eyeling 1.6.13 → 1.6.15

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (77) hide show
  1. package/README.md +8 -19
  2. package/examples/output/age.n3 +0 -17
  3. package/examples/output/alignment-demo.n3 +0 -572
  4. package/examples/output/backward.n3 +0 -15
  5. package/examples/output/basic-monadic.n3 +0 -105
  6. package/examples/output/brussels-brew-club.n3 +0 -476
  7. package/examples/output/cat-koko.n3 +0 -108
  8. package/examples/output/cobalt-kepler-kitchen.n3 +0 -7064
  9. package/examples/output/complex.n3 +0 -46
  10. package/examples/output/control-system.n3 +0 -75
  11. package/examples/output/cranberry-calculus.n3 +0 -1313
  12. package/examples/output/crypto-builtins-tests.n3 +0 -60
  13. package/examples/output/deep-taxonomy-10.n3 +0 -602
  14. package/examples/output/deep-taxonomy-100.n3 +1 -5733
  15. package/examples/output/deep-taxonomy-1000.n3 +1 -57033
  16. package/examples/output/deep-taxonomy-10000.n3 +1 -570033
  17. package/examples/output/derived-backward-rule-2.n3 +0 -58
  18. package/examples/output/derived-backward-rule.n3 +0 -44
  19. package/examples/output/derived-rule.n3 +0 -42
  20. package/examples/output/dijkstra.n3 +0 -297
  21. package/examples/output/dog.n3 +0 -30
  22. package/examples/output/drone-corridor-planner.n3 +0 -799
  23. package/examples/output/easter.n3 +0 -3570
  24. package/examples/output/equals.n3 +0 -15
  25. package/examples/output/ev-roundtrip-planner.n3 +0 -392
  26. package/examples/output/existential-rule.n3 +0 -34
  27. package/examples/output/expression-eval.n3 +0 -20
  28. package/examples/output/family-cousins.n3 +0 -636
  29. package/examples/output/fibonacci.n3 +0 -36
  30. package/examples/output/french-cities.n3 +0 -484
  31. package/examples/output/good-cobbler.n3 +0 -22
  32. package/examples/output/gps.n3 +0 -62
  33. package/examples/output/gray-code-counter.n3 +0 -17
  34. package/examples/output/hanoi.n3 +0 -17
  35. package/examples/output/jade-eigen-loom.n3 +0 -4690
  36. package/examples/output/json-pointer.n3 +0 -529
  37. package/examples/output/json-reconcile-vat.n3 +0 -12882
  38. package/examples/output/light-eaters.n3 +0 -311
  39. package/examples/output/list-builtins-tests.n3 +0 -167
  40. package/examples/output/list-iterate.n3 +0 -124
  41. package/examples/output/lldm.n3 +0 -960
  42. package/examples/output/log-collect-all-in.n3 +0 -117
  43. package/examples/output/log-for-all-in.n3 +0 -27
  44. package/examples/output/log-not-includes.n3 +0 -59
  45. package/examples/output/log-skolem.n3 +0 -17
  46. package/examples/output/log-uri.n3 +0 -42
  47. package/examples/output/math-builtins-tests.n3 +0 -4434
  48. package/examples/output/minimal-skos-alignment.n3 +0 -39
  49. package/examples/output/monkey.n3 +0 -36
  50. package/examples/output/odrl-trust.n3 +0 -46
  51. package/examples/output/oslo-steps-library-scholarly.n3 +0 -1260
  52. package/examples/output/oslo-steps-workflow-composition.n3 +0 -180
  53. package/examples/output/peano.n3 +0 -23
  54. package/examples/output/pi.n3 +0 -17
  55. package/examples/output/pillar.n3 +0 -32
  56. package/examples/output/polygon.n3 +0 -17
  57. package/examples/output/rdf-list.n3 +0 -28
  58. package/examples/output/reordering.n3 +0 -26
  59. package/examples/output/ruby-runge-workshop.n3 +0 -613
  60. package/examples/output/rule-matching.n3 +0 -26
  61. package/examples/output/saffron-slopeworks.n3 +0 -1447
  62. package/examples/output/self-referential.n3 +0 -81
  63. package/examples/output/similar.n3 +0 -15
  64. package/examples/output/snaf.n3 +0 -23
  65. package/examples/output/socrates.n3 +0 -21
  66. package/examples/output/spectral-week.n3 +0 -350
  67. package/examples/output/string-builtins-tests.n3 +0 -240
  68. package/examples/output/topaz-markov-mill.n3 +0 -4178
  69. package/examples/output/traffic-skos-aggregate.n3 +0 -3151
  70. package/examples/output/turing.n3 +0 -36
  71. package/examples/output/ultramarine-simpson-forge.n3 +0 -3873
  72. package/examples/output/witch.n3 +0 -107
  73. package/examples/output/zebra.n3 +0 -111
  74. package/eyeling.js +129 -25
  75. package/index.js +13 -6
  76. package/package.json +1 -1
  77. package/test/examples.test.js +1 -1
@@ -1,1471 +1,24 @@
1
1
  @prefix : <http://example.org/saffron-slopeworks#> .
2
2
  @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
3
3
 
4
- # ----------------------------------------------------------------------
5
- # Proof for derived triple:
6
- # :Reg1 :n 8 .
7
- # It holds because the following instance of the rule body is provable:
8
- # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
9
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
10
- # (?x {
11
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
12
- # ?p :x ?x .
13
- # } (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)) log:collectAllIn ?_b1 .
14
- # (?y {
15
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
16
- # ?p :y ?y .
17
- # } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
18
- # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum "36"^^xsd:decimal .
19
- # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum "46"^^xsd:decimal .
20
- # (?x2 {
21
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
22
- # ?p :x ?x .
23
- # (?x 2.0) math:exponentiation ?x2 .
24
- # } ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)) log:collectAllIn ?_b1 .
25
- # ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal) math:sum "204"^^xsd:decimal .
26
- # (?y2 {
27
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
28
- # ?p :y ?y .
29
- # (?y 2.0) math:exponentiation ?y2 .
30
- # } ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)) log:collectAllIn ?_b1 .
31
- # ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal) math:sum "379.72"^^xsd:decimal .
32
- # (?xy {
33
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
34
- # ?p :x ?x .
35
- # ?p :y ?y .
36
- # (?x ?y) math:product ?xy .
37
- # } ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)) log:collectAllIn ?_b1 .
38
- # ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal) math:sum "266.00000000000006"^^xsd:decimal .
39
- # via the schematic forward rule:
40
- # {
41
- # :Reg1 :points ?pts .
42
- # ?pts list:length ?n .
43
- # (?x {
44
- # ?pts list:member ?p .
45
- # ?p :x ?x .
46
- # } ?xs) log:collectAllIn ?_b1 .
47
- # (?y {
48
- # ?pts list:member ?p .
49
- # ?p :y ?y .
50
- # } ?ys) log:collectAllIn ?_b1 .
51
- # ?xs math:sum ?sumX .
52
- # ?ys math:sum ?sumY .
53
- # (?x2 {
54
- # ?pts list:member ?p .
55
- # ?p :x ?x .
56
- # (?x 2.0) math:exponentiation ?x2 .
57
- # } ?x2s) log:collectAllIn ?_b1 .
58
- # ?x2s math:sum ?sumXX .
59
- # (?y2 {
60
- # ?pts list:member ?p .
61
- # ?p :y ?y .
62
- # (?y 2.0) math:exponentiation ?y2 .
63
- # } ?y2s) log:collectAllIn ?_b1 .
64
- # ?y2s math:sum ?sumYY .
65
- # (?xy {
66
- # ?pts list:member ?p .
67
- # ?p :x ?x .
68
- # ?p :y ?y .
69
- # (?x ?y) math:product ?xy .
70
- # } ?xys) log:collectAllIn ?_b1 .
71
- # ?xys math:sum ?sumXY .
72
- # } => {
73
- # :Reg1 :n ?n .
74
- # :Reg1 :sumX ?sumX .
75
- # :Reg1 :sumY ?sumY .
76
- # :Reg1 :sumXX ?sumXX .
77
- # :Reg1 :sumYY ?sumYY .
78
- # :Reg1 :sumXY ?sumXY .
79
- # } .
80
- # with substitution (on rule variables):
81
- # ?n = 8
82
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
83
- # ?sumX = "36"^^xsd:decimal
84
- # ?sumXX = "204"^^xsd:decimal
85
- # ?sumXY = "266.00000000000006"^^xsd:decimal
86
- # ?sumY = "46"^^xsd:decimal
87
- # ?sumYY = "379.72"^^xsd:decimal
88
- # ?x2s = ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)
89
- # ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
90
- # ?xys = ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)
91
- # ?y2s = ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)
92
- # ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
93
- # Therefore the derived triple above is entailed by the rules and facts.
94
- # ----------------------------------------------------------------------
95
-
96
4
  :Reg1 :n 8 .
97
-
98
- # ----------------------------------------------------------------------
99
- # Proof for derived triple:
100
- # :Reg1 :sumX "36"^^xsd:decimal .
101
- # It holds because the following instance of the rule body is provable:
102
- # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
103
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
104
- # (?x {
105
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
106
- # ?p :x ?x .
107
- # } (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)) log:collectAllIn ?_b1 .
108
- # (?y {
109
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
110
- # ?p :y ?y .
111
- # } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
112
- # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum "36"^^xsd:decimal .
113
- # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum "46"^^xsd:decimal .
114
- # (?x2 {
115
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
116
- # ?p :x ?x .
117
- # (?x 2.0) math:exponentiation ?x2 .
118
- # } ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)) log:collectAllIn ?_b1 .
119
- # ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal) math:sum "204"^^xsd:decimal .
120
- # (?y2 {
121
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
122
- # ?p :y ?y .
123
- # (?y 2.0) math:exponentiation ?y2 .
124
- # } ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)) log:collectAllIn ?_b1 .
125
- # ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal) math:sum "379.72"^^xsd:decimal .
126
- # (?xy {
127
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
128
- # ?p :x ?x .
129
- # ?p :y ?y .
130
- # (?x ?y) math:product ?xy .
131
- # } ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)) log:collectAllIn ?_b1 .
132
- # ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal) math:sum "266.00000000000006"^^xsd:decimal .
133
- # via the schematic forward rule:
134
- # {
135
- # :Reg1 :points ?pts .
136
- # ?pts list:length ?n .
137
- # (?x {
138
- # ?pts list:member ?p .
139
- # ?p :x ?x .
140
- # } ?xs) log:collectAllIn ?_b1 .
141
- # (?y {
142
- # ?pts list:member ?p .
143
- # ?p :y ?y .
144
- # } ?ys) log:collectAllIn ?_b1 .
145
- # ?xs math:sum ?sumX .
146
- # ?ys math:sum ?sumY .
147
- # (?x2 {
148
- # ?pts list:member ?p .
149
- # ?p :x ?x .
150
- # (?x 2.0) math:exponentiation ?x2 .
151
- # } ?x2s) log:collectAllIn ?_b1 .
152
- # ?x2s math:sum ?sumXX .
153
- # (?y2 {
154
- # ?pts list:member ?p .
155
- # ?p :y ?y .
156
- # (?y 2.0) math:exponentiation ?y2 .
157
- # } ?y2s) log:collectAllIn ?_b1 .
158
- # ?y2s math:sum ?sumYY .
159
- # (?xy {
160
- # ?pts list:member ?p .
161
- # ?p :x ?x .
162
- # ?p :y ?y .
163
- # (?x ?y) math:product ?xy .
164
- # } ?xys) log:collectAllIn ?_b1 .
165
- # ?xys math:sum ?sumXY .
166
- # } => {
167
- # :Reg1 :n ?n .
168
- # :Reg1 :sumX ?sumX .
169
- # :Reg1 :sumY ?sumY .
170
- # :Reg1 :sumXX ?sumXX .
171
- # :Reg1 :sumYY ?sumYY .
172
- # :Reg1 :sumXY ?sumXY .
173
- # } .
174
- # with substitution (on rule variables):
175
- # ?n = 8
176
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
177
- # ?sumX = "36"^^xsd:decimal
178
- # ?sumXX = "204"^^xsd:decimal
179
- # ?sumXY = "266.00000000000006"^^xsd:decimal
180
- # ?sumY = "46"^^xsd:decimal
181
- # ?sumYY = "379.72"^^xsd:decimal
182
- # ?x2s = ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)
183
- # ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
184
- # ?xys = ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)
185
- # ?y2s = ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)
186
- # ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
187
- # Therefore the derived triple above is entailed by the rules and facts.
188
- # ----------------------------------------------------------------------
189
-
190
5
  :Reg1 :sumX "36"^^xsd:decimal .
191
-
192
- # ----------------------------------------------------------------------
193
- # Proof for derived triple:
194
- # :Reg1 :sumY "46"^^xsd:decimal .
195
- # It holds because the following instance of the rule body is provable:
196
- # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
197
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
198
- # (?x {
199
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
200
- # ?p :x ?x .
201
- # } (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)) log:collectAllIn ?_b1 .
202
- # (?y {
203
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
204
- # ?p :y ?y .
205
- # } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
206
- # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum "36"^^xsd:decimal .
207
- # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum "46"^^xsd:decimal .
208
- # (?x2 {
209
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
210
- # ?p :x ?x .
211
- # (?x 2.0) math:exponentiation ?x2 .
212
- # } ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)) log:collectAllIn ?_b1 .
213
- # ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal) math:sum "204"^^xsd:decimal .
214
- # (?y2 {
215
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
216
- # ?p :y ?y .
217
- # (?y 2.0) math:exponentiation ?y2 .
218
- # } ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)) log:collectAllIn ?_b1 .
219
- # ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal) math:sum "379.72"^^xsd:decimal .
220
- # (?xy {
221
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
222
- # ?p :x ?x .
223
- # ?p :y ?y .
224
- # (?x ?y) math:product ?xy .
225
- # } ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)) log:collectAllIn ?_b1 .
226
- # ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal) math:sum "266.00000000000006"^^xsd:decimal .
227
- # via the schematic forward rule:
228
- # {
229
- # :Reg1 :points ?pts .
230
- # ?pts list:length ?n .
231
- # (?x {
232
- # ?pts list:member ?p .
233
- # ?p :x ?x .
234
- # } ?xs) log:collectAllIn ?_b1 .
235
- # (?y {
236
- # ?pts list:member ?p .
237
- # ?p :y ?y .
238
- # } ?ys) log:collectAllIn ?_b1 .
239
- # ?xs math:sum ?sumX .
240
- # ?ys math:sum ?sumY .
241
- # (?x2 {
242
- # ?pts list:member ?p .
243
- # ?p :x ?x .
244
- # (?x 2.0) math:exponentiation ?x2 .
245
- # } ?x2s) log:collectAllIn ?_b1 .
246
- # ?x2s math:sum ?sumXX .
247
- # (?y2 {
248
- # ?pts list:member ?p .
249
- # ?p :y ?y .
250
- # (?y 2.0) math:exponentiation ?y2 .
251
- # } ?y2s) log:collectAllIn ?_b1 .
252
- # ?y2s math:sum ?sumYY .
253
- # (?xy {
254
- # ?pts list:member ?p .
255
- # ?p :x ?x .
256
- # ?p :y ?y .
257
- # (?x ?y) math:product ?xy .
258
- # } ?xys) log:collectAllIn ?_b1 .
259
- # ?xys math:sum ?sumXY .
260
- # } => {
261
- # :Reg1 :n ?n .
262
- # :Reg1 :sumX ?sumX .
263
- # :Reg1 :sumY ?sumY .
264
- # :Reg1 :sumXX ?sumXX .
265
- # :Reg1 :sumYY ?sumYY .
266
- # :Reg1 :sumXY ?sumXY .
267
- # } .
268
- # with substitution (on rule variables):
269
- # ?n = 8
270
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
271
- # ?sumX = "36"^^xsd:decimal
272
- # ?sumXX = "204"^^xsd:decimal
273
- # ?sumXY = "266.00000000000006"^^xsd:decimal
274
- # ?sumY = "46"^^xsd:decimal
275
- # ?sumYY = "379.72"^^xsd:decimal
276
- # ?x2s = ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)
277
- # ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
278
- # ?xys = ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)
279
- # ?y2s = ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)
280
- # ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
281
- # Therefore the derived triple above is entailed by the rules and facts.
282
- # ----------------------------------------------------------------------
283
-
284
6
  :Reg1 :sumY "46"^^xsd:decimal .
285
-
286
- # ----------------------------------------------------------------------
287
- # Proof for derived triple:
288
- # :Reg1 :sumXX "204"^^xsd:decimal .
289
- # It holds because the following instance of the rule body is provable:
290
- # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
291
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
292
- # (?x {
293
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
294
- # ?p :x ?x .
295
- # } (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)) log:collectAllIn ?_b1 .
296
- # (?y {
297
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
298
- # ?p :y ?y .
299
- # } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
300
- # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum "36"^^xsd:decimal .
301
- # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum "46"^^xsd:decimal .
302
- # (?x2 {
303
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
304
- # ?p :x ?x .
305
- # (?x 2.0) math:exponentiation ?x2 .
306
- # } ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)) log:collectAllIn ?_b1 .
307
- # ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal) math:sum "204"^^xsd:decimal .
308
- # (?y2 {
309
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
310
- # ?p :y ?y .
311
- # (?y 2.0) math:exponentiation ?y2 .
312
- # } ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)) log:collectAllIn ?_b1 .
313
- # ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal) math:sum "379.72"^^xsd:decimal .
314
- # (?xy {
315
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
316
- # ?p :x ?x .
317
- # ?p :y ?y .
318
- # (?x ?y) math:product ?xy .
319
- # } ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)) log:collectAllIn ?_b1 .
320
- # ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal) math:sum "266.00000000000006"^^xsd:decimal .
321
- # via the schematic forward rule:
322
- # {
323
- # :Reg1 :points ?pts .
324
- # ?pts list:length ?n .
325
- # (?x {
326
- # ?pts list:member ?p .
327
- # ?p :x ?x .
328
- # } ?xs) log:collectAllIn ?_b1 .
329
- # (?y {
330
- # ?pts list:member ?p .
331
- # ?p :y ?y .
332
- # } ?ys) log:collectAllIn ?_b1 .
333
- # ?xs math:sum ?sumX .
334
- # ?ys math:sum ?sumY .
335
- # (?x2 {
336
- # ?pts list:member ?p .
337
- # ?p :x ?x .
338
- # (?x 2.0) math:exponentiation ?x2 .
339
- # } ?x2s) log:collectAllIn ?_b1 .
340
- # ?x2s math:sum ?sumXX .
341
- # (?y2 {
342
- # ?pts list:member ?p .
343
- # ?p :y ?y .
344
- # (?y 2.0) math:exponentiation ?y2 .
345
- # } ?y2s) log:collectAllIn ?_b1 .
346
- # ?y2s math:sum ?sumYY .
347
- # (?xy {
348
- # ?pts list:member ?p .
349
- # ?p :x ?x .
350
- # ?p :y ?y .
351
- # (?x ?y) math:product ?xy .
352
- # } ?xys) log:collectAllIn ?_b1 .
353
- # ?xys math:sum ?sumXY .
354
- # } => {
355
- # :Reg1 :n ?n .
356
- # :Reg1 :sumX ?sumX .
357
- # :Reg1 :sumY ?sumY .
358
- # :Reg1 :sumXX ?sumXX .
359
- # :Reg1 :sumYY ?sumYY .
360
- # :Reg1 :sumXY ?sumXY .
361
- # } .
362
- # with substitution (on rule variables):
363
- # ?n = 8
364
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
365
- # ?sumX = "36"^^xsd:decimal
366
- # ?sumXX = "204"^^xsd:decimal
367
- # ?sumXY = "266.00000000000006"^^xsd:decimal
368
- # ?sumY = "46"^^xsd:decimal
369
- # ?sumYY = "379.72"^^xsd:decimal
370
- # ?x2s = ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)
371
- # ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
372
- # ?xys = ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)
373
- # ?y2s = ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)
374
- # ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
375
- # Therefore the derived triple above is entailed by the rules and facts.
376
- # ----------------------------------------------------------------------
377
-
378
7
  :Reg1 :sumXX "204"^^xsd:decimal .
379
-
380
- # ----------------------------------------------------------------------
381
- # Proof for derived triple:
382
- # :Reg1 :sumYY "379.72"^^xsd:decimal .
383
- # It holds because the following instance of the rule body is provable:
384
- # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
385
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
386
- # (?x {
387
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
388
- # ?p :x ?x .
389
- # } (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)) log:collectAllIn ?_b1 .
390
- # (?y {
391
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
392
- # ?p :y ?y .
393
- # } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
394
- # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum "36"^^xsd:decimal .
395
- # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum "46"^^xsd:decimal .
396
- # (?x2 {
397
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
398
- # ?p :x ?x .
399
- # (?x 2.0) math:exponentiation ?x2 .
400
- # } ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)) log:collectAllIn ?_b1 .
401
- # ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal) math:sum "204"^^xsd:decimal .
402
- # (?y2 {
403
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
404
- # ?p :y ?y .
405
- # (?y 2.0) math:exponentiation ?y2 .
406
- # } ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)) log:collectAllIn ?_b1 .
407
- # ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal) math:sum "379.72"^^xsd:decimal .
408
- # (?xy {
409
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
410
- # ?p :x ?x .
411
- # ?p :y ?y .
412
- # (?x ?y) math:product ?xy .
413
- # } ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)) log:collectAllIn ?_b1 .
414
- # ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal) math:sum "266.00000000000006"^^xsd:decimal .
415
- # via the schematic forward rule:
416
- # {
417
- # :Reg1 :points ?pts .
418
- # ?pts list:length ?n .
419
- # (?x {
420
- # ?pts list:member ?p .
421
- # ?p :x ?x .
422
- # } ?xs) log:collectAllIn ?_b1 .
423
- # (?y {
424
- # ?pts list:member ?p .
425
- # ?p :y ?y .
426
- # } ?ys) log:collectAllIn ?_b1 .
427
- # ?xs math:sum ?sumX .
428
- # ?ys math:sum ?sumY .
429
- # (?x2 {
430
- # ?pts list:member ?p .
431
- # ?p :x ?x .
432
- # (?x 2.0) math:exponentiation ?x2 .
433
- # } ?x2s) log:collectAllIn ?_b1 .
434
- # ?x2s math:sum ?sumXX .
435
- # (?y2 {
436
- # ?pts list:member ?p .
437
- # ?p :y ?y .
438
- # (?y 2.0) math:exponentiation ?y2 .
439
- # } ?y2s) log:collectAllIn ?_b1 .
440
- # ?y2s math:sum ?sumYY .
441
- # (?xy {
442
- # ?pts list:member ?p .
443
- # ?p :x ?x .
444
- # ?p :y ?y .
445
- # (?x ?y) math:product ?xy .
446
- # } ?xys) log:collectAllIn ?_b1 .
447
- # ?xys math:sum ?sumXY .
448
- # } => {
449
- # :Reg1 :n ?n .
450
- # :Reg1 :sumX ?sumX .
451
- # :Reg1 :sumY ?sumY .
452
- # :Reg1 :sumXX ?sumXX .
453
- # :Reg1 :sumYY ?sumYY .
454
- # :Reg1 :sumXY ?sumXY .
455
- # } .
456
- # with substitution (on rule variables):
457
- # ?n = 8
458
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
459
- # ?sumX = "36"^^xsd:decimal
460
- # ?sumXX = "204"^^xsd:decimal
461
- # ?sumXY = "266.00000000000006"^^xsd:decimal
462
- # ?sumY = "46"^^xsd:decimal
463
- # ?sumYY = "379.72"^^xsd:decimal
464
- # ?x2s = ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)
465
- # ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
466
- # ?xys = ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)
467
- # ?y2s = ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)
468
- # ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
469
- # Therefore the derived triple above is entailed by the rules and facts.
470
- # ----------------------------------------------------------------------
471
-
472
8
  :Reg1 :sumYY "379.72"^^xsd:decimal .
473
-
474
- # ----------------------------------------------------------------------
475
- # Proof for derived triple:
476
- # :Reg1 :sumXY "266.00000000000006"^^xsd:decimal .
477
- # It holds because the following instance of the rule body is provable:
478
- # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
479
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
480
- # (?x {
481
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
482
- # ?p :x ?x .
483
- # } (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)) log:collectAllIn ?_b1 .
484
- # (?y {
485
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
486
- # ?p :y ?y .
487
- # } (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)) log:collectAllIn ?_b1 .
488
- # (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0) math:sum "36"^^xsd:decimal .
489
- # (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1) math:sum "46"^^xsd:decimal .
490
- # (?x2 {
491
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
492
- # ?p :x ?x .
493
- # (?x 2.0) math:exponentiation ?x2 .
494
- # } ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)) log:collectAllIn ?_b1 .
495
- # ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal) math:sum "204"^^xsd:decimal .
496
- # (?y2 {
497
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
498
- # ?p :y ?y .
499
- # (?y 2.0) math:exponentiation ?y2 .
500
- # } ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)) log:collectAllIn ?_b1 .
501
- # ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal) math:sum "379.72"^^xsd:decimal .
502
- # (?xy {
503
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
504
- # ?p :x ?x .
505
- # ?p :y ?y .
506
- # (?x ?y) math:product ?xy .
507
- # } ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)) log:collectAllIn ?_b1 .
508
- # ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal) math:sum "266.00000000000006"^^xsd:decimal .
509
- # via the schematic forward rule:
510
- # {
511
- # :Reg1 :points ?pts .
512
- # ?pts list:length ?n .
513
- # (?x {
514
- # ?pts list:member ?p .
515
- # ?p :x ?x .
516
- # } ?xs) log:collectAllIn ?_b1 .
517
- # (?y {
518
- # ?pts list:member ?p .
519
- # ?p :y ?y .
520
- # } ?ys) log:collectAllIn ?_b1 .
521
- # ?xs math:sum ?sumX .
522
- # ?ys math:sum ?sumY .
523
- # (?x2 {
524
- # ?pts list:member ?p .
525
- # ?p :x ?x .
526
- # (?x 2.0) math:exponentiation ?x2 .
527
- # } ?x2s) log:collectAllIn ?_b1 .
528
- # ?x2s math:sum ?sumXX .
529
- # (?y2 {
530
- # ?pts list:member ?p .
531
- # ?p :y ?y .
532
- # (?y 2.0) math:exponentiation ?y2 .
533
- # } ?y2s) log:collectAllIn ?_b1 .
534
- # ?y2s math:sum ?sumYY .
535
- # (?xy {
536
- # ?pts list:member ?p .
537
- # ?p :x ?x .
538
- # ?p :y ?y .
539
- # (?x ?y) math:product ?xy .
540
- # } ?xys) log:collectAllIn ?_b1 .
541
- # ?xys math:sum ?sumXY .
542
- # } => {
543
- # :Reg1 :n ?n .
544
- # :Reg1 :sumX ?sumX .
545
- # :Reg1 :sumY ?sumY .
546
- # :Reg1 :sumXX ?sumXX .
547
- # :Reg1 :sumYY ?sumYY .
548
- # :Reg1 :sumXY ?sumXY .
549
- # } .
550
- # with substitution (on rule variables):
551
- # ?n = 8
552
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
553
- # ?sumX = "36"^^xsd:decimal
554
- # ?sumXX = "204"^^xsd:decimal
555
- # ?sumXY = "266.00000000000006"^^xsd:decimal
556
- # ?sumY = "46"^^xsd:decimal
557
- # ?sumYY = "379.72"^^xsd:decimal
558
- # ?x2s = ("64"^^xsd:decimal "49"^^xsd:decimal "36"^^xsd:decimal "25"^^xsd:decimal "16"^^xsd:decimal "9"^^xsd:decimal "4"^^xsd:decimal "1"^^xsd:decimal)
559
- # ?xs = (8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0)
560
- # ?xys = ("120"^^xsd:decimal "49"^^xsd:decimal "35.400000000000006"^^xsd:decimal "25.5"^^xsd:decimal "16.8"^^xsd:decimal "11.399999999999999"^^xsd:decimal "5.8"^^xsd:decimal "2.1"^^xsd:decimal)
561
- # ?y2s = ("225"^^xsd:decimal "49"^^xsd:decimal "34.81"^^xsd:decimal "26.009999999999998"^^xsd:decimal "17.64"^^xsd:decimal "14.44"^^xsd:decimal "8.41"^^xsd:decimal "4.41"^^xsd:decimal)
562
- # ?ys = (15.0 7.0 5.9 5.1 4.2 3.8 2.9 2.1)
563
- # Therefore the derived triple above is entailed by the rules and facts.
564
- # ----------------------------------------------------------------------
565
-
566
9
  :Reg1 :sumXY "266.00000000000006"^^xsd:decimal .
567
-
568
- # ----------------------------------------------------------------------
569
- # Proof for derived triple:
570
- # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
571
- # It holds because the following instance of the rule body is provable:
572
- # :Reg1 :n 8 .
573
- # :Reg1 :sumX "36"^^xsd:decimal .
574
- # :Reg1 :sumY "46"^^xsd:decimal .
575
- # :Reg1 :sumXX "204"^^xsd:decimal .
576
- # :Reg1 :sumYY "379.72"^^xsd:decimal .
577
- # :Reg1 :sumXY "266.00000000000006"^^xsd:decimal .
578
- # (8 "266.00000000000006"^^xsd:decimal) math:product "2128.0000000000005"^^xsd:decimal .
579
- # ("36"^^xsd:decimal "46"^^xsd:decimal) math:product "1656"^^xsd:decimal .
580
- # ("2128.0000000000005"^^xsd:decimal "1656"^^xsd:decimal) math:difference "472.00000000000045"^^xsd:decimal .
581
- # (8 "204"^^xsd:decimal) math:product "1632"^^xsd:decimal .
582
- # ("36"^^xsd:decimal 2.0) math:exponentiation "1296"^^xsd:decimal .
583
- # ("1632"^^xsd:decimal "1296"^^xsd:decimal) math:difference "336"^^xsd:decimal .
584
- # ("472.00000000000045"^^xsd:decimal "336"^^xsd:decimal) math:quotient "1.4047619047619062"^^xsd:decimal .
585
- # ("1.4047619047619062"^^xsd:decimal "36"^^xsd:decimal) math:product "50.571428571428626"^^xsd:decimal .
586
- # ("46"^^xsd:decimal "50.571428571428626"^^xsd:decimal) math:difference "-4.571428571428626"^^xsd:decimal .
587
- # ("-4.571428571428626"^^xsd:decimal 8) math:quotient "-0.5714285714285783"^^xsd:decimal .
588
- # (8 "379.72"^^xsd:decimal) math:product "3037.76"^^xsd:decimal .
589
- # ("46"^^xsd:decimal 2.0) math:exponentiation "2116"^^xsd:decimal .
590
- # ("3037.76"^^xsd:decimal "2116"^^xsd:decimal) math:difference "921.7600000000002"^^xsd:decimal .
591
- # ("336"^^xsd:decimal "921.7600000000002"^^xsd:decimal) math:product "309711.3600000001"^^xsd:decimal .
592
- # ("309711.3600000001"^^xsd:decimal 0.5) math:exponentiation "556.5171695464571"^^xsd:decimal .
593
- # ("472.00000000000045"^^xsd:decimal "556.5171695464571"^^xsd:decimal) math:quotient "0.8481319639871393"^^xsd:decimal .
594
- # ("0.8481319639871393"^^xsd:decimal 2.0) math:exponentiation "0.7193278283366822"^^xsd:decimal .
595
- # via the schematic forward rule:
596
- # {
597
- # :Reg1 :n ?n .
598
- # :Reg1 :sumX ?sx .
599
- # :Reg1 :sumY ?sy .
600
- # :Reg1 :sumXX ?sxx .
601
- # :Reg1 :sumYY ?syy .
602
- # :Reg1 :sumXY ?sxy .
603
- # (?n ?sxy) math:product ?n_sxy .
604
- # (?sx ?sy) math:product ?sx_sy .
605
- # (?n_sxy ?sx_sy) math:difference ?num .
606
- # (?n ?sxx) math:product ?n_sxx .
607
- # (?sx 2.0) math:exponentiation ?sx2 .
608
- # (?n_sxx ?sx2) math:difference ?denX .
609
- # (?num ?denX) math:quotient ?b .
610
- # (?b ?sx) math:product ?b_sx .
611
- # (?sy ?b_sx) math:difference ?tmpA .
612
- # (?tmpA ?n) math:quotient ?a .
613
- # (?n ?syy) math:product ?n_syy .
614
- # (?sy 2.0) math:exponentiation ?sy2 .
615
- # (?n_syy ?sy2) math:difference ?denY .
616
- # (?denX ?denY) math:product ?denXY .
617
- # (?denXY 0.5) math:exponentiation ?sqrtDen .
618
- # (?num ?sqrtDen) math:quotient ?r .
619
- # (?r 2.0) math:exponentiation ?r2 .
620
- # } => {
621
- # :Reg1 :slope ?b .
622
- # :Reg1 :intercept ?a .
623
- # :Reg1 :pearsonR ?r .
624
- # :Reg1 :rSquared ?r2 .
625
- # } .
626
- # with substitution (on rule variables):
627
- # ?a = "-0.5714285714285783"^^xsd:decimal
628
- # ?b = "1.4047619047619062"^^xsd:decimal
629
- # ?b_sx = "50.571428571428626"^^xsd:decimal
630
- # ?denX = "336"^^xsd:decimal
631
- # ?denXY = "309711.3600000001"^^xsd:decimal
632
- # ?denY = "921.7600000000002"^^xsd:decimal
633
- # ?n = 8
634
- # ?n_sxx = "1632"^^xsd:decimal
635
- # ?n_sxy = "2128.0000000000005"^^xsd:decimal
636
- # ?n_syy = "3037.76"^^xsd:decimal
637
- # ?num = "472.00000000000045"^^xsd:decimal
638
- # ?r = "0.8481319639871393"^^xsd:decimal
639
- # ?r2 = "0.7193278283366822"^^xsd:decimal
640
- # ?sqrtDen = "556.5171695464571"^^xsd:decimal
641
- # ?sx = "36"^^xsd:decimal
642
- # ?sx2 = "1296"^^xsd:decimal
643
- # ?sx_sy = "1656"^^xsd:decimal
644
- # ?sxx = "204"^^xsd:decimal
645
- # ?sxy = "266.00000000000006"^^xsd:decimal
646
- # ?sy = "46"^^xsd:decimal
647
- # ?sy2 = "2116"^^xsd:decimal
648
- # ?syy = "379.72"^^xsd:decimal
649
- # ?tmpA = "-4.571428571428626"^^xsd:decimal
650
- # Therefore the derived triple above is entailed by the rules and facts.
651
- # ----------------------------------------------------------------------
652
-
653
10
  :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
654
-
655
- # ----------------------------------------------------------------------
656
- # Proof for derived triple:
657
- # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
658
- # It holds because the following instance of the rule body is provable:
659
- # :Reg1 :n 8 .
660
- # :Reg1 :sumX "36"^^xsd:decimal .
661
- # :Reg1 :sumY "46"^^xsd:decimal .
662
- # :Reg1 :sumXX "204"^^xsd:decimal .
663
- # :Reg1 :sumYY "379.72"^^xsd:decimal .
664
- # :Reg1 :sumXY "266.00000000000006"^^xsd:decimal .
665
- # (8 "266.00000000000006"^^xsd:decimal) math:product "2128.0000000000005"^^xsd:decimal .
666
- # ("36"^^xsd:decimal "46"^^xsd:decimal) math:product "1656"^^xsd:decimal .
667
- # ("2128.0000000000005"^^xsd:decimal "1656"^^xsd:decimal) math:difference "472.00000000000045"^^xsd:decimal .
668
- # (8 "204"^^xsd:decimal) math:product "1632"^^xsd:decimal .
669
- # ("36"^^xsd:decimal 2.0) math:exponentiation "1296"^^xsd:decimal .
670
- # ("1632"^^xsd:decimal "1296"^^xsd:decimal) math:difference "336"^^xsd:decimal .
671
- # ("472.00000000000045"^^xsd:decimal "336"^^xsd:decimal) math:quotient "1.4047619047619062"^^xsd:decimal .
672
- # ("1.4047619047619062"^^xsd:decimal "36"^^xsd:decimal) math:product "50.571428571428626"^^xsd:decimal .
673
- # ("46"^^xsd:decimal "50.571428571428626"^^xsd:decimal) math:difference "-4.571428571428626"^^xsd:decimal .
674
- # ("-4.571428571428626"^^xsd:decimal 8) math:quotient "-0.5714285714285783"^^xsd:decimal .
675
- # (8 "379.72"^^xsd:decimal) math:product "3037.76"^^xsd:decimal .
676
- # ("46"^^xsd:decimal 2.0) math:exponentiation "2116"^^xsd:decimal .
677
- # ("3037.76"^^xsd:decimal "2116"^^xsd:decimal) math:difference "921.7600000000002"^^xsd:decimal .
678
- # ("336"^^xsd:decimal "921.7600000000002"^^xsd:decimal) math:product "309711.3600000001"^^xsd:decimal .
679
- # ("309711.3600000001"^^xsd:decimal 0.5) math:exponentiation "556.5171695464571"^^xsd:decimal .
680
- # ("472.00000000000045"^^xsd:decimal "556.5171695464571"^^xsd:decimal) math:quotient "0.8481319639871393"^^xsd:decimal .
681
- # ("0.8481319639871393"^^xsd:decimal 2.0) math:exponentiation "0.7193278283366822"^^xsd:decimal .
682
- # via the schematic forward rule:
683
- # {
684
- # :Reg1 :n ?n .
685
- # :Reg1 :sumX ?sx .
686
- # :Reg1 :sumY ?sy .
687
- # :Reg1 :sumXX ?sxx .
688
- # :Reg1 :sumYY ?syy .
689
- # :Reg1 :sumXY ?sxy .
690
- # (?n ?sxy) math:product ?n_sxy .
691
- # (?sx ?sy) math:product ?sx_sy .
692
- # (?n_sxy ?sx_sy) math:difference ?num .
693
- # (?n ?sxx) math:product ?n_sxx .
694
- # (?sx 2.0) math:exponentiation ?sx2 .
695
- # (?n_sxx ?sx2) math:difference ?denX .
696
- # (?num ?denX) math:quotient ?b .
697
- # (?b ?sx) math:product ?b_sx .
698
- # (?sy ?b_sx) math:difference ?tmpA .
699
- # (?tmpA ?n) math:quotient ?a .
700
- # (?n ?syy) math:product ?n_syy .
701
- # (?sy 2.0) math:exponentiation ?sy2 .
702
- # (?n_syy ?sy2) math:difference ?denY .
703
- # (?denX ?denY) math:product ?denXY .
704
- # (?denXY 0.5) math:exponentiation ?sqrtDen .
705
- # (?num ?sqrtDen) math:quotient ?r .
706
- # (?r 2.0) math:exponentiation ?r2 .
707
- # } => {
708
- # :Reg1 :slope ?b .
709
- # :Reg1 :intercept ?a .
710
- # :Reg1 :pearsonR ?r .
711
- # :Reg1 :rSquared ?r2 .
712
- # } .
713
- # with substitution (on rule variables):
714
- # ?a = "-0.5714285714285783"^^xsd:decimal
715
- # ?b = "1.4047619047619062"^^xsd:decimal
716
- # ?b_sx = "50.571428571428626"^^xsd:decimal
717
- # ?denX = "336"^^xsd:decimal
718
- # ?denXY = "309711.3600000001"^^xsd:decimal
719
- # ?denY = "921.7600000000002"^^xsd:decimal
720
- # ?n = 8
721
- # ?n_sxx = "1632"^^xsd:decimal
722
- # ?n_sxy = "2128.0000000000005"^^xsd:decimal
723
- # ?n_syy = "3037.76"^^xsd:decimal
724
- # ?num = "472.00000000000045"^^xsd:decimal
725
- # ?r = "0.8481319639871393"^^xsd:decimal
726
- # ?r2 = "0.7193278283366822"^^xsd:decimal
727
- # ?sqrtDen = "556.5171695464571"^^xsd:decimal
728
- # ?sx = "36"^^xsd:decimal
729
- # ?sx2 = "1296"^^xsd:decimal
730
- # ?sx_sy = "1656"^^xsd:decimal
731
- # ?sxx = "204"^^xsd:decimal
732
- # ?sxy = "266.00000000000006"^^xsd:decimal
733
- # ?sy = "46"^^xsd:decimal
734
- # ?sy2 = "2116"^^xsd:decimal
735
- # ?syy = "379.72"^^xsd:decimal
736
- # ?tmpA = "-4.571428571428626"^^xsd:decimal
737
- # Therefore the derived triple above is entailed by the rules and facts.
738
- # ----------------------------------------------------------------------
739
-
740
11
  :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
741
-
742
- # ----------------------------------------------------------------------
743
- # Proof for derived triple:
744
- # :Reg1 :pearsonR "0.8481319639871393"^^xsd:decimal .
745
- # It holds because the following instance of the rule body is provable:
746
- # :Reg1 :n 8 .
747
- # :Reg1 :sumX "36"^^xsd:decimal .
748
- # :Reg1 :sumY "46"^^xsd:decimal .
749
- # :Reg1 :sumXX "204"^^xsd:decimal .
750
- # :Reg1 :sumYY "379.72"^^xsd:decimal .
751
- # :Reg1 :sumXY "266.00000000000006"^^xsd:decimal .
752
- # (8 "266.00000000000006"^^xsd:decimal) math:product "2128.0000000000005"^^xsd:decimal .
753
- # ("36"^^xsd:decimal "46"^^xsd:decimal) math:product "1656"^^xsd:decimal .
754
- # ("2128.0000000000005"^^xsd:decimal "1656"^^xsd:decimal) math:difference "472.00000000000045"^^xsd:decimal .
755
- # (8 "204"^^xsd:decimal) math:product "1632"^^xsd:decimal .
756
- # ("36"^^xsd:decimal 2.0) math:exponentiation "1296"^^xsd:decimal .
757
- # ("1632"^^xsd:decimal "1296"^^xsd:decimal) math:difference "336"^^xsd:decimal .
758
- # ("472.00000000000045"^^xsd:decimal "336"^^xsd:decimal) math:quotient "1.4047619047619062"^^xsd:decimal .
759
- # ("1.4047619047619062"^^xsd:decimal "36"^^xsd:decimal) math:product "50.571428571428626"^^xsd:decimal .
760
- # ("46"^^xsd:decimal "50.571428571428626"^^xsd:decimal) math:difference "-4.571428571428626"^^xsd:decimal .
761
- # ("-4.571428571428626"^^xsd:decimal 8) math:quotient "-0.5714285714285783"^^xsd:decimal .
762
- # (8 "379.72"^^xsd:decimal) math:product "3037.76"^^xsd:decimal .
763
- # ("46"^^xsd:decimal 2.0) math:exponentiation "2116"^^xsd:decimal .
764
- # ("3037.76"^^xsd:decimal "2116"^^xsd:decimal) math:difference "921.7600000000002"^^xsd:decimal .
765
- # ("336"^^xsd:decimal "921.7600000000002"^^xsd:decimal) math:product "309711.3600000001"^^xsd:decimal .
766
- # ("309711.3600000001"^^xsd:decimal 0.5) math:exponentiation "556.5171695464571"^^xsd:decimal .
767
- # ("472.00000000000045"^^xsd:decimal "556.5171695464571"^^xsd:decimal) math:quotient "0.8481319639871393"^^xsd:decimal .
768
- # ("0.8481319639871393"^^xsd:decimal 2.0) math:exponentiation "0.7193278283366822"^^xsd:decimal .
769
- # via the schematic forward rule:
770
- # {
771
- # :Reg1 :n ?n .
772
- # :Reg1 :sumX ?sx .
773
- # :Reg1 :sumY ?sy .
774
- # :Reg1 :sumXX ?sxx .
775
- # :Reg1 :sumYY ?syy .
776
- # :Reg1 :sumXY ?sxy .
777
- # (?n ?sxy) math:product ?n_sxy .
778
- # (?sx ?sy) math:product ?sx_sy .
779
- # (?n_sxy ?sx_sy) math:difference ?num .
780
- # (?n ?sxx) math:product ?n_sxx .
781
- # (?sx 2.0) math:exponentiation ?sx2 .
782
- # (?n_sxx ?sx2) math:difference ?denX .
783
- # (?num ?denX) math:quotient ?b .
784
- # (?b ?sx) math:product ?b_sx .
785
- # (?sy ?b_sx) math:difference ?tmpA .
786
- # (?tmpA ?n) math:quotient ?a .
787
- # (?n ?syy) math:product ?n_syy .
788
- # (?sy 2.0) math:exponentiation ?sy2 .
789
- # (?n_syy ?sy2) math:difference ?denY .
790
- # (?denX ?denY) math:product ?denXY .
791
- # (?denXY 0.5) math:exponentiation ?sqrtDen .
792
- # (?num ?sqrtDen) math:quotient ?r .
793
- # (?r 2.0) math:exponentiation ?r2 .
794
- # } => {
795
- # :Reg1 :slope ?b .
796
- # :Reg1 :intercept ?a .
797
- # :Reg1 :pearsonR ?r .
798
- # :Reg1 :rSquared ?r2 .
799
- # } .
800
- # with substitution (on rule variables):
801
- # ?a = "-0.5714285714285783"^^xsd:decimal
802
- # ?b = "1.4047619047619062"^^xsd:decimal
803
- # ?b_sx = "50.571428571428626"^^xsd:decimal
804
- # ?denX = "336"^^xsd:decimal
805
- # ?denXY = "309711.3600000001"^^xsd:decimal
806
- # ?denY = "921.7600000000002"^^xsd:decimal
807
- # ?n = 8
808
- # ?n_sxx = "1632"^^xsd:decimal
809
- # ?n_sxy = "2128.0000000000005"^^xsd:decimal
810
- # ?n_syy = "3037.76"^^xsd:decimal
811
- # ?num = "472.00000000000045"^^xsd:decimal
812
- # ?r = "0.8481319639871393"^^xsd:decimal
813
- # ?r2 = "0.7193278283366822"^^xsd:decimal
814
- # ?sqrtDen = "556.5171695464571"^^xsd:decimal
815
- # ?sx = "36"^^xsd:decimal
816
- # ?sx2 = "1296"^^xsd:decimal
817
- # ?sx_sy = "1656"^^xsd:decimal
818
- # ?sxx = "204"^^xsd:decimal
819
- # ?sxy = "266.00000000000006"^^xsd:decimal
820
- # ?sy = "46"^^xsd:decimal
821
- # ?sy2 = "2116"^^xsd:decimal
822
- # ?syy = "379.72"^^xsd:decimal
823
- # ?tmpA = "-4.571428571428626"^^xsd:decimal
824
- # Therefore the derived triple above is entailed by the rules and facts.
825
- # ----------------------------------------------------------------------
826
-
827
12
  :Reg1 :pearsonR "0.8481319639871393"^^xsd:decimal .
828
-
829
- # ----------------------------------------------------------------------
830
- # Proof for derived triple:
831
- # :Reg1 :rSquared "0.7193278283366822"^^xsd:decimal .
832
- # It holds because the following instance of the rule body is provable:
833
- # :Reg1 :n 8 .
834
- # :Reg1 :sumX "36"^^xsd:decimal .
835
- # :Reg1 :sumY "46"^^xsd:decimal .
836
- # :Reg1 :sumXX "204"^^xsd:decimal .
837
- # :Reg1 :sumYY "379.72"^^xsd:decimal .
838
- # :Reg1 :sumXY "266.00000000000006"^^xsd:decimal .
839
- # (8 "266.00000000000006"^^xsd:decimal) math:product "2128.0000000000005"^^xsd:decimal .
840
- # ("36"^^xsd:decimal "46"^^xsd:decimal) math:product "1656"^^xsd:decimal .
841
- # ("2128.0000000000005"^^xsd:decimal "1656"^^xsd:decimal) math:difference "472.00000000000045"^^xsd:decimal .
842
- # (8 "204"^^xsd:decimal) math:product "1632"^^xsd:decimal .
843
- # ("36"^^xsd:decimal 2.0) math:exponentiation "1296"^^xsd:decimal .
844
- # ("1632"^^xsd:decimal "1296"^^xsd:decimal) math:difference "336"^^xsd:decimal .
845
- # ("472.00000000000045"^^xsd:decimal "336"^^xsd:decimal) math:quotient "1.4047619047619062"^^xsd:decimal .
846
- # ("1.4047619047619062"^^xsd:decimal "36"^^xsd:decimal) math:product "50.571428571428626"^^xsd:decimal .
847
- # ("46"^^xsd:decimal "50.571428571428626"^^xsd:decimal) math:difference "-4.571428571428626"^^xsd:decimal .
848
- # ("-4.571428571428626"^^xsd:decimal 8) math:quotient "-0.5714285714285783"^^xsd:decimal .
849
- # (8 "379.72"^^xsd:decimal) math:product "3037.76"^^xsd:decimal .
850
- # ("46"^^xsd:decimal 2.0) math:exponentiation "2116"^^xsd:decimal .
851
- # ("3037.76"^^xsd:decimal "2116"^^xsd:decimal) math:difference "921.7600000000002"^^xsd:decimal .
852
- # ("336"^^xsd:decimal "921.7600000000002"^^xsd:decimal) math:product "309711.3600000001"^^xsd:decimal .
853
- # ("309711.3600000001"^^xsd:decimal 0.5) math:exponentiation "556.5171695464571"^^xsd:decimal .
854
- # ("472.00000000000045"^^xsd:decimal "556.5171695464571"^^xsd:decimal) math:quotient "0.8481319639871393"^^xsd:decimal .
855
- # ("0.8481319639871393"^^xsd:decimal 2.0) math:exponentiation "0.7193278283366822"^^xsd:decimal .
856
- # via the schematic forward rule:
857
- # {
858
- # :Reg1 :n ?n .
859
- # :Reg1 :sumX ?sx .
860
- # :Reg1 :sumY ?sy .
861
- # :Reg1 :sumXX ?sxx .
862
- # :Reg1 :sumYY ?syy .
863
- # :Reg1 :sumXY ?sxy .
864
- # (?n ?sxy) math:product ?n_sxy .
865
- # (?sx ?sy) math:product ?sx_sy .
866
- # (?n_sxy ?sx_sy) math:difference ?num .
867
- # (?n ?sxx) math:product ?n_sxx .
868
- # (?sx 2.0) math:exponentiation ?sx2 .
869
- # (?n_sxx ?sx2) math:difference ?denX .
870
- # (?num ?denX) math:quotient ?b .
871
- # (?b ?sx) math:product ?b_sx .
872
- # (?sy ?b_sx) math:difference ?tmpA .
873
- # (?tmpA ?n) math:quotient ?a .
874
- # (?n ?syy) math:product ?n_syy .
875
- # (?sy 2.0) math:exponentiation ?sy2 .
876
- # (?n_syy ?sy2) math:difference ?denY .
877
- # (?denX ?denY) math:product ?denXY .
878
- # (?denXY 0.5) math:exponentiation ?sqrtDen .
879
- # (?num ?sqrtDen) math:quotient ?r .
880
- # (?r 2.0) math:exponentiation ?r2 .
881
- # } => {
882
- # :Reg1 :slope ?b .
883
- # :Reg1 :intercept ?a .
884
- # :Reg1 :pearsonR ?r .
885
- # :Reg1 :rSquared ?r2 .
886
- # } .
887
- # with substitution (on rule variables):
888
- # ?a = "-0.5714285714285783"^^xsd:decimal
889
- # ?b = "1.4047619047619062"^^xsd:decimal
890
- # ?b_sx = "50.571428571428626"^^xsd:decimal
891
- # ?denX = "336"^^xsd:decimal
892
- # ?denXY = "309711.3600000001"^^xsd:decimal
893
- # ?denY = "921.7600000000002"^^xsd:decimal
894
- # ?n = 8
895
- # ?n_sxx = "1632"^^xsd:decimal
896
- # ?n_sxy = "2128.0000000000005"^^xsd:decimal
897
- # ?n_syy = "3037.76"^^xsd:decimal
898
- # ?num = "472.00000000000045"^^xsd:decimal
899
- # ?r = "0.8481319639871393"^^xsd:decimal
900
- # ?r2 = "0.7193278283366822"^^xsd:decimal
901
- # ?sqrtDen = "556.5171695464571"^^xsd:decimal
902
- # ?sx = "36"^^xsd:decimal
903
- # ?sx2 = "1296"^^xsd:decimal
904
- # ?sx_sy = "1656"^^xsd:decimal
905
- # ?sxx = "204"^^xsd:decimal
906
- # ?sxy = "266.00000000000006"^^xsd:decimal
907
- # ?sy = "46"^^xsd:decimal
908
- # ?sy2 = "2116"^^xsd:decimal
909
- # ?syy = "379.72"^^xsd:decimal
910
- # ?tmpA = "-4.571428571428626"^^xsd:decimal
911
- # Therefore the derived triple above is entailed by the rules and facts.
912
- # ----------------------------------------------------------------------
913
-
914
13
  :Reg1 :rSquared "0.7193278283366822"^^xsd:decimal .
915
-
916
- # ----------------------------------------------------------------------
917
- # Proof for derived triple:
918
- # :Reg1 :sse "32.33904761904761"^^xsd:decimal .
919
- # It holds because the following instance of the rule body is provable:
920
- # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
921
- # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
922
- # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
923
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
924
- # (?e2 {
925
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
926
- # ?p :x ?x .
927
- # ?p :y ?y .
928
- # ("1.4047619047619062"^^xsd:decimal ?x) math:product ?bx .
929
- # ("-0.5714285714285783"^^xsd:decimal ?bx) math:sum ?yhat .
930
- # (?y ?yhat) math:difference ?e .
931
- # (?e 2.0) math:exponentiation ?e2 .
932
- # } ("18.777777777777736"^^xsd:decimal "5.116213151927449"^^xsd:decimal "3.8304081632653135"^^xsd:decimal "1.8289342403628133"^^xsd:decimal "0.7184580498866192"^^xsd:decimal "0.02469387755102107"^^xsd:decimal "0.43811791383220466"^^xsd:decimal "1.6044444444444583"^^xsd:decimal)) log:collectAllIn ?_b1 .
933
- # ("18.777777777777736"^^xsd:decimal "5.116213151927449"^^xsd:decimal "3.8304081632653135"^^xsd:decimal "1.8289342403628133"^^xsd:decimal "0.7184580498866192"^^xsd:decimal "0.02469387755102107"^^xsd:decimal "0.43811791383220466"^^xsd:decimal "1.6044444444444583"^^xsd:decimal) math:sum "32.33904761904761"^^xsd:decimal .
934
- # ("32.33904761904761"^^xsd:decimal 8) math:quotient "4.0423809523809515"^^xsd:decimal .
935
- # ("4.0423809523809515"^^xsd:decimal 0.5) math:exponentiation "2.010567321026817"^^xsd:decimal .
936
- # via the schematic forward rule:
937
- # {
938
- # :Reg1 :points ?pts .
939
- # :Reg1 :slope ?b .
940
- # :Reg1 :intercept ?a .
941
- # ?pts list:length ?n .
942
- # (?e2 {
943
- # ?pts list:member ?p .
944
- # ?p :x ?x .
945
- # ?p :y ?y .
946
- # (?b ?x) math:product ?bx .
947
- # (?a ?bx) math:sum ?yhat .
948
- # (?y ?yhat) math:difference ?e .
949
- # (?e 2.0) math:exponentiation ?e2 .
950
- # } ?e2s) log:collectAllIn ?_b1 .
951
- # ?e2s math:sum ?sse .
952
- # (?sse ?n) math:quotient ?mse .
953
- # (?mse 0.5) math:exponentiation ?rmse .
954
- # } => {
955
- # :Reg1 :sse ?sse .
956
- # :Reg1 :rmse ?rmse .
957
- # } .
958
- # with substitution (on rule variables):
959
- # ?a = "-0.5714285714285783"^^xsd:decimal
960
- # ?b = "1.4047619047619062"^^xsd:decimal
961
- # ?e2s = ("18.777777777777736"^^xsd:decimal "5.116213151927449"^^xsd:decimal "3.8304081632653135"^^xsd:decimal "1.8289342403628133"^^xsd:decimal "0.7184580498866192"^^xsd:decimal "0.02469387755102107"^^xsd:decimal "0.43811791383220466"^^xsd:decimal "1.6044444444444583"^^xsd:decimal)
962
- # ?mse = "4.0423809523809515"^^xsd:decimal
963
- # ?n = 8
964
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
965
- # ?rmse = "2.010567321026817"^^xsd:decimal
966
- # ?sse = "32.33904761904761"^^xsd:decimal
967
- # Therefore the derived triple above is entailed by the rules and facts.
968
- # ----------------------------------------------------------------------
969
-
970
14
  :Reg1 :sse "32.33904761904761"^^xsd:decimal .
971
-
972
- # ----------------------------------------------------------------------
973
- # Proof for derived triple:
974
- # :Reg1 :rmse "2.010567321026817"^^xsd:decimal .
975
- # It holds because the following instance of the rule body is provable:
976
- # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
977
- # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
978
- # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
979
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:length 8 .
980
- # (?e2 {
981
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member ?p .
982
- # ?p :x ?x .
983
- # ?p :y ?y .
984
- # ("1.4047619047619062"^^xsd:decimal ?x) math:product ?bx .
985
- # ("-0.5714285714285783"^^xsd:decimal ?bx) math:sum ?yhat .
986
- # (?y ?yhat) math:difference ?e .
987
- # (?e 2.0) math:exponentiation ?e2 .
988
- # } ("18.777777777777736"^^xsd:decimal "5.116213151927449"^^xsd:decimal "3.8304081632653135"^^xsd:decimal "1.8289342403628133"^^xsd:decimal "0.7184580498866192"^^xsd:decimal "0.02469387755102107"^^xsd:decimal "0.43811791383220466"^^xsd:decimal "1.6044444444444583"^^xsd:decimal)) log:collectAllIn ?_b1 .
989
- # ("18.777777777777736"^^xsd:decimal "5.116213151927449"^^xsd:decimal "3.8304081632653135"^^xsd:decimal "1.8289342403628133"^^xsd:decimal "0.7184580498866192"^^xsd:decimal "0.02469387755102107"^^xsd:decimal "0.43811791383220466"^^xsd:decimal "1.6044444444444583"^^xsd:decimal) math:sum "32.33904761904761"^^xsd:decimal .
990
- # ("32.33904761904761"^^xsd:decimal 8) math:quotient "4.0423809523809515"^^xsd:decimal .
991
- # ("4.0423809523809515"^^xsd:decimal 0.5) math:exponentiation "2.010567321026817"^^xsd:decimal .
992
- # via the schematic forward rule:
993
- # {
994
- # :Reg1 :points ?pts .
995
- # :Reg1 :slope ?b .
996
- # :Reg1 :intercept ?a .
997
- # ?pts list:length ?n .
998
- # (?e2 {
999
- # ?pts list:member ?p .
1000
- # ?p :x ?x .
1001
- # ?p :y ?y .
1002
- # (?b ?x) math:product ?bx .
1003
- # (?a ?bx) math:sum ?yhat .
1004
- # (?y ?yhat) math:difference ?e .
1005
- # (?e 2.0) math:exponentiation ?e2 .
1006
- # } ?e2s) log:collectAllIn ?_b1 .
1007
- # ?e2s math:sum ?sse .
1008
- # (?sse ?n) math:quotient ?mse .
1009
- # (?mse 0.5) math:exponentiation ?rmse .
1010
- # } => {
1011
- # :Reg1 :sse ?sse .
1012
- # :Reg1 :rmse ?rmse .
1013
- # } .
1014
- # with substitution (on rule variables):
1015
- # ?a = "-0.5714285714285783"^^xsd:decimal
1016
- # ?b = "1.4047619047619062"^^xsd:decimal
1017
- # ?e2s = ("18.777777777777736"^^xsd:decimal "5.116213151927449"^^xsd:decimal "3.8304081632653135"^^xsd:decimal "1.8289342403628133"^^xsd:decimal "0.7184580498866192"^^xsd:decimal "0.02469387755102107"^^xsd:decimal "0.43811791383220466"^^xsd:decimal "1.6044444444444583"^^xsd:decimal)
1018
- # ?mse = "4.0423809523809515"^^xsd:decimal
1019
- # ?n = 8
1020
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
1021
- # ?rmse = "2.010567321026817"^^xsd:decimal
1022
- # ?sse = "32.33904761904761"^^xsd:decimal
1023
- # Therefore the derived triple above is entailed by the rules and facts.
1024
- # ----------------------------------------------------------------------
1025
-
1026
15
  :Reg1 :rmse "2.010567321026817"^^xsd:decimal .
1027
-
1028
- # ----------------------------------------------------------------------
1029
- # Proof for derived triple:
1030
- # _:sk_0 :point _:b8 .
1031
- # It holds because the following instance of the rule body is provable:
1032
- # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
1033
- # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
1034
- # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
1035
- # :Reg1 :rmse "2.010567321026817"^^xsd:decimal .
1036
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
1037
- # _:b8 :x 8.0 .
1038
- # _:b8 :y 15.0 .
1039
- # ("1.4047619047619062"^^xsd:decimal 8.0) math:product "11.23809523809525"^^xsd:decimal .
1040
- # ("-0.5714285714285783"^^xsd:decimal "11.23809523809525"^^xsd:decimal) math:sum "10.666666666666671"^^xsd:decimal .
1041
- # (15.0 "10.666666666666671"^^xsd:decimal) math:difference "4.333333333333329"^^xsd:decimal .
1042
- # "4.333333333333329"^^xsd:decimal math:absoluteValue "4.333333333333329"^^xsd:decimal .
1043
- # (2.0 "2.010567321026817"^^xsd:decimal) math:product "4.021134642053634"^^xsd:decimal .
1044
- # "4.333333333333329"^^xsd:decimal math:greaterThan "4.021134642053634"^^xsd:decimal .
1045
- # via the schematic forward rule:
1046
- # {
1047
- # :Reg1 :points ?pts .
1048
- # :Reg1 :slope ?b .
1049
- # :Reg1 :intercept ?a .
1050
- # :Reg1 :rmse ?rmse .
1051
- # ?pts list:member ?p .
1052
- # ?p :x ?x .
1053
- # ?p :y ?y .
1054
- # (?b ?x) math:product ?bx .
1055
- # (?a ?bx) math:sum ?yhat .
1056
- # (?y ?yhat) math:difference ?e .
1057
- # ?e math:absoluteValue ?ae .
1058
- # (2.0 ?rmse) math:product ?thr .
1059
- # ?ae math:greaterThan ?thr .
1060
- # } => {
1061
- # _:b9 :point ?p .
1062
- # _:b9 :x ?x .
1063
- # _:b9 :y ?y .
1064
- # _:b9 :yhat ?yhat .
1065
- # _:b9 :residual ?e .
1066
- # :Reg1 :highResidual _:b9 .
1067
- # } .
1068
- # with substitution (on rule variables):
1069
- # ?a = "-0.5714285714285783"^^xsd:decimal
1070
- # ?ae = "4.333333333333329"^^xsd:decimal
1071
- # ?b = "1.4047619047619062"^^xsd:decimal
1072
- # ?bx = "11.23809523809525"^^xsd:decimal
1073
- # ?e = "4.333333333333329"^^xsd:decimal
1074
- # ?p = _:b8
1075
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
1076
- # ?rmse = "2.010567321026817"^^xsd:decimal
1077
- # ?thr = "4.021134642053634"^^xsd:decimal
1078
- # ?x = 8.0
1079
- # ?y = 15.0
1080
- # ?yhat = "10.666666666666671"^^xsd:decimal
1081
- # Therefore the derived triple above is entailed by the rules and facts.
1082
- # ----------------------------------------------------------------------
1083
-
1084
16
  _:sk_0 :point _:b8 .
1085
-
1086
- # ----------------------------------------------------------------------
1087
- # Proof for derived triple:
1088
- # _:sk_0 :x 8.0 .
1089
- # It holds because the following instance of the rule body is provable:
1090
- # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
1091
- # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
1092
- # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
1093
- # :Reg1 :rmse "2.010567321026817"^^xsd:decimal .
1094
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
1095
- # _:b8 :x 8.0 .
1096
- # _:b8 :y 15.0 .
1097
- # ("1.4047619047619062"^^xsd:decimal 8.0) math:product "11.23809523809525"^^xsd:decimal .
1098
- # ("-0.5714285714285783"^^xsd:decimal "11.23809523809525"^^xsd:decimal) math:sum "10.666666666666671"^^xsd:decimal .
1099
- # (15.0 "10.666666666666671"^^xsd:decimal) math:difference "4.333333333333329"^^xsd:decimal .
1100
- # "4.333333333333329"^^xsd:decimal math:absoluteValue "4.333333333333329"^^xsd:decimal .
1101
- # (2.0 "2.010567321026817"^^xsd:decimal) math:product "4.021134642053634"^^xsd:decimal .
1102
- # "4.333333333333329"^^xsd:decimal math:greaterThan "4.021134642053634"^^xsd:decimal .
1103
- # via the schematic forward rule:
1104
- # {
1105
- # :Reg1 :points ?pts .
1106
- # :Reg1 :slope ?b .
1107
- # :Reg1 :intercept ?a .
1108
- # :Reg1 :rmse ?rmse .
1109
- # ?pts list:member ?p .
1110
- # ?p :x ?x .
1111
- # ?p :y ?y .
1112
- # (?b ?x) math:product ?bx .
1113
- # (?a ?bx) math:sum ?yhat .
1114
- # (?y ?yhat) math:difference ?e .
1115
- # ?e math:absoluteValue ?ae .
1116
- # (2.0 ?rmse) math:product ?thr .
1117
- # ?ae math:greaterThan ?thr .
1118
- # } => {
1119
- # _:b9 :point ?p .
1120
- # _:b9 :x ?x .
1121
- # _:b9 :y ?y .
1122
- # _:b9 :yhat ?yhat .
1123
- # _:b9 :residual ?e .
1124
- # :Reg1 :highResidual _:b9 .
1125
- # } .
1126
- # with substitution (on rule variables):
1127
- # ?a = "-0.5714285714285783"^^xsd:decimal
1128
- # ?ae = "4.333333333333329"^^xsd:decimal
1129
- # ?b = "1.4047619047619062"^^xsd:decimal
1130
- # ?bx = "11.23809523809525"^^xsd:decimal
1131
- # ?e = "4.333333333333329"^^xsd:decimal
1132
- # ?p = _:b8
1133
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
1134
- # ?rmse = "2.010567321026817"^^xsd:decimal
1135
- # ?thr = "4.021134642053634"^^xsd:decimal
1136
- # ?x = 8.0
1137
- # ?y = 15.0
1138
- # ?yhat = "10.666666666666671"^^xsd:decimal
1139
- # Therefore the derived triple above is entailed by the rules and facts.
1140
- # ----------------------------------------------------------------------
1141
-
1142
17
  _:sk_0 :x 8.0 .
1143
-
1144
- # ----------------------------------------------------------------------
1145
- # Proof for derived triple:
1146
- # _:sk_0 :y 15.0 .
1147
- # It holds because the following instance of the rule body is provable:
1148
- # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
1149
- # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
1150
- # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
1151
- # :Reg1 :rmse "2.010567321026817"^^xsd:decimal .
1152
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
1153
- # _:b8 :x 8.0 .
1154
- # _:b8 :y 15.0 .
1155
- # ("1.4047619047619062"^^xsd:decimal 8.0) math:product "11.23809523809525"^^xsd:decimal .
1156
- # ("-0.5714285714285783"^^xsd:decimal "11.23809523809525"^^xsd:decimal) math:sum "10.666666666666671"^^xsd:decimal .
1157
- # (15.0 "10.666666666666671"^^xsd:decimal) math:difference "4.333333333333329"^^xsd:decimal .
1158
- # "4.333333333333329"^^xsd:decimal math:absoluteValue "4.333333333333329"^^xsd:decimal .
1159
- # (2.0 "2.010567321026817"^^xsd:decimal) math:product "4.021134642053634"^^xsd:decimal .
1160
- # "4.333333333333329"^^xsd:decimal math:greaterThan "4.021134642053634"^^xsd:decimal .
1161
- # via the schematic forward rule:
1162
- # {
1163
- # :Reg1 :points ?pts .
1164
- # :Reg1 :slope ?b .
1165
- # :Reg1 :intercept ?a .
1166
- # :Reg1 :rmse ?rmse .
1167
- # ?pts list:member ?p .
1168
- # ?p :x ?x .
1169
- # ?p :y ?y .
1170
- # (?b ?x) math:product ?bx .
1171
- # (?a ?bx) math:sum ?yhat .
1172
- # (?y ?yhat) math:difference ?e .
1173
- # ?e math:absoluteValue ?ae .
1174
- # (2.0 ?rmse) math:product ?thr .
1175
- # ?ae math:greaterThan ?thr .
1176
- # } => {
1177
- # _:b9 :point ?p .
1178
- # _:b9 :x ?x .
1179
- # _:b9 :y ?y .
1180
- # _:b9 :yhat ?yhat .
1181
- # _:b9 :residual ?e .
1182
- # :Reg1 :highResidual _:b9 .
1183
- # } .
1184
- # with substitution (on rule variables):
1185
- # ?a = "-0.5714285714285783"^^xsd:decimal
1186
- # ?ae = "4.333333333333329"^^xsd:decimal
1187
- # ?b = "1.4047619047619062"^^xsd:decimal
1188
- # ?bx = "11.23809523809525"^^xsd:decimal
1189
- # ?e = "4.333333333333329"^^xsd:decimal
1190
- # ?p = _:b8
1191
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
1192
- # ?rmse = "2.010567321026817"^^xsd:decimal
1193
- # ?thr = "4.021134642053634"^^xsd:decimal
1194
- # ?x = 8.0
1195
- # ?y = 15.0
1196
- # ?yhat = "10.666666666666671"^^xsd:decimal
1197
- # Therefore the derived triple above is entailed by the rules and facts.
1198
- # ----------------------------------------------------------------------
1199
-
1200
18
  _:sk_0 :y 15.0 .
1201
-
1202
- # ----------------------------------------------------------------------
1203
- # Proof for derived triple:
1204
- # _:sk_0 :yhat "10.666666666666671"^^xsd:decimal .
1205
- # It holds because the following instance of the rule body is provable:
1206
- # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
1207
- # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
1208
- # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
1209
- # :Reg1 :rmse "2.010567321026817"^^xsd:decimal .
1210
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
1211
- # _:b8 :x 8.0 .
1212
- # _:b8 :y 15.0 .
1213
- # ("1.4047619047619062"^^xsd:decimal 8.0) math:product "11.23809523809525"^^xsd:decimal .
1214
- # ("-0.5714285714285783"^^xsd:decimal "11.23809523809525"^^xsd:decimal) math:sum "10.666666666666671"^^xsd:decimal .
1215
- # (15.0 "10.666666666666671"^^xsd:decimal) math:difference "4.333333333333329"^^xsd:decimal .
1216
- # "4.333333333333329"^^xsd:decimal math:absoluteValue "4.333333333333329"^^xsd:decimal .
1217
- # (2.0 "2.010567321026817"^^xsd:decimal) math:product "4.021134642053634"^^xsd:decimal .
1218
- # "4.333333333333329"^^xsd:decimal math:greaterThan "4.021134642053634"^^xsd:decimal .
1219
- # via the schematic forward rule:
1220
- # {
1221
- # :Reg1 :points ?pts .
1222
- # :Reg1 :slope ?b .
1223
- # :Reg1 :intercept ?a .
1224
- # :Reg1 :rmse ?rmse .
1225
- # ?pts list:member ?p .
1226
- # ?p :x ?x .
1227
- # ?p :y ?y .
1228
- # (?b ?x) math:product ?bx .
1229
- # (?a ?bx) math:sum ?yhat .
1230
- # (?y ?yhat) math:difference ?e .
1231
- # ?e math:absoluteValue ?ae .
1232
- # (2.0 ?rmse) math:product ?thr .
1233
- # ?ae math:greaterThan ?thr .
1234
- # } => {
1235
- # _:b9 :point ?p .
1236
- # _:b9 :x ?x .
1237
- # _:b9 :y ?y .
1238
- # _:b9 :yhat ?yhat .
1239
- # _:b9 :residual ?e .
1240
- # :Reg1 :highResidual _:b9 .
1241
- # } .
1242
- # with substitution (on rule variables):
1243
- # ?a = "-0.5714285714285783"^^xsd:decimal
1244
- # ?ae = "4.333333333333329"^^xsd:decimal
1245
- # ?b = "1.4047619047619062"^^xsd:decimal
1246
- # ?bx = "11.23809523809525"^^xsd:decimal
1247
- # ?e = "4.333333333333329"^^xsd:decimal
1248
- # ?p = _:b8
1249
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
1250
- # ?rmse = "2.010567321026817"^^xsd:decimal
1251
- # ?thr = "4.021134642053634"^^xsd:decimal
1252
- # ?x = 8.0
1253
- # ?y = 15.0
1254
- # ?yhat = "10.666666666666671"^^xsd:decimal
1255
- # Therefore the derived triple above is entailed by the rules and facts.
1256
- # ----------------------------------------------------------------------
1257
-
1258
19
  _:sk_0 :yhat "10.666666666666671"^^xsd:decimal .
1259
-
1260
- # ----------------------------------------------------------------------
1261
- # Proof for derived triple:
1262
- # _:sk_0 :residual "4.333333333333329"^^xsd:decimal .
1263
- # It holds because the following instance of the rule body is provable:
1264
- # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
1265
- # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
1266
- # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
1267
- # :Reg1 :rmse "2.010567321026817"^^xsd:decimal .
1268
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
1269
- # _:b8 :x 8.0 .
1270
- # _:b8 :y 15.0 .
1271
- # ("1.4047619047619062"^^xsd:decimal 8.0) math:product "11.23809523809525"^^xsd:decimal .
1272
- # ("-0.5714285714285783"^^xsd:decimal "11.23809523809525"^^xsd:decimal) math:sum "10.666666666666671"^^xsd:decimal .
1273
- # (15.0 "10.666666666666671"^^xsd:decimal) math:difference "4.333333333333329"^^xsd:decimal .
1274
- # "4.333333333333329"^^xsd:decimal math:absoluteValue "4.333333333333329"^^xsd:decimal .
1275
- # (2.0 "2.010567321026817"^^xsd:decimal) math:product "4.021134642053634"^^xsd:decimal .
1276
- # "4.333333333333329"^^xsd:decimal math:greaterThan "4.021134642053634"^^xsd:decimal .
1277
- # via the schematic forward rule:
1278
- # {
1279
- # :Reg1 :points ?pts .
1280
- # :Reg1 :slope ?b .
1281
- # :Reg1 :intercept ?a .
1282
- # :Reg1 :rmse ?rmse .
1283
- # ?pts list:member ?p .
1284
- # ?p :x ?x .
1285
- # ?p :y ?y .
1286
- # (?b ?x) math:product ?bx .
1287
- # (?a ?bx) math:sum ?yhat .
1288
- # (?y ?yhat) math:difference ?e .
1289
- # ?e math:absoluteValue ?ae .
1290
- # (2.0 ?rmse) math:product ?thr .
1291
- # ?ae math:greaterThan ?thr .
1292
- # } => {
1293
- # _:b9 :point ?p .
1294
- # _:b9 :x ?x .
1295
- # _:b9 :y ?y .
1296
- # _:b9 :yhat ?yhat .
1297
- # _:b9 :residual ?e .
1298
- # :Reg1 :highResidual _:b9 .
1299
- # } .
1300
- # with substitution (on rule variables):
1301
- # ?a = "-0.5714285714285783"^^xsd:decimal
1302
- # ?ae = "4.333333333333329"^^xsd:decimal
1303
- # ?b = "1.4047619047619062"^^xsd:decimal
1304
- # ?bx = "11.23809523809525"^^xsd:decimal
1305
- # ?e = "4.333333333333329"^^xsd:decimal
1306
- # ?p = _:b8
1307
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
1308
- # ?rmse = "2.010567321026817"^^xsd:decimal
1309
- # ?thr = "4.021134642053634"^^xsd:decimal
1310
- # ?x = 8.0
1311
- # ?y = 15.0
1312
- # ?yhat = "10.666666666666671"^^xsd:decimal
1313
- # Therefore the derived triple above is entailed by the rules and facts.
1314
- # ----------------------------------------------------------------------
1315
-
1316
20
  _:sk_0 :residual "4.333333333333329"^^xsd:decimal .
1317
-
1318
- # ----------------------------------------------------------------------
1319
- # Proof for derived triple:
1320
- # :Reg1 :highResidual _:sk_0 .
1321
- # It holds because the following instance of the rule body is provable:
1322
- # :Reg1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) .
1323
- # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
1324
- # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
1325
- # :Reg1 :rmse "2.010567321026817"^^xsd:decimal .
1326
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8) list:member _:b8 .
1327
- # _:b8 :x 8.0 .
1328
- # _:b8 :y 15.0 .
1329
- # ("1.4047619047619062"^^xsd:decimal 8.0) math:product "11.23809523809525"^^xsd:decimal .
1330
- # ("-0.5714285714285783"^^xsd:decimal "11.23809523809525"^^xsd:decimal) math:sum "10.666666666666671"^^xsd:decimal .
1331
- # (15.0 "10.666666666666671"^^xsd:decimal) math:difference "4.333333333333329"^^xsd:decimal .
1332
- # "4.333333333333329"^^xsd:decimal math:absoluteValue "4.333333333333329"^^xsd:decimal .
1333
- # (2.0 "2.010567321026817"^^xsd:decimal) math:product "4.021134642053634"^^xsd:decimal .
1334
- # "4.333333333333329"^^xsd:decimal math:greaterThan "4.021134642053634"^^xsd:decimal .
1335
- # via the schematic forward rule:
1336
- # {
1337
- # :Reg1 :points ?pts .
1338
- # :Reg1 :slope ?b .
1339
- # :Reg1 :intercept ?a .
1340
- # :Reg1 :rmse ?rmse .
1341
- # ?pts list:member ?p .
1342
- # ?p :x ?x .
1343
- # ?p :y ?y .
1344
- # (?b ?x) math:product ?bx .
1345
- # (?a ?bx) math:sum ?yhat .
1346
- # (?y ?yhat) math:difference ?e .
1347
- # ?e math:absoluteValue ?ae .
1348
- # (2.0 ?rmse) math:product ?thr .
1349
- # ?ae math:greaterThan ?thr .
1350
- # } => {
1351
- # _:b9 :point ?p .
1352
- # _:b9 :x ?x .
1353
- # _:b9 :y ?y .
1354
- # _:b9 :yhat ?yhat .
1355
- # _:b9 :residual ?e .
1356
- # :Reg1 :highResidual _:b9 .
1357
- # } .
1358
- # with substitution (on rule variables):
1359
- # ?a = "-0.5714285714285783"^^xsd:decimal
1360
- # ?ae = "4.333333333333329"^^xsd:decimal
1361
- # ?b = "1.4047619047619062"^^xsd:decimal
1362
- # ?bx = "11.23809523809525"^^xsd:decimal
1363
- # ?e = "4.333333333333329"^^xsd:decimal
1364
- # ?p = _:b8
1365
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7 _:b8)
1366
- # ?rmse = "2.010567321026817"^^xsd:decimal
1367
- # ?thr = "4.021134642053634"^^xsd:decimal
1368
- # ?x = 8.0
1369
- # ?y = 15.0
1370
- # ?yhat = "10.666666666666671"^^xsd:decimal
1371
- # Therefore the derived triple above is entailed by the rules and facts.
1372
- # ----------------------------------------------------------------------
1373
-
1374
21
  :Reg1 :highResidual _:sk_0 .
1375
-
1376
- # ----------------------------------------------------------------------
1377
- # Proof for derived triple:
1378
- # _:sk_1 :x 8.5 .
1379
- # It holds because the following instance of the rule body is provable:
1380
- # :Reg1 :predictX 8.5 .
1381
- # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
1382
- # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
1383
- # ("1.4047619047619062"^^xsd:decimal 8.5) math:product "11.940476190476202"^^xsd:decimal .
1384
- # ("-0.5714285714285783"^^xsd:decimal "11.940476190476202"^^xsd:decimal) math:sum "11.369047619047624"^^xsd:decimal .
1385
- # via the schematic forward rule:
1386
- # {
1387
- # :Reg1 :predictX ?x0 .
1388
- # :Reg1 :slope ?b .
1389
- # :Reg1 :intercept ?a .
1390
- # (?b ?x0) math:product ?bx0 .
1391
- # (?a ?bx0) math:sum ?y0 .
1392
- # } => {
1393
- # _:b10 :x ?x0 .
1394
- # _:b10 :y ?y0 .
1395
- # :Reg1 :prediction _:b10 .
1396
- # } .
1397
- # with substitution (on rule variables):
1398
- # ?a = "-0.5714285714285783"^^xsd:decimal
1399
- # ?b = "1.4047619047619062"^^xsd:decimal
1400
- # ?bx0 = "11.940476190476202"^^xsd:decimal
1401
- # ?x0 = 8.5
1402
- # ?y0 = "11.369047619047624"^^xsd:decimal
1403
- # Therefore the derived triple above is entailed by the rules and facts.
1404
- # ----------------------------------------------------------------------
1405
-
1406
22
  _:sk_1 :x 8.5 .
1407
-
1408
- # ----------------------------------------------------------------------
1409
- # Proof for derived triple:
1410
- # _:sk_1 :y "11.369047619047624"^^xsd:decimal .
1411
- # It holds because the following instance of the rule body is provable:
1412
- # :Reg1 :predictX 8.5 .
1413
- # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
1414
- # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
1415
- # ("1.4047619047619062"^^xsd:decimal 8.5) math:product "11.940476190476202"^^xsd:decimal .
1416
- # ("-0.5714285714285783"^^xsd:decimal "11.940476190476202"^^xsd:decimal) math:sum "11.369047619047624"^^xsd:decimal .
1417
- # via the schematic forward rule:
1418
- # {
1419
- # :Reg1 :predictX ?x0 .
1420
- # :Reg1 :slope ?b .
1421
- # :Reg1 :intercept ?a .
1422
- # (?b ?x0) math:product ?bx0 .
1423
- # (?a ?bx0) math:sum ?y0 .
1424
- # } => {
1425
- # _:b10 :x ?x0 .
1426
- # _:b10 :y ?y0 .
1427
- # :Reg1 :prediction _:b10 .
1428
- # } .
1429
- # with substitution (on rule variables):
1430
- # ?a = "-0.5714285714285783"^^xsd:decimal
1431
- # ?b = "1.4047619047619062"^^xsd:decimal
1432
- # ?bx0 = "11.940476190476202"^^xsd:decimal
1433
- # ?x0 = 8.5
1434
- # ?y0 = "11.369047619047624"^^xsd:decimal
1435
- # Therefore the derived triple above is entailed by the rules and facts.
1436
- # ----------------------------------------------------------------------
1437
-
1438
23
  _:sk_1 :y "11.369047619047624"^^xsd:decimal .
1439
-
1440
- # ----------------------------------------------------------------------
1441
- # Proof for derived triple:
1442
- # :Reg1 :prediction _:sk_1 .
1443
- # It holds because the following instance of the rule body is provable:
1444
- # :Reg1 :predictX 8.5 .
1445
- # :Reg1 :slope "1.4047619047619062"^^xsd:decimal .
1446
- # :Reg1 :intercept "-0.5714285714285783"^^xsd:decimal .
1447
- # ("1.4047619047619062"^^xsd:decimal 8.5) math:product "11.940476190476202"^^xsd:decimal .
1448
- # ("-0.5714285714285783"^^xsd:decimal "11.940476190476202"^^xsd:decimal) math:sum "11.369047619047624"^^xsd:decimal .
1449
- # via the schematic forward rule:
1450
- # {
1451
- # :Reg1 :predictX ?x0 .
1452
- # :Reg1 :slope ?b .
1453
- # :Reg1 :intercept ?a .
1454
- # (?b ?x0) math:product ?bx0 .
1455
- # (?a ?bx0) math:sum ?y0 .
1456
- # } => {
1457
- # _:b10 :x ?x0 .
1458
- # _:b10 :y ?y0 .
1459
- # :Reg1 :prediction _:b10 .
1460
- # } .
1461
- # with substitution (on rule variables):
1462
- # ?a = "-0.5714285714285783"^^xsd:decimal
1463
- # ?b = "1.4047619047619062"^^xsd:decimal
1464
- # ?bx0 = "11.940476190476202"^^xsd:decimal
1465
- # ?x0 = 8.5
1466
- # ?y0 = "11.369047619047624"^^xsd:decimal
1467
- # Therefore the derived triple above is entailed by the rules and facts.
1468
- # ----------------------------------------------------------------------
1469
-
1470
24
  :Reg1 :prediction _:sk_1 .
1471
-