diffusers 0.17.1__py3-none-any.whl → 0.18.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (120) hide show
  1. diffusers/__init__.py +26 -1
  2. diffusers/configuration_utils.py +34 -29
  3. diffusers/dependency_versions_table.py +4 -0
  4. diffusers/image_processor.py +125 -12
  5. diffusers/loaders.py +169 -203
  6. diffusers/models/attention.py +24 -1
  7. diffusers/models/attention_flax.py +10 -5
  8. diffusers/models/attention_processor.py +3 -0
  9. diffusers/models/autoencoder_kl.py +114 -33
  10. diffusers/models/controlnet.py +131 -14
  11. diffusers/models/controlnet_flax.py +37 -26
  12. diffusers/models/cross_attention.py +17 -17
  13. diffusers/models/embeddings.py +67 -0
  14. diffusers/models/modeling_flax_utils.py +64 -56
  15. diffusers/models/modeling_utils.py +193 -104
  16. diffusers/models/prior_transformer.py +207 -37
  17. diffusers/models/resnet.py +26 -26
  18. diffusers/models/transformer_2d.py +36 -41
  19. diffusers/models/transformer_temporal.py +24 -21
  20. diffusers/models/unet_1d.py +31 -25
  21. diffusers/models/unet_2d.py +43 -30
  22. diffusers/models/unet_2d_blocks.py +210 -89
  23. diffusers/models/unet_2d_blocks_flax.py +12 -12
  24. diffusers/models/unet_2d_condition.py +172 -64
  25. diffusers/models/unet_2d_condition_flax.py +38 -24
  26. diffusers/models/unet_3d_blocks.py +34 -31
  27. diffusers/models/unet_3d_condition.py +101 -34
  28. diffusers/models/vae.py +5 -5
  29. diffusers/models/vae_flax.py +37 -34
  30. diffusers/models/vq_model.py +23 -14
  31. diffusers/pipelines/__init__.py +24 -1
  32. diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +1 -1
  33. diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +5 -3
  34. diffusers/pipelines/consistency_models/__init__.py +1 -0
  35. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +337 -0
  36. diffusers/pipelines/controlnet/multicontrolnet.py +120 -1
  37. diffusers/pipelines/controlnet/pipeline_controlnet.py +59 -17
  38. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +60 -15
  39. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +60 -17
  40. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +1 -1
  41. diffusers/pipelines/kandinsky/__init__.py +1 -1
  42. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +4 -6
  43. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +1 -0
  44. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +1 -0
  45. diffusers/pipelines/kandinsky2_2/__init__.py +7 -0
  46. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +317 -0
  47. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +372 -0
  48. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +434 -0
  49. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +398 -0
  50. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +531 -0
  51. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +541 -0
  52. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +605 -0
  53. diffusers/pipelines/pipeline_flax_utils.py +2 -2
  54. diffusers/pipelines/pipeline_utils.py +124 -146
  55. diffusers/pipelines/shap_e/__init__.py +27 -0
  56. diffusers/pipelines/shap_e/camera.py +147 -0
  57. diffusers/pipelines/shap_e/pipeline_shap_e.py +390 -0
  58. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +349 -0
  59. diffusers/pipelines/shap_e/renderer.py +709 -0
  60. diffusers/pipelines/stable_diffusion/__init__.py +2 -0
  61. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +261 -66
  62. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +3 -3
  63. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +5 -3
  64. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +4 -2
  65. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
  66. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +1 -1
  67. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
  68. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +719 -0
  69. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -1
  70. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +832 -0
  71. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +17 -7
  72. diffusers/pipelines/stable_diffusion_xl/__init__.py +26 -0
  73. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +823 -0
  74. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +896 -0
  75. diffusers/pipelines/stable_diffusion_xl/watermark.py +31 -0
  76. diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -1
  77. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +5 -1
  78. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +771 -0
  79. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +92 -6
  80. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
  81. diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +209 -91
  82. diffusers/schedulers/__init__.py +3 -0
  83. diffusers/schedulers/scheduling_consistency_models.py +380 -0
  84. diffusers/schedulers/scheduling_ddim.py +28 -6
  85. diffusers/schedulers/scheduling_ddim_inverse.py +19 -4
  86. diffusers/schedulers/scheduling_ddim_parallel.py +642 -0
  87. diffusers/schedulers/scheduling_ddpm.py +53 -7
  88. diffusers/schedulers/scheduling_ddpm_parallel.py +604 -0
  89. diffusers/schedulers/scheduling_deis_multistep.py +66 -11
  90. diffusers/schedulers/scheduling_dpmsolver_multistep.py +55 -13
  91. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +19 -4
  92. diffusers/schedulers/scheduling_dpmsolver_sde.py +73 -11
  93. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +23 -7
  94. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +58 -9
  95. diffusers/schedulers/scheduling_euler_discrete.py +58 -8
  96. diffusers/schedulers/scheduling_heun_discrete.py +89 -14
  97. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +73 -11
  98. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +73 -11
  99. diffusers/schedulers/scheduling_lms_discrete.py +57 -8
  100. diffusers/schedulers/scheduling_pndm.py +46 -10
  101. diffusers/schedulers/scheduling_repaint.py +19 -4
  102. diffusers/schedulers/scheduling_sde_ve.py +5 -1
  103. diffusers/schedulers/scheduling_unclip.py +43 -4
  104. diffusers/schedulers/scheduling_unipc_multistep.py +48 -7
  105. diffusers/training_utils.py +1 -1
  106. diffusers/utils/__init__.py +2 -1
  107. diffusers/utils/dummy_pt_objects.py +60 -0
  108. diffusers/utils/dummy_torch_and_transformers_and_invisible_watermark_objects.py +32 -0
  109. diffusers/utils/dummy_torch_and_transformers_objects.py +180 -0
  110. diffusers/utils/hub_utils.py +1 -1
  111. diffusers/utils/import_utils.py +20 -3
  112. diffusers/utils/logging.py +15 -18
  113. diffusers/utils/outputs.py +3 -3
  114. diffusers/utils/testing_utils.py +15 -0
  115. {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/METADATA +4 -2
  116. {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/RECORD +120 -94
  117. {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/WHEEL +1 -1
  118. {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/LICENSE +0 -0
  119. {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/entry_points.txt +0 -0
  120. {diffusers-0.17.1.dist-info → diffusers-0.18.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,398 @@
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import List, Optional, Union
16
+
17
+ import numpy as np
18
+ import PIL
19
+ import torch
20
+ from PIL import Image
21
+
22
+ from ...models import UNet2DConditionModel, VQModel
23
+ from ...pipelines import DiffusionPipeline
24
+ from ...pipelines.pipeline_utils import ImagePipelineOutput
25
+ from ...schedulers import DDPMScheduler
26
+ from ...utils import (
27
+ is_accelerate_available,
28
+ is_accelerate_version,
29
+ logging,
30
+ randn_tensor,
31
+ replace_example_docstring,
32
+ )
33
+
34
+
35
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
36
+
37
+ EXAMPLE_DOC_STRING = """
38
+ Examples:
39
+ ```py
40
+ >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline
41
+ >>> from diffusers.utils import load_image
42
+ >>> import torch
43
+
44
+ >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
45
+ ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
46
+ ... )
47
+ >>> pipe_prior.to("cuda")
48
+
49
+ >>> prompt = "A red cartoon frog, 4k"
50
+ >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)
51
+
52
+ >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(
53
+ ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16
54
+ ... )
55
+ >>> pipe.to("cuda")
56
+
57
+ >>> init_image = load_image(
58
+ ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
59
+ ... "/kandinsky/frog.png"
60
+ ... )
61
+
62
+ >>> image = pipe(
63
+ ... image=init_image,
64
+ ... image_embeds=image_emb,
65
+ ... negative_image_embeds=zero_image_emb,
66
+ ... height=768,
67
+ ... width=768,
68
+ ... num_inference_steps=100,
69
+ ... strength=0.2,
70
+ ... ).images
71
+
72
+ >>> image[0].save("red_frog.png")
73
+ ```
74
+ """
75
+
76
+
77
+ # Copied from diffusers.pipelines.kandinsky2_2.pipeline_kandinsky2_2.downscale_height_and_width
78
+ def downscale_height_and_width(height, width, scale_factor=8):
79
+ new_height = height // scale_factor**2
80
+ if height % scale_factor**2 != 0:
81
+ new_height += 1
82
+ new_width = width // scale_factor**2
83
+ if width % scale_factor**2 != 0:
84
+ new_width += 1
85
+ return new_height * scale_factor, new_width * scale_factor
86
+
87
+
88
+ # Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_img2img.prepare_image
89
+ def prepare_image(pil_image, w=512, h=512):
90
+ pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1)
91
+ arr = np.array(pil_image.convert("RGB"))
92
+ arr = arr.astype(np.float32) / 127.5 - 1
93
+ arr = np.transpose(arr, [2, 0, 1])
94
+ image = torch.from_numpy(arr).unsqueeze(0)
95
+ return image
96
+
97
+
98
+ class KandinskyV22Img2ImgPipeline(DiffusionPipeline):
99
+ """
100
+ Pipeline for image-to-image generation using Kandinsky
101
+
102
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
103
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
104
+
105
+ Args:
106
+ scheduler ([`DDIMScheduler`]):
107
+ A scheduler to be used in combination with `unet` to generate image latents.
108
+ unet ([`UNet2DConditionModel`]):
109
+ Conditional U-Net architecture to denoise the image embedding.
110
+ movq ([`VQModel`]):
111
+ MoVQ Decoder to generate the image from the latents.
112
+ """
113
+
114
+ def __init__(
115
+ self,
116
+ unet: UNet2DConditionModel,
117
+ scheduler: DDPMScheduler,
118
+ movq: VQModel,
119
+ ):
120
+ super().__init__()
121
+
122
+ self.register_modules(
123
+ unet=unet,
124
+ scheduler=scheduler,
125
+ movq=movq,
126
+ )
127
+ self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1)
128
+
129
+ # Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_img2img.KandinskyImg2ImgPipeline.get_timesteps
130
+ def get_timesteps(self, num_inference_steps, strength, device):
131
+ # get the original timestep using init_timestep
132
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
133
+
134
+ t_start = max(num_inference_steps - init_timestep, 0)
135
+ timesteps = self.scheduler.timesteps[t_start:]
136
+
137
+ return timesteps, num_inference_steps - t_start
138
+
139
+ def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
140
+ if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
141
+ raise ValueError(
142
+ f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
143
+ )
144
+
145
+ image = image.to(device=device, dtype=dtype)
146
+
147
+ batch_size = batch_size * num_images_per_prompt
148
+
149
+ if image.shape[1] == 4:
150
+ init_latents = image
151
+
152
+ else:
153
+ if isinstance(generator, list) and len(generator) != batch_size:
154
+ raise ValueError(
155
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
156
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
157
+ )
158
+
159
+ elif isinstance(generator, list):
160
+ init_latents = [
161
+ self.movq.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
162
+ ]
163
+ init_latents = torch.cat(init_latents, dim=0)
164
+ else:
165
+ init_latents = self.movq.encode(image).latent_dist.sample(generator)
166
+
167
+ init_latents = self.movq.config.scaling_factor * init_latents
168
+
169
+ init_latents = torch.cat([init_latents], dim=0)
170
+
171
+ shape = init_latents.shape
172
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
173
+
174
+ # get latents
175
+ init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
176
+
177
+ latents = init_latents
178
+
179
+ return latents
180
+
181
+ # Copied from diffusers.pipelines.kandinsky2_2.pipeline_kandinsky2_2.KandinskyV22Pipeline.enable_sequential_cpu_offload
182
+ def enable_sequential_cpu_offload(self, gpu_id=0):
183
+ r"""
184
+ Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's
185
+ models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only
186
+ when their specific submodule has its `forward` method called.
187
+ """
188
+ if is_accelerate_available():
189
+ from accelerate import cpu_offload
190
+ else:
191
+ raise ImportError("Please install accelerate via `pip install accelerate`")
192
+
193
+ device = torch.device(f"cuda:{gpu_id}")
194
+
195
+ models = [
196
+ self.unet,
197
+ self.movq,
198
+ ]
199
+ for cpu_offloaded_model in models:
200
+ if cpu_offloaded_model is not None:
201
+ cpu_offload(cpu_offloaded_model, device)
202
+
203
+ # Copied from diffusers.pipelines.kandinsky2_2.pipeline_kandinsky2_2.KandinskyV22Pipeline.enable_model_cpu_offload
204
+ def enable_model_cpu_offload(self, gpu_id=0):
205
+ r"""
206
+ Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
207
+ to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
208
+ method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
209
+ `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
210
+ """
211
+ if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
212
+ from accelerate import cpu_offload_with_hook
213
+ else:
214
+ raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
215
+
216
+ device = torch.device(f"cuda:{gpu_id}")
217
+
218
+ if self.device.type != "cpu":
219
+ self.to("cpu", silence_dtype_warnings=True)
220
+ torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
221
+
222
+ hook = None
223
+ for cpu_offloaded_model in [self.unet, self.movq]:
224
+ _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
225
+
226
+ # We'll offload the last model manually.
227
+ self.final_offload_hook = hook
228
+
229
+ @property
230
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
231
+ def _execution_device(self):
232
+ r"""
233
+ Returns the device on which the pipeline's models will be executed. After calling
234
+ `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
235
+ hooks.
236
+ """
237
+ if not hasattr(self.unet, "_hf_hook"):
238
+ return self.device
239
+ for module in self.unet.modules():
240
+ if (
241
+ hasattr(module, "_hf_hook")
242
+ and hasattr(module._hf_hook, "execution_device")
243
+ and module._hf_hook.execution_device is not None
244
+ ):
245
+ return torch.device(module._hf_hook.execution_device)
246
+ return self.device
247
+
248
+ @torch.no_grad()
249
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
250
+ def __call__(
251
+ self,
252
+ image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]],
253
+ image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]],
254
+ negative_image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]],
255
+ height: int = 512,
256
+ width: int = 512,
257
+ num_inference_steps: int = 100,
258
+ guidance_scale: float = 4.0,
259
+ strength: float = 0.3,
260
+ num_images_per_prompt: int = 1,
261
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
262
+ output_type: Optional[str] = "pil",
263
+ return_dict: bool = True,
264
+ ):
265
+ """
266
+ Function invoked when calling the pipeline for generation.
267
+
268
+ Args:
269
+ image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
270
+ The clip image embeddings for text prompt, that will be used to condition the image generation.
271
+ image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
272
+ `Image`, or tensor representing an image batch, that will be used as the starting point for the
273
+ process. Can also accpet image latents as `image`, if passing latents directly, it will not be encoded
274
+ again.
275
+ strength (`float`, *optional*, defaults to 0.8):
276
+ Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
277
+ will be used as a starting point, adding more noise to it the larger the `strength`. The number of
278
+ denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
279
+ be maximum and the denoising process will run for the full number of iterations specified in
280
+ `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
281
+ negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
282
+ The clip image embeddings for negative text prompt, will be used to condition the image generation.
283
+ height (`int`, *optional*, defaults to 512):
284
+ The height in pixels of the generated image.
285
+ width (`int`, *optional*, defaults to 512):
286
+ The width in pixels of the generated image.
287
+ num_inference_steps (`int`, *optional*, defaults to 100):
288
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
289
+ expense of slower inference.
290
+ guidance_scale (`float`, *optional*, defaults to 4.0):
291
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
292
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
293
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
294
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
295
+ usually at the expense of lower image quality.
296
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
297
+ The number of images to generate per prompt.
298
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
299
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
300
+ to make generation deterministic.
301
+ output_type (`str`, *optional*, defaults to `"pil"`):
302
+ The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
303
+ (`np.array`) or `"pt"` (`torch.Tensor`).
304
+ return_dict (`bool`, *optional*, defaults to `True`):
305
+ Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
306
+
307
+ Examples:
308
+
309
+ Returns:
310
+ [`~pipelines.ImagePipelineOutput`] or `tuple`
311
+ """
312
+ device = self._execution_device
313
+
314
+ do_classifier_free_guidance = guidance_scale > 1.0
315
+
316
+ if isinstance(image_embeds, list):
317
+ image_embeds = torch.cat(image_embeds, dim=0)
318
+ batch_size = image_embeds.shape[0]
319
+ if isinstance(negative_image_embeds, list):
320
+ negative_image_embeds = torch.cat(negative_image_embeds, dim=0)
321
+
322
+ if do_classifier_free_guidance:
323
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
324
+ negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
325
+
326
+ image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to(dtype=self.unet.dtype, device=device)
327
+
328
+ if not isinstance(image, list):
329
+ image = [image]
330
+ if not all(isinstance(i, (PIL.Image.Image, torch.Tensor)) for i in image):
331
+ raise ValueError(
332
+ f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support PIL image and pytorch tensor"
333
+ )
334
+
335
+ image = torch.cat([prepare_image(i, width, height) for i in image], dim=0)
336
+ image = image.to(dtype=image_embeds.dtype, device=device)
337
+
338
+ latents = self.movq.encode(image)["latents"]
339
+ latents = latents.repeat_interleave(num_images_per_prompt, dim=0)
340
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
341
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
342
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
343
+ height, width = downscale_height_and_width(height, width, self.movq_scale_factor)
344
+ latents = self.prepare_latents(
345
+ latents, latent_timestep, batch_size, num_images_per_prompt, image_embeds.dtype, device, generator
346
+ )
347
+ for i, t in enumerate(self.progress_bar(timesteps)):
348
+ # expand the latents if we are doing classifier free guidance
349
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
350
+
351
+ added_cond_kwargs = {"image_embeds": image_embeds}
352
+ noise_pred = self.unet(
353
+ sample=latent_model_input,
354
+ timestep=t,
355
+ encoder_hidden_states=None,
356
+ added_cond_kwargs=added_cond_kwargs,
357
+ return_dict=False,
358
+ )[0]
359
+
360
+ if do_classifier_free_guidance:
361
+ noise_pred, variance_pred = noise_pred.split(latents.shape[1], dim=1)
362
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
363
+ _, variance_pred_text = variance_pred.chunk(2)
364
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
365
+ noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1)
366
+
367
+ if not (
368
+ hasattr(self.scheduler.config, "variance_type")
369
+ and self.scheduler.config.variance_type in ["learned", "learned_range"]
370
+ ):
371
+ noise_pred, _ = noise_pred.split(latents.shape[1], dim=1)
372
+
373
+ # compute the previous noisy sample x_t -> x_t-1
374
+ latents = self.scheduler.step(
375
+ noise_pred,
376
+ t,
377
+ latents,
378
+ generator=generator,
379
+ )[0]
380
+
381
+ # post-processing
382
+ image = self.movq.decode(latents, force_not_quantize=True)["sample"]
383
+
384
+ if output_type not in ["pt", "np", "pil"]:
385
+ raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}")
386
+
387
+ if output_type in ["np", "pil"]:
388
+ image = image * 0.5 + 0.5
389
+ image = image.clamp(0, 1)
390
+ image = image.cpu().permute(0, 2, 3, 1).float().numpy()
391
+
392
+ if output_type == "pil":
393
+ image = self.numpy_to_pil(image)
394
+
395
+ if not return_dict:
396
+ return (image,)
397
+
398
+ return ImagePipelineOutput(images=image)