eyeling 1.6.13 → 1.6.15
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +8 -19
- package/examples/output/age.n3 +0 -17
- package/examples/output/alignment-demo.n3 +0 -572
- package/examples/output/backward.n3 +0 -15
- package/examples/output/basic-monadic.n3 +0 -105
- package/examples/output/brussels-brew-club.n3 +0 -476
- package/examples/output/cat-koko.n3 +0 -108
- package/examples/output/cobalt-kepler-kitchen.n3 +0 -7064
- package/examples/output/complex.n3 +0 -46
- package/examples/output/control-system.n3 +0 -75
- package/examples/output/cranberry-calculus.n3 +0 -1313
- package/examples/output/crypto-builtins-tests.n3 +0 -60
- package/examples/output/deep-taxonomy-10.n3 +0 -602
- package/examples/output/deep-taxonomy-100.n3 +1 -5733
- package/examples/output/deep-taxonomy-1000.n3 +1 -57033
- package/examples/output/deep-taxonomy-10000.n3 +1 -570033
- package/examples/output/derived-backward-rule-2.n3 +0 -58
- package/examples/output/derived-backward-rule.n3 +0 -44
- package/examples/output/derived-rule.n3 +0 -42
- package/examples/output/dijkstra.n3 +0 -297
- package/examples/output/dog.n3 +0 -30
- package/examples/output/drone-corridor-planner.n3 +0 -799
- package/examples/output/easter.n3 +0 -3570
- package/examples/output/equals.n3 +0 -15
- package/examples/output/ev-roundtrip-planner.n3 +0 -392
- package/examples/output/existential-rule.n3 +0 -34
- package/examples/output/expression-eval.n3 +0 -20
- package/examples/output/family-cousins.n3 +0 -636
- package/examples/output/fibonacci.n3 +0 -36
- package/examples/output/french-cities.n3 +0 -484
- package/examples/output/good-cobbler.n3 +0 -22
- package/examples/output/gps.n3 +0 -62
- package/examples/output/gray-code-counter.n3 +0 -17
- package/examples/output/hanoi.n3 +0 -17
- package/examples/output/jade-eigen-loom.n3 +0 -4690
- package/examples/output/json-pointer.n3 +0 -529
- package/examples/output/json-reconcile-vat.n3 +0 -12882
- package/examples/output/light-eaters.n3 +0 -311
- package/examples/output/list-builtins-tests.n3 +0 -167
- package/examples/output/list-iterate.n3 +0 -124
- package/examples/output/lldm.n3 +0 -960
- package/examples/output/log-collect-all-in.n3 +0 -117
- package/examples/output/log-for-all-in.n3 +0 -27
- package/examples/output/log-not-includes.n3 +0 -59
- package/examples/output/log-skolem.n3 +0 -17
- package/examples/output/log-uri.n3 +0 -42
- package/examples/output/math-builtins-tests.n3 +0 -4434
- package/examples/output/minimal-skos-alignment.n3 +0 -39
- package/examples/output/monkey.n3 +0 -36
- package/examples/output/odrl-trust.n3 +0 -46
- package/examples/output/oslo-steps-library-scholarly.n3 +0 -1260
- package/examples/output/oslo-steps-workflow-composition.n3 +0 -180
- package/examples/output/peano.n3 +0 -23
- package/examples/output/pi.n3 +0 -17
- package/examples/output/pillar.n3 +0 -32
- package/examples/output/polygon.n3 +0 -17
- package/examples/output/rdf-list.n3 +0 -28
- package/examples/output/reordering.n3 +0 -26
- package/examples/output/ruby-runge-workshop.n3 +0 -613
- package/examples/output/rule-matching.n3 +0 -26
- package/examples/output/saffron-slopeworks.n3 +0 -1447
- package/examples/output/self-referential.n3 +0 -81
- package/examples/output/similar.n3 +0 -15
- package/examples/output/snaf.n3 +0 -23
- package/examples/output/socrates.n3 +0 -21
- package/examples/output/spectral-week.n3 +0 -350
- package/examples/output/string-builtins-tests.n3 +0 -240
- package/examples/output/topaz-markov-mill.n3 +0 -4178
- package/examples/output/traffic-skos-aggregate.n3 +0 -3151
- package/examples/output/turing.n3 +0 -36
- package/examples/output/ultramarine-simpson-forge.n3 +0 -3873
- package/examples/output/witch.n3 +0 -107
- package/examples/output/zebra.n3 +0 -111
- package/eyeling.js +129 -25
- package/index.js +13 -6
- package/package.json +1 -1
- package/test/examples.test.js +1 -1
|
@@ -1,66 +1,6 @@
|
|
|
1
1
|
@prefix : <https://eyereasoner.github.io/ns#> .
|
|
2
2
|
|
|
3
|
-
# ----------------------------------------------------------------------
|
|
4
|
-
# Proof for derived triple:
|
|
5
|
-
# :ok_crypto_sha_1 a :Pass .
|
|
6
|
-
# It holds because the following instance of the rule body is provable:
|
|
7
|
-
# "hello world" crypto:sha "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed" .
|
|
8
|
-
# via the schematic forward rule:
|
|
9
|
-
# {
|
|
10
|
-
# "hello world" crypto:sha "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed" .
|
|
11
|
-
# } => {
|
|
12
|
-
# :ok_crypto_sha_1 a :Pass .
|
|
13
|
-
# } .
|
|
14
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
15
|
-
# ----------------------------------------------------------------------
|
|
16
|
-
|
|
17
3
|
:ok_crypto_sha_1 a :Pass .
|
|
18
|
-
|
|
19
|
-
# ----------------------------------------------------------------------
|
|
20
|
-
# Proof for derived triple:
|
|
21
|
-
# :ok_crypto_md5_1 a :Pass .
|
|
22
|
-
# It holds because the following instance of the rule body is provable:
|
|
23
|
-
# "hello world" crypto:md5 "5eb63bbbe01eeed093cb22bb8f5acdc3" .
|
|
24
|
-
# via the schematic forward rule:
|
|
25
|
-
# {
|
|
26
|
-
# "hello world" crypto:md5 "5eb63bbbe01eeed093cb22bb8f5acdc3" .
|
|
27
|
-
# } => {
|
|
28
|
-
# :ok_crypto_md5_1 a :Pass .
|
|
29
|
-
# } .
|
|
30
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
31
|
-
# ----------------------------------------------------------------------
|
|
32
|
-
|
|
33
4
|
:ok_crypto_md5_1 a :Pass .
|
|
34
|
-
|
|
35
|
-
# ----------------------------------------------------------------------
|
|
36
|
-
# Proof for derived triple:
|
|
37
|
-
# :ok_crypto_sha256_1 a :Pass .
|
|
38
|
-
# It holds because the following instance of the rule body is provable:
|
|
39
|
-
# "hello world" crypto:sha256 "b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee9088f7ace2efcde9" .
|
|
40
|
-
# via the schematic forward rule:
|
|
41
|
-
# {
|
|
42
|
-
# "hello world" crypto:sha256 "b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee9088f7ace2efcde9" .
|
|
43
|
-
# } => {
|
|
44
|
-
# :ok_crypto_sha256_1 a :Pass .
|
|
45
|
-
# } .
|
|
46
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
47
|
-
# ----------------------------------------------------------------------
|
|
48
|
-
|
|
49
5
|
:ok_crypto_sha256_1 a :Pass .
|
|
50
|
-
|
|
51
|
-
# ----------------------------------------------------------------------
|
|
52
|
-
# Proof for derived triple:
|
|
53
|
-
# :ok_crypto_sha512_1 a :Pass .
|
|
54
|
-
# It holds because the following instance of the rule body is provable:
|
|
55
|
-
# "hello world" crypto:sha512 "309ecc489c12d6eb4cc40f50c902f2b4d0ed77ee511a7c7a9bcd3ca86d4cd86f989dd35bc5ff499670da34255b45b0cfd830e81f605dcf7dc5542e93ae9cd76f" .
|
|
56
|
-
# via the schematic forward rule:
|
|
57
|
-
# {
|
|
58
|
-
# "hello world" crypto:sha512 "309ecc489c12d6eb4cc40f50c902f2b4d0ed77ee511a7c7a9bcd3ca86d4cd86f989dd35bc5ff499670da34255b45b0cfd830e81f605dcf7dc5542e93ae9cd76f" .
|
|
59
|
-
# } => {
|
|
60
|
-
# :ok_crypto_sha512_1 a :Pass .
|
|
61
|
-
# } .
|
|
62
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
63
|
-
# ----------------------------------------------------------------------
|
|
64
|
-
|
|
65
6
|
:ok_crypto_sha512_1 a :Pass .
|
|
66
|
-
|
|
@@ -1,636 +1,34 @@
|
|
|
1
1
|
@prefix : <http://eulersharp.sourceforge.net/2009/12dtb/test#> .
|
|
2
2
|
|
|
3
|
-
# ----------------------------------------------------------------------
|
|
4
|
-
# Proof for derived triple:
|
|
5
|
-
# :ind a :N1 .
|
|
6
|
-
# It holds because the following instance of the rule body is provable:
|
|
7
|
-
# :ind a :N0 .
|
|
8
|
-
# via the schematic forward rule:
|
|
9
|
-
# {
|
|
10
|
-
# ?X a :N0 .
|
|
11
|
-
# } => {
|
|
12
|
-
# ?X a :N1 .
|
|
13
|
-
# ?X a :I1 .
|
|
14
|
-
# ?X a :J1 .
|
|
15
|
-
# } .
|
|
16
|
-
# with substitution (on rule variables):
|
|
17
|
-
# ?X = :ind
|
|
18
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
19
|
-
# ----------------------------------------------------------------------
|
|
20
|
-
|
|
21
3
|
:ind a :N1 .
|
|
22
|
-
|
|
23
|
-
# ----------------------------------------------------------------------
|
|
24
|
-
# Proof for derived triple:
|
|
25
|
-
# :ind a :I1 .
|
|
26
|
-
# It holds because the following instance of the rule body is provable:
|
|
27
|
-
# :ind a :N0 .
|
|
28
|
-
# via the schematic forward rule:
|
|
29
|
-
# {
|
|
30
|
-
# ?X a :N0 .
|
|
31
|
-
# } => {
|
|
32
|
-
# ?X a :N1 .
|
|
33
|
-
# ?X a :I1 .
|
|
34
|
-
# ?X a :J1 .
|
|
35
|
-
# } .
|
|
36
|
-
# with substitution (on rule variables):
|
|
37
|
-
# ?X = :ind
|
|
38
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
39
|
-
# ----------------------------------------------------------------------
|
|
40
|
-
|
|
41
4
|
:ind a :I1 .
|
|
42
|
-
|
|
43
|
-
# ----------------------------------------------------------------------
|
|
44
|
-
# Proof for derived triple:
|
|
45
|
-
# :ind a :J1 .
|
|
46
|
-
# It holds because the following instance of the rule body is provable:
|
|
47
|
-
# :ind a :N0 .
|
|
48
|
-
# via the schematic forward rule:
|
|
49
|
-
# {
|
|
50
|
-
# ?X a :N0 .
|
|
51
|
-
# } => {
|
|
52
|
-
# ?X a :N1 .
|
|
53
|
-
# ?X a :I1 .
|
|
54
|
-
# ?X a :J1 .
|
|
55
|
-
# } .
|
|
56
|
-
# with substitution (on rule variables):
|
|
57
|
-
# ?X = :ind
|
|
58
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
59
|
-
# ----------------------------------------------------------------------
|
|
60
|
-
|
|
61
5
|
:ind a :J1 .
|
|
62
|
-
|
|
63
|
-
# ----------------------------------------------------------------------
|
|
64
|
-
# Proof for derived triple:
|
|
65
|
-
# :ind a :N2 .
|
|
66
|
-
# It holds because the following instance of the rule body is provable:
|
|
67
|
-
# :ind a :N1 .
|
|
68
|
-
# via the schematic forward rule:
|
|
69
|
-
# {
|
|
70
|
-
# ?X a :N1 .
|
|
71
|
-
# } => {
|
|
72
|
-
# ?X a :N2 .
|
|
73
|
-
# ?X a :I2 .
|
|
74
|
-
# ?X a :J2 .
|
|
75
|
-
# } .
|
|
76
|
-
# with substitution (on rule variables):
|
|
77
|
-
# ?X = :ind
|
|
78
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
79
|
-
# ----------------------------------------------------------------------
|
|
80
|
-
|
|
81
6
|
:ind a :N2 .
|
|
82
|
-
|
|
83
|
-
# ----------------------------------------------------------------------
|
|
84
|
-
# Proof for derived triple:
|
|
85
|
-
# :ind a :I2 .
|
|
86
|
-
# It holds because the following instance of the rule body is provable:
|
|
87
|
-
# :ind a :N1 .
|
|
88
|
-
# via the schematic forward rule:
|
|
89
|
-
# {
|
|
90
|
-
# ?X a :N1 .
|
|
91
|
-
# } => {
|
|
92
|
-
# ?X a :N2 .
|
|
93
|
-
# ?X a :I2 .
|
|
94
|
-
# ?X a :J2 .
|
|
95
|
-
# } .
|
|
96
|
-
# with substitution (on rule variables):
|
|
97
|
-
# ?X = :ind
|
|
98
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
99
|
-
# ----------------------------------------------------------------------
|
|
100
|
-
|
|
101
7
|
:ind a :I2 .
|
|
102
|
-
|
|
103
|
-
# ----------------------------------------------------------------------
|
|
104
|
-
# Proof for derived triple:
|
|
105
|
-
# :ind a :J2 .
|
|
106
|
-
# It holds because the following instance of the rule body is provable:
|
|
107
|
-
# :ind a :N1 .
|
|
108
|
-
# via the schematic forward rule:
|
|
109
|
-
# {
|
|
110
|
-
# ?X a :N1 .
|
|
111
|
-
# } => {
|
|
112
|
-
# ?X a :N2 .
|
|
113
|
-
# ?X a :I2 .
|
|
114
|
-
# ?X a :J2 .
|
|
115
|
-
# } .
|
|
116
|
-
# with substitution (on rule variables):
|
|
117
|
-
# ?X = :ind
|
|
118
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
119
|
-
# ----------------------------------------------------------------------
|
|
120
|
-
|
|
121
8
|
:ind a :J2 .
|
|
122
|
-
|
|
123
|
-
# ----------------------------------------------------------------------
|
|
124
|
-
# Proof for derived triple:
|
|
125
|
-
# :ind a :N3 .
|
|
126
|
-
# It holds because the following instance of the rule body is provable:
|
|
127
|
-
# :ind a :N2 .
|
|
128
|
-
# via the schematic forward rule:
|
|
129
|
-
# {
|
|
130
|
-
# ?X a :N2 .
|
|
131
|
-
# } => {
|
|
132
|
-
# ?X a :N3 .
|
|
133
|
-
# ?X a :I3 .
|
|
134
|
-
# ?X a :J3 .
|
|
135
|
-
# } .
|
|
136
|
-
# with substitution (on rule variables):
|
|
137
|
-
# ?X = :ind
|
|
138
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
139
|
-
# ----------------------------------------------------------------------
|
|
140
|
-
|
|
141
9
|
:ind a :N3 .
|
|
142
|
-
|
|
143
|
-
# ----------------------------------------------------------------------
|
|
144
|
-
# Proof for derived triple:
|
|
145
|
-
# :ind a :I3 .
|
|
146
|
-
# It holds because the following instance of the rule body is provable:
|
|
147
|
-
# :ind a :N2 .
|
|
148
|
-
# via the schematic forward rule:
|
|
149
|
-
# {
|
|
150
|
-
# ?X a :N2 .
|
|
151
|
-
# } => {
|
|
152
|
-
# ?X a :N3 .
|
|
153
|
-
# ?X a :I3 .
|
|
154
|
-
# ?X a :J3 .
|
|
155
|
-
# } .
|
|
156
|
-
# with substitution (on rule variables):
|
|
157
|
-
# ?X = :ind
|
|
158
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
159
|
-
# ----------------------------------------------------------------------
|
|
160
|
-
|
|
161
10
|
:ind a :I3 .
|
|
162
|
-
|
|
163
|
-
# ----------------------------------------------------------------------
|
|
164
|
-
# Proof for derived triple:
|
|
165
|
-
# :ind a :J3 .
|
|
166
|
-
# It holds because the following instance of the rule body is provable:
|
|
167
|
-
# :ind a :N2 .
|
|
168
|
-
# via the schematic forward rule:
|
|
169
|
-
# {
|
|
170
|
-
# ?X a :N2 .
|
|
171
|
-
# } => {
|
|
172
|
-
# ?X a :N3 .
|
|
173
|
-
# ?X a :I3 .
|
|
174
|
-
# ?X a :J3 .
|
|
175
|
-
# } .
|
|
176
|
-
# with substitution (on rule variables):
|
|
177
|
-
# ?X = :ind
|
|
178
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
179
|
-
# ----------------------------------------------------------------------
|
|
180
|
-
|
|
181
11
|
:ind a :J3 .
|
|
182
|
-
|
|
183
|
-
# ----------------------------------------------------------------------
|
|
184
|
-
# Proof for derived triple:
|
|
185
|
-
# :ind a :N4 .
|
|
186
|
-
# It holds because the following instance of the rule body is provable:
|
|
187
|
-
# :ind a :N3 .
|
|
188
|
-
# via the schematic forward rule:
|
|
189
|
-
# {
|
|
190
|
-
# ?X a :N3 .
|
|
191
|
-
# } => {
|
|
192
|
-
# ?X a :N4 .
|
|
193
|
-
# ?X a :I4 .
|
|
194
|
-
# ?X a :J4 .
|
|
195
|
-
# } .
|
|
196
|
-
# with substitution (on rule variables):
|
|
197
|
-
# ?X = :ind
|
|
198
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
199
|
-
# ----------------------------------------------------------------------
|
|
200
|
-
|
|
201
12
|
:ind a :N4 .
|
|
202
|
-
|
|
203
|
-
# ----------------------------------------------------------------------
|
|
204
|
-
# Proof for derived triple:
|
|
205
|
-
# :ind a :I4 .
|
|
206
|
-
# It holds because the following instance of the rule body is provable:
|
|
207
|
-
# :ind a :N3 .
|
|
208
|
-
# via the schematic forward rule:
|
|
209
|
-
# {
|
|
210
|
-
# ?X a :N3 .
|
|
211
|
-
# } => {
|
|
212
|
-
# ?X a :N4 .
|
|
213
|
-
# ?X a :I4 .
|
|
214
|
-
# ?X a :J4 .
|
|
215
|
-
# } .
|
|
216
|
-
# with substitution (on rule variables):
|
|
217
|
-
# ?X = :ind
|
|
218
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
219
|
-
# ----------------------------------------------------------------------
|
|
220
|
-
|
|
221
13
|
:ind a :I4 .
|
|
222
|
-
|
|
223
|
-
# ----------------------------------------------------------------------
|
|
224
|
-
# Proof for derived triple:
|
|
225
|
-
# :ind a :J4 .
|
|
226
|
-
# It holds because the following instance of the rule body is provable:
|
|
227
|
-
# :ind a :N3 .
|
|
228
|
-
# via the schematic forward rule:
|
|
229
|
-
# {
|
|
230
|
-
# ?X a :N3 .
|
|
231
|
-
# } => {
|
|
232
|
-
# ?X a :N4 .
|
|
233
|
-
# ?X a :I4 .
|
|
234
|
-
# ?X a :J4 .
|
|
235
|
-
# } .
|
|
236
|
-
# with substitution (on rule variables):
|
|
237
|
-
# ?X = :ind
|
|
238
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
239
|
-
# ----------------------------------------------------------------------
|
|
240
|
-
|
|
241
14
|
:ind a :J4 .
|
|
242
|
-
|
|
243
|
-
# ----------------------------------------------------------------------
|
|
244
|
-
# Proof for derived triple:
|
|
245
|
-
# :ind a :N5 .
|
|
246
|
-
# It holds because the following instance of the rule body is provable:
|
|
247
|
-
# :ind a :N4 .
|
|
248
|
-
# via the schematic forward rule:
|
|
249
|
-
# {
|
|
250
|
-
# ?X a :N4 .
|
|
251
|
-
# } => {
|
|
252
|
-
# ?X a :N5 .
|
|
253
|
-
# ?X a :I5 .
|
|
254
|
-
# ?X a :J5 .
|
|
255
|
-
# } .
|
|
256
|
-
# with substitution (on rule variables):
|
|
257
|
-
# ?X = :ind
|
|
258
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
259
|
-
# ----------------------------------------------------------------------
|
|
260
|
-
|
|
261
15
|
:ind a :N5 .
|
|
262
|
-
|
|
263
|
-
# ----------------------------------------------------------------------
|
|
264
|
-
# Proof for derived triple:
|
|
265
|
-
# :ind a :I5 .
|
|
266
|
-
# It holds because the following instance of the rule body is provable:
|
|
267
|
-
# :ind a :N4 .
|
|
268
|
-
# via the schematic forward rule:
|
|
269
|
-
# {
|
|
270
|
-
# ?X a :N4 .
|
|
271
|
-
# } => {
|
|
272
|
-
# ?X a :N5 .
|
|
273
|
-
# ?X a :I5 .
|
|
274
|
-
# ?X a :J5 .
|
|
275
|
-
# } .
|
|
276
|
-
# with substitution (on rule variables):
|
|
277
|
-
# ?X = :ind
|
|
278
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
279
|
-
# ----------------------------------------------------------------------
|
|
280
|
-
|
|
281
16
|
:ind a :I5 .
|
|
282
|
-
|
|
283
|
-
# ----------------------------------------------------------------------
|
|
284
|
-
# Proof for derived triple:
|
|
285
|
-
# :ind a :J5 .
|
|
286
|
-
# It holds because the following instance of the rule body is provable:
|
|
287
|
-
# :ind a :N4 .
|
|
288
|
-
# via the schematic forward rule:
|
|
289
|
-
# {
|
|
290
|
-
# ?X a :N4 .
|
|
291
|
-
# } => {
|
|
292
|
-
# ?X a :N5 .
|
|
293
|
-
# ?X a :I5 .
|
|
294
|
-
# ?X a :J5 .
|
|
295
|
-
# } .
|
|
296
|
-
# with substitution (on rule variables):
|
|
297
|
-
# ?X = :ind
|
|
298
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
299
|
-
# ----------------------------------------------------------------------
|
|
300
|
-
|
|
301
17
|
:ind a :J5 .
|
|
302
|
-
|
|
303
|
-
# ----------------------------------------------------------------------
|
|
304
|
-
# Proof for derived triple:
|
|
305
|
-
# :ind a :N6 .
|
|
306
|
-
# It holds because the following instance of the rule body is provable:
|
|
307
|
-
# :ind a :N5 .
|
|
308
|
-
# via the schematic forward rule:
|
|
309
|
-
# {
|
|
310
|
-
# ?X a :N5 .
|
|
311
|
-
# } => {
|
|
312
|
-
# ?X a :N6 .
|
|
313
|
-
# ?X a :I6 .
|
|
314
|
-
# ?X a :J6 .
|
|
315
|
-
# } .
|
|
316
|
-
# with substitution (on rule variables):
|
|
317
|
-
# ?X = :ind
|
|
318
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
319
|
-
# ----------------------------------------------------------------------
|
|
320
|
-
|
|
321
18
|
:ind a :N6 .
|
|
322
|
-
|
|
323
|
-
# ----------------------------------------------------------------------
|
|
324
|
-
# Proof for derived triple:
|
|
325
|
-
# :ind a :I6 .
|
|
326
|
-
# It holds because the following instance of the rule body is provable:
|
|
327
|
-
# :ind a :N5 .
|
|
328
|
-
# via the schematic forward rule:
|
|
329
|
-
# {
|
|
330
|
-
# ?X a :N5 .
|
|
331
|
-
# } => {
|
|
332
|
-
# ?X a :N6 .
|
|
333
|
-
# ?X a :I6 .
|
|
334
|
-
# ?X a :J6 .
|
|
335
|
-
# } .
|
|
336
|
-
# with substitution (on rule variables):
|
|
337
|
-
# ?X = :ind
|
|
338
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
339
|
-
# ----------------------------------------------------------------------
|
|
340
|
-
|
|
341
19
|
:ind a :I6 .
|
|
342
|
-
|
|
343
|
-
# ----------------------------------------------------------------------
|
|
344
|
-
# Proof for derived triple:
|
|
345
|
-
# :ind a :J6 .
|
|
346
|
-
# It holds because the following instance of the rule body is provable:
|
|
347
|
-
# :ind a :N5 .
|
|
348
|
-
# via the schematic forward rule:
|
|
349
|
-
# {
|
|
350
|
-
# ?X a :N5 .
|
|
351
|
-
# } => {
|
|
352
|
-
# ?X a :N6 .
|
|
353
|
-
# ?X a :I6 .
|
|
354
|
-
# ?X a :J6 .
|
|
355
|
-
# } .
|
|
356
|
-
# with substitution (on rule variables):
|
|
357
|
-
# ?X = :ind
|
|
358
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
359
|
-
# ----------------------------------------------------------------------
|
|
360
|
-
|
|
361
20
|
:ind a :J6 .
|
|
362
|
-
|
|
363
|
-
# ----------------------------------------------------------------------
|
|
364
|
-
# Proof for derived triple:
|
|
365
|
-
# :ind a :N7 .
|
|
366
|
-
# It holds because the following instance of the rule body is provable:
|
|
367
|
-
# :ind a :N6 .
|
|
368
|
-
# via the schematic forward rule:
|
|
369
|
-
# {
|
|
370
|
-
# ?X a :N6 .
|
|
371
|
-
# } => {
|
|
372
|
-
# ?X a :N7 .
|
|
373
|
-
# ?X a :I7 .
|
|
374
|
-
# ?X a :J7 .
|
|
375
|
-
# } .
|
|
376
|
-
# with substitution (on rule variables):
|
|
377
|
-
# ?X = :ind
|
|
378
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
379
|
-
# ----------------------------------------------------------------------
|
|
380
|
-
|
|
381
21
|
:ind a :N7 .
|
|
382
|
-
|
|
383
|
-
# ----------------------------------------------------------------------
|
|
384
|
-
# Proof for derived triple:
|
|
385
|
-
# :ind a :I7 .
|
|
386
|
-
# It holds because the following instance of the rule body is provable:
|
|
387
|
-
# :ind a :N6 .
|
|
388
|
-
# via the schematic forward rule:
|
|
389
|
-
# {
|
|
390
|
-
# ?X a :N6 .
|
|
391
|
-
# } => {
|
|
392
|
-
# ?X a :N7 .
|
|
393
|
-
# ?X a :I7 .
|
|
394
|
-
# ?X a :J7 .
|
|
395
|
-
# } .
|
|
396
|
-
# with substitution (on rule variables):
|
|
397
|
-
# ?X = :ind
|
|
398
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
399
|
-
# ----------------------------------------------------------------------
|
|
400
|
-
|
|
401
22
|
:ind a :I7 .
|
|
402
|
-
|
|
403
|
-
# ----------------------------------------------------------------------
|
|
404
|
-
# Proof for derived triple:
|
|
405
|
-
# :ind a :J7 .
|
|
406
|
-
# It holds because the following instance of the rule body is provable:
|
|
407
|
-
# :ind a :N6 .
|
|
408
|
-
# via the schematic forward rule:
|
|
409
|
-
# {
|
|
410
|
-
# ?X a :N6 .
|
|
411
|
-
# } => {
|
|
412
|
-
# ?X a :N7 .
|
|
413
|
-
# ?X a :I7 .
|
|
414
|
-
# ?X a :J7 .
|
|
415
|
-
# } .
|
|
416
|
-
# with substitution (on rule variables):
|
|
417
|
-
# ?X = :ind
|
|
418
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
419
|
-
# ----------------------------------------------------------------------
|
|
420
|
-
|
|
421
23
|
:ind a :J7 .
|
|
422
|
-
|
|
423
|
-
# ----------------------------------------------------------------------
|
|
424
|
-
# Proof for derived triple:
|
|
425
|
-
# :ind a :N8 .
|
|
426
|
-
# It holds because the following instance of the rule body is provable:
|
|
427
|
-
# :ind a :N7 .
|
|
428
|
-
# via the schematic forward rule:
|
|
429
|
-
# {
|
|
430
|
-
# ?X a :N7 .
|
|
431
|
-
# } => {
|
|
432
|
-
# ?X a :N8 .
|
|
433
|
-
# ?X a :I8 .
|
|
434
|
-
# ?X a :J8 .
|
|
435
|
-
# } .
|
|
436
|
-
# with substitution (on rule variables):
|
|
437
|
-
# ?X = :ind
|
|
438
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
439
|
-
# ----------------------------------------------------------------------
|
|
440
|
-
|
|
441
24
|
:ind a :N8 .
|
|
442
|
-
|
|
443
|
-
# ----------------------------------------------------------------------
|
|
444
|
-
# Proof for derived triple:
|
|
445
|
-
# :ind a :I8 .
|
|
446
|
-
# It holds because the following instance of the rule body is provable:
|
|
447
|
-
# :ind a :N7 .
|
|
448
|
-
# via the schematic forward rule:
|
|
449
|
-
# {
|
|
450
|
-
# ?X a :N7 .
|
|
451
|
-
# } => {
|
|
452
|
-
# ?X a :N8 .
|
|
453
|
-
# ?X a :I8 .
|
|
454
|
-
# ?X a :J8 .
|
|
455
|
-
# } .
|
|
456
|
-
# with substitution (on rule variables):
|
|
457
|
-
# ?X = :ind
|
|
458
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
459
|
-
# ----------------------------------------------------------------------
|
|
460
|
-
|
|
461
25
|
:ind a :I8 .
|
|
462
|
-
|
|
463
|
-
# ----------------------------------------------------------------------
|
|
464
|
-
# Proof for derived triple:
|
|
465
|
-
# :ind a :J8 .
|
|
466
|
-
# It holds because the following instance of the rule body is provable:
|
|
467
|
-
# :ind a :N7 .
|
|
468
|
-
# via the schematic forward rule:
|
|
469
|
-
# {
|
|
470
|
-
# ?X a :N7 .
|
|
471
|
-
# } => {
|
|
472
|
-
# ?X a :N8 .
|
|
473
|
-
# ?X a :I8 .
|
|
474
|
-
# ?X a :J8 .
|
|
475
|
-
# } .
|
|
476
|
-
# with substitution (on rule variables):
|
|
477
|
-
# ?X = :ind
|
|
478
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
479
|
-
# ----------------------------------------------------------------------
|
|
480
|
-
|
|
481
26
|
:ind a :J8 .
|
|
482
|
-
|
|
483
|
-
# ----------------------------------------------------------------------
|
|
484
|
-
# Proof for derived triple:
|
|
485
|
-
# :ind a :N9 .
|
|
486
|
-
# It holds because the following instance of the rule body is provable:
|
|
487
|
-
# :ind a :N8 .
|
|
488
|
-
# via the schematic forward rule:
|
|
489
|
-
# {
|
|
490
|
-
# ?X a :N8 .
|
|
491
|
-
# } => {
|
|
492
|
-
# ?X a :N9 .
|
|
493
|
-
# ?X a :I9 .
|
|
494
|
-
# ?X a :J9 .
|
|
495
|
-
# } .
|
|
496
|
-
# with substitution (on rule variables):
|
|
497
|
-
# ?X = :ind
|
|
498
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
499
|
-
# ----------------------------------------------------------------------
|
|
500
|
-
|
|
501
27
|
:ind a :N9 .
|
|
502
|
-
|
|
503
|
-
# ----------------------------------------------------------------------
|
|
504
|
-
# Proof for derived triple:
|
|
505
|
-
# :ind a :I9 .
|
|
506
|
-
# It holds because the following instance of the rule body is provable:
|
|
507
|
-
# :ind a :N8 .
|
|
508
|
-
# via the schematic forward rule:
|
|
509
|
-
# {
|
|
510
|
-
# ?X a :N8 .
|
|
511
|
-
# } => {
|
|
512
|
-
# ?X a :N9 .
|
|
513
|
-
# ?X a :I9 .
|
|
514
|
-
# ?X a :J9 .
|
|
515
|
-
# } .
|
|
516
|
-
# with substitution (on rule variables):
|
|
517
|
-
# ?X = :ind
|
|
518
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
519
|
-
# ----------------------------------------------------------------------
|
|
520
|
-
|
|
521
28
|
:ind a :I9 .
|
|
522
|
-
|
|
523
|
-
# ----------------------------------------------------------------------
|
|
524
|
-
# Proof for derived triple:
|
|
525
|
-
# :ind a :J9 .
|
|
526
|
-
# It holds because the following instance of the rule body is provable:
|
|
527
|
-
# :ind a :N8 .
|
|
528
|
-
# via the schematic forward rule:
|
|
529
|
-
# {
|
|
530
|
-
# ?X a :N8 .
|
|
531
|
-
# } => {
|
|
532
|
-
# ?X a :N9 .
|
|
533
|
-
# ?X a :I9 .
|
|
534
|
-
# ?X a :J9 .
|
|
535
|
-
# } .
|
|
536
|
-
# with substitution (on rule variables):
|
|
537
|
-
# ?X = :ind
|
|
538
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
539
|
-
# ----------------------------------------------------------------------
|
|
540
|
-
|
|
541
29
|
:ind a :J9 .
|
|
542
|
-
|
|
543
|
-
# ----------------------------------------------------------------------
|
|
544
|
-
# Proof for derived triple:
|
|
545
|
-
# :ind a :N10 .
|
|
546
|
-
# It holds because the following instance of the rule body is provable:
|
|
547
|
-
# :ind a :N9 .
|
|
548
|
-
# via the schematic forward rule:
|
|
549
|
-
# {
|
|
550
|
-
# ?X a :N9 .
|
|
551
|
-
# } => {
|
|
552
|
-
# ?X a :N10 .
|
|
553
|
-
# ?X a :I10 .
|
|
554
|
-
# ?X a :J10 .
|
|
555
|
-
# } .
|
|
556
|
-
# with substitution (on rule variables):
|
|
557
|
-
# ?X = :ind
|
|
558
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
559
|
-
# ----------------------------------------------------------------------
|
|
560
|
-
|
|
561
30
|
:ind a :N10 .
|
|
562
|
-
|
|
563
|
-
# ----------------------------------------------------------------------
|
|
564
|
-
# Proof for derived triple:
|
|
565
|
-
# :ind a :I10 .
|
|
566
|
-
# It holds because the following instance of the rule body is provable:
|
|
567
|
-
# :ind a :N9 .
|
|
568
|
-
# via the schematic forward rule:
|
|
569
|
-
# {
|
|
570
|
-
# ?X a :N9 .
|
|
571
|
-
# } => {
|
|
572
|
-
# ?X a :N10 .
|
|
573
|
-
# ?X a :I10 .
|
|
574
|
-
# ?X a :J10 .
|
|
575
|
-
# } .
|
|
576
|
-
# with substitution (on rule variables):
|
|
577
|
-
# ?X = :ind
|
|
578
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
579
|
-
# ----------------------------------------------------------------------
|
|
580
|
-
|
|
581
31
|
:ind a :I10 .
|
|
582
|
-
|
|
583
|
-
# ----------------------------------------------------------------------
|
|
584
|
-
# Proof for derived triple:
|
|
585
|
-
# :ind a :J10 .
|
|
586
|
-
# It holds because the following instance of the rule body is provable:
|
|
587
|
-
# :ind a :N9 .
|
|
588
|
-
# via the schematic forward rule:
|
|
589
|
-
# {
|
|
590
|
-
# ?X a :N9 .
|
|
591
|
-
# } => {
|
|
592
|
-
# ?X a :N10 .
|
|
593
|
-
# ?X a :I10 .
|
|
594
|
-
# ?X a :J10 .
|
|
595
|
-
# } .
|
|
596
|
-
# with substitution (on rule variables):
|
|
597
|
-
# ?X = :ind
|
|
598
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
599
|
-
# ----------------------------------------------------------------------
|
|
600
|
-
|
|
601
32
|
:ind a :J10 .
|
|
602
|
-
|
|
603
|
-
# ----------------------------------------------------------------------
|
|
604
|
-
# Proof for derived triple:
|
|
605
|
-
# :ind a :A2 .
|
|
606
|
-
# It holds because the following instance of the rule body is provable:
|
|
607
|
-
# :ind a :N10 .
|
|
608
|
-
# via the schematic forward rule:
|
|
609
|
-
# {
|
|
610
|
-
# ?X a :N10 .
|
|
611
|
-
# } => {
|
|
612
|
-
# ?X a :A2 .
|
|
613
|
-
# } .
|
|
614
|
-
# with substitution (on rule variables):
|
|
615
|
-
# ?X = :ind
|
|
616
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
617
|
-
# ----------------------------------------------------------------------
|
|
618
|
-
|
|
619
33
|
:ind a :A2 .
|
|
620
|
-
|
|
621
|
-
# ----------------------------------------------------------------------
|
|
622
|
-
# Proof for derived triple:
|
|
623
|
-
# :test :is true .
|
|
624
|
-
# It holds because the following instance of the rule body is provable:
|
|
625
|
-
# :ind a :A2 .
|
|
626
|
-
# via the schematic forward rule:
|
|
627
|
-
# {
|
|
628
|
-
# :ind a :A2 .
|
|
629
|
-
# } => {
|
|
630
|
-
# :test :is true .
|
|
631
|
-
# } .
|
|
632
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
633
|
-
# ----------------------------------------------------------------------
|
|
634
|
-
|
|
635
34
|
:test :is true .
|
|
636
|
-
|