timesteps[begin_idx:end_idx, None].repeat(1, batch_size * num_images_per_prompt)
|
718
|
+
t_vec = block_t
|
719
|
+
if do_classifier_free_guidance:
|
720
|
+
t_vec = t_vec.repeat(1, 2)
|
721
|
+
|
722
|
+
# expand the latents if we are doing classifier free guidance
|
723
|
+
latent_model_input = (
|
724
|
+
torch.cat([block_latents] * 2, dim=1) if do_classifier_free_guidance else block_latents
|
725
|
+
)
|
726
|
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t_vec)
|
727
|
+
|
728
|
+
# if parallel_len is small, no need to use multiple GPUs
|
729
|
+
net = self.wrapped_unet if parallel_len > 3 else self.unet
|
730
|
+
# predict the noise residual, shape is now [parallel_len * 2 * batch_size * num_images_per_prompt, ...]
|
731
|
+
model_output = net(
|
732
|
+
latent_model_input.flatten(0, 1),
|
733
|
+
t_vec.flatten(0, 1),
|
734
|
+
encoder_hidden_states=block_prompt_embeds.flatten(0, 1),
|
735
|
+
cross_attention_kwargs=cross_attention_kwargs,
|
736
|
+
return_dict=False,
|
737
|
+
)[0]
|
738
|
+
|
739
|
+
per_latent_shape = model_output.shape[1:]
|
740
|
+
if do_classifier_free_guidance:
|
741
|
+
model_output = model_output.reshape(
|
742
|
+
parallel_len, 2, batch_size * num_images_per_prompt, *per_latent_shape
|
743
|
+
)
|
744
|
+
noise_pred_uncond, noise_pred_text = model_output[:, 0], model_output[:, 1]
|
745
|
+
model_output = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
746
|
+
model_output = model_output.reshape(
|
747
|
+
parallel_len * batch_size * num_images_per_prompt, *per_latent_shape
|
748
|
+
)
|
749
|
+
|
750
|
+
block_latents_denoise = scheduler.batch_step_no_noise(
|
751
|
+
model_output=model_output,
|
752
|
+
timesteps=block_t.flatten(0, 1),
|
753
|
+
sample=block_latents.flatten(0, 1),
|
754
|
+
**extra_step_kwargs,
|
755
|
+
).reshape(block_latents.shape)
|
756
|
+
|
757
|
+
# back to shape (parallel_dim, batch_size, ...)
|
758
|
+
# now we want to add the pre-sampled noise
|
759
|
+
# parallel sampling algorithm requires computing the cumulative drift from the beginning
|
760
|
+
# of the window, so we need to compute cumulative sum of the deltas and the pre-sampled noises.
|
761
|
+
delta = block_latents_denoise - block_latents
|
762
|
+
cumulative_delta = self._cumsum(delta, dim=0, debug=debug)
|
763
|
+
cumulative_noise = self._cumsum(noise_array[begin_idx:end_idx], dim=0, debug=debug)
|
764
|
+
|
765
|
+
# if we are using an ODE-like scheduler (like DDIM), we don't want to add noise
|
766
|
+
if scheduler._is_ode_scheduler:
|
767
|
+
cumulative_noise = 0
|
768
|
+
|
769
|
+
block_latents_new = (
|
770
|
+
latents_time_evolution_buffer[begin_idx][None,] + cumulative_delta + cumulative_noise
|
771
|
+
)
|
772
|
+
cur_error = torch.linalg.norm(
|
773
|
+
(block_latents_new - latents_time_evolution_buffer[begin_idx + 1 : end_idx + 1]).reshape(
|
774
|
+
parallel_len, batch_size * num_images_per_prompt, -1
|
775
|
+
),
|
776
|
+
dim=-1,
|
777
|
+
).pow(2)
|
778
|
+
error_ratio = cur_error * inverse_variance_norm[begin_idx + 1 : end_idx + 1]
|
779
|
+
|
780
|
+
# find the first index of the vector error_ratio that is greater than error tolerance
|
781
|
+
# we can shift the window for the next iteration up to this index
|
782
|
+
error_ratio = torch.nn.functional.pad(
|
783
|
+
error_ratio, (0, 0, 0, 1), value=1e9
|
784
|
+
) # handle the case when everything is below ratio, by padding the end of parallel_len dimension
|
785
|
+
any_error_at_time = torch.max(error_ratio > scaled_tolerance, dim=1).values.int()
|
786
|
+
ind = torch.argmax(any_error_at_time).item()
|
787
|
+
|
788
|
+
# compute the new begin and end idxs for the window
|
789
|
+
new_begin_idx = begin_idx + min(1 + ind, parallel)
|
790
|
+
new_end_idx = min(new_begin_idx + parallel, len(scheduler.timesteps))
|
791
|
+
|
792
|
+
# store the computed latents for the current window in the global buffer
|
793
|
+
latents_time_evolution_buffer[begin_idx + 1 : end_idx + 1] = block_latents_new
|
794
|
+
# initialize the new sliding window latents with the end of the current window,
|
795
|
+
# should be better than random initialization
|
796
|
+
latents_time_evolution_buffer[end_idx : new_end_idx + 1] = latents_time_evolution_buffer[end_idx][
|
797
|
+
None,
|
798
|
+
]
|
799
|
+
|
800
|
+
steps += 1
|
801
|
+
|
802
|
+
progress_bar.update(new_begin_idx - begin_idx)
|
803
|
+
if callback is not None and steps % callback_steps == 0:
|
804
|
+
callback(begin_idx, block_t[begin_idx], latents_time_evolution_buffer[begin_idx])
|
805
|
+
|
806
|
+
begin_idx = new_begin_idx
|
807
|
+
end_idx = new_end_idx
|
808
|
+
|
809
|
+
latents = latents_time_evolution_buffer[-1]
|
810
|
+
|
811
|
+
if not output_type == "latent":
|
812
|
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
813
|
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
814
|
+
else:
|
815
|
+
image = latents
|
816
|
+
has_nsfw_concept = None
|
817
|
+
|
818
|
+
if has_nsfw_concept is None:
|
819
|
+
do_denormalize = [True] * image.shape[0]
|
820
|
+
else:
|
821
|
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
822
|
+
|
823
|
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
824
|
+
|
825
|
+
# Offload last model to CPU
|
826
|
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
827
|
+
self.final_offload_hook.offload()
|
828
|
+
|
829
|
+
if not return_dict:
|
830
|
+
return (image, has_nsfw_concept)
|
831
|
+
|
832
|
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|