eyeling 1.6.13 → 1.6.15

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (77) hide show
  1. package/README.md +8 -19
  2. package/examples/output/age.n3 +0 -17
  3. package/examples/output/alignment-demo.n3 +0 -572
  4. package/examples/output/backward.n3 +0 -15
  5. package/examples/output/basic-monadic.n3 +0 -105
  6. package/examples/output/brussels-brew-club.n3 +0 -476
  7. package/examples/output/cat-koko.n3 +0 -108
  8. package/examples/output/cobalt-kepler-kitchen.n3 +0 -7064
  9. package/examples/output/complex.n3 +0 -46
  10. package/examples/output/control-system.n3 +0 -75
  11. package/examples/output/cranberry-calculus.n3 +0 -1313
  12. package/examples/output/crypto-builtins-tests.n3 +0 -60
  13. package/examples/output/deep-taxonomy-10.n3 +0 -602
  14. package/examples/output/deep-taxonomy-100.n3 +1 -5733
  15. package/examples/output/deep-taxonomy-1000.n3 +1 -57033
  16. package/examples/output/deep-taxonomy-10000.n3 +1 -570033
  17. package/examples/output/derived-backward-rule-2.n3 +0 -58
  18. package/examples/output/derived-backward-rule.n3 +0 -44
  19. package/examples/output/derived-rule.n3 +0 -42
  20. package/examples/output/dijkstra.n3 +0 -297
  21. package/examples/output/dog.n3 +0 -30
  22. package/examples/output/drone-corridor-planner.n3 +0 -799
  23. package/examples/output/easter.n3 +0 -3570
  24. package/examples/output/equals.n3 +0 -15
  25. package/examples/output/ev-roundtrip-planner.n3 +0 -392
  26. package/examples/output/existential-rule.n3 +0 -34
  27. package/examples/output/expression-eval.n3 +0 -20
  28. package/examples/output/family-cousins.n3 +0 -636
  29. package/examples/output/fibonacci.n3 +0 -36
  30. package/examples/output/french-cities.n3 +0 -484
  31. package/examples/output/good-cobbler.n3 +0 -22
  32. package/examples/output/gps.n3 +0 -62
  33. package/examples/output/gray-code-counter.n3 +0 -17
  34. package/examples/output/hanoi.n3 +0 -17
  35. package/examples/output/jade-eigen-loom.n3 +0 -4690
  36. package/examples/output/json-pointer.n3 +0 -529
  37. package/examples/output/json-reconcile-vat.n3 +0 -12882
  38. package/examples/output/light-eaters.n3 +0 -311
  39. package/examples/output/list-builtins-tests.n3 +0 -167
  40. package/examples/output/list-iterate.n3 +0 -124
  41. package/examples/output/lldm.n3 +0 -960
  42. package/examples/output/log-collect-all-in.n3 +0 -117
  43. package/examples/output/log-for-all-in.n3 +0 -27
  44. package/examples/output/log-not-includes.n3 +0 -59
  45. package/examples/output/log-skolem.n3 +0 -17
  46. package/examples/output/log-uri.n3 +0 -42
  47. package/examples/output/math-builtins-tests.n3 +0 -4434
  48. package/examples/output/minimal-skos-alignment.n3 +0 -39
  49. package/examples/output/monkey.n3 +0 -36
  50. package/examples/output/odrl-trust.n3 +0 -46
  51. package/examples/output/oslo-steps-library-scholarly.n3 +0 -1260
  52. package/examples/output/oslo-steps-workflow-composition.n3 +0 -180
  53. package/examples/output/peano.n3 +0 -23
  54. package/examples/output/pi.n3 +0 -17
  55. package/examples/output/pillar.n3 +0 -32
  56. package/examples/output/polygon.n3 +0 -17
  57. package/examples/output/rdf-list.n3 +0 -28
  58. package/examples/output/reordering.n3 +0 -26
  59. package/examples/output/ruby-runge-workshop.n3 +0 -613
  60. package/examples/output/rule-matching.n3 +0 -26
  61. package/examples/output/saffron-slopeworks.n3 +0 -1447
  62. package/examples/output/self-referential.n3 +0 -81
  63. package/examples/output/similar.n3 +0 -15
  64. package/examples/output/snaf.n3 +0 -23
  65. package/examples/output/socrates.n3 +0 -21
  66. package/examples/output/spectral-week.n3 +0 -350
  67. package/examples/output/string-builtins-tests.n3 +0 -240
  68. package/examples/output/topaz-markov-mill.n3 +0 -4178
  69. package/examples/output/traffic-skos-aggregate.n3 +0 -3151
  70. package/examples/output/turing.n3 +0 -36
  71. package/examples/output/ultramarine-simpson-forge.n3 +0 -3873
  72. package/examples/output/witch.n3 +0 -107
  73. package/examples/output/zebra.n3 +0 -111
  74. package/eyeling.js +129 -25
  75. package/index.js +13 -6
  76. package/package.json +1 -1
  77. package/test/examples.test.js +1 -1
@@ -1,1335 +1,22 @@
1
1
  @prefix : <http://example.org/cranberry-calculus#> .
2
2
  @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
3
3
 
4
- # ----------------------------------------------------------------------
5
- # Proof for derived triple:
6
- # :VecA :dotWithVecB "12"^^xsd:decimal .
7
- # It holds because the following instance of the rule body is provable:
8
- # :VecA :x 3.0 .
9
- # :VecA :y 4.0 .
10
- # :VecB :x 4.0 .
11
- # :VecB :y 0.0 .
12
- # (3.0 4.0) math:product "12"^^xsd:decimal .
13
- # (4.0 0.0) math:product "0"^^xsd:decimal .
14
- # ("12"^^xsd:decimal "0"^^xsd:decimal) math:sum "12"^^xsd:decimal .
15
- # (3.0 2.0) math:exponentiation "9"^^xsd:decimal .
16
- # (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
17
- # ("9"^^xsd:decimal "16"^^xsd:decimal) math:sum "25"^^xsd:decimal .
18
- # ("25"^^xsd:decimal 0.5) math:exponentiation "5"^^xsd:decimal .
19
- # (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
20
- # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
21
- # ("16"^^xsd:decimal "0"^^xsd:decimal) math:sum "16"^^xsd:decimal .
22
- # ("16"^^xsd:decimal 0.5) math:exponentiation "4"^^xsd:decimal .
23
- # ("5"^^xsd:decimal "4"^^xsd:decimal) math:product "20"^^xsd:decimal .
24
- # ("12"^^xsd:decimal "20"^^xsd:decimal) math:quotient "0.6"^^xsd:decimal .
25
- # "0.6"^^xsd:decimal math:acos "0.9272952180016123"^^xsd:decimal .
26
- # "0.9272952180016123"^^xsd:decimal math:degrees "53.13010235415598"^^xsd:decimal .
27
- # via the schematic forward rule:
28
- # {
29
- # :VecA :x ?ax .
30
- # :VecA :y ?ay .
31
- # :VecB :x ?bx .
32
- # :VecB :y ?by .
33
- # (?ax ?bx) math:product ?axbx .
34
- # (?ay ?by) math:product ?ayby .
35
- # (?axbx ?ayby) math:sum ?dot .
36
- # (?ax 2.0) math:exponentiation ?ax2 .
37
- # (?ay 2.0) math:exponentiation ?ay2 .
38
- # (?ax2 ?ay2) math:sum ?a2 .
39
- # (?a2 0.5) math:exponentiation ?aNorm .
40
- # (?bx 2.0) math:exponentiation ?bx2 .
41
- # (?by 2.0) math:exponentiation ?by2 .
42
- # (?bx2 ?by2) math:sum ?b2 .
43
- # (?b2 0.5) math:exponentiation ?bNorm .
44
- # (?aNorm ?bNorm) math:product ?den .
45
- # (?dot ?den) math:quotient ?cosTheta .
46
- # ?cosTheta math:acos ?thetaRad .
47
- # ?thetaRad math:degrees ?thetaDeg .
48
- # } => {
49
- # :VecA :dotWithVecB ?dot .
50
- # _:b2 :radians ?thetaRad .
51
- # _:b2 :degrees ?thetaDeg .
52
- # :VecA :angleToVecB _:b2 .
53
- # } .
54
- # with substitution (on rule variables):
55
- # ?a2 = "25"^^xsd:decimal
56
- # ?aNorm = "5"^^xsd:decimal
57
- # ?ax = 3.0
58
- # ?ax2 = "9"^^xsd:decimal
59
- # ?axbx = "12"^^xsd:decimal
60
- # ?ay = 4.0
61
- # ?ay2 = "16"^^xsd:decimal
62
- # ?ayby = "0"^^xsd:decimal
63
- # ?b2 = "16"^^xsd:decimal
64
- # ?bNorm = "4"^^xsd:decimal
65
- # ?bx = 4.0
66
- # ?bx2 = "16"^^xsd:decimal
67
- # ?by = 0.0
68
- # ?by2 = "0"^^xsd:decimal
69
- # ?cosTheta = "0.6"^^xsd:decimal
70
- # ?den = "20"^^xsd:decimal
71
- # ?dot = "12"^^xsd:decimal
72
- # ?thetaDeg = "53.13010235415598"^^xsd:decimal
73
- # ?thetaRad = "0.9272952180016123"^^xsd:decimal
74
- # Therefore the derived triple above is entailed by the rules and facts.
75
- # ----------------------------------------------------------------------
76
-
77
4
  :VecA :dotWithVecB "12"^^xsd:decimal .
78
-
79
- # ----------------------------------------------------------------------
80
- # Proof for derived triple:
81
- # _:sk_0 :radians "0.9272952180016123"^^xsd:decimal .
82
- # It holds because the following instance of the rule body is provable:
83
- # :VecA :x 3.0 .
84
- # :VecA :y 4.0 .
85
- # :VecB :x 4.0 .
86
- # :VecB :y 0.0 .
87
- # (3.0 4.0) math:product "12"^^xsd:decimal .
88
- # (4.0 0.0) math:product "0"^^xsd:decimal .
89
- # ("12"^^xsd:decimal "0"^^xsd:decimal) math:sum "12"^^xsd:decimal .
90
- # (3.0 2.0) math:exponentiation "9"^^xsd:decimal .
91
- # (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
92
- # ("9"^^xsd:decimal "16"^^xsd:decimal) math:sum "25"^^xsd:decimal .
93
- # ("25"^^xsd:decimal 0.5) math:exponentiation "5"^^xsd:decimal .
94
- # (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
95
- # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
96
- # ("16"^^xsd:decimal "0"^^xsd:decimal) math:sum "16"^^xsd:decimal .
97
- # ("16"^^xsd:decimal 0.5) math:exponentiation "4"^^xsd:decimal .
98
- # ("5"^^xsd:decimal "4"^^xsd:decimal) math:product "20"^^xsd:decimal .
99
- # ("12"^^xsd:decimal "20"^^xsd:decimal) math:quotient "0.6"^^xsd:decimal .
100
- # "0.6"^^xsd:decimal math:acos "0.9272952180016123"^^xsd:decimal .
101
- # "0.9272952180016123"^^xsd:decimal math:degrees "53.13010235415598"^^xsd:decimal .
102
- # via the schematic forward rule:
103
- # {
104
- # :VecA :x ?ax .
105
- # :VecA :y ?ay .
106
- # :VecB :x ?bx .
107
- # :VecB :y ?by .
108
- # (?ax ?bx) math:product ?axbx .
109
- # (?ay ?by) math:product ?ayby .
110
- # (?axbx ?ayby) math:sum ?dot .
111
- # (?ax 2.0) math:exponentiation ?ax2 .
112
- # (?ay 2.0) math:exponentiation ?ay2 .
113
- # (?ax2 ?ay2) math:sum ?a2 .
114
- # (?a2 0.5) math:exponentiation ?aNorm .
115
- # (?bx 2.0) math:exponentiation ?bx2 .
116
- # (?by 2.0) math:exponentiation ?by2 .
117
- # (?bx2 ?by2) math:sum ?b2 .
118
- # (?b2 0.5) math:exponentiation ?bNorm .
119
- # (?aNorm ?bNorm) math:product ?den .
120
- # (?dot ?den) math:quotient ?cosTheta .
121
- # ?cosTheta math:acos ?thetaRad .
122
- # ?thetaRad math:degrees ?thetaDeg .
123
- # } => {
124
- # :VecA :dotWithVecB ?dot .
125
- # _:b2 :radians ?thetaRad .
126
- # _:b2 :degrees ?thetaDeg .
127
- # :VecA :angleToVecB _:b2 .
128
- # } .
129
- # with substitution (on rule variables):
130
- # ?a2 = "25"^^xsd:decimal
131
- # ?aNorm = "5"^^xsd:decimal
132
- # ?ax = 3.0
133
- # ?ax2 = "9"^^xsd:decimal
134
- # ?axbx = "12"^^xsd:decimal
135
- # ?ay = 4.0
136
- # ?ay2 = "16"^^xsd:decimal
137
- # ?ayby = "0"^^xsd:decimal
138
- # ?b2 = "16"^^xsd:decimal
139
- # ?bNorm = "4"^^xsd:decimal
140
- # ?bx = 4.0
141
- # ?bx2 = "16"^^xsd:decimal
142
- # ?by = 0.0
143
- # ?by2 = "0"^^xsd:decimal
144
- # ?cosTheta = "0.6"^^xsd:decimal
145
- # ?den = "20"^^xsd:decimal
146
- # ?dot = "12"^^xsd:decimal
147
- # ?thetaDeg = "53.13010235415598"^^xsd:decimal
148
- # ?thetaRad = "0.9272952180016123"^^xsd:decimal
149
- # Therefore the derived triple above is entailed by the rules and facts.
150
- # ----------------------------------------------------------------------
151
-
152
5
  _:sk_0 :radians "0.9272952180016123"^^xsd:decimal .
153
-
154
- # ----------------------------------------------------------------------
155
- # Proof for derived triple:
156
- # _:sk_0 :degrees "53.13010235415598"^^xsd:decimal .
157
- # It holds because the following instance of the rule body is provable:
158
- # :VecA :x 3.0 .
159
- # :VecA :y 4.0 .
160
- # :VecB :x 4.0 .
161
- # :VecB :y 0.0 .
162
- # (3.0 4.0) math:product "12"^^xsd:decimal .
163
- # (4.0 0.0) math:product "0"^^xsd:decimal .
164
- # ("12"^^xsd:decimal "0"^^xsd:decimal) math:sum "12"^^xsd:decimal .
165
- # (3.0 2.0) math:exponentiation "9"^^xsd:decimal .
166
- # (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
167
- # ("9"^^xsd:decimal "16"^^xsd:decimal) math:sum "25"^^xsd:decimal .
168
- # ("25"^^xsd:decimal 0.5) math:exponentiation "5"^^xsd:decimal .
169
- # (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
170
- # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
171
- # ("16"^^xsd:decimal "0"^^xsd:decimal) math:sum "16"^^xsd:decimal .
172
- # ("16"^^xsd:decimal 0.5) math:exponentiation "4"^^xsd:decimal .
173
- # ("5"^^xsd:decimal "4"^^xsd:decimal) math:product "20"^^xsd:decimal .
174
- # ("12"^^xsd:decimal "20"^^xsd:decimal) math:quotient "0.6"^^xsd:decimal .
175
- # "0.6"^^xsd:decimal math:acos "0.9272952180016123"^^xsd:decimal .
176
- # "0.9272952180016123"^^xsd:decimal math:degrees "53.13010235415598"^^xsd:decimal .
177
- # via the schematic forward rule:
178
- # {
179
- # :VecA :x ?ax .
180
- # :VecA :y ?ay .
181
- # :VecB :x ?bx .
182
- # :VecB :y ?by .
183
- # (?ax ?bx) math:product ?axbx .
184
- # (?ay ?by) math:product ?ayby .
185
- # (?axbx ?ayby) math:sum ?dot .
186
- # (?ax 2.0) math:exponentiation ?ax2 .
187
- # (?ay 2.0) math:exponentiation ?ay2 .
188
- # (?ax2 ?ay2) math:sum ?a2 .
189
- # (?a2 0.5) math:exponentiation ?aNorm .
190
- # (?bx 2.0) math:exponentiation ?bx2 .
191
- # (?by 2.0) math:exponentiation ?by2 .
192
- # (?bx2 ?by2) math:sum ?b2 .
193
- # (?b2 0.5) math:exponentiation ?bNorm .
194
- # (?aNorm ?bNorm) math:product ?den .
195
- # (?dot ?den) math:quotient ?cosTheta .
196
- # ?cosTheta math:acos ?thetaRad .
197
- # ?thetaRad math:degrees ?thetaDeg .
198
- # } => {
199
- # :VecA :dotWithVecB ?dot .
200
- # _:b2 :radians ?thetaRad .
201
- # _:b2 :degrees ?thetaDeg .
202
- # :VecA :angleToVecB _:b2 .
203
- # } .
204
- # with substitution (on rule variables):
205
- # ?a2 = "25"^^xsd:decimal
206
- # ?aNorm = "5"^^xsd:decimal
207
- # ?ax = 3.0
208
- # ?ax2 = "9"^^xsd:decimal
209
- # ?axbx = "12"^^xsd:decimal
210
- # ?ay = 4.0
211
- # ?ay2 = "16"^^xsd:decimal
212
- # ?ayby = "0"^^xsd:decimal
213
- # ?b2 = "16"^^xsd:decimal
214
- # ?bNorm = "4"^^xsd:decimal
215
- # ?bx = 4.0
216
- # ?bx2 = "16"^^xsd:decimal
217
- # ?by = 0.0
218
- # ?by2 = "0"^^xsd:decimal
219
- # ?cosTheta = "0.6"^^xsd:decimal
220
- # ?den = "20"^^xsd:decimal
221
- # ?dot = "12"^^xsd:decimal
222
- # ?thetaDeg = "53.13010235415598"^^xsd:decimal
223
- # ?thetaRad = "0.9272952180016123"^^xsd:decimal
224
- # Therefore the derived triple above is entailed by the rules and facts.
225
- # ----------------------------------------------------------------------
226
-
227
6
  _:sk_0 :degrees "53.13010235415598"^^xsd:decimal .
228
-
229
- # ----------------------------------------------------------------------
230
- # Proof for derived triple:
231
- # :VecA :angleToVecB _:sk_0 .
232
- # It holds because the following instance of the rule body is provable:
233
- # :VecA :x 3.0 .
234
- # :VecA :y 4.0 .
235
- # :VecB :x 4.0 .
236
- # :VecB :y 0.0 .
237
- # (3.0 4.0) math:product "12"^^xsd:decimal .
238
- # (4.0 0.0) math:product "0"^^xsd:decimal .
239
- # ("12"^^xsd:decimal "0"^^xsd:decimal) math:sum "12"^^xsd:decimal .
240
- # (3.0 2.0) math:exponentiation "9"^^xsd:decimal .
241
- # (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
242
- # ("9"^^xsd:decimal "16"^^xsd:decimal) math:sum "25"^^xsd:decimal .
243
- # ("25"^^xsd:decimal 0.5) math:exponentiation "5"^^xsd:decimal .
244
- # (4.0 2.0) math:exponentiation "16"^^xsd:decimal .
245
- # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
246
- # ("16"^^xsd:decimal "0"^^xsd:decimal) math:sum "16"^^xsd:decimal .
247
- # ("16"^^xsd:decimal 0.5) math:exponentiation "4"^^xsd:decimal .
248
- # ("5"^^xsd:decimal "4"^^xsd:decimal) math:product "20"^^xsd:decimal .
249
- # ("12"^^xsd:decimal "20"^^xsd:decimal) math:quotient "0.6"^^xsd:decimal .
250
- # "0.6"^^xsd:decimal math:acos "0.9272952180016123"^^xsd:decimal .
251
- # "0.9272952180016123"^^xsd:decimal math:degrees "53.13010235415598"^^xsd:decimal .
252
- # via the schematic forward rule:
253
- # {
254
- # :VecA :x ?ax .
255
- # :VecA :y ?ay .
256
- # :VecB :x ?bx .
257
- # :VecB :y ?by .
258
- # (?ax ?bx) math:product ?axbx .
259
- # (?ay ?by) math:product ?ayby .
260
- # (?axbx ?ayby) math:sum ?dot .
261
- # (?ax 2.0) math:exponentiation ?ax2 .
262
- # (?ay 2.0) math:exponentiation ?ay2 .
263
- # (?ax2 ?ay2) math:sum ?a2 .
264
- # (?a2 0.5) math:exponentiation ?aNorm .
265
- # (?bx 2.0) math:exponentiation ?bx2 .
266
- # (?by 2.0) math:exponentiation ?by2 .
267
- # (?bx2 ?by2) math:sum ?b2 .
268
- # (?b2 0.5) math:exponentiation ?bNorm .
269
- # (?aNorm ?bNorm) math:product ?den .
270
- # (?dot ?den) math:quotient ?cosTheta .
271
- # ?cosTheta math:acos ?thetaRad .
272
- # ?thetaRad math:degrees ?thetaDeg .
273
- # } => {
274
- # :VecA :dotWithVecB ?dot .
275
- # _:b2 :radians ?thetaRad .
276
- # _:b2 :degrees ?thetaDeg .
277
- # :VecA :angleToVecB _:b2 .
278
- # } .
279
- # with substitution (on rule variables):
280
- # ?a2 = "25"^^xsd:decimal
281
- # ?aNorm = "5"^^xsd:decimal
282
- # ?ax = 3.0
283
- # ?ax2 = "9"^^xsd:decimal
284
- # ?axbx = "12"^^xsd:decimal
285
- # ?ay = 4.0
286
- # ?ay2 = "16"^^xsd:decimal
287
- # ?ayby = "0"^^xsd:decimal
288
- # ?b2 = "16"^^xsd:decimal
289
- # ?bNorm = "4"^^xsd:decimal
290
- # ?bx = 4.0
291
- # ?bx2 = "16"^^xsd:decimal
292
- # ?by = 0.0
293
- # ?by2 = "0"^^xsd:decimal
294
- # ?cosTheta = "0.6"^^xsd:decimal
295
- # ?den = "20"^^xsd:decimal
296
- # ?dot = "12"^^xsd:decimal
297
- # ?thetaDeg = "53.13010235415598"^^xsd:decimal
298
- # ?thetaRad = "0.9272952180016123"^^xsd:decimal
299
- # Therefore the derived triple above is entailed by the rules and facts.
300
- # ----------------------------------------------------------------------
301
-
302
7
  :VecA :angleToVecB _:sk_0 .
303
-
304
- # ----------------------------------------------------------------------
305
- # Proof for derived triple:
306
- # :Shot1 :vx "21.213203435596427"^^xsd:decimal .
307
- # It holds because the following instance of the rule body is provable:
308
- # :Shot1 :speed 30.0 .
309
- # :Shot1 :angleRad 0.7853981633974483 .
310
- # :Shot1 :g 9.81 .
311
- # :Shot1 :tSample 2.5 .
312
- # 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
313
- # 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
314
- # (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
315
- # (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
316
- # (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
317
- # ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
318
- # ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
319
- # ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
320
- # (2.0 9.81) math:product "19.62"^^xsd:decimal .
321
- # ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
322
- # ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
323
- # ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
324
- # (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
325
- # (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
326
- # (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
327
- # ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
328
- # via the schematic forward rule:
329
- # {
330
- # :Shot1 :speed ?v .
331
- # :Shot1 :angleRad ?theta .
332
- # :Shot1 :g ?g .
333
- # :Shot1 :tSample ?t .
334
- # ?theta math:sin ?sinT .
335
- # ?theta math:cos ?cosT .
336
- # (?v ?cosT) math:product ?vx .
337
- # (?v ?sinT) math:product ?vy .
338
- # (2.0 ?vy) math:product ?twoVy .
339
- # (?twoVy ?g) math:quotient ?tFlight .
340
- # (?vx ?tFlight) math:product ?range .
341
- # (?vy 2.0) math:exponentiation ?vy2 .
342
- # (2.0 ?g) math:product ?twoG .
343
- # (?vy2 ?twoG) math:quotient ?hMax .
344
- # (?vx ?t) math:product ?xAtT .
345
- # (?vy ?t) math:product ?vy_t .
346
- # (?t 2.0) math:exponentiation ?t2 .
347
- # (?g ?t2) math:product ?g_t2 .
348
- # (0.5 ?g_t2) math:product ?half_g_t2 .
349
- # (?vy_t ?half_g_t2) math:difference ?yAtT .
350
- # } => {
351
- # :Shot1 :vx ?vx .
352
- # :Shot1 :vy ?vy .
353
- # :Shot1 :timeOfFlight ?tFlight .
354
- # :Shot1 :range ?range .
355
- # :Shot1 :maxHeight ?hMax .
356
- # _:b3 :t ?t .
357
- # _:b3 :x ?xAtT .
358
- # _:b3 :y ?yAtT .
359
- # :Shot1 :positionAtSample _:b3 .
360
- # } .
361
- # with substitution (on rule variables):
362
- # ?cosT = "0.7071067811865476"^^xsd:decimal
363
- # ?g = 9.81
364
- # ?g_t2 = "61.3125"^^xsd:decimal
365
- # ?hMax = "22.935779816513755"^^xsd:decimal
366
- # ?half_g_t2 = "30.65625"^^xsd:decimal
367
- # ?range = "91.74311926605502"^^xsd:decimal
368
- # ?sinT = "0.7071067811865475"^^xsd:decimal
369
- # ?t = 2.5
370
- # ?t2 = "6.25"^^xsd:decimal
371
- # ?tFlight = "4.324812117348913"^^xsd:decimal
372
- # ?theta = 0.7853981633974483
373
- # ?twoG = "19.62"^^xsd:decimal
374
- # ?twoVy = "42.426406871192846"^^xsd:decimal
375
- # ?v = 30.0
376
- # ?vx = "21.213203435596427"^^xsd:decimal
377
- # ?vy = "21.213203435596423"^^xsd:decimal
378
- # ?vy2 = "449.9999999999999"^^xsd:decimal
379
- # ?vy_t = "53.03300858899106"^^xsd:decimal
380
- # ?xAtT = "53.033008588991066"^^xsd:decimal
381
- # ?yAtT = "22.37675858899106"^^xsd:decimal
382
- # Therefore the derived triple above is entailed by the rules and facts.
383
- # ----------------------------------------------------------------------
384
-
385
8
  :Shot1 :vx "21.213203435596427"^^xsd:decimal .
386
-
387
- # ----------------------------------------------------------------------
388
- # Proof for derived triple:
389
- # :Shot1 :vy "21.213203435596423"^^xsd:decimal .
390
- # It holds because the following instance of the rule body is provable:
391
- # :Shot1 :speed 30.0 .
392
- # :Shot1 :angleRad 0.7853981633974483 .
393
- # :Shot1 :g 9.81 .
394
- # :Shot1 :tSample 2.5 .
395
- # 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
396
- # 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
397
- # (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
398
- # (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
399
- # (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
400
- # ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
401
- # ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
402
- # ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
403
- # (2.0 9.81) math:product "19.62"^^xsd:decimal .
404
- # ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
405
- # ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
406
- # ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
407
- # (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
408
- # (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
409
- # (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
410
- # ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
411
- # via the schematic forward rule:
412
- # {
413
- # :Shot1 :speed ?v .
414
- # :Shot1 :angleRad ?theta .
415
- # :Shot1 :g ?g .
416
- # :Shot1 :tSample ?t .
417
- # ?theta math:sin ?sinT .
418
- # ?theta math:cos ?cosT .
419
- # (?v ?cosT) math:product ?vx .
420
- # (?v ?sinT) math:product ?vy .
421
- # (2.0 ?vy) math:product ?twoVy .
422
- # (?twoVy ?g) math:quotient ?tFlight .
423
- # (?vx ?tFlight) math:product ?range .
424
- # (?vy 2.0) math:exponentiation ?vy2 .
425
- # (2.0 ?g) math:product ?twoG .
426
- # (?vy2 ?twoG) math:quotient ?hMax .
427
- # (?vx ?t) math:product ?xAtT .
428
- # (?vy ?t) math:product ?vy_t .
429
- # (?t 2.0) math:exponentiation ?t2 .
430
- # (?g ?t2) math:product ?g_t2 .
431
- # (0.5 ?g_t2) math:product ?half_g_t2 .
432
- # (?vy_t ?half_g_t2) math:difference ?yAtT .
433
- # } => {
434
- # :Shot1 :vx ?vx .
435
- # :Shot1 :vy ?vy .
436
- # :Shot1 :timeOfFlight ?tFlight .
437
- # :Shot1 :range ?range .
438
- # :Shot1 :maxHeight ?hMax .
439
- # _:b3 :t ?t .
440
- # _:b3 :x ?xAtT .
441
- # _:b3 :y ?yAtT .
442
- # :Shot1 :positionAtSample _:b3 .
443
- # } .
444
- # with substitution (on rule variables):
445
- # ?cosT = "0.7071067811865476"^^xsd:decimal
446
- # ?g = 9.81
447
- # ?g_t2 = "61.3125"^^xsd:decimal
448
- # ?hMax = "22.935779816513755"^^xsd:decimal
449
- # ?half_g_t2 = "30.65625"^^xsd:decimal
450
- # ?range = "91.74311926605502"^^xsd:decimal
451
- # ?sinT = "0.7071067811865475"^^xsd:decimal
452
- # ?t = 2.5
453
- # ?t2 = "6.25"^^xsd:decimal
454
- # ?tFlight = "4.324812117348913"^^xsd:decimal
455
- # ?theta = 0.7853981633974483
456
- # ?twoG = "19.62"^^xsd:decimal
457
- # ?twoVy = "42.426406871192846"^^xsd:decimal
458
- # ?v = 30.0
459
- # ?vx = "21.213203435596427"^^xsd:decimal
460
- # ?vy = "21.213203435596423"^^xsd:decimal
461
- # ?vy2 = "449.9999999999999"^^xsd:decimal
462
- # ?vy_t = "53.03300858899106"^^xsd:decimal
463
- # ?xAtT = "53.033008588991066"^^xsd:decimal
464
- # ?yAtT = "22.37675858899106"^^xsd:decimal
465
- # Therefore the derived triple above is entailed by the rules and facts.
466
- # ----------------------------------------------------------------------
467
-
468
9
  :Shot1 :vy "21.213203435596423"^^xsd:decimal .
469
-
470
- # ----------------------------------------------------------------------
471
- # Proof for derived triple:
472
- # :Shot1 :timeOfFlight "4.324812117348913"^^xsd:decimal .
473
- # It holds because the following instance of the rule body is provable:
474
- # :Shot1 :speed 30.0 .
475
- # :Shot1 :angleRad 0.7853981633974483 .
476
- # :Shot1 :g 9.81 .
477
- # :Shot1 :tSample 2.5 .
478
- # 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
479
- # 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
480
- # (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
481
- # (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
482
- # (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
483
- # ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
484
- # ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
485
- # ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
486
- # (2.0 9.81) math:product "19.62"^^xsd:decimal .
487
- # ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
488
- # ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
489
- # ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
490
- # (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
491
- # (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
492
- # (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
493
- # ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
494
- # via the schematic forward rule:
495
- # {
496
- # :Shot1 :speed ?v .
497
- # :Shot1 :angleRad ?theta .
498
- # :Shot1 :g ?g .
499
- # :Shot1 :tSample ?t .
500
- # ?theta math:sin ?sinT .
501
- # ?theta math:cos ?cosT .
502
- # (?v ?cosT) math:product ?vx .
503
- # (?v ?sinT) math:product ?vy .
504
- # (2.0 ?vy) math:product ?twoVy .
505
- # (?twoVy ?g) math:quotient ?tFlight .
506
- # (?vx ?tFlight) math:product ?range .
507
- # (?vy 2.0) math:exponentiation ?vy2 .
508
- # (2.0 ?g) math:product ?twoG .
509
- # (?vy2 ?twoG) math:quotient ?hMax .
510
- # (?vx ?t) math:product ?xAtT .
511
- # (?vy ?t) math:product ?vy_t .
512
- # (?t 2.0) math:exponentiation ?t2 .
513
- # (?g ?t2) math:product ?g_t2 .
514
- # (0.5 ?g_t2) math:product ?half_g_t2 .
515
- # (?vy_t ?half_g_t2) math:difference ?yAtT .
516
- # } => {
517
- # :Shot1 :vx ?vx .
518
- # :Shot1 :vy ?vy .
519
- # :Shot1 :timeOfFlight ?tFlight .
520
- # :Shot1 :range ?range .
521
- # :Shot1 :maxHeight ?hMax .
522
- # _:b3 :t ?t .
523
- # _:b3 :x ?xAtT .
524
- # _:b3 :y ?yAtT .
525
- # :Shot1 :positionAtSample _:b3 .
526
- # } .
527
- # with substitution (on rule variables):
528
- # ?cosT = "0.7071067811865476"^^xsd:decimal
529
- # ?g = 9.81
530
- # ?g_t2 = "61.3125"^^xsd:decimal
531
- # ?hMax = "22.935779816513755"^^xsd:decimal
532
- # ?half_g_t2 = "30.65625"^^xsd:decimal
533
- # ?range = "91.74311926605502"^^xsd:decimal
534
- # ?sinT = "0.7071067811865475"^^xsd:decimal
535
- # ?t = 2.5
536
- # ?t2 = "6.25"^^xsd:decimal
537
- # ?tFlight = "4.324812117348913"^^xsd:decimal
538
- # ?theta = 0.7853981633974483
539
- # ?twoG = "19.62"^^xsd:decimal
540
- # ?twoVy = "42.426406871192846"^^xsd:decimal
541
- # ?v = 30.0
542
- # ?vx = "21.213203435596427"^^xsd:decimal
543
- # ?vy = "21.213203435596423"^^xsd:decimal
544
- # ?vy2 = "449.9999999999999"^^xsd:decimal
545
- # ?vy_t = "53.03300858899106"^^xsd:decimal
546
- # ?xAtT = "53.033008588991066"^^xsd:decimal
547
- # ?yAtT = "22.37675858899106"^^xsd:decimal
548
- # Therefore the derived triple above is entailed by the rules and facts.
549
- # ----------------------------------------------------------------------
550
-
551
10
  :Shot1 :timeOfFlight "4.324812117348913"^^xsd:decimal .
552
-
553
- # ----------------------------------------------------------------------
554
- # Proof for derived triple:
555
- # :Shot1 :range "91.74311926605502"^^xsd:decimal .
556
- # It holds because the following instance of the rule body is provable:
557
- # :Shot1 :speed 30.0 .
558
- # :Shot1 :angleRad 0.7853981633974483 .
559
- # :Shot1 :g 9.81 .
560
- # :Shot1 :tSample 2.5 .
561
- # 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
562
- # 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
563
- # (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
564
- # (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
565
- # (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
566
- # ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
567
- # ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
568
- # ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
569
- # (2.0 9.81) math:product "19.62"^^xsd:decimal .
570
- # ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
571
- # ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
572
- # ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
573
- # (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
574
- # (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
575
- # (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
576
- # ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
577
- # via the schematic forward rule:
578
- # {
579
- # :Shot1 :speed ?v .
580
- # :Shot1 :angleRad ?theta .
581
- # :Shot1 :g ?g .
582
- # :Shot1 :tSample ?t .
583
- # ?theta math:sin ?sinT .
584
- # ?theta math:cos ?cosT .
585
- # (?v ?cosT) math:product ?vx .
586
- # (?v ?sinT) math:product ?vy .
587
- # (2.0 ?vy) math:product ?twoVy .
588
- # (?twoVy ?g) math:quotient ?tFlight .
589
- # (?vx ?tFlight) math:product ?range .
590
- # (?vy 2.0) math:exponentiation ?vy2 .
591
- # (2.0 ?g) math:product ?twoG .
592
- # (?vy2 ?twoG) math:quotient ?hMax .
593
- # (?vx ?t) math:product ?xAtT .
594
- # (?vy ?t) math:product ?vy_t .
595
- # (?t 2.0) math:exponentiation ?t2 .
596
- # (?g ?t2) math:product ?g_t2 .
597
- # (0.5 ?g_t2) math:product ?half_g_t2 .
598
- # (?vy_t ?half_g_t2) math:difference ?yAtT .
599
- # } => {
600
- # :Shot1 :vx ?vx .
601
- # :Shot1 :vy ?vy .
602
- # :Shot1 :timeOfFlight ?tFlight .
603
- # :Shot1 :range ?range .
604
- # :Shot1 :maxHeight ?hMax .
605
- # _:b3 :t ?t .
606
- # _:b3 :x ?xAtT .
607
- # _:b3 :y ?yAtT .
608
- # :Shot1 :positionAtSample _:b3 .
609
- # } .
610
- # with substitution (on rule variables):
611
- # ?cosT = "0.7071067811865476"^^xsd:decimal
612
- # ?g = 9.81
613
- # ?g_t2 = "61.3125"^^xsd:decimal
614
- # ?hMax = "22.935779816513755"^^xsd:decimal
615
- # ?half_g_t2 = "30.65625"^^xsd:decimal
616
- # ?range = "91.74311926605502"^^xsd:decimal
617
- # ?sinT = "0.7071067811865475"^^xsd:decimal
618
- # ?t = 2.5
619
- # ?t2 = "6.25"^^xsd:decimal
620
- # ?tFlight = "4.324812117348913"^^xsd:decimal
621
- # ?theta = 0.7853981633974483
622
- # ?twoG = "19.62"^^xsd:decimal
623
- # ?twoVy = "42.426406871192846"^^xsd:decimal
624
- # ?v = 30.0
625
- # ?vx = "21.213203435596427"^^xsd:decimal
626
- # ?vy = "21.213203435596423"^^xsd:decimal
627
- # ?vy2 = "449.9999999999999"^^xsd:decimal
628
- # ?vy_t = "53.03300858899106"^^xsd:decimal
629
- # ?xAtT = "53.033008588991066"^^xsd:decimal
630
- # ?yAtT = "22.37675858899106"^^xsd:decimal
631
- # Therefore the derived triple above is entailed by the rules and facts.
632
- # ----------------------------------------------------------------------
633
-
634
11
  :Shot1 :range "91.74311926605502"^^xsd:decimal .
635
-
636
- # ----------------------------------------------------------------------
637
- # Proof for derived triple:
638
- # :Shot1 :maxHeight "22.935779816513755"^^xsd:decimal .
639
- # It holds because the following instance of the rule body is provable:
640
- # :Shot1 :speed 30.0 .
641
- # :Shot1 :angleRad 0.7853981633974483 .
642
- # :Shot1 :g 9.81 .
643
- # :Shot1 :tSample 2.5 .
644
- # 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
645
- # 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
646
- # (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
647
- # (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
648
- # (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
649
- # ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
650
- # ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
651
- # ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
652
- # (2.0 9.81) math:product "19.62"^^xsd:decimal .
653
- # ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
654
- # ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
655
- # ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
656
- # (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
657
- # (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
658
- # (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
659
- # ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
660
- # via the schematic forward rule:
661
- # {
662
- # :Shot1 :speed ?v .
663
- # :Shot1 :angleRad ?theta .
664
- # :Shot1 :g ?g .
665
- # :Shot1 :tSample ?t .
666
- # ?theta math:sin ?sinT .
667
- # ?theta math:cos ?cosT .
668
- # (?v ?cosT) math:product ?vx .
669
- # (?v ?sinT) math:product ?vy .
670
- # (2.0 ?vy) math:product ?twoVy .
671
- # (?twoVy ?g) math:quotient ?tFlight .
672
- # (?vx ?tFlight) math:product ?range .
673
- # (?vy 2.0) math:exponentiation ?vy2 .
674
- # (2.0 ?g) math:product ?twoG .
675
- # (?vy2 ?twoG) math:quotient ?hMax .
676
- # (?vx ?t) math:product ?xAtT .
677
- # (?vy ?t) math:product ?vy_t .
678
- # (?t 2.0) math:exponentiation ?t2 .
679
- # (?g ?t2) math:product ?g_t2 .
680
- # (0.5 ?g_t2) math:product ?half_g_t2 .
681
- # (?vy_t ?half_g_t2) math:difference ?yAtT .
682
- # } => {
683
- # :Shot1 :vx ?vx .
684
- # :Shot1 :vy ?vy .
685
- # :Shot1 :timeOfFlight ?tFlight .
686
- # :Shot1 :range ?range .
687
- # :Shot1 :maxHeight ?hMax .
688
- # _:b3 :t ?t .
689
- # _:b3 :x ?xAtT .
690
- # _:b3 :y ?yAtT .
691
- # :Shot1 :positionAtSample _:b3 .
692
- # } .
693
- # with substitution (on rule variables):
694
- # ?cosT = "0.7071067811865476"^^xsd:decimal
695
- # ?g = 9.81
696
- # ?g_t2 = "61.3125"^^xsd:decimal
697
- # ?hMax = "22.935779816513755"^^xsd:decimal
698
- # ?half_g_t2 = "30.65625"^^xsd:decimal
699
- # ?range = "91.74311926605502"^^xsd:decimal
700
- # ?sinT = "0.7071067811865475"^^xsd:decimal
701
- # ?t = 2.5
702
- # ?t2 = "6.25"^^xsd:decimal
703
- # ?tFlight = "4.324812117348913"^^xsd:decimal
704
- # ?theta = 0.7853981633974483
705
- # ?twoG = "19.62"^^xsd:decimal
706
- # ?twoVy = "42.426406871192846"^^xsd:decimal
707
- # ?v = 30.0
708
- # ?vx = "21.213203435596427"^^xsd:decimal
709
- # ?vy = "21.213203435596423"^^xsd:decimal
710
- # ?vy2 = "449.9999999999999"^^xsd:decimal
711
- # ?vy_t = "53.03300858899106"^^xsd:decimal
712
- # ?xAtT = "53.033008588991066"^^xsd:decimal
713
- # ?yAtT = "22.37675858899106"^^xsd:decimal
714
- # Therefore the derived triple above is entailed by the rules and facts.
715
- # ----------------------------------------------------------------------
716
-
717
12
  :Shot1 :maxHeight "22.935779816513755"^^xsd:decimal .
718
-
719
- # ----------------------------------------------------------------------
720
- # Proof for derived triple:
721
- # _:sk_1 :t 2.5 .
722
- # It holds because the following instance of the rule body is provable:
723
- # :Shot1 :speed 30.0 .
724
- # :Shot1 :angleRad 0.7853981633974483 .
725
- # :Shot1 :g 9.81 .
726
- # :Shot1 :tSample 2.5 .
727
- # 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
728
- # 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
729
- # (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
730
- # (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
731
- # (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
732
- # ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
733
- # ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
734
- # ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
735
- # (2.0 9.81) math:product "19.62"^^xsd:decimal .
736
- # ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
737
- # ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
738
- # ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
739
- # (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
740
- # (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
741
- # (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
742
- # ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
743
- # via the schematic forward rule:
744
- # {
745
- # :Shot1 :speed ?v .
746
- # :Shot1 :angleRad ?theta .
747
- # :Shot1 :g ?g .
748
- # :Shot1 :tSample ?t .
749
- # ?theta math:sin ?sinT .
750
- # ?theta math:cos ?cosT .
751
- # (?v ?cosT) math:product ?vx .
752
- # (?v ?sinT) math:product ?vy .
753
- # (2.0 ?vy) math:product ?twoVy .
754
- # (?twoVy ?g) math:quotient ?tFlight .
755
- # (?vx ?tFlight) math:product ?range .
756
- # (?vy 2.0) math:exponentiation ?vy2 .
757
- # (2.0 ?g) math:product ?twoG .
758
- # (?vy2 ?twoG) math:quotient ?hMax .
759
- # (?vx ?t) math:product ?xAtT .
760
- # (?vy ?t) math:product ?vy_t .
761
- # (?t 2.0) math:exponentiation ?t2 .
762
- # (?g ?t2) math:product ?g_t2 .
763
- # (0.5 ?g_t2) math:product ?half_g_t2 .
764
- # (?vy_t ?half_g_t2) math:difference ?yAtT .
765
- # } => {
766
- # :Shot1 :vx ?vx .
767
- # :Shot1 :vy ?vy .
768
- # :Shot1 :timeOfFlight ?tFlight .
769
- # :Shot1 :range ?range .
770
- # :Shot1 :maxHeight ?hMax .
771
- # _:b3 :t ?t .
772
- # _:b3 :x ?xAtT .
773
- # _:b3 :y ?yAtT .
774
- # :Shot1 :positionAtSample _:b3 .
775
- # } .
776
- # with substitution (on rule variables):
777
- # ?cosT = "0.7071067811865476"^^xsd:decimal
778
- # ?g = 9.81
779
- # ?g_t2 = "61.3125"^^xsd:decimal
780
- # ?hMax = "22.935779816513755"^^xsd:decimal
781
- # ?half_g_t2 = "30.65625"^^xsd:decimal
782
- # ?range = "91.74311926605502"^^xsd:decimal
783
- # ?sinT = "0.7071067811865475"^^xsd:decimal
784
- # ?t = 2.5
785
- # ?t2 = "6.25"^^xsd:decimal
786
- # ?tFlight = "4.324812117348913"^^xsd:decimal
787
- # ?theta = 0.7853981633974483
788
- # ?twoG = "19.62"^^xsd:decimal
789
- # ?twoVy = "42.426406871192846"^^xsd:decimal
790
- # ?v = 30.0
791
- # ?vx = "21.213203435596427"^^xsd:decimal
792
- # ?vy = "21.213203435596423"^^xsd:decimal
793
- # ?vy2 = "449.9999999999999"^^xsd:decimal
794
- # ?vy_t = "53.03300858899106"^^xsd:decimal
795
- # ?xAtT = "53.033008588991066"^^xsd:decimal
796
- # ?yAtT = "22.37675858899106"^^xsd:decimal
797
- # Therefore the derived triple above is entailed by the rules and facts.
798
- # ----------------------------------------------------------------------
799
-
800
13
  _:sk_1 :t 2.5 .
801
-
802
- # ----------------------------------------------------------------------
803
- # Proof for derived triple:
804
- # _:sk_1 :x "53.033008588991066"^^xsd:decimal .
805
- # It holds because the following instance of the rule body is provable:
806
- # :Shot1 :speed 30.0 .
807
- # :Shot1 :angleRad 0.7853981633974483 .
808
- # :Shot1 :g 9.81 .
809
- # :Shot1 :tSample 2.5 .
810
- # 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
811
- # 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
812
- # (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
813
- # (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
814
- # (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
815
- # ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
816
- # ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
817
- # ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
818
- # (2.0 9.81) math:product "19.62"^^xsd:decimal .
819
- # ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
820
- # ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
821
- # ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
822
- # (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
823
- # (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
824
- # (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
825
- # ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
826
- # via the schematic forward rule:
827
- # {
828
- # :Shot1 :speed ?v .
829
- # :Shot1 :angleRad ?theta .
830
- # :Shot1 :g ?g .
831
- # :Shot1 :tSample ?t .
832
- # ?theta math:sin ?sinT .
833
- # ?theta math:cos ?cosT .
834
- # (?v ?cosT) math:product ?vx .
835
- # (?v ?sinT) math:product ?vy .
836
- # (2.0 ?vy) math:product ?twoVy .
837
- # (?twoVy ?g) math:quotient ?tFlight .
838
- # (?vx ?tFlight) math:product ?range .
839
- # (?vy 2.0) math:exponentiation ?vy2 .
840
- # (2.0 ?g) math:product ?twoG .
841
- # (?vy2 ?twoG) math:quotient ?hMax .
842
- # (?vx ?t) math:product ?xAtT .
843
- # (?vy ?t) math:product ?vy_t .
844
- # (?t 2.0) math:exponentiation ?t2 .
845
- # (?g ?t2) math:product ?g_t2 .
846
- # (0.5 ?g_t2) math:product ?half_g_t2 .
847
- # (?vy_t ?half_g_t2) math:difference ?yAtT .
848
- # } => {
849
- # :Shot1 :vx ?vx .
850
- # :Shot1 :vy ?vy .
851
- # :Shot1 :timeOfFlight ?tFlight .
852
- # :Shot1 :range ?range .
853
- # :Shot1 :maxHeight ?hMax .
854
- # _:b3 :t ?t .
855
- # _:b3 :x ?xAtT .
856
- # _:b3 :y ?yAtT .
857
- # :Shot1 :positionAtSample _:b3 .
858
- # } .
859
- # with substitution (on rule variables):
860
- # ?cosT = "0.7071067811865476"^^xsd:decimal
861
- # ?g = 9.81
862
- # ?g_t2 = "61.3125"^^xsd:decimal
863
- # ?hMax = "22.935779816513755"^^xsd:decimal
864
- # ?half_g_t2 = "30.65625"^^xsd:decimal
865
- # ?range = "91.74311926605502"^^xsd:decimal
866
- # ?sinT = "0.7071067811865475"^^xsd:decimal
867
- # ?t = 2.5
868
- # ?t2 = "6.25"^^xsd:decimal
869
- # ?tFlight = "4.324812117348913"^^xsd:decimal
870
- # ?theta = 0.7853981633974483
871
- # ?twoG = "19.62"^^xsd:decimal
872
- # ?twoVy = "42.426406871192846"^^xsd:decimal
873
- # ?v = 30.0
874
- # ?vx = "21.213203435596427"^^xsd:decimal
875
- # ?vy = "21.213203435596423"^^xsd:decimal
876
- # ?vy2 = "449.9999999999999"^^xsd:decimal
877
- # ?vy_t = "53.03300858899106"^^xsd:decimal
878
- # ?xAtT = "53.033008588991066"^^xsd:decimal
879
- # ?yAtT = "22.37675858899106"^^xsd:decimal
880
- # Therefore the derived triple above is entailed by the rules and facts.
881
- # ----------------------------------------------------------------------
882
-
883
14
  _:sk_1 :x "53.033008588991066"^^xsd:decimal .
884
-
885
- # ----------------------------------------------------------------------
886
- # Proof for derived triple:
887
- # _:sk_1 :y "22.37675858899106"^^xsd:decimal .
888
- # It holds because the following instance of the rule body is provable:
889
- # :Shot1 :speed 30.0 .
890
- # :Shot1 :angleRad 0.7853981633974483 .
891
- # :Shot1 :g 9.81 .
892
- # :Shot1 :tSample 2.5 .
893
- # 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
894
- # 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
895
- # (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
896
- # (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
897
- # (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
898
- # ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
899
- # ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
900
- # ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
901
- # (2.0 9.81) math:product "19.62"^^xsd:decimal .
902
- # ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
903
- # ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
904
- # ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
905
- # (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
906
- # (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
907
- # (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
908
- # ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
909
- # via the schematic forward rule:
910
- # {
911
- # :Shot1 :speed ?v .
912
- # :Shot1 :angleRad ?theta .
913
- # :Shot1 :g ?g .
914
- # :Shot1 :tSample ?t .
915
- # ?theta math:sin ?sinT .
916
- # ?theta math:cos ?cosT .
917
- # (?v ?cosT) math:product ?vx .
918
- # (?v ?sinT) math:product ?vy .
919
- # (2.0 ?vy) math:product ?twoVy .
920
- # (?twoVy ?g) math:quotient ?tFlight .
921
- # (?vx ?tFlight) math:product ?range .
922
- # (?vy 2.0) math:exponentiation ?vy2 .
923
- # (2.0 ?g) math:product ?twoG .
924
- # (?vy2 ?twoG) math:quotient ?hMax .
925
- # (?vx ?t) math:product ?xAtT .
926
- # (?vy ?t) math:product ?vy_t .
927
- # (?t 2.0) math:exponentiation ?t2 .
928
- # (?g ?t2) math:product ?g_t2 .
929
- # (0.5 ?g_t2) math:product ?half_g_t2 .
930
- # (?vy_t ?half_g_t2) math:difference ?yAtT .
931
- # } => {
932
- # :Shot1 :vx ?vx .
933
- # :Shot1 :vy ?vy .
934
- # :Shot1 :timeOfFlight ?tFlight .
935
- # :Shot1 :range ?range .
936
- # :Shot1 :maxHeight ?hMax .
937
- # _:b3 :t ?t .
938
- # _:b3 :x ?xAtT .
939
- # _:b3 :y ?yAtT .
940
- # :Shot1 :positionAtSample _:b3 .
941
- # } .
942
- # with substitution (on rule variables):
943
- # ?cosT = "0.7071067811865476"^^xsd:decimal
944
- # ?g = 9.81
945
- # ?g_t2 = "61.3125"^^xsd:decimal
946
- # ?hMax = "22.935779816513755"^^xsd:decimal
947
- # ?half_g_t2 = "30.65625"^^xsd:decimal
948
- # ?range = "91.74311926605502"^^xsd:decimal
949
- # ?sinT = "0.7071067811865475"^^xsd:decimal
950
- # ?t = 2.5
951
- # ?t2 = "6.25"^^xsd:decimal
952
- # ?tFlight = "4.324812117348913"^^xsd:decimal
953
- # ?theta = 0.7853981633974483
954
- # ?twoG = "19.62"^^xsd:decimal
955
- # ?twoVy = "42.426406871192846"^^xsd:decimal
956
- # ?v = 30.0
957
- # ?vx = "21.213203435596427"^^xsd:decimal
958
- # ?vy = "21.213203435596423"^^xsd:decimal
959
- # ?vy2 = "449.9999999999999"^^xsd:decimal
960
- # ?vy_t = "53.03300858899106"^^xsd:decimal
961
- # ?xAtT = "53.033008588991066"^^xsd:decimal
962
- # ?yAtT = "22.37675858899106"^^xsd:decimal
963
- # Therefore the derived triple above is entailed by the rules and facts.
964
- # ----------------------------------------------------------------------
965
-
966
15
  _:sk_1 :y "22.37675858899106"^^xsd:decimal .
967
-
968
- # ----------------------------------------------------------------------
969
- # Proof for derived triple:
970
- # :Shot1 :positionAtSample _:sk_1 .
971
- # It holds because the following instance of the rule body is provable:
972
- # :Shot1 :speed 30.0 .
973
- # :Shot1 :angleRad 0.7853981633974483 .
974
- # :Shot1 :g 9.81 .
975
- # :Shot1 :tSample 2.5 .
976
- # 0.7853981633974483 math:sin "0.7071067811865475"^^xsd:decimal .
977
- # 0.7853981633974483 math:cos "0.7071067811865476"^^xsd:decimal .
978
- # (30.0 "0.7071067811865476"^^xsd:decimal) math:product "21.213203435596427"^^xsd:decimal .
979
- # (30.0 "0.7071067811865475"^^xsd:decimal) math:product "21.213203435596423"^^xsd:decimal .
980
- # (2.0 "21.213203435596423"^^xsd:decimal) math:product "42.426406871192846"^^xsd:decimal .
981
- # ("42.426406871192846"^^xsd:decimal 9.81) math:quotient "4.324812117348913"^^xsd:decimal .
982
- # ("21.213203435596427"^^xsd:decimal "4.324812117348913"^^xsd:decimal) math:product "91.74311926605502"^^xsd:decimal .
983
- # ("21.213203435596423"^^xsd:decimal 2.0) math:exponentiation "449.9999999999999"^^xsd:decimal .
984
- # (2.0 9.81) math:product "19.62"^^xsd:decimal .
985
- # ("449.9999999999999"^^xsd:decimal "19.62"^^xsd:decimal) math:quotient "22.935779816513755"^^xsd:decimal .
986
- # ("21.213203435596427"^^xsd:decimal 2.5) math:product "53.033008588991066"^^xsd:decimal .
987
- # ("21.213203435596423"^^xsd:decimal 2.5) math:product "53.03300858899106"^^xsd:decimal .
988
- # (2.5 2.0) math:exponentiation "6.25"^^xsd:decimal .
989
- # (9.81 "6.25"^^xsd:decimal) math:product "61.3125"^^xsd:decimal .
990
- # (0.5 "61.3125"^^xsd:decimal) math:product "30.65625"^^xsd:decimal .
991
- # ("53.03300858899106"^^xsd:decimal "30.65625"^^xsd:decimal) math:difference "22.37675858899106"^^xsd:decimal .
992
- # via the schematic forward rule:
993
- # {
994
- # :Shot1 :speed ?v .
995
- # :Shot1 :angleRad ?theta .
996
- # :Shot1 :g ?g .
997
- # :Shot1 :tSample ?t .
998
- # ?theta math:sin ?sinT .
999
- # ?theta math:cos ?cosT .
1000
- # (?v ?cosT) math:product ?vx .
1001
- # (?v ?sinT) math:product ?vy .
1002
- # (2.0 ?vy) math:product ?twoVy .
1003
- # (?twoVy ?g) math:quotient ?tFlight .
1004
- # (?vx ?tFlight) math:product ?range .
1005
- # (?vy 2.0) math:exponentiation ?vy2 .
1006
- # (2.0 ?g) math:product ?twoG .
1007
- # (?vy2 ?twoG) math:quotient ?hMax .
1008
- # (?vx ?t) math:product ?xAtT .
1009
- # (?vy ?t) math:product ?vy_t .
1010
- # (?t 2.0) math:exponentiation ?t2 .
1011
- # (?g ?t2) math:product ?g_t2 .
1012
- # (0.5 ?g_t2) math:product ?half_g_t2 .
1013
- # (?vy_t ?half_g_t2) math:difference ?yAtT .
1014
- # } => {
1015
- # :Shot1 :vx ?vx .
1016
- # :Shot1 :vy ?vy .
1017
- # :Shot1 :timeOfFlight ?tFlight .
1018
- # :Shot1 :range ?range .
1019
- # :Shot1 :maxHeight ?hMax .
1020
- # _:b3 :t ?t .
1021
- # _:b3 :x ?xAtT .
1022
- # _:b3 :y ?yAtT .
1023
- # :Shot1 :positionAtSample _:b3 .
1024
- # } .
1025
- # with substitution (on rule variables):
1026
- # ?cosT = "0.7071067811865476"^^xsd:decimal
1027
- # ?g = 9.81
1028
- # ?g_t2 = "61.3125"^^xsd:decimal
1029
- # ?hMax = "22.935779816513755"^^xsd:decimal
1030
- # ?half_g_t2 = "30.65625"^^xsd:decimal
1031
- # ?range = "91.74311926605502"^^xsd:decimal
1032
- # ?sinT = "0.7071067811865475"^^xsd:decimal
1033
- # ?t = 2.5
1034
- # ?t2 = "6.25"^^xsd:decimal
1035
- # ?tFlight = "4.324812117348913"^^xsd:decimal
1036
- # ?theta = 0.7853981633974483
1037
- # ?twoG = "19.62"^^xsd:decimal
1038
- # ?twoVy = "42.426406871192846"^^xsd:decimal
1039
- # ?v = 30.0
1040
- # ?vx = "21.213203435596427"^^xsd:decimal
1041
- # ?vy = "21.213203435596423"^^xsd:decimal
1042
- # ?vy2 = "449.9999999999999"^^xsd:decimal
1043
- # ?vy_t = "53.03300858899106"^^xsd:decimal
1044
- # ?xAtT = "53.033008588991066"^^xsd:decimal
1045
- # ?yAtT = "22.37675858899106"^^xsd:decimal
1046
- # Therefore the derived triple above is entailed by the rules and facts.
1047
- # ----------------------------------------------------------------------
1048
-
1049
16
  :Shot1 :positionAtSample _:sk_1 .
1050
-
1051
- # ----------------------------------------------------------------------
1052
- # Proof for derived triple:
1053
- # :DataSet1 :mean "2.642857142857143"^^xsd:decimal .
1054
- # It holds because the following instance of the rule body is provable:
1055
- # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
1056
- # :DataSet1 :zThreshold 2.0 .
1057
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
1058
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum "18.5"^^xsd:decimal .
1059
- # ("18.5"^^xsd:decimal 7) math:quotient "2.642857142857143"^^xsd:decimal .
1060
- # (?sq {
1061
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
1062
- # (?x "2.642857142857143"^^xsd:decimal) math:difference ?d .
1063
- # (?d 2.0) math:exponentiation ?sq .
1064
- # } ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal)) log:collectAllIn ?_b1 .
1065
- # ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal) math:sum "63.58214285714286"^^xsd:decimal .
1066
- # ("63.58214285714286"^^xsd:decimal 7) math:quotient "9.083163265306123"^^xsd:decimal .
1067
- # ("9.083163265306123"^^xsd:decimal 0.5) math:exponentiation "3.0138286721886036"^^xsd:decimal .
1068
- # via the schematic forward rule:
1069
- # {
1070
- # :DataSet1 :values ?xs .
1071
- # :DataSet1 :zThreshold ?thr .
1072
- # ?xs list:length ?n .
1073
- # ?xs math:sum ?sum .
1074
- # (?sum ?n) math:quotient ?mean .
1075
- # (?sq {
1076
- # ?xs list:member ?x .
1077
- # (?x ?mean) math:difference ?d .
1078
- # (?d 2.0) math:exponentiation ?sq .
1079
- # } ?sqList) log:collectAllIn ?_b1 .
1080
- # ?sqList math:sum ?sse .
1081
- # (?sse ?n) math:quotient ?var .
1082
- # (?var 0.5) math:exponentiation ?std .
1083
- # } => {
1084
- # :DataSet1 :mean ?mean .
1085
- # :DataSet1 :variance ?var .
1086
- # :DataSet1 :stddev ?std .
1087
- # } .
1088
- # with substitution (on rule variables):
1089
- # ?mean = "2.642857142857143"^^xsd:decimal
1090
- # ?n = 7
1091
- # ?sqList = ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal)
1092
- # ?sse = "63.58214285714286"^^xsd:decimal
1093
- # ?std = "3.0138286721886036"^^xsd:decimal
1094
- # ?sum = "18.5"^^xsd:decimal
1095
- # ?thr = 2.0
1096
- # ?var = "9.083163265306123"^^xsd:decimal
1097
- # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
1098
- # Therefore the derived triple above is entailed by the rules and facts.
1099
- # ----------------------------------------------------------------------
1100
-
1101
17
  :DataSet1 :mean "2.642857142857143"^^xsd:decimal .
1102
-
1103
- # ----------------------------------------------------------------------
1104
- # Proof for derived triple:
1105
- # :DataSet1 :variance "9.083163265306123"^^xsd:decimal .
1106
- # It holds because the following instance of the rule body is provable:
1107
- # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
1108
- # :DataSet1 :zThreshold 2.0 .
1109
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
1110
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum "18.5"^^xsd:decimal .
1111
- # ("18.5"^^xsd:decimal 7) math:quotient "2.642857142857143"^^xsd:decimal .
1112
- # (?sq {
1113
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
1114
- # (?x "2.642857142857143"^^xsd:decimal) math:difference ?d .
1115
- # (?d 2.0) math:exponentiation ?sq .
1116
- # } ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal)) log:collectAllIn ?_b1 .
1117
- # ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal) math:sum "63.58214285714286"^^xsd:decimal .
1118
- # ("63.58214285714286"^^xsd:decimal 7) math:quotient "9.083163265306123"^^xsd:decimal .
1119
- # ("9.083163265306123"^^xsd:decimal 0.5) math:exponentiation "3.0138286721886036"^^xsd:decimal .
1120
- # via the schematic forward rule:
1121
- # {
1122
- # :DataSet1 :values ?xs .
1123
- # :DataSet1 :zThreshold ?thr .
1124
- # ?xs list:length ?n .
1125
- # ?xs math:sum ?sum .
1126
- # (?sum ?n) math:quotient ?mean .
1127
- # (?sq {
1128
- # ?xs list:member ?x .
1129
- # (?x ?mean) math:difference ?d .
1130
- # (?d 2.0) math:exponentiation ?sq .
1131
- # } ?sqList) log:collectAllIn ?_b1 .
1132
- # ?sqList math:sum ?sse .
1133
- # (?sse ?n) math:quotient ?var .
1134
- # (?var 0.5) math:exponentiation ?std .
1135
- # } => {
1136
- # :DataSet1 :mean ?mean .
1137
- # :DataSet1 :variance ?var .
1138
- # :DataSet1 :stddev ?std .
1139
- # } .
1140
- # with substitution (on rule variables):
1141
- # ?mean = "2.642857142857143"^^xsd:decimal
1142
- # ?n = 7
1143
- # ?sqList = ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal)
1144
- # ?sse = "63.58214285714286"^^xsd:decimal
1145
- # ?std = "3.0138286721886036"^^xsd:decimal
1146
- # ?sum = "18.5"^^xsd:decimal
1147
- # ?thr = 2.0
1148
- # ?var = "9.083163265306123"^^xsd:decimal
1149
- # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
1150
- # Therefore the derived triple above is entailed by the rules and facts.
1151
- # ----------------------------------------------------------------------
1152
-
1153
18
  :DataSet1 :variance "9.083163265306123"^^xsd:decimal .
1154
-
1155
- # ----------------------------------------------------------------------
1156
- # Proof for derived triple:
1157
- # :DataSet1 :stddev "3.0138286721886036"^^xsd:decimal .
1158
- # It holds because the following instance of the rule body is provable:
1159
- # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
1160
- # :DataSet1 :zThreshold 2.0 .
1161
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:length 7 .
1162
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) math:sum "18.5"^^xsd:decimal .
1163
- # ("18.5"^^xsd:decimal 7) math:quotient "2.642857142857143"^^xsd:decimal .
1164
- # (?sq {
1165
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member ?x .
1166
- # (?x "2.642857142857143"^^xsd:decimal) math:difference ?d .
1167
- # (?d 2.0) math:exponentiation ?sq .
1168
- # } ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal)) log:collectAllIn ?_b1 .
1169
- # ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal) math:sum "63.58214285714286"^^xsd:decimal .
1170
- # ("63.58214285714286"^^xsd:decimal 7) math:quotient "9.083163265306123"^^xsd:decimal .
1171
- # ("9.083163265306123"^^xsd:decimal 0.5) math:exponentiation "3.0138286721886036"^^xsd:decimal .
1172
- # via the schematic forward rule:
1173
- # {
1174
- # :DataSet1 :values ?xs .
1175
- # :DataSet1 :zThreshold ?thr .
1176
- # ?xs list:length ?n .
1177
- # ?xs math:sum ?sum .
1178
- # (?sum ?n) math:quotient ?mean .
1179
- # (?sq {
1180
- # ?xs list:member ?x .
1181
- # (?x ?mean) math:difference ?d .
1182
- # (?d 2.0) math:exponentiation ?sq .
1183
- # } ?sqList) log:collectAllIn ?_b1 .
1184
- # ?sqList math:sum ?sse .
1185
- # (?sse ?n) math:quotient ?var .
1186
- # (?var 0.5) math:exponentiation ?std .
1187
- # } => {
1188
- # :DataSet1 :mean ?mean .
1189
- # :DataSet1 :variance ?var .
1190
- # :DataSet1 :stddev ?std .
1191
- # } .
1192
- # with substitution (on rule variables):
1193
- # ?mean = "2.642857142857143"^^xsd:decimal
1194
- # ?n = 7
1195
- # ?sqList = ("54.12755102040817"^^xsd:decimal "0.4132653061224489"^^xsd:decimal "1.6714795918367342"^^xsd:decimal "1.9400510204081631"^^xsd:decimal "1.5446938775510204"^^xsd:decimal "1.8032653061224486"^^xsd:decimal "2.0818367346938773"^^xsd:decimal)
1196
- # ?sse = "63.58214285714286"^^xsd:decimal
1197
- # ?std = "3.0138286721886036"^^xsd:decimal
1198
- # ?sum = "18.5"^^xsd:decimal
1199
- # ?thr = 2.0
1200
- # ?var = "9.083163265306123"^^xsd:decimal
1201
- # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
1202
- # Therefore the derived triple above is entailed by the rules and facts.
1203
- # ----------------------------------------------------------------------
1204
-
1205
19
  :DataSet1 :stddev "3.0138286721886036"^^xsd:decimal .
1206
-
1207
- # ----------------------------------------------------------------------
1208
- # Proof for derived triple:
1209
- # _:sk_2 :value 10.0 .
1210
- # It holds because the following instance of the rule body is provable:
1211
- # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
1212
- # :DataSet1 :mean "2.642857142857143"^^xsd:decimal .
1213
- # :DataSet1 :stddev "3.0138286721886036"^^xsd:decimal .
1214
- # :DataSet1 :zThreshold 2.0 .
1215
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
1216
- # (10.0 "2.642857142857143"^^xsd:decimal) math:difference "7.357142857142858"^^xsd:decimal .
1217
- # ("7.357142857142858"^^xsd:decimal "3.0138286721886036"^^xsd:decimal) math:quotient "2.44112843076783"^^xsd:decimal .
1218
- # "2.44112843076783"^^xsd:decimal math:absoluteValue "2.44112843076783"^^xsd:decimal .
1219
- # "2.44112843076783"^^xsd:decimal math:greaterThan 2.0 .
1220
- # via the schematic forward rule:
1221
- # {
1222
- # :DataSet1 :values ?xs .
1223
- # :DataSet1 :mean ?mean .
1224
- # :DataSet1 :stddev ?std .
1225
- # :DataSet1 :zThreshold ?thr .
1226
- # ?xs list:member ?x .
1227
- # (?x ?mean) math:difference ?d .
1228
- # (?d ?std) math:quotient ?z .
1229
- # ?z math:absoluteValue ?absz .
1230
- # ?absz math:greaterThan ?thr .
1231
- # } => {
1232
- # _:b1 :value ?x .
1233
- # _:b1 :zScore ?z .
1234
- # :DataSet1 :outlier _:b1 .
1235
- # } .
1236
- # with substitution (on rule variables):
1237
- # ?absz = "2.44112843076783"^^xsd:decimal
1238
- # ?d = "7.357142857142858"^^xsd:decimal
1239
- # ?mean = "2.642857142857143"^^xsd:decimal
1240
- # ?std = "3.0138286721886036"^^xsd:decimal
1241
- # ?thr = 2.0
1242
- # ?x = 10.0
1243
- # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
1244
- # ?z = "2.44112843076783"^^xsd:decimal
1245
- # Therefore the derived triple above is entailed by the rules and facts.
1246
- # ----------------------------------------------------------------------
1247
-
1248
20
  _:sk_2 :value 10.0 .
1249
-
1250
- # ----------------------------------------------------------------------
1251
- # Proof for derived triple:
1252
- # _:sk_2 :zScore "2.44112843076783"^^xsd:decimal .
1253
- # It holds because the following instance of the rule body is provable:
1254
- # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
1255
- # :DataSet1 :mean "2.642857142857143"^^xsd:decimal .
1256
- # :DataSet1 :stddev "3.0138286721886036"^^xsd:decimal .
1257
- # :DataSet1 :zThreshold 2.0 .
1258
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
1259
- # (10.0 "2.642857142857143"^^xsd:decimal) math:difference "7.357142857142858"^^xsd:decimal .
1260
- # ("7.357142857142858"^^xsd:decimal "3.0138286721886036"^^xsd:decimal) math:quotient "2.44112843076783"^^xsd:decimal .
1261
- # "2.44112843076783"^^xsd:decimal math:absoluteValue "2.44112843076783"^^xsd:decimal .
1262
- # "2.44112843076783"^^xsd:decimal math:greaterThan 2.0 .
1263
- # via the schematic forward rule:
1264
- # {
1265
- # :DataSet1 :values ?xs .
1266
- # :DataSet1 :mean ?mean .
1267
- # :DataSet1 :stddev ?std .
1268
- # :DataSet1 :zThreshold ?thr .
1269
- # ?xs list:member ?x .
1270
- # (?x ?mean) math:difference ?d .
1271
- # (?d ?std) math:quotient ?z .
1272
- # ?z math:absoluteValue ?absz .
1273
- # ?absz math:greaterThan ?thr .
1274
- # } => {
1275
- # _:b1 :value ?x .
1276
- # _:b1 :zScore ?z .
1277
- # :DataSet1 :outlier _:b1 .
1278
- # } .
1279
- # with substitution (on rule variables):
1280
- # ?absz = "2.44112843076783"^^xsd:decimal
1281
- # ?d = "7.357142857142858"^^xsd:decimal
1282
- # ?mean = "2.642857142857143"^^xsd:decimal
1283
- # ?std = "3.0138286721886036"^^xsd:decimal
1284
- # ?thr = 2.0
1285
- # ?x = 10.0
1286
- # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
1287
- # ?z = "2.44112843076783"^^xsd:decimal
1288
- # Therefore the derived triple above is entailed by the rules and facts.
1289
- # ----------------------------------------------------------------------
1290
-
1291
21
  _:sk_2 :zScore "2.44112843076783"^^xsd:decimal .
1292
-
1293
- # ----------------------------------------------------------------------
1294
- # Proof for derived triple:
1295
- # :DataSet1 :outlier _:sk_2 .
1296
- # It holds because the following instance of the rule body is provable:
1297
- # :DataSet1 :values (1.2 1.3 1.4 1.25 1.35 2.0 10.0) .
1298
- # :DataSet1 :mean "2.642857142857143"^^xsd:decimal .
1299
- # :DataSet1 :stddev "3.0138286721886036"^^xsd:decimal .
1300
- # :DataSet1 :zThreshold 2.0 .
1301
- # (1.2 1.3 1.4 1.25 1.35 2.0 10.0) list:member 10.0 .
1302
- # (10.0 "2.642857142857143"^^xsd:decimal) math:difference "7.357142857142858"^^xsd:decimal .
1303
- # ("7.357142857142858"^^xsd:decimal "3.0138286721886036"^^xsd:decimal) math:quotient "2.44112843076783"^^xsd:decimal .
1304
- # "2.44112843076783"^^xsd:decimal math:absoluteValue "2.44112843076783"^^xsd:decimal .
1305
- # "2.44112843076783"^^xsd:decimal math:greaterThan 2.0 .
1306
- # via the schematic forward rule:
1307
- # {
1308
- # :DataSet1 :values ?xs .
1309
- # :DataSet1 :mean ?mean .
1310
- # :DataSet1 :stddev ?std .
1311
- # :DataSet1 :zThreshold ?thr .
1312
- # ?xs list:member ?x .
1313
- # (?x ?mean) math:difference ?d .
1314
- # (?d ?std) math:quotient ?z .
1315
- # ?z math:absoluteValue ?absz .
1316
- # ?absz math:greaterThan ?thr .
1317
- # } => {
1318
- # _:b1 :value ?x .
1319
- # _:b1 :zScore ?z .
1320
- # :DataSet1 :outlier _:b1 .
1321
- # } .
1322
- # with substitution (on rule variables):
1323
- # ?absz = "2.44112843076783"^^xsd:decimal
1324
- # ?d = "7.357142857142858"^^xsd:decimal
1325
- # ?mean = "2.642857142857143"^^xsd:decimal
1326
- # ?std = "3.0138286721886036"^^xsd:decimal
1327
- # ?thr = 2.0
1328
- # ?x = 10.0
1329
- # ?xs = (1.2 1.3 1.4 1.25 1.35 2.0 10.0)
1330
- # ?z = "2.44112843076783"^^xsd:decimal
1331
- # Therefore the derived triple above is entailed by the rules and facts.
1332
- # ----------------------------------------------------------------------
1333
-
1334
22
  :DataSet1 :outlier _:sk_2 .
1335
-