eyeling 1.6.13 → 1.6.15

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (77) hide show
  1. package/README.md +8 -19
  2. package/examples/output/age.n3 +0 -17
  3. package/examples/output/alignment-demo.n3 +0 -572
  4. package/examples/output/backward.n3 +0 -15
  5. package/examples/output/basic-monadic.n3 +0 -105
  6. package/examples/output/brussels-brew-club.n3 +0 -476
  7. package/examples/output/cat-koko.n3 +0 -108
  8. package/examples/output/cobalt-kepler-kitchen.n3 +0 -7064
  9. package/examples/output/complex.n3 +0 -46
  10. package/examples/output/control-system.n3 +0 -75
  11. package/examples/output/cranberry-calculus.n3 +0 -1313
  12. package/examples/output/crypto-builtins-tests.n3 +0 -60
  13. package/examples/output/deep-taxonomy-10.n3 +0 -602
  14. package/examples/output/deep-taxonomy-100.n3 +1 -5733
  15. package/examples/output/deep-taxonomy-1000.n3 +1 -57033
  16. package/examples/output/deep-taxonomy-10000.n3 +1 -570033
  17. package/examples/output/derived-backward-rule-2.n3 +0 -58
  18. package/examples/output/derived-backward-rule.n3 +0 -44
  19. package/examples/output/derived-rule.n3 +0 -42
  20. package/examples/output/dijkstra.n3 +0 -297
  21. package/examples/output/dog.n3 +0 -30
  22. package/examples/output/drone-corridor-planner.n3 +0 -799
  23. package/examples/output/easter.n3 +0 -3570
  24. package/examples/output/equals.n3 +0 -15
  25. package/examples/output/ev-roundtrip-planner.n3 +0 -392
  26. package/examples/output/existential-rule.n3 +0 -34
  27. package/examples/output/expression-eval.n3 +0 -20
  28. package/examples/output/family-cousins.n3 +0 -636
  29. package/examples/output/fibonacci.n3 +0 -36
  30. package/examples/output/french-cities.n3 +0 -484
  31. package/examples/output/good-cobbler.n3 +0 -22
  32. package/examples/output/gps.n3 +0 -62
  33. package/examples/output/gray-code-counter.n3 +0 -17
  34. package/examples/output/hanoi.n3 +0 -17
  35. package/examples/output/jade-eigen-loom.n3 +0 -4690
  36. package/examples/output/json-pointer.n3 +0 -529
  37. package/examples/output/json-reconcile-vat.n3 +0 -12882
  38. package/examples/output/light-eaters.n3 +0 -311
  39. package/examples/output/list-builtins-tests.n3 +0 -167
  40. package/examples/output/list-iterate.n3 +0 -124
  41. package/examples/output/lldm.n3 +0 -960
  42. package/examples/output/log-collect-all-in.n3 +0 -117
  43. package/examples/output/log-for-all-in.n3 +0 -27
  44. package/examples/output/log-not-includes.n3 +0 -59
  45. package/examples/output/log-skolem.n3 +0 -17
  46. package/examples/output/log-uri.n3 +0 -42
  47. package/examples/output/math-builtins-tests.n3 +0 -4434
  48. package/examples/output/minimal-skos-alignment.n3 +0 -39
  49. package/examples/output/monkey.n3 +0 -36
  50. package/examples/output/odrl-trust.n3 +0 -46
  51. package/examples/output/oslo-steps-library-scholarly.n3 +0 -1260
  52. package/examples/output/oslo-steps-workflow-composition.n3 +0 -180
  53. package/examples/output/peano.n3 +0 -23
  54. package/examples/output/pi.n3 +0 -17
  55. package/examples/output/pillar.n3 +0 -32
  56. package/examples/output/polygon.n3 +0 -17
  57. package/examples/output/rdf-list.n3 +0 -28
  58. package/examples/output/reordering.n3 +0 -26
  59. package/examples/output/ruby-runge-workshop.n3 +0 -613
  60. package/examples/output/rule-matching.n3 +0 -26
  61. package/examples/output/saffron-slopeworks.n3 +0 -1447
  62. package/examples/output/self-referential.n3 +0 -81
  63. package/examples/output/similar.n3 +0 -15
  64. package/examples/output/snaf.n3 +0 -23
  65. package/examples/output/socrates.n3 +0 -21
  66. package/examples/output/spectral-week.n3 +0 -350
  67. package/examples/output/string-builtins-tests.n3 +0 -240
  68. package/examples/output/topaz-markov-mill.n3 +0 -4178
  69. package/examples/output/traffic-skos-aggregate.n3 +0 -3151
  70. package/examples/output/turing.n3 +0 -36
  71. package/examples/output/ultramarine-simpson-forge.n3 +0 -3873
  72. package/examples/output/witch.n3 +0 -107
  73. package/examples/output/zebra.n3 +0 -111
  74. package/eyeling.js +129 -25
  75. package/index.js +13 -6
  76. package/package.json +1 -1
  77. package/test/examples.test.js +1 -1
@@ -1,66 +1,6 @@
1
1
  @prefix : <https://eyereasoner.github.io/ns#> .
2
2
 
3
- # ----------------------------------------------------------------------
4
- # Proof for derived triple:
5
- # :ok_crypto_sha_1 a :Pass .
6
- # It holds because the following instance of the rule body is provable:
7
- # "hello world" crypto:sha "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed" .
8
- # via the schematic forward rule:
9
- # {
10
- # "hello world" crypto:sha "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed" .
11
- # } => {
12
- # :ok_crypto_sha_1 a :Pass .
13
- # } .
14
- # Therefore the derived triple above is entailed by the rules and facts.
15
- # ----------------------------------------------------------------------
16
-
17
3
  :ok_crypto_sha_1 a :Pass .
18
-
19
- # ----------------------------------------------------------------------
20
- # Proof for derived triple:
21
- # :ok_crypto_md5_1 a :Pass .
22
- # It holds because the following instance of the rule body is provable:
23
- # "hello world" crypto:md5 "5eb63bbbe01eeed093cb22bb8f5acdc3" .
24
- # via the schematic forward rule:
25
- # {
26
- # "hello world" crypto:md5 "5eb63bbbe01eeed093cb22bb8f5acdc3" .
27
- # } => {
28
- # :ok_crypto_md5_1 a :Pass .
29
- # } .
30
- # Therefore the derived triple above is entailed by the rules and facts.
31
- # ----------------------------------------------------------------------
32
-
33
4
  :ok_crypto_md5_1 a :Pass .
34
-
35
- # ----------------------------------------------------------------------
36
- # Proof for derived triple:
37
- # :ok_crypto_sha256_1 a :Pass .
38
- # It holds because the following instance of the rule body is provable:
39
- # "hello world" crypto:sha256 "b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee9088f7ace2efcde9" .
40
- # via the schematic forward rule:
41
- # {
42
- # "hello world" crypto:sha256 "b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee9088f7ace2efcde9" .
43
- # } => {
44
- # :ok_crypto_sha256_1 a :Pass .
45
- # } .
46
- # Therefore the derived triple above is entailed by the rules and facts.
47
- # ----------------------------------------------------------------------
48
-
49
5
  :ok_crypto_sha256_1 a :Pass .
50
-
51
- # ----------------------------------------------------------------------
52
- # Proof for derived triple:
53
- # :ok_crypto_sha512_1 a :Pass .
54
- # It holds because the following instance of the rule body is provable:
55
- # "hello world" crypto:sha512 "309ecc489c12d6eb4cc40f50c902f2b4d0ed77ee511a7c7a9bcd3ca86d4cd86f989dd35bc5ff499670da34255b45b0cfd830e81f605dcf7dc5542e93ae9cd76f" .
56
- # via the schematic forward rule:
57
- # {
58
- # "hello world" crypto:sha512 "309ecc489c12d6eb4cc40f50c902f2b4d0ed77ee511a7c7a9bcd3ca86d4cd86f989dd35bc5ff499670da34255b45b0cfd830e81f605dcf7dc5542e93ae9cd76f" .
59
- # } => {
60
- # :ok_crypto_sha512_1 a :Pass .
61
- # } .
62
- # Therefore the derived triple above is entailed by the rules and facts.
63
- # ----------------------------------------------------------------------
64
-
65
6
  :ok_crypto_sha512_1 a :Pass .
66
-
@@ -1,636 +1,34 @@
1
1
  @prefix : <http://eulersharp.sourceforge.net/2009/12dtb/test#> .
2
2
 
3
- # ----------------------------------------------------------------------
4
- # Proof for derived triple:
5
- # :ind a :N1 .
6
- # It holds because the following instance of the rule body is provable:
7
- # :ind a :N0 .
8
- # via the schematic forward rule:
9
- # {
10
- # ?X a :N0 .
11
- # } => {
12
- # ?X a :N1 .
13
- # ?X a :I1 .
14
- # ?X a :J1 .
15
- # } .
16
- # with substitution (on rule variables):
17
- # ?X = :ind
18
- # Therefore the derived triple above is entailed by the rules and facts.
19
- # ----------------------------------------------------------------------
20
-
21
3
  :ind a :N1 .
22
-
23
- # ----------------------------------------------------------------------
24
- # Proof for derived triple:
25
- # :ind a :I1 .
26
- # It holds because the following instance of the rule body is provable:
27
- # :ind a :N0 .
28
- # via the schematic forward rule:
29
- # {
30
- # ?X a :N0 .
31
- # } => {
32
- # ?X a :N1 .
33
- # ?X a :I1 .
34
- # ?X a :J1 .
35
- # } .
36
- # with substitution (on rule variables):
37
- # ?X = :ind
38
- # Therefore the derived triple above is entailed by the rules and facts.
39
- # ----------------------------------------------------------------------
40
-
41
4
  :ind a :I1 .
42
-
43
- # ----------------------------------------------------------------------
44
- # Proof for derived triple:
45
- # :ind a :J1 .
46
- # It holds because the following instance of the rule body is provable:
47
- # :ind a :N0 .
48
- # via the schematic forward rule:
49
- # {
50
- # ?X a :N0 .
51
- # } => {
52
- # ?X a :N1 .
53
- # ?X a :I1 .
54
- # ?X a :J1 .
55
- # } .
56
- # with substitution (on rule variables):
57
- # ?X = :ind
58
- # Therefore the derived triple above is entailed by the rules and facts.
59
- # ----------------------------------------------------------------------
60
-
61
5
  :ind a :J1 .
62
-
63
- # ----------------------------------------------------------------------
64
- # Proof for derived triple:
65
- # :ind a :N2 .
66
- # It holds because the following instance of the rule body is provable:
67
- # :ind a :N1 .
68
- # via the schematic forward rule:
69
- # {
70
- # ?X a :N1 .
71
- # } => {
72
- # ?X a :N2 .
73
- # ?X a :I2 .
74
- # ?X a :J2 .
75
- # } .
76
- # with substitution (on rule variables):
77
- # ?X = :ind
78
- # Therefore the derived triple above is entailed by the rules and facts.
79
- # ----------------------------------------------------------------------
80
-
81
6
  :ind a :N2 .
82
-
83
- # ----------------------------------------------------------------------
84
- # Proof for derived triple:
85
- # :ind a :I2 .
86
- # It holds because the following instance of the rule body is provable:
87
- # :ind a :N1 .
88
- # via the schematic forward rule:
89
- # {
90
- # ?X a :N1 .
91
- # } => {
92
- # ?X a :N2 .
93
- # ?X a :I2 .
94
- # ?X a :J2 .
95
- # } .
96
- # with substitution (on rule variables):
97
- # ?X = :ind
98
- # Therefore the derived triple above is entailed by the rules and facts.
99
- # ----------------------------------------------------------------------
100
-
101
7
  :ind a :I2 .
102
-
103
- # ----------------------------------------------------------------------
104
- # Proof for derived triple:
105
- # :ind a :J2 .
106
- # It holds because the following instance of the rule body is provable:
107
- # :ind a :N1 .
108
- # via the schematic forward rule:
109
- # {
110
- # ?X a :N1 .
111
- # } => {
112
- # ?X a :N2 .
113
- # ?X a :I2 .
114
- # ?X a :J2 .
115
- # } .
116
- # with substitution (on rule variables):
117
- # ?X = :ind
118
- # Therefore the derived triple above is entailed by the rules and facts.
119
- # ----------------------------------------------------------------------
120
-
121
8
  :ind a :J2 .
122
-
123
- # ----------------------------------------------------------------------
124
- # Proof for derived triple:
125
- # :ind a :N3 .
126
- # It holds because the following instance of the rule body is provable:
127
- # :ind a :N2 .
128
- # via the schematic forward rule:
129
- # {
130
- # ?X a :N2 .
131
- # } => {
132
- # ?X a :N3 .
133
- # ?X a :I3 .
134
- # ?X a :J3 .
135
- # } .
136
- # with substitution (on rule variables):
137
- # ?X = :ind
138
- # Therefore the derived triple above is entailed by the rules and facts.
139
- # ----------------------------------------------------------------------
140
-
141
9
  :ind a :N3 .
142
-
143
- # ----------------------------------------------------------------------
144
- # Proof for derived triple:
145
- # :ind a :I3 .
146
- # It holds because the following instance of the rule body is provable:
147
- # :ind a :N2 .
148
- # via the schematic forward rule:
149
- # {
150
- # ?X a :N2 .
151
- # } => {
152
- # ?X a :N3 .
153
- # ?X a :I3 .
154
- # ?X a :J3 .
155
- # } .
156
- # with substitution (on rule variables):
157
- # ?X = :ind
158
- # Therefore the derived triple above is entailed by the rules and facts.
159
- # ----------------------------------------------------------------------
160
-
161
10
  :ind a :I3 .
162
-
163
- # ----------------------------------------------------------------------
164
- # Proof for derived triple:
165
- # :ind a :J3 .
166
- # It holds because the following instance of the rule body is provable:
167
- # :ind a :N2 .
168
- # via the schematic forward rule:
169
- # {
170
- # ?X a :N2 .
171
- # } => {
172
- # ?X a :N3 .
173
- # ?X a :I3 .
174
- # ?X a :J3 .
175
- # } .
176
- # with substitution (on rule variables):
177
- # ?X = :ind
178
- # Therefore the derived triple above is entailed by the rules and facts.
179
- # ----------------------------------------------------------------------
180
-
181
11
  :ind a :J3 .
182
-
183
- # ----------------------------------------------------------------------
184
- # Proof for derived triple:
185
- # :ind a :N4 .
186
- # It holds because the following instance of the rule body is provable:
187
- # :ind a :N3 .
188
- # via the schematic forward rule:
189
- # {
190
- # ?X a :N3 .
191
- # } => {
192
- # ?X a :N4 .
193
- # ?X a :I4 .
194
- # ?X a :J4 .
195
- # } .
196
- # with substitution (on rule variables):
197
- # ?X = :ind
198
- # Therefore the derived triple above is entailed by the rules and facts.
199
- # ----------------------------------------------------------------------
200
-
201
12
  :ind a :N4 .
202
-
203
- # ----------------------------------------------------------------------
204
- # Proof for derived triple:
205
- # :ind a :I4 .
206
- # It holds because the following instance of the rule body is provable:
207
- # :ind a :N3 .
208
- # via the schematic forward rule:
209
- # {
210
- # ?X a :N3 .
211
- # } => {
212
- # ?X a :N4 .
213
- # ?X a :I4 .
214
- # ?X a :J4 .
215
- # } .
216
- # with substitution (on rule variables):
217
- # ?X = :ind
218
- # Therefore the derived triple above is entailed by the rules and facts.
219
- # ----------------------------------------------------------------------
220
-
221
13
  :ind a :I4 .
222
-
223
- # ----------------------------------------------------------------------
224
- # Proof for derived triple:
225
- # :ind a :J4 .
226
- # It holds because the following instance of the rule body is provable:
227
- # :ind a :N3 .
228
- # via the schematic forward rule:
229
- # {
230
- # ?X a :N3 .
231
- # } => {
232
- # ?X a :N4 .
233
- # ?X a :I4 .
234
- # ?X a :J4 .
235
- # } .
236
- # with substitution (on rule variables):
237
- # ?X = :ind
238
- # Therefore the derived triple above is entailed by the rules and facts.
239
- # ----------------------------------------------------------------------
240
-
241
14
  :ind a :J4 .
242
-
243
- # ----------------------------------------------------------------------
244
- # Proof for derived triple:
245
- # :ind a :N5 .
246
- # It holds because the following instance of the rule body is provable:
247
- # :ind a :N4 .
248
- # via the schematic forward rule:
249
- # {
250
- # ?X a :N4 .
251
- # } => {
252
- # ?X a :N5 .
253
- # ?X a :I5 .
254
- # ?X a :J5 .
255
- # } .
256
- # with substitution (on rule variables):
257
- # ?X = :ind
258
- # Therefore the derived triple above is entailed by the rules and facts.
259
- # ----------------------------------------------------------------------
260
-
261
15
  :ind a :N5 .
262
-
263
- # ----------------------------------------------------------------------
264
- # Proof for derived triple:
265
- # :ind a :I5 .
266
- # It holds because the following instance of the rule body is provable:
267
- # :ind a :N4 .
268
- # via the schematic forward rule:
269
- # {
270
- # ?X a :N4 .
271
- # } => {
272
- # ?X a :N5 .
273
- # ?X a :I5 .
274
- # ?X a :J5 .
275
- # } .
276
- # with substitution (on rule variables):
277
- # ?X = :ind
278
- # Therefore the derived triple above is entailed by the rules and facts.
279
- # ----------------------------------------------------------------------
280
-
281
16
  :ind a :I5 .
282
-
283
- # ----------------------------------------------------------------------
284
- # Proof for derived triple:
285
- # :ind a :J5 .
286
- # It holds because the following instance of the rule body is provable:
287
- # :ind a :N4 .
288
- # via the schematic forward rule:
289
- # {
290
- # ?X a :N4 .
291
- # } => {
292
- # ?X a :N5 .
293
- # ?X a :I5 .
294
- # ?X a :J5 .
295
- # } .
296
- # with substitution (on rule variables):
297
- # ?X = :ind
298
- # Therefore the derived triple above is entailed by the rules and facts.
299
- # ----------------------------------------------------------------------
300
-
301
17
  :ind a :J5 .
302
-
303
- # ----------------------------------------------------------------------
304
- # Proof for derived triple:
305
- # :ind a :N6 .
306
- # It holds because the following instance of the rule body is provable:
307
- # :ind a :N5 .
308
- # via the schematic forward rule:
309
- # {
310
- # ?X a :N5 .
311
- # } => {
312
- # ?X a :N6 .
313
- # ?X a :I6 .
314
- # ?X a :J6 .
315
- # } .
316
- # with substitution (on rule variables):
317
- # ?X = :ind
318
- # Therefore the derived triple above is entailed by the rules and facts.
319
- # ----------------------------------------------------------------------
320
-
321
18
  :ind a :N6 .
322
-
323
- # ----------------------------------------------------------------------
324
- # Proof for derived triple:
325
- # :ind a :I6 .
326
- # It holds because the following instance of the rule body is provable:
327
- # :ind a :N5 .
328
- # via the schematic forward rule:
329
- # {
330
- # ?X a :N5 .
331
- # } => {
332
- # ?X a :N6 .
333
- # ?X a :I6 .
334
- # ?X a :J6 .
335
- # } .
336
- # with substitution (on rule variables):
337
- # ?X = :ind
338
- # Therefore the derived triple above is entailed by the rules and facts.
339
- # ----------------------------------------------------------------------
340
-
341
19
  :ind a :I6 .
342
-
343
- # ----------------------------------------------------------------------
344
- # Proof for derived triple:
345
- # :ind a :J6 .
346
- # It holds because the following instance of the rule body is provable:
347
- # :ind a :N5 .
348
- # via the schematic forward rule:
349
- # {
350
- # ?X a :N5 .
351
- # } => {
352
- # ?X a :N6 .
353
- # ?X a :I6 .
354
- # ?X a :J6 .
355
- # } .
356
- # with substitution (on rule variables):
357
- # ?X = :ind
358
- # Therefore the derived triple above is entailed by the rules and facts.
359
- # ----------------------------------------------------------------------
360
-
361
20
  :ind a :J6 .
362
-
363
- # ----------------------------------------------------------------------
364
- # Proof for derived triple:
365
- # :ind a :N7 .
366
- # It holds because the following instance of the rule body is provable:
367
- # :ind a :N6 .
368
- # via the schematic forward rule:
369
- # {
370
- # ?X a :N6 .
371
- # } => {
372
- # ?X a :N7 .
373
- # ?X a :I7 .
374
- # ?X a :J7 .
375
- # } .
376
- # with substitution (on rule variables):
377
- # ?X = :ind
378
- # Therefore the derived triple above is entailed by the rules and facts.
379
- # ----------------------------------------------------------------------
380
-
381
21
  :ind a :N7 .
382
-
383
- # ----------------------------------------------------------------------
384
- # Proof for derived triple:
385
- # :ind a :I7 .
386
- # It holds because the following instance of the rule body is provable:
387
- # :ind a :N6 .
388
- # via the schematic forward rule:
389
- # {
390
- # ?X a :N6 .
391
- # } => {
392
- # ?X a :N7 .
393
- # ?X a :I7 .
394
- # ?X a :J7 .
395
- # } .
396
- # with substitution (on rule variables):
397
- # ?X = :ind
398
- # Therefore the derived triple above is entailed by the rules and facts.
399
- # ----------------------------------------------------------------------
400
-
401
22
  :ind a :I7 .
402
-
403
- # ----------------------------------------------------------------------
404
- # Proof for derived triple:
405
- # :ind a :J7 .
406
- # It holds because the following instance of the rule body is provable:
407
- # :ind a :N6 .
408
- # via the schematic forward rule:
409
- # {
410
- # ?X a :N6 .
411
- # } => {
412
- # ?X a :N7 .
413
- # ?X a :I7 .
414
- # ?X a :J7 .
415
- # } .
416
- # with substitution (on rule variables):
417
- # ?X = :ind
418
- # Therefore the derived triple above is entailed by the rules and facts.
419
- # ----------------------------------------------------------------------
420
-
421
23
  :ind a :J7 .
422
-
423
- # ----------------------------------------------------------------------
424
- # Proof for derived triple:
425
- # :ind a :N8 .
426
- # It holds because the following instance of the rule body is provable:
427
- # :ind a :N7 .
428
- # via the schematic forward rule:
429
- # {
430
- # ?X a :N7 .
431
- # } => {
432
- # ?X a :N8 .
433
- # ?X a :I8 .
434
- # ?X a :J8 .
435
- # } .
436
- # with substitution (on rule variables):
437
- # ?X = :ind
438
- # Therefore the derived triple above is entailed by the rules and facts.
439
- # ----------------------------------------------------------------------
440
-
441
24
  :ind a :N8 .
442
-
443
- # ----------------------------------------------------------------------
444
- # Proof for derived triple:
445
- # :ind a :I8 .
446
- # It holds because the following instance of the rule body is provable:
447
- # :ind a :N7 .
448
- # via the schematic forward rule:
449
- # {
450
- # ?X a :N7 .
451
- # } => {
452
- # ?X a :N8 .
453
- # ?X a :I8 .
454
- # ?X a :J8 .
455
- # } .
456
- # with substitution (on rule variables):
457
- # ?X = :ind
458
- # Therefore the derived triple above is entailed by the rules and facts.
459
- # ----------------------------------------------------------------------
460
-
461
25
  :ind a :I8 .
462
-
463
- # ----------------------------------------------------------------------
464
- # Proof for derived triple:
465
- # :ind a :J8 .
466
- # It holds because the following instance of the rule body is provable:
467
- # :ind a :N7 .
468
- # via the schematic forward rule:
469
- # {
470
- # ?X a :N7 .
471
- # } => {
472
- # ?X a :N8 .
473
- # ?X a :I8 .
474
- # ?X a :J8 .
475
- # } .
476
- # with substitution (on rule variables):
477
- # ?X = :ind
478
- # Therefore the derived triple above is entailed by the rules and facts.
479
- # ----------------------------------------------------------------------
480
-
481
26
  :ind a :J8 .
482
-
483
- # ----------------------------------------------------------------------
484
- # Proof for derived triple:
485
- # :ind a :N9 .
486
- # It holds because the following instance of the rule body is provable:
487
- # :ind a :N8 .
488
- # via the schematic forward rule:
489
- # {
490
- # ?X a :N8 .
491
- # } => {
492
- # ?X a :N9 .
493
- # ?X a :I9 .
494
- # ?X a :J9 .
495
- # } .
496
- # with substitution (on rule variables):
497
- # ?X = :ind
498
- # Therefore the derived triple above is entailed by the rules and facts.
499
- # ----------------------------------------------------------------------
500
-
501
27
  :ind a :N9 .
502
-
503
- # ----------------------------------------------------------------------
504
- # Proof for derived triple:
505
- # :ind a :I9 .
506
- # It holds because the following instance of the rule body is provable:
507
- # :ind a :N8 .
508
- # via the schematic forward rule:
509
- # {
510
- # ?X a :N8 .
511
- # } => {
512
- # ?X a :N9 .
513
- # ?X a :I9 .
514
- # ?X a :J9 .
515
- # } .
516
- # with substitution (on rule variables):
517
- # ?X = :ind
518
- # Therefore the derived triple above is entailed by the rules and facts.
519
- # ----------------------------------------------------------------------
520
-
521
28
  :ind a :I9 .
522
-
523
- # ----------------------------------------------------------------------
524
- # Proof for derived triple:
525
- # :ind a :J9 .
526
- # It holds because the following instance of the rule body is provable:
527
- # :ind a :N8 .
528
- # via the schematic forward rule:
529
- # {
530
- # ?X a :N8 .
531
- # } => {
532
- # ?X a :N9 .
533
- # ?X a :I9 .
534
- # ?X a :J9 .
535
- # } .
536
- # with substitution (on rule variables):
537
- # ?X = :ind
538
- # Therefore the derived triple above is entailed by the rules and facts.
539
- # ----------------------------------------------------------------------
540
-
541
29
  :ind a :J9 .
542
-
543
- # ----------------------------------------------------------------------
544
- # Proof for derived triple:
545
- # :ind a :N10 .
546
- # It holds because the following instance of the rule body is provable:
547
- # :ind a :N9 .
548
- # via the schematic forward rule:
549
- # {
550
- # ?X a :N9 .
551
- # } => {
552
- # ?X a :N10 .
553
- # ?X a :I10 .
554
- # ?X a :J10 .
555
- # } .
556
- # with substitution (on rule variables):
557
- # ?X = :ind
558
- # Therefore the derived triple above is entailed by the rules and facts.
559
- # ----------------------------------------------------------------------
560
-
561
30
  :ind a :N10 .
562
-
563
- # ----------------------------------------------------------------------
564
- # Proof for derived triple:
565
- # :ind a :I10 .
566
- # It holds because the following instance of the rule body is provable:
567
- # :ind a :N9 .
568
- # via the schematic forward rule:
569
- # {
570
- # ?X a :N9 .
571
- # } => {
572
- # ?X a :N10 .
573
- # ?X a :I10 .
574
- # ?X a :J10 .
575
- # } .
576
- # with substitution (on rule variables):
577
- # ?X = :ind
578
- # Therefore the derived triple above is entailed by the rules and facts.
579
- # ----------------------------------------------------------------------
580
-
581
31
  :ind a :I10 .
582
-
583
- # ----------------------------------------------------------------------
584
- # Proof for derived triple:
585
- # :ind a :J10 .
586
- # It holds because the following instance of the rule body is provable:
587
- # :ind a :N9 .
588
- # via the schematic forward rule:
589
- # {
590
- # ?X a :N9 .
591
- # } => {
592
- # ?X a :N10 .
593
- # ?X a :I10 .
594
- # ?X a :J10 .
595
- # } .
596
- # with substitution (on rule variables):
597
- # ?X = :ind
598
- # Therefore the derived triple above is entailed by the rules and facts.
599
- # ----------------------------------------------------------------------
600
-
601
32
  :ind a :J10 .
602
-
603
- # ----------------------------------------------------------------------
604
- # Proof for derived triple:
605
- # :ind a :A2 .
606
- # It holds because the following instance of the rule body is provable:
607
- # :ind a :N10 .
608
- # via the schematic forward rule:
609
- # {
610
- # ?X a :N10 .
611
- # } => {
612
- # ?X a :A2 .
613
- # } .
614
- # with substitution (on rule variables):
615
- # ?X = :ind
616
- # Therefore the derived triple above is entailed by the rules and facts.
617
- # ----------------------------------------------------------------------
618
-
619
33
  :ind a :A2 .
620
-
621
- # ----------------------------------------------------------------------
622
- # Proof for derived triple:
623
- # :test :is true .
624
- # It holds because the following instance of the rule body is provable:
625
- # :ind a :A2 .
626
- # via the schematic forward rule:
627
- # {
628
- # :ind a :A2 .
629
- # } => {
630
- # :test :is true .
631
- # } .
632
- # Therefore the derived triple above is entailed by the rules and facts.
633
- # ----------------------------------------------------------------------
634
-
635
34
  :test :is true .
636
-