eyeling 1.6.13 → 1.6.15

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (77) hide show
  1. package/README.md +8 -19
  2. package/examples/output/age.n3 +0 -17
  3. package/examples/output/alignment-demo.n3 +0 -572
  4. package/examples/output/backward.n3 +0 -15
  5. package/examples/output/basic-monadic.n3 +0 -105
  6. package/examples/output/brussels-brew-club.n3 +0 -476
  7. package/examples/output/cat-koko.n3 +0 -108
  8. package/examples/output/cobalt-kepler-kitchen.n3 +0 -7064
  9. package/examples/output/complex.n3 +0 -46
  10. package/examples/output/control-system.n3 +0 -75
  11. package/examples/output/cranberry-calculus.n3 +0 -1313
  12. package/examples/output/crypto-builtins-tests.n3 +0 -60
  13. package/examples/output/deep-taxonomy-10.n3 +0 -602
  14. package/examples/output/deep-taxonomy-100.n3 +1 -5733
  15. package/examples/output/deep-taxonomy-1000.n3 +1 -57033
  16. package/examples/output/deep-taxonomy-10000.n3 +1 -570033
  17. package/examples/output/derived-backward-rule-2.n3 +0 -58
  18. package/examples/output/derived-backward-rule.n3 +0 -44
  19. package/examples/output/derived-rule.n3 +0 -42
  20. package/examples/output/dijkstra.n3 +0 -297
  21. package/examples/output/dog.n3 +0 -30
  22. package/examples/output/drone-corridor-planner.n3 +0 -799
  23. package/examples/output/easter.n3 +0 -3570
  24. package/examples/output/equals.n3 +0 -15
  25. package/examples/output/ev-roundtrip-planner.n3 +0 -392
  26. package/examples/output/existential-rule.n3 +0 -34
  27. package/examples/output/expression-eval.n3 +0 -20
  28. package/examples/output/family-cousins.n3 +0 -636
  29. package/examples/output/fibonacci.n3 +0 -36
  30. package/examples/output/french-cities.n3 +0 -484
  31. package/examples/output/good-cobbler.n3 +0 -22
  32. package/examples/output/gps.n3 +0 -62
  33. package/examples/output/gray-code-counter.n3 +0 -17
  34. package/examples/output/hanoi.n3 +0 -17
  35. package/examples/output/jade-eigen-loom.n3 +0 -4690
  36. package/examples/output/json-pointer.n3 +0 -529
  37. package/examples/output/json-reconcile-vat.n3 +0 -12882
  38. package/examples/output/light-eaters.n3 +0 -311
  39. package/examples/output/list-builtins-tests.n3 +0 -167
  40. package/examples/output/list-iterate.n3 +0 -124
  41. package/examples/output/lldm.n3 +0 -960
  42. package/examples/output/log-collect-all-in.n3 +0 -117
  43. package/examples/output/log-for-all-in.n3 +0 -27
  44. package/examples/output/log-not-includes.n3 +0 -59
  45. package/examples/output/log-skolem.n3 +0 -17
  46. package/examples/output/log-uri.n3 +0 -42
  47. package/examples/output/math-builtins-tests.n3 +0 -4434
  48. package/examples/output/minimal-skos-alignment.n3 +0 -39
  49. package/examples/output/monkey.n3 +0 -36
  50. package/examples/output/odrl-trust.n3 +0 -46
  51. package/examples/output/oslo-steps-library-scholarly.n3 +0 -1260
  52. package/examples/output/oslo-steps-workflow-composition.n3 +0 -180
  53. package/examples/output/peano.n3 +0 -23
  54. package/examples/output/pi.n3 +0 -17
  55. package/examples/output/pillar.n3 +0 -32
  56. package/examples/output/polygon.n3 +0 -17
  57. package/examples/output/rdf-list.n3 +0 -28
  58. package/examples/output/reordering.n3 +0 -26
  59. package/examples/output/ruby-runge-workshop.n3 +0 -613
  60. package/examples/output/rule-matching.n3 +0 -26
  61. package/examples/output/saffron-slopeworks.n3 +0 -1447
  62. package/examples/output/self-referential.n3 +0 -81
  63. package/examples/output/similar.n3 +0 -15
  64. package/examples/output/snaf.n3 +0 -23
  65. package/examples/output/socrates.n3 +0 -21
  66. package/examples/output/spectral-week.n3 +0 -350
  67. package/examples/output/string-builtins-tests.n3 +0 -240
  68. package/examples/output/topaz-markov-mill.n3 +0 -4178
  69. package/examples/output/traffic-skos-aggregate.n3 +0 -3151
  70. package/examples/output/turing.n3 +0 -36
  71. package/examples/output/ultramarine-simpson-forge.n3 +0 -3873
  72. package/examples/output/witch.n3 +0 -107
  73. package/examples/output/zebra.n3 +0 -111
  74. package/eyeling.js +129 -25
  75. package/index.js +13 -6
  76. package/package.json +1 -1
  77. package/test/examples.test.js +1 -1
@@ -1,4750 +1,60 @@
1
1
  @prefix : <http://example.org/jade-eigen-loom#> .
2
2
  @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
3
3
 
4
- # ----------------------------------------------------------------------
5
- # Proof for derived triple:
6
- # :PCA1 :n 7 .
7
- # It holds because the following instance of the rule body is provable:
8
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
9
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:length 7 .
10
- # (?x {
11
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
12
- # ?p :x ?x .
13
- # } (20.0 7.0 6.0 5.0 4.0 3.0 2.0)) log:collectAllIn ?_b1 .
14
- # (?y {
15
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
16
- # ?p :y ?y .
17
- # } (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)) log:collectAllIn ?_b1 .
18
- # (20.0 7.0 6.0 5.0 4.0 3.0 2.0) math:sum "47"^^xsd:decimal .
19
- # (-3.0 13.0 7.9 5.1 3.2 2.0 1.0) math:sum "29.2"^^xsd:decimal .
20
- # ("47"^^xsd:decimal 7) math:quotient "6.714285714285714"^^xsd:decimal .
21
- # ("29.2"^^xsd:decimal 7) math:quotient "4.171428571428572"^^xsd:decimal .
22
- # (?dx2 {
23
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
24
- # ?p :x ?x .
25
- # (?x "6.714285714285714"^^xsd:decimal) math:difference ?dx .
26
- # (?dx 2.0) math:exponentiation ?dx2 .
27
- # } ("176.51020408163262"^^xsd:decimal "0.08163265306122441"^^xsd:decimal "0.5102040816326533"^^xsd:decimal "2.9387755102040822"^^xsd:decimal "7.367346938775511"^^xsd:decimal "13.795918367346939"^^xsd:decimal "22.22448979591837"^^xsd:decimal)) log:collectAllIn ?_b1 .
28
- # ("176.51020408163262"^^xsd:decimal "0.08163265306122441"^^xsd:decimal "0.5102040816326533"^^xsd:decimal "2.9387755102040822"^^xsd:decimal "7.367346938775511"^^xsd:decimal "13.795918367346939"^^xsd:decimal "22.22448979591837"^^xsd:decimal) math:sum "223.42857142857142"^^xsd:decimal .
29
- # ("223.42857142857142"^^xsd:decimal 7) math:quotient "31.918367346938773"^^xsd:decimal .
30
- # (?dy2 {
31
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
32
- # ?p :y ?y .
33
- # (?y "4.171428571428572"^^xsd:decimal) math:difference ?dy .
34
- # (?dy 2.0) math:exponentiation ?dy2 .
35
- # } ("51.42938775510204"^^xsd:decimal "77.94367346938776"^^xsd:decimal "13.902244897959184"^^xsd:decimal "0.8622448979591825"^^xsd:decimal "0.9436734693877553"^^xsd:decimal "4.715102040816328"^^xsd:decimal "10.057959183673471"^^xsd:decimal)) log:collectAllIn ?_b1 .
36
- # ("51.42938775510204"^^xsd:decimal "77.94367346938776"^^xsd:decimal "13.902244897959184"^^xsd:decimal "0.8622448979591825"^^xsd:decimal "0.9436734693877553"^^xsd:decimal "4.715102040816328"^^xsd:decimal "10.057959183673471"^^xsd:decimal) math:sum "159.8542857142857"^^xsd:decimal .
37
- # ("159.8542857142857"^^xsd:decimal 7) math:quotient "22.836326530612244"^^xsd:decimal .
38
- # (?dxdy {
39
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
40
- # ?p :x ?x .
41
- # ?p :y ?y .
42
- # (?x "6.714285714285714"^^xsd:decimal) math:difference ?dx .
43
- # (?y "4.171428571428572"^^xsd:decimal) math:difference ?dy .
44
- # (?dx ?dy) math:product ?dxdy .
45
- # } ("-95.27755102040815"^^xsd:decimal "2.522448979591836"^^xsd:decimal "-2.6632653061224496"^^xsd:decimal "-1.5918367346938767"^^xsd:decimal "2.6367346938775515"^^xsd:decimal "8.06530612244898"^^xsd:decimal "14.951020408163266"^^xsd:decimal)) log:collectAllIn ?_b1 .
46
- # ("-95.27755102040815"^^xsd:decimal "2.522448979591836"^^xsd:decimal "-2.6632653061224496"^^xsd:decimal "-1.5918367346938767"^^xsd:decimal "2.6367346938775515"^^xsd:decimal "8.06530612244898"^^xsd:decimal "14.951020408163266"^^xsd:decimal) math:sum "-71.35714285714286"^^xsd:decimal .
47
- # ("-71.35714285714286"^^xsd:decimal 7) math:quotient "-10.193877551020408"^^xsd:decimal .
48
- # via the schematic forward rule:
49
- # {
50
- # :PCA1 :points ?pts .
51
- # ?pts list:length ?n .
52
- # (?x {
53
- # ?pts list:member ?p .
54
- # ?p :x ?x .
55
- # } ?xs) log:collectAllIn ?_b1 .
56
- # (?y {
57
- # ?pts list:member ?p .
58
- # ?p :y ?y .
59
- # } ?ys) log:collectAllIn ?_b1 .
60
- # ?xs math:sum ?sumX .
61
- # ?ys math:sum ?sumY .
62
- # (?sumX ?n) math:quotient ?meanX .
63
- # (?sumY ?n) math:quotient ?meanY .
64
- # (?dx2 {
65
- # ?pts list:member ?p .
66
- # ?p :x ?x .
67
- # (?x ?meanX) math:difference ?dx .
68
- # (?dx 2.0) math:exponentiation ?dx2 .
69
- # } ?dx2s) log:collectAllIn ?_b1 .
70
- # ?dx2s math:sum ?ssXX .
71
- # (?ssXX ?n) math:quotient ?covXX .
72
- # (?dy2 {
73
- # ?pts list:member ?p .
74
- # ?p :y ?y .
75
- # (?y ?meanY) math:difference ?dy .
76
- # (?dy 2.0) math:exponentiation ?dy2 .
77
- # } ?dy2s) log:collectAllIn ?_b1 .
78
- # ?dy2s math:sum ?ssYY .
79
- # (?ssYY ?n) math:quotient ?covYY .
80
- # (?dxdy {
81
- # ?pts list:member ?p .
82
- # ?p :x ?x .
83
- # ?p :y ?y .
84
- # (?x ?meanX) math:difference ?dx .
85
- # (?y ?meanY) math:difference ?dy .
86
- # (?dx ?dy) math:product ?dxdy .
87
- # } ?dxdys) log:collectAllIn ?_b1 .
88
- # ?dxdys math:sum ?ssXY .
89
- # (?ssXY ?n) math:quotient ?covXY .
90
- # } => {
91
- # :PCA1 :n ?n .
92
- # :PCA1 :meanX ?meanX .
93
- # :PCA1 :meanY ?meanY .
94
- # :PCA1 :covXX ?covXX .
95
- # :PCA1 :covYY ?covYY .
96
- # :PCA1 :covXY ?covXY .
97
- # } .
98
- # with substitution (on rule variables):
99
- # ?covXX = "31.918367346938773"^^xsd:decimal
100
- # ?covXY = "-10.193877551020408"^^xsd:decimal
101
- # ?covYY = "22.836326530612244"^^xsd:decimal
102
- # ?dx2s = ("176.51020408163262"^^xsd:decimal "0.08163265306122441"^^xsd:decimal "0.5102040816326533"^^xsd:decimal "2.9387755102040822"^^xsd:decimal "7.367346938775511"^^xsd:decimal "13.795918367346939"^^xsd:decimal "22.22448979591837"^^xsd:decimal)
103
- # ?dxdys = ("-95.27755102040815"^^xsd:decimal "2.522448979591836"^^xsd:decimal "-2.6632653061224496"^^xsd:decimal "-1.5918367346938767"^^xsd:decimal "2.6367346938775515"^^xsd:decimal "8.06530612244898"^^xsd:decimal "14.951020408163266"^^xsd:decimal)
104
- # ?dy2s = ("51.42938775510204"^^xsd:decimal "77.94367346938776"^^xsd:decimal "13.902244897959184"^^xsd:decimal "0.8622448979591825"^^xsd:decimal "0.9436734693877553"^^xsd:decimal "4.715102040816328"^^xsd:decimal "10.057959183673471"^^xsd:decimal)
105
- # ?meanX = "6.714285714285714"^^xsd:decimal
106
- # ?meanY = "4.171428571428572"^^xsd:decimal
107
- # ?n = 7
108
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
109
- # ?ssXX = "223.42857142857142"^^xsd:decimal
110
- # ?ssXY = "-71.35714285714286"^^xsd:decimal
111
- # ?ssYY = "159.8542857142857"^^xsd:decimal
112
- # ?sumX = "47"^^xsd:decimal
113
- # ?sumY = "29.2"^^xsd:decimal
114
- # ?xs = (20.0 7.0 6.0 5.0 4.0 3.0 2.0)
115
- # ?ys = (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)
116
- # Therefore the derived triple above is entailed by the rules and facts.
117
- # ----------------------------------------------------------------------
118
-
119
4
  :PCA1 :n 7 .
120
-
121
- # ----------------------------------------------------------------------
122
- # Proof for derived triple:
123
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
124
- # It holds because the following instance of the rule body is provable:
125
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
126
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:length 7 .
127
- # (?x {
128
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
129
- # ?p :x ?x .
130
- # } (20.0 7.0 6.0 5.0 4.0 3.0 2.0)) log:collectAllIn ?_b1 .
131
- # (?y {
132
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
133
- # ?p :y ?y .
134
- # } (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)) log:collectAllIn ?_b1 .
135
- # (20.0 7.0 6.0 5.0 4.0 3.0 2.0) math:sum "47"^^xsd:decimal .
136
- # (-3.0 13.0 7.9 5.1 3.2 2.0 1.0) math:sum "29.2"^^xsd:decimal .
137
- # ("47"^^xsd:decimal 7) math:quotient "6.714285714285714"^^xsd:decimal .
138
- # ("29.2"^^xsd:decimal 7) math:quotient "4.171428571428572"^^xsd:decimal .
139
- # (?dx2 {
140
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
141
- # ?p :x ?x .
142
- # (?x "6.714285714285714"^^xsd:decimal) math:difference ?dx .
143
- # (?dx 2.0) math:exponentiation ?dx2 .
144
- # } ("176.51020408163262"^^xsd:decimal "0.08163265306122441"^^xsd:decimal "0.5102040816326533"^^xsd:decimal "2.9387755102040822"^^xsd:decimal "7.367346938775511"^^xsd:decimal "13.795918367346939"^^xsd:decimal "22.22448979591837"^^xsd:decimal)) log:collectAllIn ?_b1 .
145
- # ("176.51020408163262"^^xsd:decimal "0.08163265306122441"^^xsd:decimal "0.5102040816326533"^^xsd:decimal "2.9387755102040822"^^xsd:decimal "7.367346938775511"^^xsd:decimal "13.795918367346939"^^xsd:decimal "22.22448979591837"^^xsd:decimal) math:sum "223.42857142857142"^^xsd:decimal .
146
- # ("223.42857142857142"^^xsd:decimal 7) math:quotient "31.918367346938773"^^xsd:decimal .
147
- # (?dy2 {
148
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
149
- # ?p :y ?y .
150
- # (?y "4.171428571428572"^^xsd:decimal) math:difference ?dy .
151
- # (?dy 2.0) math:exponentiation ?dy2 .
152
- # } ("51.42938775510204"^^xsd:decimal "77.94367346938776"^^xsd:decimal "13.902244897959184"^^xsd:decimal "0.8622448979591825"^^xsd:decimal "0.9436734693877553"^^xsd:decimal "4.715102040816328"^^xsd:decimal "10.057959183673471"^^xsd:decimal)) log:collectAllIn ?_b1 .
153
- # ("51.42938775510204"^^xsd:decimal "77.94367346938776"^^xsd:decimal "13.902244897959184"^^xsd:decimal "0.8622448979591825"^^xsd:decimal "0.9436734693877553"^^xsd:decimal "4.715102040816328"^^xsd:decimal "10.057959183673471"^^xsd:decimal) math:sum "159.8542857142857"^^xsd:decimal .
154
- # ("159.8542857142857"^^xsd:decimal 7) math:quotient "22.836326530612244"^^xsd:decimal .
155
- # (?dxdy {
156
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
157
- # ?p :x ?x .
158
- # ?p :y ?y .
159
- # (?x "6.714285714285714"^^xsd:decimal) math:difference ?dx .
160
- # (?y "4.171428571428572"^^xsd:decimal) math:difference ?dy .
161
- # (?dx ?dy) math:product ?dxdy .
162
- # } ("-95.27755102040815"^^xsd:decimal "2.522448979591836"^^xsd:decimal "-2.6632653061224496"^^xsd:decimal "-1.5918367346938767"^^xsd:decimal "2.6367346938775515"^^xsd:decimal "8.06530612244898"^^xsd:decimal "14.951020408163266"^^xsd:decimal)) log:collectAllIn ?_b1 .
163
- # ("-95.27755102040815"^^xsd:decimal "2.522448979591836"^^xsd:decimal "-2.6632653061224496"^^xsd:decimal "-1.5918367346938767"^^xsd:decimal "2.6367346938775515"^^xsd:decimal "8.06530612244898"^^xsd:decimal "14.951020408163266"^^xsd:decimal) math:sum "-71.35714285714286"^^xsd:decimal .
164
- # ("-71.35714285714286"^^xsd:decimal 7) math:quotient "-10.193877551020408"^^xsd:decimal .
165
- # via the schematic forward rule:
166
- # {
167
- # :PCA1 :points ?pts .
168
- # ?pts list:length ?n .
169
- # (?x {
170
- # ?pts list:member ?p .
171
- # ?p :x ?x .
172
- # } ?xs) log:collectAllIn ?_b1 .
173
- # (?y {
174
- # ?pts list:member ?p .
175
- # ?p :y ?y .
176
- # } ?ys) log:collectAllIn ?_b1 .
177
- # ?xs math:sum ?sumX .
178
- # ?ys math:sum ?sumY .
179
- # (?sumX ?n) math:quotient ?meanX .
180
- # (?sumY ?n) math:quotient ?meanY .
181
- # (?dx2 {
182
- # ?pts list:member ?p .
183
- # ?p :x ?x .
184
- # (?x ?meanX) math:difference ?dx .
185
- # (?dx 2.0) math:exponentiation ?dx2 .
186
- # } ?dx2s) log:collectAllIn ?_b1 .
187
- # ?dx2s math:sum ?ssXX .
188
- # (?ssXX ?n) math:quotient ?covXX .
189
- # (?dy2 {
190
- # ?pts list:member ?p .
191
- # ?p :y ?y .
192
- # (?y ?meanY) math:difference ?dy .
193
- # (?dy 2.0) math:exponentiation ?dy2 .
194
- # } ?dy2s) log:collectAllIn ?_b1 .
195
- # ?dy2s math:sum ?ssYY .
196
- # (?ssYY ?n) math:quotient ?covYY .
197
- # (?dxdy {
198
- # ?pts list:member ?p .
199
- # ?p :x ?x .
200
- # ?p :y ?y .
201
- # (?x ?meanX) math:difference ?dx .
202
- # (?y ?meanY) math:difference ?dy .
203
- # (?dx ?dy) math:product ?dxdy .
204
- # } ?dxdys) log:collectAllIn ?_b1 .
205
- # ?dxdys math:sum ?ssXY .
206
- # (?ssXY ?n) math:quotient ?covXY .
207
- # } => {
208
- # :PCA1 :n ?n .
209
- # :PCA1 :meanX ?meanX .
210
- # :PCA1 :meanY ?meanY .
211
- # :PCA1 :covXX ?covXX .
212
- # :PCA1 :covYY ?covYY .
213
- # :PCA1 :covXY ?covXY .
214
- # } .
215
- # with substitution (on rule variables):
216
- # ?covXX = "31.918367346938773"^^xsd:decimal
217
- # ?covXY = "-10.193877551020408"^^xsd:decimal
218
- # ?covYY = "22.836326530612244"^^xsd:decimal
219
- # ?dx2s = ("176.51020408163262"^^xsd:decimal "0.08163265306122441"^^xsd:decimal "0.5102040816326533"^^xsd:decimal "2.9387755102040822"^^xsd:decimal "7.367346938775511"^^xsd:decimal "13.795918367346939"^^xsd:decimal "22.22448979591837"^^xsd:decimal)
220
- # ?dxdys = ("-95.27755102040815"^^xsd:decimal "2.522448979591836"^^xsd:decimal "-2.6632653061224496"^^xsd:decimal "-1.5918367346938767"^^xsd:decimal "2.6367346938775515"^^xsd:decimal "8.06530612244898"^^xsd:decimal "14.951020408163266"^^xsd:decimal)
221
- # ?dy2s = ("51.42938775510204"^^xsd:decimal "77.94367346938776"^^xsd:decimal "13.902244897959184"^^xsd:decimal "0.8622448979591825"^^xsd:decimal "0.9436734693877553"^^xsd:decimal "4.715102040816328"^^xsd:decimal "10.057959183673471"^^xsd:decimal)
222
- # ?meanX = "6.714285714285714"^^xsd:decimal
223
- # ?meanY = "4.171428571428572"^^xsd:decimal
224
- # ?n = 7
225
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
226
- # ?ssXX = "223.42857142857142"^^xsd:decimal
227
- # ?ssXY = "-71.35714285714286"^^xsd:decimal
228
- # ?ssYY = "159.8542857142857"^^xsd:decimal
229
- # ?sumX = "47"^^xsd:decimal
230
- # ?sumY = "29.2"^^xsd:decimal
231
- # ?xs = (20.0 7.0 6.0 5.0 4.0 3.0 2.0)
232
- # ?ys = (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)
233
- # Therefore the derived triple above is entailed by the rules and facts.
234
- # ----------------------------------------------------------------------
235
-
236
5
  :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
237
-
238
- # ----------------------------------------------------------------------
239
- # Proof for derived triple:
240
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
241
- # It holds because the following instance of the rule body is provable:
242
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
243
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:length 7 .
244
- # (?x {
245
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
246
- # ?p :x ?x .
247
- # } (20.0 7.0 6.0 5.0 4.0 3.0 2.0)) log:collectAllIn ?_b1 .
248
- # (?y {
249
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
250
- # ?p :y ?y .
251
- # } (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)) log:collectAllIn ?_b1 .
252
- # (20.0 7.0 6.0 5.0 4.0 3.0 2.0) math:sum "47"^^xsd:decimal .
253
- # (-3.0 13.0 7.9 5.1 3.2 2.0 1.0) math:sum "29.2"^^xsd:decimal .
254
- # ("47"^^xsd:decimal 7) math:quotient "6.714285714285714"^^xsd:decimal .
255
- # ("29.2"^^xsd:decimal 7) math:quotient "4.171428571428572"^^xsd:decimal .
256
- # (?dx2 {
257
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
258
- # ?p :x ?x .
259
- # (?x "6.714285714285714"^^xsd:decimal) math:difference ?dx .
260
- # (?dx 2.0) math:exponentiation ?dx2 .
261
- # } ("176.51020408163262"^^xsd:decimal "0.08163265306122441"^^xsd:decimal "0.5102040816326533"^^xsd:decimal "2.9387755102040822"^^xsd:decimal "7.367346938775511"^^xsd:decimal "13.795918367346939"^^xsd:decimal "22.22448979591837"^^xsd:decimal)) log:collectAllIn ?_b1 .
262
- # ("176.51020408163262"^^xsd:decimal "0.08163265306122441"^^xsd:decimal "0.5102040816326533"^^xsd:decimal "2.9387755102040822"^^xsd:decimal "7.367346938775511"^^xsd:decimal "13.795918367346939"^^xsd:decimal "22.22448979591837"^^xsd:decimal) math:sum "223.42857142857142"^^xsd:decimal .
263
- # ("223.42857142857142"^^xsd:decimal 7) math:quotient "31.918367346938773"^^xsd:decimal .
264
- # (?dy2 {
265
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
266
- # ?p :y ?y .
267
- # (?y "4.171428571428572"^^xsd:decimal) math:difference ?dy .
268
- # (?dy 2.0) math:exponentiation ?dy2 .
269
- # } ("51.42938775510204"^^xsd:decimal "77.94367346938776"^^xsd:decimal "13.902244897959184"^^xsd:decimal "0.8622448979591825"^^xsd:decimal "0.9436734693877553"^^xsd:decimal "4.715102040816328"^^xsd:decimal "10.057959183673471"^^xsd:decimal)) log:collectAllIn ?_b1 .
270
- # ("51.42938775510204"^^xsd:decimal "77.94367346938776"^^xsd:decimal "13.902244897959184"^^xsd:decimal "0.8622448979591825"^^xsd:decimal "0.9436734693877553"^^xsd:decimal "4.715102040816328"^^xsd:decimal "10.057959183673471"^^xsd:decimal) math:sum "159.8542857142857"^^xsd:decimal .
271
- # ("159.8542857142857"^^xsd:decimal 7) math:quotient "22.836326530612244"^^xsd:decimal .
272
- # (?dxdy {
273
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
274
- # ?p :x ?x .
275
- # ?p :y ?y .
276
- # (?x "6.714285714285714"^^xsd:decimal) math:difference ?dx .
277
- # (?y "4.171428571428572"^^xsd:decimal) math:difference ?dy .
278
- # (?dx ?dy) math:product ?dxdy .
279
- # } ("-95.27755102040815"^^xsd:decimal "2.522448979591836"^^xsd:decimal "-2.6632653061224496"^^xsd:decimal "-1.5918367346938767"^^xsd:decimal "2.6367346938775515"^^xsd:decimal "8.06530612244898"^^xsd:decimal "14.951020408163266"^^xsd:decimal)) log:collectAllIn ?_b1 .
280
- # ("-95.27755102040815"^^xsd:decimal "2.522448979591836"^^xsd:decimal "-2.6632653061224496"^^xsd:decimal "-1.5918367346938767"^^xsd:decimal "2.6367346938775515"^^xsd:decimal "8.06530612244898"^^xsd:decimal "14.951020408163266"^^xsd:decimal) math:sum "-71.35714285714286"^^xsd:decimal .
281
- # ("-71.35714285714286"^^xsd:decimal 7) math:quotient "-10.193877551020408"^^xsd:decimal .
282
- # via the schematic forward rule:
283
- # {
284
- # :PCA1 :points ?pts .
285
- # ?pts list:length ?n .
286
- # (?x {
287
- # ?pts list:member ?p .
288
- # ?p :x ?x .
289
- # } ?xs) log:collectAllIn ?_b1 .
290
- # (?y {
291
- # ?pts list:member ?p .
292
- # ?p :y ?y .
293
- # } ?ys) log:collectAllIn ?_b1 .
294
- # ?xs math:sum ?sumX .
295
- # ?ys math:sum ?sumY .
296
- # (?sumX ?n) math:quotient ?meanX .
297
- # (?sumY ?n) math:quotient ?meanY .
298
- # (?dx2 {
299
- # ?pts list:member ?p .
300
- # ?p :x ?x .
301
- # (?x ?meanX) math:difference ?dx .
302
- # (?dx 2.0) math:exponentiation ?dx2 .
303
- # } ?dx2s) log:collectAllIn ?_b1 .
304
- # ?dx2s math:sum ?ssXX .
305
- # (?ssXX ?n) math:quotient ?covXX .
306
- # (?dy2 {
307
- # ?pts list:member ?p .
308
- # ?p :y ?y .
309
- # (?y ?meanY) math:difference ?dy .
310
- # (?dy 2.0) math:exponentiation ?dy2 .
311
- # } ?dy2s) log:collectAllIn ?_b1 .
312
- # ?dy2s math:sum ?ssYY .
313
- # (?ssYY ?n) math:quotient ?covYY .
314
- # (?dxdy {
315
- # ?pts list:member ?p .
316
- # ?p :x ?x .
317
- # ?p :y ?y .
318
- # (?x ?meanX) math:difference ?dx .
319
- # (?y ?meanY) math:difference ?dy .
320
- # (?dx ?dy) math:product ?dxdy .
321
- # } ?dxdys) log:collectAllIn ?_b1 .
322
- # ?dxdys math:sum ?ssXY .
323
- # (?ssXY ?n) math:quotient ?covXY .
324
- # } => {
325
- # :PCA1 :n ?n .
326
- # :PCA1 :meanX ?meanX .
327
- # :PCA1 :meanY ?meanY .
328
- # :PCA1 :covXX ?covXX .
329
- # :PCA1 :covYY ?covYY .
330
- # :PCA1 :covXY ?covXY .
331
- # } .
332
- # with substitution (on rule variables):
333
- # ?covXX = "31.918367346938773"^^xsd:decimal
334
- # ?covXY = "-10.193877551020408"^^xsd:decimal
335
- # ?covYY = "22.836326530612244"^^xsd:decimal
336
- # ?dx2s = ("176.51020408163262"^^xsd:decimal "0.08163265306122441"^^xsd:decimal "0.5102040816326533"^^xsd:decimal "2.9387755102040822"^^xsd:decimal "7.367346938775511"^^xsd:decimal "13.795918367346939"^^xsd:decimal "22.22448979591837"^^xsd:decimal)
337
- # ?dxdys = ("-95.27755102040815"^^xsd:decimal "2.522448979591836"^^xsd:decimal "-2.6632653061224496"^^xsd:decimal "-1.5918367346938767"^^xsd:decimal "2.6367346938775515"^^xsd:decimal "8.06530612244898"^^xsd:decimal "14.951020408163266"^^xsd:decimal)
338
- # ?dy2s = ("51.42938775510204"^^xsd:decimal "77.94367346938776"^^xsd:decimal "13.902244897959184"^^xsd:decimal "0.8622448979591825"^^xsd:decimal "0.9436734693877553"^^xsd:decimal "4.715102040816328"^^xsd:decimal "10.057959183673471"^^xsd:decimal)
339
- # ?meanX = "6.714285714285714"^^xsd:decimal
340
- # ?meanY = "4.171428571428572"^^xsd:decimal
341
- # ?n = 7
342
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
343
- # ?ssXX = "223.42857142857142"^^xsd:decimal
344
- # ?ssXY = "-71.35714285714286"^^xsd:decimal
345
- # ?ssYY = "159.8542857142857"^^xsd:decimal
346
- # ?sumX = "47"^^xsd:decimal
347
- # ?sumY = "29.2"^^xsd:decimal
348
- # ?xs = (20.0 7.0 6.0 5.0 4.0 3.0 2.0)
349
- # ?ys = (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)
350
- # Therefore the derived triple above is entailed by the rules and facts.
351
- # ----------------------------------------------------------------------
352
-
353
6
  :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
354
-
355
- # ----------------------------------------------------------------------
356
- # Proof for derived triple:
357
- # :PCA1 :covXX "31.918367346938773"^^xsd:decimal .
358
- # It holds because the following instance of the rule body is provable:
359
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
360
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:length 7 .
361
- # (?x {
362
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
363
- # ?p :x ?x .
364
- # } (20.0 7.0 6.0 5.0 4.0 3.0 2.0)) log:collectAllIn ?_b1 .
365
- # (?y {
366
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
367
- # ?p :y ?y .
368
- # } (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)) log:collectAllIn ?_b1 .
369
- # (20.0 7.0 6.0 5.0 4.0 3.0 2.0) math:sum "47"^^xsd:decimal .
370
- # (-3.0 13.0 7.9 5.1 3.2 2.0 1.0) math:sum "29.2"^^xsd:decimal .
371
- # ("47"^^xsd:decimal 7) math:quotient "6.714285714285714"^^xsd:decimal .
372
- # ("29.2"^^xsd:decimal 7) math:quotient "4.171428571428572"^^xsd:decimal .
373
- # (?dx2 {
374
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
375
- # ?p :x ?x .
376
- # (?x "6.714285714285714"^^xsd:decimal) math:difference ?dx .
377
- # (?dx 2.0) math:exponentiation ?dx2 .
378
- # } ("176.51020408163262"^^xsd:decimal "0.08163265306122441"^^xsd:decimal "0.5102040816326533"^^xsd:decimal "2.9387755102040822"^^xsd:decimal "7.367346938775511"^^xsd:decimal "13.795918367346939"^^xsd:decimal "22.22448979591837"^^xsd:decimal)) log:collectAllIn ?_b1 .
379
- # ("176.51020408163262"^^xsd:decimal "0.08163265306122441"^^xsd:decimal "0.5102040816326533"^^xsd:decimal "2.9387755102040822"^^xsd:decimal "7.367346938775511"^^xsd:decimal "13.795918367346939"^^xsd:decimal "22.22448979591837"^^xsd:decimal) math:sum "223.42857142857142"^^xsd:decimal .
380
- # ("223.42857142857142"^^xsd:decimal 7) math:quotient "31.918367346938773"^^xsd:decimal .
381
- # (?dy2 {
382
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
383
- # ?p :y ?y .
384
- # (?y "4.171428571428572"^^xsd:decimal) math:difference ?dy .
385
- # (?dy 2.0) math:exponentiation ?dy2 .
386
- # } ("51.42938775510204"^^xsd:decimal "77.94367346938776"^^xsd:decimal "13.902244897959184"^^xsd:decimal "0.8622448979591825"^^xsd:decimal "0.9436734693877553"^^xsd:decimal "4.715102040816328"^^xsd:decimal "10.057959183673471"^^xsd:decimal)) log:collectAllIn ?_b1 .
387
- # ("51.42938775510204"^^xsd:decimal "77.94367346938776"^^xsd:decimal "13.902244897959184"^^xsd:decimal "0.8622448979591825"^^xsd:decimal "0.9436734693877553"^^xsd:decimal "4.715102040816328"^^xsd:decimal "10.057959183673471"^^xsd:decimal) math:sum "159.8542857142857"^^xsd:decimal .
388
- # ("159.8542857142857"^^xsd:decimal 7) math:quotient "22.836326530612244"^^xsd:decimal .
389
- # (?dxdy {
390
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
391
- # ?p :x ?x .
392
- # ?p :y ?y .
393
- # (?x "6.714285714285714"^^xsd:decimal) math:difference ?dx .
394
- # (?y "4.171428571428572"^^xsd:decimal) math:difference ?dy .
395
- # (?dx ?dy) math:product ?dxdy .
396
- # } ("-95.27755102040815"^^xsd:decimal "2.522448979591836"^^xsd:decimal "-2.6632653061224496"^^xsd:decimal "-1.5918367346938767"^^xsd:decimal "2.6367346938775515"^^xsd:decimal "8.06530612244898"^^xsd:decimal "14.951020408163266"^^xsd:decimal)) log:collectAllIn ?_b1 .
397
- # ("-95.27755102040815"^^xsd:decimal "2.522448979591836"^^xsd:decimal "-2.6632653061224496"^^xsd:decimal "-1.5918367346938767"^^xsd:decimal "2.6367346938775515"^^xsd:decimal "8.06530612244898"^^xsd:decimal "14.951020408163266"^^xsd:decimal) math:sum "-71.35714285714286"^^xsd:decimal .
398
- # ("-71.35714285714286"^^xsd:decimal 7) math:quotient "-10.193877551020408"^^xsd:decimal .
399
- # via the schematic forward rule:
400
- # {
401
- # :PCA1 :points ?pts .
402
- # ?pts list:length ?n .
403
- # (?x {
404
- # ?pts list:member ?p .
405
- # ?p :x ?x .
406
- # } ?xs) log:collectAllIn ?_b1 .
407
- # (?y {
408
- # ?pts list:member ?p .
409
- # ?p :y ?y .
410
- # } ?ys) log:collectAllIn ?_b1 .
411
- # ?xs math:sum ?sumX .
412
- # ?ys math:sum ?sumY .
413
- # (?sumX ?n) math:quotient ?meanX .
414
- # (?sumY ?n) math:quotient ?meanY .
415
- # (?dx2 {
416
- # ?pts list:member ?p .
417
- # ?p :x ?x .
418
- # (?x ?meanX) math:difference ?dx .
419
- # (?dx 2.0) math:exponentiation ?dx2 .
420
- # } ?dx2s) log:collectAllIn ?_b1 .
421
- # ?dx2s math:sum ?ssXX .
422
- # (?ssXX ?n) math:quotient ?covXX .
423
- # (?dy2 {
424
- # ?pts list:member ?p .
425
- # ?p :y ?y .
426
- # (?y ?meanY) math:difference ?dy .
427
- # (?dy 2.0) math:exponentiation ?dy2 .
428
- # } ?dy2s) log:collectAllIn ?_b1 .
429
- # ?dy2s math:sum ?ssYY .
430
- # (?ssYY ?n) math:quotient ?covYY .
431
- # (?dxdy {
432
- # ?pts list:member ?p .
433
- # ?p :x ?x .
434
- # ?p :y ?y .
435
- # (?x ?meanX) math:difference ?dx .
436
- # (?y ?meanY) math:difference ?dy .
437
- # (?dx ?dy) math:product ?dxdy .
438
- # } ?dxdys) log:collectAllIn ?_b1 .
439
- # ?dxdys math:sum ?ssXY .
440
- # (?ssXY ?n) math:quotient ?covXY .
441
- # } => {
442
- # :PCA1 :n ?n .
443
- # :PCA1 :meanX ?meanX .
444
- # :PCA1 :meanY ?meanY .
445
- # :PCA1 :covXX ?covXX .
446
- # :PCA1 :covYY ?covYY .
447
- # :PCA1 :covXY ?covXY .
448
- # } .
449
- # with substitution (on rule variables):
450
- # ?covXX = "31.918367346938773"^^xsd:decimal
451
- # ?covXY = "-10.193877551020408"^^xsd:decimal
452
- # ?covYY = "22.836326530612244"^^xsd:decimal
453
- # ?dx2s = ("176.51020408163262"^^xsd:decimal "0.08163265306122441"^^xsd:decimal "0.5102040816326533"^^xsd:decimal "2.9387755102040822"^^xsd:decimal "7.367346938775511"^^xsd:decimal "13.795918367346939"^^xsd:decimal "22.22448979591837"^^xsd:decimal)
454
- # ?dxdys = ("-95.27755102040815"^^xsd:decimal "2.522448979591836"^^xsd:decimal "-2.6632653061224496"^^xsd:decimal "-1.5918367346938767"^^xsd:decimal "2.6367346938775515"^^xsd:decimal "8.06530612244898"^^xsd:decimal "14.951020408163266"^^xsd:decimal)
455
- # ?dy2s = ("51.42938775510204"^^xsd:decimal "77.94367346938776"^^xsd:decimal "13.902244897959184"^^xsd:decimal "0.8622448979591825"^^xsd:decimal "0.9436734693877553"^^xsd:decimal "4.715102040816328"^^xsd:decimal "10.057959183673471"^^xsd:decimal)
456
- # ?meanX = "6.714285714285714"^^xsd:decimal
457
- # ?meanY = "4.171428571428572"^^xsd:decimal
458
- # ?n = 7
459
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
460
- # ?ssXX = "223.42857142857142"^^xsd:decimal
461
- # ?ssXY = "-71.35714285714286"^^xsd:decimal
462
- # ?ssYY = "159.8542857142857"^^xsd:decimal
463
- # ?sumX = "47"^^xsd:decimal
464
- # ?sumY = "29.2"^^xsd:decimal
465
- # ?xs = (20.0 7.0 6.0 5.0 4.0 3.0 2.0)
466
- # ?ys = (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)
467
- # Therefore the derived triple above is entailed by the rules and facts.
468
- # ----------------------------------------------------------------------
469
-
470
7
  :PCA1 :covXX "31.918367346938773"^^xsd:decimal .
471
-
472
- # ----------------------------------------------------------------------
473
- # Proof for derived triple:
474
- # :PCA1 :covYY "22.836326530612244"^^xsd:decimal .
475
- # It holds because the following instance of the rule body is provable:
476
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
477
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:length 7 .
478
- # (?x {
479
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
480
- # ?p :x ?x .
481
- # } (20.0 7.0 6.0 5.0 4.0 3.0 2.0)) log:collectAllIn ?_b1 .
482
- # (?y {
483
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
484
- # ?p :y ?y .
485
- # } (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)) log:collectAllIn ?_b1 .
486
- # (20.0 7.0 6.0 5.0 4.0 3.0 2.0) math:sum "47"^^xsd:decimal .
487
- # (-3.0 13.0 7.9 5.1 3.2 2.0 1.0) math:sum "29.2"^^xsd:decimal .
488
- # ("47"^^xsd:decimal 7) math:quotient "6.714285714285714"^^xsd:decimal .
489
- # ("29.2"^^xsd:decimal 7) math:quotient "4.171428571428572"^^xsd:decimal .
490
- # (?dx2 {
491
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
492
- # ?p :x ?x .
493
- # (?x "6.714285714285714"^^xsd:decimal) math:difference ?dx .
494
- # (?dx 2.0) math:exponentiation ?dx2 .
495
- # } ("176.51020408163262"^^xsd:decimal "0.08163265306122441"^^xsd:decimal "0.5102040816326533"^^xsd:decimal "2.9387755102040822"^^xsd:decimal "7.367346938775511"^^xsd:decimal "13.795918367346939"^^xsd:decimal "22.22448979591837"^^xsd:decimal)) log:collectAllIn ?_b1 .
496
- # ("176.51020408163262"^^xsd:decimal "0.08163265306122441"^^xsd:decimal "0.5102040816326533"^^xsd:decimal "2.9387755102040822"^^xsd:decimal "7.367346938775511"^^xsd:decimal "13.795918367346939"^^xsd:decimal "22.22448979591837"^^xsd:decimal) math:sum "223.42857142857142"^^xsd:decimal .
497
- # ("223.42857142857142"^^xsd:decimal 7) math:quotient "31.918367346938773"^^xsd:decimal .
498
- # (?dy2 {
499
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
500
- # ?p :y ?y .
501
- # (?y "4.171428571428572"^^xsd:decimal) math:difference ?dy .
502
- # (?dy 2.0) math:exponentiation ?dy2 .
503
- # } ("51.42938775510204"^^xsd:decimal "77.94367346938776"^^xsd:decimal "13.902244897959184"^^xsd:decimal "0.8622448979591825"^^xsd:decimal "0.9436734693877553"^^xsd:decimal "4.715102040816328"^^xsd:decimal "10.057959183673471"^^xsd:decimal)) log:collectAllIn ?_b1 .
504
- # ("51.42938775510204"^^xsd:decimal "77.94367346938776"^^xsd:decimal "13.902244897959184"^^xsd:decimal "0.8622448979591825"^^xsd:decimal "0.9436734693877553"^^xsd:decimal "4.715102040816328"^^xsd:decimal "10.057959183673471"^^xsd:decimal) math:sum "159.8542857142857"^^xsd:decimal .
505
- # ("159.8542857142857"^^xsd:decimal 7) math:quotient "22.836326530612244"^^xsd:decimal .
506
- # (?dxdy {
507
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
508
- # ?p :x ?x .
509
- # ?p :y ?y .
510
- # (?x "6.714285714285714"^^xsd:decimal) math:difference ?dx .
511
- # (?y "4.171428571428572"^^xsd:decimal) math:difference ?dy .
512
- # (?dx ?dy) math:product ?dxdy .
513
- # } ("-95.27755102040815"^^xsd:decimal "2.522448979591836"^^xsd:decimal "-2.6632653061224496"^^xsd:decimal "-1.5918367346938767"^^xsd:decimal "2.6367346938775515"^^xsd:decimal "8.06530612244898"^^xsd:decimal "14.951020408163266"^^xsd:decimal)) log:collectAllIn ?_b1 .
514
- # ("-95.27755102040815"^^xsd:decimal "2.522448979591836"^^xsd:decimal "-2.6632653061224496"^^xsd:decimal "-1.5918367346938767"^^xsd:decimal "2.6367346938775515"^^xsd:decimal "8.06530612244898"^^xsd:decimal "14.951020408163266"^^xsd:decimal) math:sum "-71.35714285714286"^^xsd:decimal .
515
- # ("-71.35714285714286"^^xsd:decimal 7) math:quotient "-10.193877551020408"^^xsd:decimal .
516
- # via the schematic forward rule:
517
- # {
518
- # :PCA1 :points ?pts .
519
- # ?pts list:length ?n .
520
- # (?x {
521
- # ?pts list:member ?p .
522
- # ?p :x ?x .
523
- # } ?xs) log:collectAllIn ?_b1 .
524
- # (?y {
525
- # ?pts list:member ?p .
526
- # ?p :y ?y .
527
- # } ?ys) log:collectAllIn ?_b1 .
528
- # ?xs math:sum ?sumX .
529
- # ?ys math:sum ?sumY .
530
- # (?sumX ?n) math:quotient ?meanX .
531
- # (?sumY ?n) math:quotient ?meanY .
532
- # (?dx2 {
533
- # ?pts list:member ?p .
534
- # ?p :x ?x .
535
- # (?x ?meanX) math:difference ?dx .
536
- # (?dx 2.0) math:exponentiation ?dx2 .
537
- # } ?dx2s) log:collectAllIn ?_b1 .
538
- # ?dx2s math:sum ?ssXX .
539
- # (?ssXX ?n) math:quotient ?covXX .
540
- # (?dy2 {
541
- # ?pts list:member ?p .
542
- # ?p :y ?y .
543
- # (?y ?meanY) math:difference ?dy .
544
- # (?dy 2.0) math:exponentiation ?dy2 .
545
- # } ?dy2s) log:collectAllIn ?_b1 .
546
- # ?dy2s math:sum ?ssYY .
547
- # (?ssYY ?n) math:quotient ?covYY .
548
- # (?dxdy {
549
- # ?pts list:member ?p .
550
- # ?p :x ?x .
551
- # ?p :y ?y .
552
- # (?x ?meanX) math:difference ?dx .
553
- # (?y ?meanY) math:difference ?dy .
554
- # (?dx ?dy) math:product ?dxdy .
555
- # } ?dxdys) log:collectAllIn ?_b1 .
556
- # ?dxdys math:sum ?ssXY .
557
- # (?ssXY ?n) math:quotient ?covXY .
558
- # } => {
559
- # :PCA1 :n ?n .
560
- # :PCA1 :meanX ?meanX .
561
- # :PCA1 :meanY ?meanY .
562
- # :PCA1 :covXX ?covXX .
563
- # :PCA1 :covYY ?covYY .
564
- # :PCA1 :covXY ?covXY .
565
- # } .
566
- # with substitution (on rule variables):
567
- # ?covXX = "31.918367346938773"^^xsd:decimal
568
- # ?covXY = "-10.193877551020408"^^xsd:decimal
569
- # ?covYY = "22.836326530612244"^^xsd:decimal
570
- # ?dx2s = ("176.51020408163262"^^xsd:decimal "0.08163265306122441"^^xsd:decimal "0.5102040816326533"^^xsd:decimal "2.9387755102040822"^^xsd:decimal "7.367346938775511"^^xsd:decimal "13.795918367346939"^^xsd:decimal "22.22448979591837"^^xsd:decimal)
571
- # ?dxdys = ("-95.27755102040815"^^xsd:decimal "2.522448979591836"^^xsd:decimal "-2.6632653061224496"^^xsd:decimal "-1.5918367346938767"^^xsd:decimal "2.6367346938775515"^^xsd:decimal "8.06530612244898"^^xsd:decimal "14.951020408163266"^^xsd:decimal)
572
- # ?dy2s = ("51.42938775510204"^^xsd:decimal "77.94367346938776"^^xsd:decimal "13.902244897959184"^^xsd:decimal "0.8622448979591825"^^xsd:decimal "0.9436734693877553"^^xsd:decimal "4.715102040816328"^^xsd:decimal "10.057959183673471"^^xsd:decimal)
573
- # ?meanX = "6.714285714285714"^^xsd:decimal
574
- # ?meanY = "4.171428571428572"^^xsd:decimal
575
- # ?n = 7
576
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
577
- # ?ssXX = "223.42857142857142"^^xsd:decimal
578
- # ?ssXY = "-71.35714285714286"^^xsd:decimal
579
- # ?ssYY = "159.8542857142857"^^xsd:decimal
580
- # ?sumX = "47"^^xsd:decimal
581
- # ?sumY = "29.2"^^xsd:decimal
582
- # ?xs = (20.0 7.0 6.0 5.0 4.0 3.0 2.0)
583
- # ?ys = (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)
584
- # Therefore the derived triple above is entailed by the rules and facts.
585
- # ----------------------------------------------------------------------
586
-
587
8
  :PCA1 :covYY "22.836326530612244"^^xsd:decimal .
588
-
589
- # ----------------------------------------------------------------------
590
- # Proof for derived triple:
591
- # :PCA1 :covXY "-10.193877551020408"^^xsd:decimal .
592
- # It holds because the following instance of the rule body is provable:
593
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
594
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:length 7 .
595
- # (?x {
596
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
597
- # ?p :x ?x .
598
- # } (20.0 7.0 6.0 5.0 4.0 3.0 2.0)) log:collectAllIn ?_b1 .
599
- # (?y {
600
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
601
- # ?p :y ?y .
602
- # } (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)) log:collectAllIn ?_b1 .
603
- # (20.0 7.0 6.0 5.0 4.0 3.0 2.0) math:sum "47"^^xsd:decimal .
604
- # (-3.0 13.0 7.9 5.1 3.2 2.0 1.0) math:sum "29.2"^^xsd:decimal .
605
- # ("47"^^xsd:decimal 7) math:quotient "6.714285714285714"^^xsd:decimal .
606
- # ("29.2"^^xsd:decimal 7) math:quotient "4.171428571428572"^^xsd:decimal .
607
- # (?dx2 {
608
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
609
- # ?p :x ?x .
610
- # (?x "6.714285714285714"^^xsd:decimal) math:difference ?dx .
611
- # (?dx 2.0) math:exponentiation ?dx2 .
612
- # } ("176.51020408163262"^^xsd:decimal "0.08163265306122441"^^xsd:decimal "0.5102040816326533"^^xsd:decimal "2.9387755102040822"^^xsd:decimal "7.367346938775511"^^xsd:decimal "13.795918367346939"^^xsd:decimal "22.22448979591837"^^xsd:decimal)) log:collectAllIn ?_b1 .
613
- # ("176.51020408163262"^^xsd:decimal "0.08163265306122441"^^xsd:decimal "0.5102040816326533"^^xsd:decimal "2.9387755102040822"^^xsd:decimal "7.367346938775511"^^xsd:decimal "13.795918367346939"^^xsd:decimal "22.22448979591837"^^xsd:decimal) math:sum "223.42857142857142"^^xsd:decimal .
614
- # ("223.42857142857142"^^xsd:decimal 7) math:quotient "31.918367346938773"^^xsd:decimal .
615
- # (?dy2 {
616
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
617
- # ?p :y ?y .
618
- # (?y "4.171428571428572"^^xsd:decimal) math:difference ?dy .
619
- # (?dy 2.0) math:exponentiation ?dy2 .
620
- # } ("51.42938775510204"^^xsd:decimal "77.94367346938776"^^xsd:decimal "13.902244897959184"^^xsd:decimal "0.8622448979591825"^^xsd:decimal "0.9436734693877553"^^xsd:decimal "4.715102040816328"^^xsd:decimal "10.057959183673471"^^xsd:decimal)) log:collectAllIn ?_b1 .
621
- # ("51.42938775510204"^^xsd:decimal "77.94367346938776"^^xsd:decimal "13.902244897959184"^^xsd:decimal "0.8622448979591825"^^xsd:decimal "0.9436734693877553"^^xsd:decimal "4.715102040816328"^^xsd:decimal "10.057959183673471"^^xsd:decimal) math:sum "159.8542857142857"^^xsd:decimal .
622
- # ("159.8542857142857"^^xsd:decimal 7) math:quotient "22.836326530612244"^^xsd:decimal .
623
- # (?dxdy {
624
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member ?p .
625
- # ?p :x ?x .
626
- # ?p :y ?y .
627
- # (?x "6.714285714285714"^^xsd:decimal) math:difference ?dx .
628
- # (?y "4.171428571428572"^^xsd:decimal) math:difference ?dy .
629
- # (?dx ?dy) math:product ?dxdy .
630
- # } ("-95.27755102040815"^^xsd:decimal "2.522448979591836"^^xsd:decimal "-2.6632653061224496"^^xsd:decimal "-1.5918367346938767"^^xsd:decimal "2.6367346938775515"^^xsd:decimal "8.06530612244898"^^xsd:decimal "14.951020408163266"^^xsd:decimal)) log:collectAllIn ?_b1 .
631
- # ("-95.27755102040815"^^xsd:decimal "2.522448979591836"^^xsd:decimal "-2.6632653061224496"^^xsd:decimal "-1.5918367346938767"^^xsd:decimal "2.6367346938775515"^^xsd:decimal "8.06530612244898"^^xsd:decimal "14.951020408163266"^^xsd:decimal) math:sum "-71.35714285714286"^^xsd:decimal .
632
- # ("-71.35714285714286"^^xsd:decimal 7) math:quotient "-10.193877551020408"^^xsd:decimal .
633
- # via the schematic forward rule:
634
- # {
635
- # :PCA1 :points ?pts .
636
- # ?pts list:length ?n .
637
- # (?x {
638
- # ?pts list:member ?p .
639
- # ?p :x ?x .
640
- # } ?xs) log:collectAllIn ?_b1 .
641
- # (?y {
642
- # ?pts list:member ?p .
643
- # ?p :y ?y .
644
- # } ?ys) log:collectAllIn ?_b1 .
645
- # ?xs math:sum ?sumX .
646
- # ?ys math:sum ?sumY .
647
- # (?sumX ?n) math:quotient ?meanX .
648
- # (?sumY ?n) math:quotient ?meanY .
649
- # (?dx2 {
650
- # ?pts list:member ?p .
651
- # ?p :x ?x .
652
- # (?x ?meanX) math:difference ?dx .
653
- # (?dx 2.0) math:exponentiation ?dx2 .
654
- # } ?dx2s) log:collectAllIn ?_b1 .
655
- # ?dx2s math:sum ?ssXX .
656
- # (?ssXX ?n) math:quotient ?covXX .
657
- # (?dy2 {
658
- # ?pts list:member ?p .
659
- # ?p :y ?y .
660
- # (?y ?meanY) math:difference ?dy .
661
- # (?dy 2.0) math:exponentiation ?dy2 .
662
- # } ?dy2s) log:collectAllIn ?_b1 .
663
- # ?dy2s math:sum ?ssYY .
664
- # (?ssYY ?n) math:quotient ?covYY .
665
- # (?dxdy {
666
- # ?pts list:member ?p .
667
- # ?p :x ?x .
668
- # ?p :y ?y .
669
- # (?x ?meanX) math:difference ?dx .
670
- # (?y ?meanY) math:difference ?dy .
671
- # (?dx ?dy) math:product ?dxdy .
672
- # } ?dxdys) log:collectAllIn ?_b1 .
673
- # ?dxdys math:sum ?ssXY .
674
- # (?ssXY ?n) math:quotient ?covXY .
675
- # } => {
676
- # :PCA1 :n ?n .
677
- # :PCA1 :meanX ?meanX .
678
- # :PCA1 :meanY ?meanY .
679
- # :PCA1 :covXX ?covXX .
680
- # :PCA1 :covYY ?covYY .
681
- # :PCA1 :covXY ?covXY .
682
- # } .
683
- # with substitution (on rule variables):
684
- # ?covXX = "31.918367346938773"^^xsd:decimal
685
- # ?covXY = "-10.193877551020408"^^xsd:decimal
686
- # ?covYY = "22.836326530612244"^^xsd:decimal
687
- # ?dx2s = ("176.51020408163262"^^xsd:decimal "0.08163265306122441"^^xsd:decimal "0.5102040816326533"^^xsd:decimal "2.9387755102040822"^^xsd:decimal "7.367346938775511"^^xsd:decimal "13.795918367346939"^^xsd:decimal "22.22448979591837"^^xsd:decimal)
688
- # ?dxdys = ("-95.27755102040815"^^xsd:decimal "2.522448979591836"^^xsd:decimal "-2.6632653061224496"^^xsd:decimal "-1.5918367346938767"^^xsd:decimal "2.6367346938775515"^^xsd:decimal "8.06530612244898"^^xsd:decimal "14.951020408163266"^^xsd:decimal)
689
- # ?dy2s = ("51.42938775510204"^^xsd:decimal "77.94367346938776"^^xsd:decimal "13.902244897959184"^^xsd:decimal "0.8622448979591825"^^xsd:decimal "0.9436734693877553"^^xsd:decimal "4.715102040816328"^^xsd:decimal "10.057959183673471"^^xsd:decimal)
690
- # ?meanX = "6.714285714285714"^^xsd:decimal
691
- # ?meanY = "4.171428571428572"^^xsd:decimal
692
- # ?n = 7
693
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
694
- # ?ssXX = "223.42857142857142"^^xsd:decimal
695
- # ?ssXY = "-71.35714285714286"^^xsd:decimal
696
- # ?ssYY = "159.8542857142857"^^xsd:decimal
697
- # ?sumX = "47"^^xsd:decimal
698
- # ?sumY = "29.2"^^xsd:decimal
699
- # ?xs = (20.0 7.0 6.0 5.0 4.0 3.0 2.0)
700
- # ?ys = (-3.0 13.0 7.9 5.1 3.2 2.0 1.0)
701
- # Therefore the derived triple above is entailed by the rules and facts.
702
- # ----------------------------------------------------------------------
703
-
704
9
  :PCA1 :covXY "-10.193877551020408"^^xsd:decimal .
705
-
706
- # ----------------------------------------------------------------------
707
- # Proof for derived triple:
708
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
709
- # It holds because the following instance of the rule body is provable:
710
- # :PCA1 :covXX "31.918367346938773"^^xsd:decimal .
711
- # :PCA1 :covYY "22.836326530612244"^^xsd:decimal .
712
- # :PCA1 :covXY "-10.193877551020408"^^xsd:decimal .
713
- # ("31.918367346938773"^^xsd:decimal "22.836326530612244"^^xsd:decimal) math:sum "54.75469387755102"^^xsd:decimal .
714
- # ("31.918367346938773"^^xsd:decimal "22.836326530612244"^^xsd:decimal) math:product "728.8982590587254"^^xsd:decimal .
715
- # ("-10.193877551020408"^^xsd:decimal 2.0) math:exponentiation "103.91513952519784"^^xsd:decimal .
716
- # ("728.8982590587254"^^xsd:decimal "103.91513952519784"^^xsd:decimal) math:difference "624.9831195335275"^^xsd:decimal .
717
- # ("54.75469387755102"^^xsd:decimal 2.0) math:exponentiation "2998.076501624323"^^xsd:decimal .
718
- # (4.0 "624.9831195335275"^^xsd:decimal) math:product "2499.93247813411"^^xsd:decimal .
719
- # ("2998.076501624323"^^xsd:decimal "2499.93247813411"^^xsd:decimal) math:difference "498.14402349021293"^^xsd:decimal .
720
- # ("498.14402349021293"^^xsd:decimal 0.5) math:exponentiation "22.319140294603933"^^xsd:decimal .
721
- # ("54.75469387755102"^^xsd:decimal "22.319140294603933"^^xsd:decimal) math:sum "77.07383417215496"^^xsd:decimal .
722
- # ("54.75469387755102"^^xsd:decimal "22.319140294603933"^^xsd:decimal) math:difference "32.43555358294709"^^xsd:decimal .
723
- # ("77.07383417215496"^^xsd:decimal 2.0) math:quotient "38.53691708607748"^^xsd:decimal .
724
- # ("32.43555358294709"^^xsd:decimal 2.0) math:quotient "16.217776791473543"^^xsd:decimal .
725
- # ("38.53691708607748"^^xsd:decimal "54.75469387755102"^^xsd:decimal) math:quotient "0.7038102919953919"^^xsd:decimal .
726
- # via the schematic forward rule:
727
- # {
728
- # :PCA1 :covXX ?a .
729
- # :PCA1 :covYY ?d .
730
- # :PCA1 :covXY ?b .
731
- # (?a ?d) math:sum ?tr .
732
- # (?a ?d) math:product ?ad .
733
- # (?b 2.0) math:exponentiation ?b2 .
734
- # (?ad ?b2) math:difference ?det .
735
- # (?tr 2.0) math:exponentiation ?tr2 .
736
- # (4.0 ?det) math:product ?fourDet .
737
- # (?tr2 ?fourDet) math:difference ?disc .
738
- # (?disc 0.5) math:exponentiation ?sqrtDisc .
739
- # (?tr ?sqrtDisc) math:sum ?trPlus .
740
- # (?tr ?sqrtDisc) math:difference ?trMinus .
741
- # (?trPlus 2.0) math:quotient ?lambda1 .
742
- # (?trMinus 2.0) math:quotient ?lambda2 .
743
- # (?lambda1 ?tr) math:quotient ?explained1 .
744
- # } => {
745
- # :PCA1 :lambda1 ?lambda1 .
746
- # :PCA1 :lambda2 ?lambda2 .
747
- # :PCA1 :explainedVar1 ?explained1 .
748
- # } .
749
- # with substitution (on rule variables):
750
- # ?a = "31.918367346938773"^^xsd:decimal
751
- # ?ad = "728.8982590587254"^^xsd:decimal
752
- # ?b = "-10.193877551020408"^^xsd:decimal
753
- # ?b2 = "103.91513952519784"^^xsd:decimal
754
- # ?d = "22.836326530612244"^^xsd:decimal
755
- # ?det = "624.9831195335275"^^xsd:decimal
756
- # ?disc = "498.14402349021293"^^xsd:decimal
757
- # ?explained1 = "0.7038102919953919"^^xsd:decimal
758
- # ?fourDet = "2499.93247813411"^^xsd:decimal
759
- # ?lambda1 = "38.53691708607748"^^xsd:decimal
760
- # ?lambda2 = "16.217776791473543"^^xsd:decimal
761
- # ?sqrtDisc = "22.319140294603933"^^xsd:decimal
762
- # ?tr = "54.75469387755102"^^xsd:decimal
763
- # ?tr2 = "2998.076501624323"^^xsd:decimal
764
- # ?trMinus = "32.43555358294709"^^xsd:decimal
765
- # ?trPlus = "77.07383417215496"^^xsd:decimal
766
- # Therefore the derived triple above is entailed by the rules and facts.
767
- # ----------------------------------------------------------------------
768
-
769
10
  :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
770
-
771
- # ----------------------------------------------------------------------
772
- # Proof for derived triple:
773
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
774
- # It holds because the following instance of the rule body is provable:
775
- # :PCA1 :covXX "31.918367346938773"^^xsd:decimal .
776
- # :PCA1 :covYY "22.836326530612244"^^xsd:decimal .
777
- # :PCA1 :covXY "-10.193877551020408"^^xsd:decimal .
778
- # ("31.918367346938773"^^xsd:decimal "22.836326530612244"^^xsd:decimal) math:sum "54.75469387755102"^^xsd:decimal .
779
- # ("31.918367346938773"^^xsd:decimal "22.836326530612244"^^xsd:decimal) math:product "728.8982590587254"^^xsd:decimal .
780
- # ("-10.193877551020408"^^xsd:decimal 2.0) math:exponentiation "103.91513952519784"^^xsd:decimal .
781
- # ("728.8982590587254"^^xsd:decimal "103.91513952519784"^^xsd:decimal) math:difference "624.9831195335275"^^xsd:decimal .
782
- # ("54.75469387755102"^^xsd:decimal 2.0) math:exponentiation "2998.076501624323"^^xsd:decimal .
783
- # (4.0 "624.9831195335275"^^xsd:decimal) math:product "2499.93247813411"^^xsd:decimal .
784
- # ("2998.076501624323"^^xsd:decimal "2499.93247813411"^^xsd:decimal) math:difference "498.14402349021293"^^xsd:decimal .
785
- # ("498.14402349021293"^^xsd:decimal 0.5) math:exponentiation "22.319140294603933"^^xsd:decimal .
786
- # ("54.75469387755102"^^xsd:decimal "22.319140294603933"^^xsd:decimal) math:sum "77.07383417215496"^^xsd:decimal .
787
- # ("54.75469387755102"^^xsd:decimal "22.319140294603933"^^xsd:decimal) math:difference "32.43555358294709"^^xsd:decimal .
788
- # ("77.07383417215496"^^xsd:decimal 2.0) math:quotient "38.53691708607748"^^xsd:decimal .
789
- # ("32.43555358294709"^^xsd:decimal 2.0) math:quotient "16.217776791473543"^^xsd:decimal .
790
- # ("38.53691708607748"^^xsd:decimal "54.75469387755102"^^xsd:decimal) math:quotient "0.7038102919953919"^^xsd:decimal .
791
- # via the schematic forward rule:
792
- # {
793
- # :PCA1 :covXX ?a .
794
- # :PCA1 :covYY ?d .
795
- # :PCA1 :covXY ?b .
796
- # (?a ?d) math:sum ?tr .
797
- # (?a ?d) math:product ?ad .
798
- # (?b 2.0) math:exponentiation ?b2 .
799
- # (?ad ?b2) math:difference ?det .
800
- # (?tr 2.0) math:exponentiation ?tr2 .
801
- # (4.0 ?det) math:product ?fourDet .
802
- # (?tr2 ?fourDet) math:difference ?disc .
803
- # (?disc 0.5) math:exponentiation ?sqrtDisc .
804
- # (?tr ?sqrtDisc) math:sum ?trPlus .
805
- # (?tr ?sqrtDisc) math:difference ?trMinus .
806
- # (?trPlus 2.0) math:quotient ?lambda1 .
807
- # (?trMinus 2.0) math:quotient ?lambda2 .
808
- # (?lambda1 ?tr) math:quotient ?explained1 .
809
- # } => {
810
- # :PCA1 :lambda1 ?lambda1 .
811
- # :PCA1 :lambda2 ?lambda2 .
812
- # :PCA1 :explainedVar1 ?explained1 .
813
- # } .
814
- # with substitution (on rule variables):
815
- # ?a = "31.918367346938773"^^xsd:decimal
816
- # ?ad = "728.8982590587254"^^xsd:decimal
817
- # ?b = "-10.193877551020408"^^xsd:decimal
818
- # ?b2 = "103.91513952519784"^^xsd:decimal
819
- # ?d = "22.836326530612244"^^xsd:decimal
820
- # ?det = "624.9831195335275"^^xsd:decimal
821
- # ?disc = "498.14402349021293"^^xsd:decimal
822
- # ?explained1 = "0.7038102919953919"^^xsd:decimal
823
- # ?fourDet = "2499.93247813411"^^xsd:decimal
824
- # ?lambda1 = "38.53691708607748"^^xsd:decimal
825
- # ?lambda2 = "16.217776791473543"^^xsd:decimal
826
- # ?sqrtDisc = "22.319140294603933"^^xsd:decimal
827
- # ?tr = "54.75469387755102"^^xsd:decimal
828
- # ?tr2 = "2998.076501624323"^^xsd:decimal
829
- # ?trMinus = "32.43555358294709"^^xsd:decimal
830
- # ?trPlus = "77.07383417215496"^^xsd:decimal
831
- # Therefore the derived triple above is entailed by the rules and facts.
832
- # ----------------------------------------------------------------------
833
-
834
11
  :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
835
-
836
- # ----------------------------------------------------------------------
837
- # Proof for derived triple:
838
- # :PCA1 :explainedVar1 "0.7038102919953919"^^xsd:decimal .
839
- # It holds because the following instance of the rule body is provable:
840
- # :PCA1 :covXX "31.918367346938773"^^xsd:decimal .
841
- # :PCA1 :covYY "22.836326530612244"^^xsd:decimal .
842
- # :PCA1 :covXY "-10.193877551020408"^^xsd:decimal .
843
- # ("31.918367346938773"^^xsd:decimal "22.836326530612244"^^xsd:decimal) math:sum "54.75469387755102"^^xsd:decimal .
844
- # ("31.918367346938773"^^xsd:decimal "22.836326530612244"^^xsd:decimal) math:product "728.8982590587254"^^xsd:decimal .
845
- # ("-10.193877551020408"^^xsd:decimal 2.0) math:exponentiation "103.91513952519784"^^xsd:decimal .
846
- # ("728.8982590587254"^^xsd:decimal "103.91513952519784"^^xsd:decimal) math:difference "624.9831195335275"^^xsd:decimal .
847
- # ("54.75469387755102"^^xsd:decimal 2.0) math:exponentiation "2998.076501624323"^^xsd:decimal .
848
- # (4.0 "624.9831195335275"^^xsd:decimal) math:product "2499.93247813411"^^xsd:decimal .
849
- # ("2998.076501624323"^^xsd:decimal "2499.93247813411"^^xsd:decimal) math:difference "498.14402349021293"^^xsd:decimal .
850
- # ("498.14402349021293"^^xsd:decimal 0.5) math:exponentiation "22.319140294603933"^^xsd:decimal .
851
- # ("54.75469387755102"^^xsd:decimal "22.319140294603933"^^xsd:decimal) math:sum "77.07383417215496"^^xsd:decimal .
852
- # ("54.75469387755102"^^xsd:decimal "22.319140294603933"^^xsd:decimal) math:difference "32.43555358294709"^^xsd:decimal .
853
- # ("77.07383417215496"^^xsd:decimal 2.0) math:quotient "38.53691708607748"^^xsd:decimal .
854
- # ("32.43555358294709"^^xsd:decimal 2.0) math:quotient "16.217776791473543"^^xsd:decimal .
855
- # ("38.53691708607748"^^xsd:decimal "54.75469387755102"^^xsd:decimal) math:quotient "0.7038102919953919"^^xsd:decimal .
856
- # via the schematic forward rule:
857
- # {
858
- # :PCA1 :covXX ?a .
859
- # :PCA1 :covYY ?d .
860
- # :PCA1 :covXY ?b .
861
- # (?a ?d) math:sum ?tr .
862
- # (?a ?d) math:product ?ad .
863
- # (?b 2.0) math:exponentiation ?b2 .
864
- # (?ad ?b2) math:difference ?det .
865
- # (?tr 2.0) math:exponentiation ?tr2 .
866
- # (4.0 ?det) math:product ?fourDet .
867
- # (?tr2 ?fourDet) math:difference ?disc .
868
- # (?disc 0.5) math:exponentiation ?sqrtDisc .
869
- # (?tr ?sqrtDisc) math:sum ?trPlus .
870
- # (?tr ?sqrtDisc) math:difference ?trMinus .
871
- # (?trPlus 2.0) math:quotient ?lambda1 .
872
- # (?trMinus 2.0) math:quotient ?lambda2 .
873
- # (?lambda1 ?tr) math:quotient ?explained1 .
874
- # } => {
875
- # :PCA1 :lambda1 ?lambda1 .
876
- # :PCA1 :lambda2 ?lambda2 .
877
- # :PCA1 :explainedVar1 ?explained1 .
878
- # } .
879
- # with substitution (on rule variables):
880
- # ?a = "31.918367346938773"^^xsd:decimal
881
- # ?ad = "728.8982590587254"^^xsd:decimal
882
- # ?b = "-10.193877551020408"^^xsd:decimal
883
- # ?b2 = "103.91513952519784"^^xsd:decimal
884
- # ?d = "22.836326530612244"^^xsd:decimal
885
- # ?det = "624.9831195335275"^^xsd:decimal
886
- # ?disc = "498.14402349021293"^^xsd:decimal
887
- # ?explained1 = "0.7038102919953919"^^xsd:decimal
888
- # ?fourDet = "2499.93247813411"^^xsd:decimal
889
- # ?lambda1 = "38.53691708607748"^^xsd:decimal
890
- # ?lambda2 = "16.217776791473543"^^xsd:decimal
891
- # ?sqrtDisc = "22.319140294603933"^^xsd:decimal
892
- # ?tr = "54.75469387755102"^^xsd:decimal
893
- # ?tr2 = "2998.076501624323"^^xsd:decimal
894
- # ?trMinus = "32.43555358294709"^^xsd:decimal
895
- # ?trPlus = "77.07383417215496"^^xsd:decimal
896
- # Therefore the derived triple above is entailed by the rules and facts.
897
- # ----------------------------------------------------------------------
898
-
899
12
  :PCA1 :explainedVar1 "0.7038102919953919"^^xsd:decimal .
900
-
901
- # ----------------------------------------------------------------------
902
- # Proof for derived triple:
903
- # :PCA1 :_phi "-1.1517197151996337"^^xsd:decimal .
904
- # It holds because the following instance of the rule body is provable:
905
- # :PCA1 :covXX "31.918367346938773"^^xsd:decimal .
906
- # :PCA1 :covYY "22.836326530612244"^^xsd:decimal .
907
- # :PCA1 :covXY "-10.193877551020408"^^xsd:decimal .
908
- # ("31.918367346938773"^^xsd:decimal "22.836326530612244"^^xsd:decimal) math:difference "9.08204081632653"^^xsd:decimal .
909
- # (2.0 "-10.193877551020408"^^xsd:decimal) math:product "-20.387755102040817"^^xsd:decimal .
910
- # ("-20.387755102040817"^^xsd:decimal "9.08204081632653"^^xsd:decimal) math:quotient "-2.2448429284077123"^^xsd:decimal .
911
- # "-2.2448429284077123"^^xsd:decimal math:atan "-1.1517197151996337"^^xsd:decimal .
912
- # "9.08204081632653"^^xsd:decimal math:notEqualTo 0.0 .
913
- # via the schematic forward rule:
914
- # {
915
- # :PCA1 :covXX ?a .
916
- # :PCA1 :covYY ?d .
917
- # :PCA1 :covXY ?b .
918
- # (?a ?d) math:difference ?diff .
919
- # (2.0 ?b) math:product ?twoB .
920
- # (?twoB ?diff) math:quotient ?ratio .
921
- # ?ratio math:atan ?phi .
922
- # ?diff math:notEqualTo 0.0 .
923
- # } => {
924
- # :PCA1 :_phi ?phi .
925
- # :PCA1 :_diff ?diff .
926
- # :PCA1 :_twoB ?twoB .
927
- # :PCA1 :_b ?b .
928
- # } .
929
- # with substitution (on rule variables):
930
- # ?a = "31.918367346938773"^^xsd:decimal
931
- # ?b = "-10.193877551020408"^^xsd:decimal
932
- # ?d = "22.836326530612244"^^xsd:decimal
933
- # ?diff = "9.08204081632653"^^xsd:decimal
934
- # ?phi = "-1.1517197151996337"^^xsd:decimal
935
- # ?ratio = "-2.2448429284077123"^^xsd:decimal
936
- # ?twoB = "-20.387755102040817"^^xsd:decimal
937
- # Therefore the derived triple above is entailed by the rules and facts.
938
- # ----------------------------------------------------------------------
939
-
940
13
  :PCA1 :_phi "-1.1517197151996337"^^xsd:decimal .
941
-
942
- # ----------------------------------------------------------------------
943
- # Proof for derived triple:
944
- # :PCA1 :_diff "9.08204081632653"^^xsd:decimal .
945
- # It holds because the following instance of the rule body is provable:
946
- # :PCA1 :covXX "31.918367346938773"^^xsd:decimal .
947
- # :PCA1 :covYY "22.836326530612244"^^xsd:decimal .
948
- # :PCA1 :covXY "-10.193877551020408"^^xsd:decimal .
949
- # ("31.918367346938773"^^xsd:decimal "22.836326530612244"^^xsd:decimal) math:difference "9.08204081632653"^^xsd:decimal .
950
- # (2.0 "-10.193877551020408"^^xsd:decimal) math:product "-20.387755102040817"^^xsd:decimal .
951
- # ("-20.387755102040817"^^xsd:decimal "9.08204081632653"^^xsd:decimal) math:quotient "-2.2448429284077123"^^xsd:decimal .
952
- # "-2.2448429284077123"^^xsd:decimal math:atan "-1.1517197151996337"^^xsd:decimal .
953
- # "9.08204081632653"^^xsd:decimal math:notEqualTo 0.0 .
954
- # via the schematic forward rule:
955
- # {
956
- # :PCA1 :covXX ?a .
957
- # :PCA1 :covYY ?d .
958
- # :PCA1 :covXY ?b .
959
- # (?a ?d) math:difference ?diff .
960
- # (2.0 ?b) math:product ?twoB .
961
- # (?twoB ?diff) math:quotient ?ratio .
962
- # ?ratio math:atan ?phi .
963
- # ?diff math:notEqualTo 0.0 .
964
- # } => {
965
- # :PCA1 :_phi ?phi .
966
- # :PCA1 :_diff ?diff .
967
- # :PCA1 :_twoB ?twoB .
968
- # :PCA1 :_b ?b .
969
- # } .
970
- # with substitution (on rule variables):
971
- # ?a = "31.918367346938773"^^xsd:decimal
972
- # ?b = "-10.193877551020408"^^xsd:decimal
973
- # ?d = "22.836326530612244"^^xsd:decimal
974
- # ?diff = "9.08204081632653"^^xsd:decimal
975
- # ?phi = "-1.1517197151996337"^^xsd:decimal
976
- # ?ratio = "-2.2448429284077123"^^xsd:decimal
977
- # ?twoB = "-20.387755102040817"^^xsd:decimal
978
- # Therefore the derived triple above is entailed by the rules and facts.
979
- # ----------------------------------------------------------------------
980
-
981
14
  :PCA1 :_diff "9.08204081632653"^^xsd:decimal .
982
-
983
- # ----------------------------------------------------------------------
984
- # Proof for derived triple:
985
- # :PCA1 :_twoB "-20.387755102040817"^^xsd:decimal .
986
- # It holds because the following instance of the rule body is provable:
987
- # :PCA1 :covXX "31.918367346938773"^^xsd:decimal .
988
- # :PCA1 :covYY "22.836326530612244"^^xsd:decimal .
989
- # :PCA1 :covXY "-10.193877551020408"^^xsd:decimal .
990
- # ("31.918367346938773"^^xsd:decimal "22.836326530612244"^^xsd:decimal) math:difference "9.08204081632653"^^xsd:decimal .
991
- # (2.0 "-10.193877551020408"^^xsd:decimal) math:product "-20.387755102040817"^^xsd:decimal .
992
- # ("-20.387755102040817"^^xsd:decimal "9.08204081632653"^^xsd:decimal) math:quotient "-2.2448429284077123"^^xsd:decimal .
993
- # "-2.2448429284077123"^^xsd:decimal math:atan "-1.1517197151996337"^^xsd:decimal .
994
- # "9.08204081632653"^^xsd:decimal math:notEqualTo 0.0 .
995
- # via the schematic forward rule:
996
- # {
997
- # :PCA1 :covXX ?a .
998
- # :PCA1 :covYY ?d .
999
- # :PCA1 :covXY ?b .
1000
- # (?a ?d) math:difference ?diff .
1001
- # (2.0 ?b) math:product ?twoB .
1002
- # (?twoB ?diff) math:quotient ?ratio .
1003
- # ?ratio math:atan ?phi .
1004
- # ?diff math:notEqualTo 0.0 .
1005
- # } => {
1006
- # :PCA1 :_phi ?phi .
1007
- # :PCA1 :_diff ?diff .
1008
- # :PCA1 :_twoB ?twoB .
1009
- # :PCA1 :_b ?b .
1010
- # } .
1011
- # with substitution (on rule variables):
1012
- # ?a = "31.918367346938773"^^xsd:decimal
1013
- # ?b = "-10.193877551020408"^^xsd:decimal
1014
- # ?d = "22.836326530612244"^^xsd:decimal
1015
- # ?diff = "9.08204081632653"^^xsd:decimal
1016
- # ?phi = "-1.1517197151996337"^^xsd:decimal
1017
- # ?ratio = "-2.2448429284077123"^^xsd:decimal
1018
- # ?twoB = "-20.387755102040817"^^xsd:decimal
1019
- # Therefore the derived triple above is entailed by the rules and facts.
1020
- # ----------------------------------------------------------------------
1021
-
1022
15
  :PCA1 :_twoB "-20.387755102040817"^^xsd:decimal .
1023
-
1024
- # ----------------------------------------------------------------------
1025
- # Proof for derived triple:
1026
- # :PCA1 :_b "-10.193877551020408"^^xsd:decimal .
1027
- # It holds because the following instance of the rule body is provable:
1028
- # :PCA1 :covXX "31.918367346938773"^^xsd:decimal .
1029
- # :PCA1 :covYY "22.836326530612244"^^xsd:decimal .
1030
- # :PCA1 :covXY "-10.193877551020408"^^xsd:decimal .
1031
- # ("31.918367346938773"^^xsd:decimal "22.836326530612244"^^xsd:decimal) math:difference "9.08204081632653"^^xsd:decimal .
1032
- # (2.0 "-10.193877551020408"^^xsd:decimal) math:product "-20.387755102040817"^^xsd:decimal .
1033
- # ("-20.387755102040817"^^xsd:decimal "9.08204081632653"^^xsd:decimal) math:quotient "-2.2448429284077123"^^xsd:decimal .
1034
- # "-2.2448429284077123"^^xsd:decimal math:atan "-1.1517197151996337"^^xsd:decimal .
1035
- # "9.08204081632653"^^xsd:decimal math:notEqualTo 0.0 .
1036
- # via the schematic forward rule:
1037
- # {
1038
- # :PCA1 :covXX ?a .
1039
- # :PCA1 :covYY ?d .
1040
- # :PCA1 :covXY ?b .
1041
- # (?a ?d) math:difference ?diff .
1042
- # (2.0 ?b) math:product ?twoB .
1043
- # (?twoB ?diff) math:quotient ?ratio .
1044
- # ?ratio math:atan ?phi .
1045
- # ?diff math:notEqualTo 0.0 .
1046
- # } => {
1047
- # :PCA1 :_phi ?phi .
1048
- # :PCA1 :_diff ?diff .
1049
- # :PCA1 :_twoB ?twoB .
1050
- # :PCA1 :_b ?b .
1051
- # } .
1052
- # with substitution (on rule variables):
1053
- # ?a = "31.918367346938773"^^xsd:decimal
1054
- # ?b = "-10.193877551020408"^^xsd:decimal
1055
- # ?d = "22.836326530612244"^^xsd:decimal
1056
- # ?diff = "9.08204081632653"^^xsd:decimal
1057
- # ?phi = "-1.1517197151996337"^^xsd:decimal
1058
- # ?ratio = "-2.2448429284077123"^^xsd:decimal
1059
- # ?twoB = "-20.387755102040817"^^xsd:decimal
1060
- # Therefore the derived triple above is entailed by the rules and facts.
1061
- # ----------------------------------------------------------------------
1062
-
1063
16
  :PCA1 :_b "-10.193877551020408"^^xsd:decimal .
1064
-
1065
- # ----------------------------------------------------------------------
1066
- # Proof for derived triple:
1067
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
1068
- # It holds because the following instance of the rule body is provable:
1069
- # :PCA1 :_phi "-1.1517197151996337"^^xsd:decimal .
1070
- # :PCA1 :_diff "9.08204081632653"^^xsd:decimal .
1071
- # (0.5 "-1.1517197151996337"^^xsd:decimal) math:product "-0.5758598575998168"^^xsd:decimal .
1072
- # "-0.5758598575998168"^^xsd:decimal math:degrees "-32.99433943147409"^^xsd:decimal .
1073
- # "9.08204081632653"^^xsd:decimal math:greaterThan 0.0 .
1074
- # via the schematic forward rule:
1075
- # {
1076
- # :PCA1 :_phi ?phi .
1077
- # :PCA1 :_diff ?diff .
1078
- # (0.5 ?phi) math:product ?theta .
1079
- # ?theta math:degrees ?thetaDeg .
1080
- # ?diff math:greaterThan 0.0 .
1081
- # } => {
1082
- # :PCA1 :thetaRad ?theta .
1083
- # :PCA1 :thetaDeg ?thetaDeg .
1084
- # } .
1085
- # with substitution (on rule variables):
1086
- # ?diff = "9.08204081632653"^^xsd:decimal
1087
- # ?phi = "-1.1517197151996337"^^xsd:decimal
1088
- # ?theta = "-0.5758598575998168"^^xsd:decimal
1089
- # ?thetaDeg = "-32.99433943147409"^^xsd:decimal
1090
- # Therefore the derived triple above is entailed by the rules and facts.
1091
- # ----------------------------------------------------------------------
1092
-
1093
17
  :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
1094
-
1095
- # ----------------------------------------------------------------------
1096
- # Proof for derived triple:
1097
- # :PCA1 :thetaDeg "-32.99433943147409"^^xsd:decimal .
1098
- # It holds because the following instance of the rule body is provable:
1099
- # :PCA1 :_phi "-1.1517197151996337"^^xsd:decimal .
1100
- # :PCA1 :_diff "9.08204081632653"^^xsd:decimal .
1101
- # (0.5 "-1.1517197151996337"^^xsd:decimal) math:product "-0.5758598575998168"^^xsd:decimal .
1102
- # "-0.5758598575998168"^^xsd:decimal math:degrees "-32.99433943147409"^^xsd:decimal .
1103
- # "9.08204081632653"^^xsd:decimal math:greaterThan 0.0 .
1104
- # via the schematic forward rule:
1105
- # {
1106
- # :PCA1 :_phi ?phi .
1107
- # :PCA1 :_diff ?diff .
1108
- # (0.5 ?phi) math:product ?theta .
1109
- # ?theta math:degrees ?thetaDeg .
1110
- # ?diff math:greaterThan 0.0 .
1111
- # } => {
1112
- # :PCA1 :thetaRad ?theta .
1113
- # :PCA1 :thetaDeg ?thetaDeg .
1114
- # } .
1115
- # with substitution (on rule variables):
1116
- # ?diff = "9.08204081632653"^^xsd:decimal
1117
- # ?phi = "-1.1517197151996337"^^xsd:decimal
1118
- # ?theta = "-0.5758598575998168"^^xsd:decimal
1119
- # ?thetaDeg = "-32.99433943147409"^^xsd:decimal
1120
- # Therefore the derived triple above is entailed by the rules and facts.
1121
- # ----------------------------------------------------------------------
1122
-
1123
18
  :PCA1 :thetaDeg "-32.99433943147409"^^xsd:decimal .
1124
-
1125
- # ----------------------------------------------------------------------
1126
- # Proof for derived triple:
1127
- # _:sk_0 :point _:b7 .
1128
- # It holds because the following instance of the rule body is provable:
1129
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
1130
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
1131
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
1132
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
1133
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
1134
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
1135
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
1136
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
1137
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b7 .
1138
- # _:b7 :x 20.0 .
1139
- # _:b7 :y -3.0 .
1140
- # (20.0 "6.714285714285714"^^xsd:decimal) math:difference "13.285714285714285"^^xsd:decimal .
1141
- # (-3.0 "4.171428571428572"^^xsd:decimal) math:difference "-7.171428571428572"^^xsd:decimal .
1142
- # ("13.285714285714285"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "11.143052367800513"^^xsd:decimal .
1143
- # ("-7.171428571428572"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "3.905245715227793"^^xsd:decimal .
1144
- # ("11.143052367800513"^^xsd:decimal "3.905245715227793"^^xsd:decimal) math:sum "15.048298083028305"^^xsd:decimal .
1145
- # ("13.285714285714285"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-7.234817759286548"^^xsd:decimal .
1146
- # (0.0 "-7.234817759286548"^^xsd:decimal) math:difference "7.234817759286548"^^xsd:decimal .
1147
- # ("-7.171428571428572"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-6.014851923264363"^^xsd:decimal .
1148
- # ("7.234817759286548"^^xsd:decimal "-6.014851923264363"^^xsd:decimal) math:sum "1.219965836022185"^^xsd:decimal .
1149
- # ("15.048298083028305"^^xsd:decimal 2.0) math:exponentiation "226.45127519567336"^^xsd:decimal .
1150
- # ("1.219965836022185"^^xsd:decimal 2.0) math:exponentiation "1.4883166410613087"^^xsd:decimal .
1151
- # ("226.45127519567336"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "5.8762166856747635"^^xsd:decimal .
1152
- # ("1.4883166410613087"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.0917706946024678"^^xsd:decimal .
1153
- # ("5.8762166856747635"^^xsd:decimal "0.0917706946024678"^^xsd:decimal) math:sum "5.967987380277231"^^xsd:decimal .
1154
- # via the schematic forward rule:
1155
- # {
1156
- # :PCA1 :points ?pts .
1157
- # :PCA1 :meanX ?mx .
1158
- # :PCA1 :meanY ?my .
1159
- # :PCA1 :thetaRad ?theta .
1160
- # :PCA1 :lambda1 ?l1 .
1161
- # :PCA1 :lambda2 ?l2 .
1162
- # ?theta math:cos ?c .
1163
- # ?theta math:sin ?s .
1164
- # ?pts list:member ?p .
1165
- # ?p :x ?x .
1166
- # ?p :y ?y .
1167
- # (?x ?mx) math:difference ?dx .
1168
- # (?y ?my) math:difference ?dy .
1169
- # (?dx ?c) math:product ?dxC .
1170
- # (?dy ?s) math:product ?dyS .
1171
- # (?dxC ?dyS) math:sum ?u .
1172
- # (?dx ?s) math:product ?dxS .
1173
- # (0.0 ?dxS) math:difference ?negDxS .
1174
- # (?dy ?c) math:product ?dyC .
1175
- # (?negDxS ?dyC) math:sum ?v .
1176
- # (?u 2.0) math:exponentiation ?u2 .
1177
- # (?v 2.0) math:exponentiation ?v2 .
1178
- # (?u2 ?l1) math:quotient ?u2Over .
1179
- # (?v2 ?l2) math:quotient ?v2Over .
1180
- # (?u2Over ?v2Over) math:sum ?md2 .
1181
- # } => {
1182
- # _:b8 :point ?p .
1183
- # _:b8 :u ?u .
1184
- # _:b8 :v ?v .
1185
- # _:b8 :md2 ?md2 .
1186
- # :PCA1 :score _:b8 .
1187
- # } .
1188
- # with substitution (on rule variables):
1189
- # ?c = "0.8387243717699311"^^xsd:decimal
1190
- # ?dx = "13.285714285714285"^^xsd:decimal
1191
- # ?dxC = "11.143052367800513"^^xsd:decimal
1192
- # ?dxS = "-7.234817759286548"^^xsd:decimal
1193
- # ?dy = "-7.171428571428572"^^xsd:decimal
1194
- # ?dyC = "-6.014851923264363"^^xsd:decimal
1195
- # ?dyS = "3.905245715227793"^^xsd:decimal
1196
- # ?l1 = "38.53691708607748"^^xsd:decimal
1197
- # ?l2 = "16.217776791473543"^^xsd:decimal
1198
- # ?md2 = "5.967987380277231"^^xsd:decimal
1199
- # ?mx = "6.714285714285714"^^xsd:decimal
1200
- # ?my = "4.171428571428572"^^xsd:decimal
1201
- # ?negDxS = "7.234817759286548"^^xsd:decimal
1202
- # ?p = _:b7
1203
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
1204
- # ?s = "-0.5445561754301703"^^xsd:decimal
1205
- # ?theta = "-0.5758598575998168"^^xsd:decimal
1206
- # ?u = "15.048298083028305"^^xsd:decimal
1207
- # ?u2 = "226.45127519567336"^^xsd:decimal
1208
- # ?u2Over = "5.8762166856747635"^^xsd:decimal
1209
- # ?v = "1.219965836022185"^^xsd:decimal
1210
- # ?v2 = "1.4883166410613087"^^xsd:decimal
1211
- # ?v2Over = "0.0917706946024678"^^xsd:decimal
1212
- # ?x = 20.0
1213
- # ?y = -3.0
1214
- # Therefore the derived triple above is entailed by the rules and facts.
1215
- # ----------------------------------------------------------------------
1216
-
1217
19
  _:sk_0 :point _:b7 .
1218
-
1219
- # ----------------------------------------------------------------------
1220
- # Proof for derived triple:
1221
- # _:sk_0 :u "15.048298083028305"^^xsd:decimal .
1222
- # It holds because the following instance of the rule body is provable:
1223
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
1224
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
1225
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
1226
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
1227
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
1228
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
1229
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
1230
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
1231
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b7 .
1232
- # _:b7 :x 20.0 .
1233
- # _:b7 :y -3.0 .
1234
- # (20.0 "6.714285714285714"^^xsd:decimal) math:difference "13.285714285714285"^^xsd:decimal .
1235
- # (-3.0 "4.171428571428572"^^xsd:decimal) math:difference "-7.171428571428572"^^xsd:decimal .
1236
- # ("13.285714285714285"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "11.143052367800513"^^xsd:decimal .
1237
- # ("-7.171428571428572"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "3.905245715227793"^^xsd:decimal .
1238
- # ("11.143052367800513"^^xsd:decimal "3.905245715227793"^^xsd:decimal) math:sum "15.048298083028305"^^xsd:decimal .
1239
- # ("13.285714285714285"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-7.234817759286548"^^xsd:decimal .
1240
- # (0.0 "-7.234817759286548"^^xsd:decimal) math:difference "7.234817759286548"^^xsd:decimal .
1241
- # ("-7.171428571428572"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-6.014851923264363"^^xsd:decimal .
1242
- # ("7.234817759286548"^^xsd:decimal "-6.014851923264363"^^xsd:decimal) math:sum "1.219965836022185"^^xsd:decimal .
1243
- # ("15.048298083028305"^^xsd:decimal 2.0) math:exponentiation "226.45127519567336"^^xsd:decimal .
1244
- # ("1.219965836022185"^^xsd:decimal 2.0) math:exponentiation "1.4883166410613087"^^xsd:decimal .
1245
- # ("226.45127519567336"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "5.8762166856747635"^^xsd:decimal .
1246
- # ("1.4883166410613087"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.0917706946024678"^^xsd:decimal .
1247
- # ("5.8762166856747635"^^xsd:decimal "0.0917706946024678"^^xsd:decimal) math:sum "5.967987380277231"^^xsd:decimal .
1248
- # via the schematic forward rule:
1249
- # {
1250
- # :PCA1 :points ?pts .
1251
- # :PCA1 :meanX ?mx .
1252
- # :PCA1 :meanY ?my .
1253
- # :PCA1 :thetaRad ?theta .
1254
- # :PCA1 :lambda1 ?l1 .
1255
- # :PCA1 :lambda2 ?l2 .
1256
- # ?theta math:cos ?c .
1257
- # ?theta math:sin ?s .
1258
- # ?pts list:member ?p .
1259
- # ?p :x ?x .
1260
- # ?p :y ?y .
1261
- # (?x ?mx) math:difference ?dx .
1262
- # (?y ?my) math:difference ?dy .
1263
- # (?dx ?c) math:product ?dxC .
1264
- # (?dy ?s) math:product ?dyS .
1265
- # (?dxC ?dyS) math:sum ?u .
1266
- # (?dx ?s) math:product ?dxS .
1267
- # (0.0 ?dxS) math:difference ?negDxS .
1268
- # (?dy ?c) math:product ?dyC .
1269
- # (?negDxS ?dyC) math:sum ?v .
1270
- # (?u 2.0) math:exponentiation ?u2 .
1271
- # (?v 2.0) math:exponentiation ?v2 .
1272
- # (?u2 ?l1) math:quotient ?u2Over .
1273
- # (?v2 ?l2) math:quotient ?v2Over .
1274
- # (?u2Over ?v2Over) math:sum ?md2 .
1275
- # } => {
1276
- # _:b8 :point ?p .
1277
- # _:b8 :u ?u .
1278
- # _:b8 :v ?v .
1279
- # _:b8 :md2 ?md2 .
1280
- # :PCA1 :score _:b8 .
1281
- # } .
1282
- # with substitution (on rule variables):
1283
- # ?c = "0.8387243717699311"^^xsd:decimal
1284
- # ?dx = "13.285714285714285"^^xsd:decimal
1285
- # ?dxC = "11.143052367800513"^^xsd:decimal
1286
- # ?dxS = "-7.234817759286548"^^xsd:decimal
1287
- # ?dy = "-7.171428571428572"^^xsd:decimal
1288
- # ?dyC = "-6.014851923264363"^^xsd:decimal
1289
- # ?dyS = "3.905245715227793"^^xsd:decimal
1290
- # ?l1 = "38.53691708607748"^^xsd:decimal
1291
- # ?l2 = "16.217776791473543"^^xsd:decimal
1292
- # ?md2 = "5.967987380277231"^^xsd:decimal
1293
- # ?mx = "6.714285714285714"^^xsd:decimal
1294
- # ?my = "4.171428571428572"^^xsd:decimal
1295
- # ?negDxS = "7.234817759286548"^^xsd:decimal
1296
- # ?p = _:b7
1297
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
1298
- # ?s = "-0.5445561754301703"^^xsd:decimal
1299
- # ?theta = "-0.5758598575998168"^^xsd:decimal
1300
- # ?u = "15.048298083028305"^^xsd:decimal
1301
- # ?u2 = "226.45127519567336"^^xsd:decimal
1302
- # ?u2Over = "5.8762166856747635"^^xsd:decimal
1303
- # ?v = "1.219965836022185"^^xsd:decimal
1304
- # ?v2 = "1.4883166410613087"^^xsd:decimal
1305
- # ?v2Over = "0.0917706946024678"^^xsd:decimal
1306
- # ?x = 20.0
1307
- # ?y = -3.0
1308
- # Therefore the derived triple above is entailed by the rules and facts.
1309
- # ----------------------------------------------------------------------
1310
-
1311
20
  _:sk_0 :u "15.048298083028305"^^xsd:decimal .
1312
-
1313
- # ----------------------------------------------------------------------
1314
- # Proof for derived triple:
1315
- # _:sk_0 :v "1.219965836022185"^^xsd:decimal .
1316
- # It holds because the following instance of the rule body is provable:
1317
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
1318
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
1319
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
1320
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
1321
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
1322
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
1323
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
1324
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
1325
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b7 .
1326
- # _:b7 :x 20.0 .
1327
- # _:b7 :y -3.0 .
1328
- # (20.0 "6.714285714285714"^^xsd:decimal) math:difference "13.285714285714285"^^xsd:decimal .
1329
- # (-3.0 "4.171428571428572"^^xsd:decimal) math:difference "-7.171428571428572"^^xsd:decimal .
1330
- # ("13.285714285714285"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "11.143052367800513"^^xsd:decimal .
1331
- # ("-7.171428571428572"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "3.905245715227793"^^xsd:decimal .
1332
- # ("11.143052367800513"^^xsd:decimal "3.905245715227793"^^xsd:decimal) math:sum "15.048298083028305"^^xsd:decimal .
1333
- # ("13.285714285714285"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-7.234817759286548"^^xsd:decimal .
1334
- # (0.0 "-7.234817759286548"^^xsd:decimal) math:difference "7.234817759286548"^^xsd:decimal .
1335
- # ("-7.171428571428572"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-6.014851923264363"^^xsd:decimal .
1336
- # ("7.234817759286548"^^xsd:decimal "-6.014851923264363"^^xsd:decimal) math:sum "1.219965836022185"^^xsd:decimal .
1337
- # ("15.048298083028305"^^xsd:decimal 2.0) math:exponentiation "226.45127519567336"^^xsd:decimal .
1338
- # ("1.219965836022185"^^xsd:decimal 2.0) math:exponentiation "1.4883166410613087"^^xsd:decimal .
1339
- # ("226.45127519567336"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "5.8762166856747635"^^xsd:decimal .
1340
- # ("1.4883166410613087"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.0917706946024678"^^xsd:decimal .
1341
- # ("5.8762166856747635"^^xsd:decimal "0.0917706946024678"^^xsd:decimal) math:sum "5.967987380277231"^^xsd:decimal .
1342
- # via the schematic forward rule:
1343
- # {
1344
- # :PCA1 :points ?pts .
1345
- # :PCA1 :meanX ?mx .
1346
- # :PCA1 :meanY ?my .
1347
- # :PCA1 :thetaRad ?theta .
1348
- # :PCA1 :lambda1 ?l1 .
1349
- # :PCA1 :lambda2 ?l2 .
1350
- # ?theta math:cos ?c .
1351
- # ?theta math:sin ?s .
1352
- # ?pts list:member ?p .
1353
- # ?p :x ?x .
1354
- # ?p :y ?y .
1355
- # (?x ?mx) math:difference ?dx .
1356
- # (?y ?my) math:difference ?dy .
1357
- # (?dx ?c) math:product ?dxC .
1358
- # (?dy ?s) math:product ?dyS .
1359
- # (?dxC ?dyS) math:sum ?u .
1360
- # (?dx ?s) math:product ?dxS .
1361
- # (0.0 ?dxS) math:difference ?negDxS .
1362
- # (?dy ?c) math:product ?dyC .
1363
- # (?negDxS ?dyC) math:sum ?v .
1364
- # (?u 2.0) math:exponentiation ?u2 .
1365
- # (?v 2.0) math:exponentiation ?v2 .
1366
- # (?u2 ?l1) math:quotient ?u2Over .
1367
- # (?v2 ?l2) math:quotient ?v2Over .
1368
- # (?u2Over ?v2Over) math:sum ?md2 .
1369
- # } => {
1370
- # _:b8 :point ?p .
1371
- # _:b8 :u ?u .
1372
- # _:b8 :v ?v .
1373
- # _:b8 :md2 ?md2 .
1374
- # :PCA1 :score _:b8 .
1375
- # } .
1376
- # with substitution (on rule variables):
1377
- # ?c = "0.8387243717699311"^^xsd:decimal
1378
- # ?dx = "13.285714285714285"^^xsd:decimal
1379
- # ?dxC = "11.143052367800513"^^xsd:decimal
1380
- # ?dxS = "-7.234817759286548"^^xsd:decimal
1381
- # ?dy = "-7.171428571428572"^^xsd:decimal
1382
- # ?dyC = "-6.014851923264363"^^xsd:decimal
1383
- # ?dyS = "3.905245715227793"^^xsd:decimal
1384
- # ?l1 = "38.53691708607748"^^xsd:decimal
1385
- # ?l2 = "16.217776791473543"^^xsd:decimal
1386
- # ?md2 = "5.967987380277231"^^xsd:decimal
1387
- # ?mx = "6.714285714285714"^^xsd:decimal
1388
- # ?my = "4.171428571428572"^^xsd:decimal
1389
- # ?negDxS = "7.234817759286548"^^xsd:decimal
1390
- # ?p = _:b7
1391
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
1392
- # ?s = "-0.5445561754301703"^^xsd:decimal
1393
- # ?theta = "-0.5758598575998168"^^xsd:decimal
1394
- # ?u = "15.048298083028305"^^xsd:decimal
1395
- # ?u2 = "226.45127519567336"^^xsd:decimal
1396
- # ?u2Over = "5.8762166856747635"^^xsd:decimal
1397
- # ?v = "1.219965836022185"^^xsd:decimal
1398
- # ?v2 = "1.4883166410613087"^^xsd:decimal
1399
- # ?v2Over = "0.0917706946024678"^^xsd:decimal
1400
- # ?x = 20.0
1401
- # ?y = -3.0
1402
- # Therefore the derived triple above is entailed by the rules and facts.
1403
- # ----------------------------------------------------------------------
1404
-
1405
21
  _:sk_0 :v "1.219965836022185"^^xsd:decimal .
1406
-
1407
- # ----------------------------------------------------------------------
1408
- # Proof for derived triple:
1409
- # _:sk_0 :md2 "5.967987380277231"^^xsd:decimal .
1410
- # It holds because the following instance of the rule body is provable:
1411
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
1412
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
1413
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
1414
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
1415
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
1416
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
1417
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
1418
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
1419
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b7 .
1420
- # _:b7 :x 20.0 .
1421
- # _:b7 :y -3.0 .
1422
- # (20.0 "6.714285714285714"^^xsd:decimal) math:difference "13.285714285714285"^^xsd:decimal .
1423
- # (-3.0 "4.171428571428572"^^xsd:decimal) math:difference "-7.171428571428572"^^xsd:decimal .
1424
- # ("13.285714285714285"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "11.143052367800513"^^xsd:decimal .
1425
- # ("-7.171428571428572"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "3.905245715227793"^^xsd:decimal .
1426
- # ("11.143052367800513"^^xsd:decimal "3.905245715227793"^^xsd:decimal) math:sum "15.048298083028305"^^xsd:decimal .
1427
- # ("13.285714285714285"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-7.234817759286548"^^xsd:decimal .
1428
- # (0.0 "-7.234817759286548"^^xsd:decimal) math:difference "7.234817759286548"^^xsd:decimal .
1429
- # ("-7.171428571428572"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-6.014851923264363"^^xsd:decimal .
1430
- # ("7.234817759286548"^^xsd:decimal "-6.014851923264363"^^xsd:decimal) math:sum "1.219965836022185"^^xsd:decimal .
1431
- # ("15.048298083028305"^^xsd:decimal 2.0) math:exponentiation "226.45127519567336"^^xsd:decimal .
1432
- # ("1.219965836022185"^^xsd:decimal 2.0) math:exponentiation "1.4883166410613087"^^xsd:decimal .
1433
- # ("226.45127519567336"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "5.8762166856747635"^^xsd:decimal .
1434
- # ("1.4883166410613087"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.0917706946024678"^^xsd:decimal .
1435
- # ("5.8762166856747635"^^xsd:decimal "0.0917706946024678"^^xsd:decimal) math:sum "5.967987380277231"^^xsd:decimal .
1436
- # via the schematic forward rule:
1437
- # {
1438
- # :PCA1 :points ?pts .
1439
- # :PCA1 :meanX ?mx .
1440
- # :PCA1 :meanY ?my .
1441
- # :PCA1 :thetaRad ?theta .
1442
- # :PCA1 :lambda1 ?l1 .
1443
- # :PCA1 :lambda2 ?l2 .
1444
- # ?theta math:cos ?c .
1445
- # ?theta math:sin ?s .
1446
- # ?pts list:member ?p .
1447
- # ?p :x ?x .
1448
- # ?p :y ?y .
1449
- # (?x ?mx) math:difference ?dx .
1450
- # (?y ?my) math:difference ?dy .
1451
- # (?dx ?c) math:product ?dxC .
1452
- # (?dy ?s) math:product ?dyS .
1453
- # (?dxC ?dyS) math:sum ?u .
1454
- # (?dx ?s) math:product ?dxS .
1455
- # (0.0 ?dxS) math:difference ?negDxS .
1456
- # (?dy ?c) math:product ?dyC .
1457
- # (?negDxS ?dyC) math:sum ?v .
1458
- # (?u 2.0) math:exponentiation ?u2 .
1459
- # (?v 2.0) math:exponentiation ?v2 .
1460
- # (?u2 ?l1) math:quotient ?u2Over .
1461
- # (?v2 ?l2) math:quotient ?v2Over .
1462
- # (?u2Over ?v2Over) math:sum ?md2 .
1463
- # } => {
1464
- # _:b8 :point ?p .
1465
- # _:b8 :u ?u .
1466
- # _:b8 :v ?v .
1467
- # _:b8 :md2 ?md2 .
1468
- # :PCA1 :score _:b8 .
1469
- # } .
1470
- # with substitution (on rule variables):
1471
- # ?c = "0.8387243717699311"^^xsd:decimal
1472
- # ?dx = "13.285714285714285"^^xsd:decimal
1473
- # ?dxC = "11.143052367800513"^^xsd:decimal
1474
- # ?dxS = "-7.234817759286548"^^xsd:decimal
1475
- # ?dy = "-7.171428571428572"^^xsd:decimal
1476
- # ?dyC = "-6.014851923264363"^^xsd:decimal
1477
- # ?dyS = "3.905245715227793"^^xsd:decimal
1478
- # ?l1 = "38.53691708607748"^^xsd:decimal
1479
- # ?l2 = "16.217776791473543"^^xsd:decimal
1480
- # ?md2 = "5.967987380277231"^^xsd:decimal
1481
- # ?mx = "6.714285714285714"^^xsd:decimal
1482
- # ?my = "4.171428571428572"^^xsd:decimal
1483
- # ?negDxS = "7.234817759286548"^^xsd:decimal
1484
- # ?p = _:b7
1485
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
1486
- # ?s = "-0.5445561754301703"^^xsd:decimal
1487
- # ?theta = "-0.5758598575998168"^^xsd:decimal
1488
- # ?u = "15.048298083028305"^^xsd:decimal
1489
- # ?u2 = "226.45127519567336"^^xsd:decimal
1490
- # ?u2Over = "5.8762166856747635"^^xsd:decimal
1491
- # ?v = "1.219965836022185"^^xsd:decimal
1492
- # ?v2 = "1.4883166410613087"^^xsd:decimal
1493
- # ?v2Over = "0.0917706946024678"^^xsd:decimal
1494
- # ?x = 20.0
1495
- # ?y = -3.0
1496
- # Therefore the derived triple above is entailed by the rules and facts.
1497
- # ----------------------------------------------------------------------
1498
-
1499
22
  _:sk_0 :md2 "5.967987380277231"^^xsd:decimal .
1500
-
1501
- # ----------------------------------------------------------------------
1502
- # Proof for derived triple:
1503
- # :PCA1 :score _:sk_0 .
1504
- # It holds because the following instance of the rule body is provable:
1505
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
1506
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
1507
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
1508
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
1509
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
1510
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
1511
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
1512
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
1513
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b7 .
1514
- # _:b7 :x 20.0 .
1515
- # _:b7 :y -3.0 .
1516
- # (20.0 "6.714285714285714"^^xsd:decimal) math:difference "13.285714285714285"^^xsd:decimal .
1517
- # (-3.0 "4.171428571428572"^^xsd:decimal) math:difference "-7.171428571428572"^^xsd:decimal .
1518
- # ("13.285714285714285"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "11.143052367800513"^^xsd:decimal .
1519
- # ("-7.171428571428572"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "3.905245715227793"^^xsd:decimal .
1520
- # ("11.143052367800513"^^xsd:decimal "3.905245715227793"^^xsd:decimal) math:sum "15.048298083028305"^^xsd:decimal .
1521
- # ("13.285714285714285"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-7.234817759286548"^^xsd:decimal .
1522
- # (0.0 "-7.234817759286548"^^xsd:decimal) math:difference "7.234817759286548"^^xsd:decimal .
1523
- # ("-7.171428571428572"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-6.014851923264363"^^xsd:decimal .
1524
- # ("7.234817759286548"^^xsd:decimal "-6.014851923264363"^^xsd:decimal) math:sum "1.219965836022185"^^xsd:decimal .
1525
- # ("15.048298083028305"^^xsd:decimal 2.0) math:exponentiation "226.45127519567336"^^xsd:decimal .
1526
- # ("1.219965836022185"^^xsd:decimal 2.0) math:exponentiation "1.4883166410613087"^^xsd:decimal .
1527
- # ("226.45127519567336"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "5.8762166856747635"^^xsd:decimal .
1528
- # ("1.4883166410613087"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.0917706946024678"^^xsd:decimal .
1529
- # ("5.8762166856747635"^^xsd:decimal "0.0917706946024678"^^xsd:decimal) math:sum "5.967987380277231"^^xsd:decimal .
1530
- # via the schematic forward rule:
1531
- # {
1532
- # :PCA1 :points ?pts .
1533
- # :PCA1 :meanX ?mx .
1534
- # :PCA1 :meanY ?my .
1535
- # :PCA1 :thetaRad ?theta .
1536
- # :PCA1 :lambda1 ?l1 .
1537
- # :PCA1 :lambda2 ?l2 .
1538
- # ?theta math:cos ?c .
1539
- # ?theta math:sin ?s .
1540
- # ?pts list:member ?p .
1541
- # ?p :x ?x .
1542
- # ?p :y ?y .
1543
- # (?x ?mx) math:difference ?dx .
1544
- # (?y ?my) math:difference ?dy .
1545
- # (?dx ?c) math:product ?dxC .
1546
- # (?dy ?s) math:product ?dyS .
1547
- # (?dxC ?dyS) math:sum ?u .
1548
- # (?dx ?s) math:product ?dxS .
1549
- # (0.0 ?dxS) math:difference ?negDxS .
1550
- # (?dy ?c) math:product ?dyC .
1551
- # (?negDxS ?dyC) math:sum ?v .
1552
- # (?u 2.0) math:exponentiation ?u2 .
1553
- # (?v 2.0) math:exponentiation ?v2 .
1554
- # (?u2 ?l1) math:quotient ?u2Over .
1555
- # (?v2 ?l2) math:quotient ?v2Over .
1556
- # (?u2Over ?v2Over) math:sum ?md2 .
1557
- # } => {
1558
- # _:b8 :point ?p .
1559
- # _:b8 :u ?u .
1560
- # _:b8 :v ?v .
1561
- # _:b8 :md2 ?md2 .
1562
- # :PCA1 :score _:b8 .
1563
- # } .
1564
- # with substitution (on rule variables):
1565
- # ?c = "0.8387243717699311"^^xsd:decimal
1566
- # ?dx = "13.285714285714285"^^xsd:decimal
1567
- # ?dxC = "11.143052367800513"^^xsd:decimal
1568
- # ?dxS = "-7.234817759286548"^^xsd:decimal
1569
- # ?dy = "-7.171428571428572"^^xsd:decimal
1570
- # ?dyC = "-6.014851923264363"^^xsd:decimal
1571
- # ?dyS = "3.905245715227793"^^xsd:decimal
1572
- # ?l1 = "38.53691708607748"^^xsd:decimal
1573
- # ?l2 = "16.217776791473543"^^xsd:decimal
1574
- # ?md2 = "5.967987380277231"^^xsd:decimal
1575
- # ?mx = "6.714285714285714"^^xsd:decimal
1576
- # ?my = "4.171428571428572"^^xsd:decimal
1577
- # ?negDxS = "7.234817759286548"^^xsd:decimal
1578
- # ?p = _:b7
1579
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
1580
- # ?s = "-0.5445561754301703"^^xsd:decimal
1581
- # ?theta = "-0.5758598575998168"^^xsd:decimal
1582
- # ?u = "15.048298083028305"^^xsd:decimal
1583
- # ?u2 = "226.45127519567336"^^xsd:decimal
1584
- # ?u2Over = "5.8762166856747635"^^xsd:decimal
1585
- # ?v = "1.219965836022185"^^xsd:decimal
1586
- # ?v2 = "1.4883166410613087"^^xsd:decimal
1587
- # ?v2Over = "0.0917706946024678"^^xsd:decimal
1588
- # ?x = 20.0
1589
- # ?y = -3.0
1590
- # Therefore the derived triple above is entailed by the rules and facts.
1591
- # ----------------------------------------------------------------------
1592
-
1593
23
  :PCA1 :score _:sk_0 .
1594
-
1595
- # ----------------------------------------------------------------------
1596
- # Proof for derived triple:
1597
- # _:sk_1 :point _:b6 .
1598
- # It holds because the following instance of the rule body is provable:
1599
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
1600
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
1601
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
1602
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
1603
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
1604
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
1605
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
1606
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
1607
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b6 .
1608
- # _:b6 :x 7.0 .
1609
- # _:b6 :y 13.0 .
1610
- # (7.0 "6.714285714285714"^^xsd:decimal) math:difference "0.2857142857142856"^^xsd:decimal .
1611
- # (13.0 "4.171428571428572"^^xsd:decimal) math:difference "8.82857142857143"^^xsd:decimal .
1612
- # ("0.2857142857142856"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "0.23963553479140878"^^xsd:decimal .
1613
- # ("8.82857142857143"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-4.807653091654933"^^xsd:decimal .
1614
- # ("0.23963553479140878"^^xsd:decimal "-4.807653091654933"^^xsd:decimal) math:sum "-4.5680175568635235"^^xsd:decimal .
1615
- # ("0.2857142857142856"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-0.1555874786943343"^^xsd:decimal .
1616
- # (0.0 "-0.1555874786943343"^^xsd:decimal) math:difference "0.1555874786943343"^^xsd:decimal .
1617
- # ("8.82857142857143"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "7.404738025054535"^^xsd:decimal .
1618
- # ("0.1555874786943343"^^xsd:decimal "7.404738025054535"^^xsd:decimal) math:sum "7.56032550374887"^^xsd:decimal .
1619
- # ("-4.5680175568635235"^^xsd:decimal 2.0) math:exponentiation "20.866784399813394"^^xsd:decimal .
1620
- # ("7.56032550374887"^^xsd:decimal 2.0) math:exponentiation "57.158521722635605"^^xsd:decimal .
1621
- # ("20.866784399813394"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.541475187369155"^^xsd:decimal .
1622
- # ("57.158521722635605"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "3.5244363304276427"^^xsd:decimal .
1623
- # ("0.541475187369155"^^xsd:decimal "3.5244363304276427"^^xsd:decimal) math:sum "4.065911517796797"^^xsd:decimal .
1624
- # via the schematic forward rule:
1625
- # {
1626
- # :PCA1 :points ?pts .
1627
- # :PCA1 :meanX ?mx .
1628
- # :PCA1 :meanY ?my .
1629
- # :PCA1 :thetaRad ?theta .
1630
- # :PCA1 :lambda1 ?l1 .
1631
- # :PCA1 :lambda2 ?l2 .
1632
- # ?theta math:cos ?c .
1633
- # ?theta math:sin ?s .
1634
- # ?pts list:member ?p .
1635
- # ?p :x ?x .
1636
- # ?p :y ?y .
1637
- # (?x ?mx) math:difference ?dx .
1638
- # (?y ?my) math:difference ?dy .
1639
- # (?dx ?c) math:product ?dxC .
1640
- # (?dy ?s) math:product ?dyS .
1641
- # (?dxC ?dyS) math:sum ?u .
1642
- # (?dx ?s) math:product ?dxS .
1643
- # (0.0 ?dxS) math:difference ?negDxS .
1644
- # (?dy ?c) math:product ?dyC .
1645
- # (?negDxS ?dyC) math:sum ?v .
1646
- # (?u 2.0) math:exponentiation ?u2 .
1647
- # (?v 2.0) math:exponentiation ?v2 .
1648
- # (?u2 ?l1) math:quotient ?u2Over .
1649
- # (?v2 ?l2) math:quotient ?v2Over .
1650
- # (?u2Over ?v2Over) math:sum ?md2 .
1651
- # } => {
1652
- # _:b8 :point ?p .
1653
- # _:b8 :u ?u .
1654
- # _:b8 :v ?v .
1655
- # _:b8 :md2 ?md2 .
1656
- # :PCA1 :score _:b8 .
1657
- # } .
1658
- # with substitution (on rule variables):
1659
- # ?c = "0.8387243717699311"^^xsd:decimal
1660
- # ?dx = "0.2857142857142856"^^xsd:decimal
1661
- # ?dxC = "0.23963553479140878"^^xsd:decimal
1662
- # ?dxS = "-0.1555874786943343"^^xsd:decimal
1663
- # ?dy = "8.82857142857143"^^xsd:decimal
1664
- # ?dyC = "7.404738025054535"^^xsd:decimal
1665
- # ?dyS = "-4.807653091654933"^^xsd:decimal
1666
- # ?l1 = "38.53691708607748"^^xsd:decimal
1667
- # ?l2 = "16.217776791473543"^^xsd:decimal
1668
- # ?md2 = "4.065911517796797"^^xsd:decimal
1669
- # ?mx = "6.714285714285714"^^xsd:decimal
1670
- # ?my = "4.171428571428572"^^xsd:decimal
1671
- # ?negDxS = "0.1555874786943343"^^xsd:decimal
1672
- # ?p = _:b6
1673
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
1674
- # ?s = "-0.5445561754301703"^^xsd:decimal
1675
- # ?theta = "-0.5758598575998168"^^xsd:decimal
1676
- # ?u = "-4.5680175568635235"^^xsd:decimal
1677
- # ?u2 = "20.866784399813394"^^xsd:decimal
1678
- # ?u2Over = "0.541475187369155"^^xsd:decimal
1679
- # ?v = "7.56032550374887"^^xsd:decimal
1680
- # ?v2 = "57.158521722635605"^^xsd:decimal
1681
- # ?v2Over = "3.5244363304276427"^^xsd:decimal
1682
- # ?x = 7.0
1683
- # ?y = 13.0
1684
- # Therefore the derived triple above is entailed by the rules and facts.
1685
- # ----------------------------------------------------------------------
1686
-
1687
24
  _:sk_1 :point _:b6 .
1688
-
1689
- # ----------------------------------------------------------------------
1690
- # Proof for derived triple:
1691
- # _:sk_1 :u "-4.5680175568635235"^^xsd:decimal .
1692
- # It holds because the following instance of the rule body is provable:
1693
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
1694
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
1695
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
1696
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
1697
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
1698
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
1699
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
1700
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
1701
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b6 .
1702
- # _:b6 :x 7.0 .
1703
- # _:b6 :y 13.0 .
1704
- # (7.0 "6.714285714285714"^^xsd:decimal) math:difference "0.2857142857142856"^^xsd:decimal .
1705
- # (13.0 "4.171428571428572"^^xsd:decimal) math:difference "8.82857142857143"^^xsd:decimal .
1706
- # ("0.2857142857142856"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "0.23963553479140878"^^xsd:decimal .
1707
- # ("8.82857142857143"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-4.807653091654933"^^xsd:decimal .
1708
- # ("0.23963553479140878"^^xsd:decimal "-4.807653091654933"^^xsd:decimal) math:sum "-4.5680175568635235"^^xsd:decimal .
1709
- # ("0.2857142857142856"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-0.1555874786943343"^^xsd:decimal .
1710
- # (0.0 "-0.1555874786943343"^^xsd:decimal) math:difference "0.1555874786943343"^^xsd:decimal .
1711
- # ("8.82857142857143"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "7.404738025054535"^^xsd:decimal .
1712
- # ("0.1555874786943343"^^xsd:decimal "7.404738025054535"^^xsd:decimal) math:sum "7.56032550374887"^^xsd:decimal .
1713
- # ("-4.5680175568635235"^^xsd:decimal 2.0) math:exponentiation "20.866784399813394"^^xsd:decimal .
1714
- # ("7.56032550374887"^^xsd:decimal 2.0) math:exponentiation "57.158521722635605"^^xsd:decimal .
1715
- # ("20.866784399813394"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.541475187369155"^^xsd:decimal .
1716
- # ("57.158521722635605"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "3.5244363304276427"^^xsd:decimal .
1717
- # ("0.541475187369155"^^xsd:decimal "3.5244363304276427"^^xsd:decimal) math:sum "4.065911517796797"^^xsd:decimal .
1718
- # via the schematic forward rule:
1719
- # {
1720
- # :PCA1 :points ?pts .
1721
- # :PCA1 :meanX ?mx .
1722
- # :PCA1 :meanY ?my .
1723
- # :PCA1 :thetaRad ?theta .
1724
- # :PCA1 :lambda1 ?l1 .
1725
- # :PCA1 :lambda2 ?l2 .
1726
- # ?theta math:cos ?c .
1727
- # ?theta math:sin ?s .
1728
- # ?pts list:member ?p .
1729
- # ?p :x ?x .
1730
- # ?p :y ?y .
1731
- # (?x ?mx) math:difference ?dx .
1732
- # (?y ?my) math:difference ?dy .
1733
- # (?dx ?c) math:product ?dxC .
1734
- # (?dy ?s) math:product ?dyS .
1735
- # (?dxC ?dyS) math:sum ?u .
1736
- # (?dx ?s) math:product ?dxS .
1737
- # (0.0 ?dxS) math:difference ?negDxS .
1738
- # (?dy ?c) math:product ?dyC .
1739
- # (?negDxS ?dyC) math:sum ?v .
1740
- # (?u 2.0) math:exponentiation ?u2 .
1741
- # (?v 2.0) math:exponentiation ?v2 .
1742
- # (?u2 ?l1) math:quotient ?u2Over .
1743
- # (?v2 ?l2) math:quotient ?v2Over .
1744
- # (?u2Over ?v2Over) math:sum ?md2 .
1745
- # } => {
1746
- # _:b8 :point ?p .
1747
- # _:b8 :u ?u .
1748
- # _:b8 :v ?v .
1749
- # _:b8 :md2 ?md2 .
1750
- # :PCA1 :score _:b8 .
1751
- # } .
1752
- # with substitution (on rule variables):
1753
- # ?c = "0.8387243717699311"^^xsd:decimal
1754
- # ?dx = "0.2857142857142856"^^xsd:decimal
1755
- # ?dxC = "0.23963553479140878"^^xsd:decimal
1756
- # ?dxS = "-0.1555874786943343"^^xsd:decimal
1757
- # ?dy = "8.82857142857143"^^xsd:decimal
1758
- # ?dyC = "7.404738025054535"^^xsd:decimal
1759
- # ?dyS = "-4.807653091654933"^^xsd:decimal
1760
- # ?l1 = "38.53691708607748"^^xsd:decimal
1761
- # ?l2 = "16.217776791473543"^^xsd:decimal
1762
- # ?md2 = "4.065911517796797"^^xsd:decimal
1763
- # ?mx = "6.714285714285714"^^xsd:decimal
1764
- # ?my = "4.171428571428572"^^xsd:decimal
1765
- # ?negDxS = "0.1555874786943343"^^xsd:decimal
1766
- # ?p = _:b6
1767
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
1768
- # ?s = "-0.5445561754301703"^^xsd:decimal
1769
- # ?theta = "-0.5758598575998168"^^xsd:decimal
1770
- # ?u = "-4.5680175568635235"^^xsd:decimal
1771
- # ?u2 = "20.866784399813394"^^xsd:decimal
1772
- # ?u2Over = "0.541475187369155"^^xsd:decimal
1773
- # ?v = "7.56032550374887"^^xsd:decimal
1774
- # ?v2 = "57.158521722635605"^^xsd:decimal
1775
- # ?v2Over = "3.5244363304276427"^^xsd:decimal
1776
- # ?x = 7.0
1777
- # ?y = 13.0
1778
- # Therefore the derived triple above is entailed by the rules and facts.
1779
- # ----------------------------------------------------------------------
1780
-
1781
25
  _:sk_1 :u "-4.5680175568635235"^^xsd:decimal .
1782
-
1783
- # ----------------------------------------------------------------------
1784
- # Proof for derived triple:
1785
- # _:sk_1 :v "7.56032550374887"^^xsd:decimal .
1786
- # It holds because the following instance of the rule body is provable:
1787
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
1788
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
1789
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
1790
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
1791
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
1792
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
1793
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
1794
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
1795
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b6 .
1796
- # _:b6 :x 7.0 .
1797
- # _:b6 :y 13.0 .
1798
- # (7.0 "6.714285714285714"^^xsd:decimal) math:difference "0.2857142857142856"^^xsd:decimal .
1799
- # (13.0 "4.171428571428572"^^xsd:decimal) math:difference "8.82857142857143"^^xsd:decimal .
1800
- # ("0.2857142857142856"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "0.23963553479140878"^^xsd:decimal .
1801
- # ("8.82857142857143"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-4.807653091654933"^^xsd:decimal .
1802
- # ("0.23963553479140878"^^xsd:decimal "-4.807653091654933"^^xsd:decimal) math:sum "-4.5680175568635235"^^xsd:decimal .
1803
- # ("0.2857142857142856"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-0.1555874786943343"^^xsd:decimal .
1804
- # (0.0 "-0.1555874786943343"^^xsd:decimal) math:difference "0.1555874786943343"^^xsd:decimal .
1805
- # ("8.82857142857143"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "7.404738025054535"^^xsd:decimal .
1806
- # ("0.1555874786943343"^^xsd:decimal "7.404738025054535"^^xsd:decimal) math:sum "7.56032550374887"^^xsd:decimal .
1807
- # ("-4.5680175568635235"^^xsd:decimal 2.0) math:exponentiation "20.866784399813394"^^xsd:decimal .
1808
- # ("7.56032550374887"^^xsd:decimal 2.0) math:exponentiation "57.158521722635605"^^xsd:decimal .
1809
- # ("20.866784399813394"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.541475187369155"^^xsd:decimal .
1810
- # ("57.158521722635605"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "3.5244363304276427"^^xsd:decimal .
1811
- # ("0.541475187369155"^^xsd:decimal "3.5244363304276427"^^xsd:decimal) math:sum "4.065911517796797"^^xsd:decimal .
1812
- # via the schematic forward rule:
1813
- # {
1814
- # :PCA1 :points ?pts .
1815
- # :PCA1 :meanX ?mx .
1816
- # :PCA1 :meanY ?my .
1817
- # :PCA1 :thetaRad ?theta .
1818
- # :PCA1 :lambda1 ?l1 .
1819
- # :PCA1 :lambda2 ?l2 .
1820
- # ?theta math:cos ?c .
1821
- # ?theta math:sin ?s .
1822
- # ?pts list:member ?p .
1823
- # ?p :x ?x .
1824
- # ?p :y ?y .
1825
- # (?x ?mx) math:difference ?dx .
1826
- # (?y ?my) math:difference ?dy .
1827
- # (?dx ?c) math:product ?dxC .
1828
- # (?dy ?s) math:product ?dyS .
1829
- # (?dxC ?dyS) math:sum ?u .
1830
- # (?dx ?s) math:product ?dxS .
1831
- # (0.0 ?dxS) math:difference ?negDxS .
1832
- # (?dy ?c) math:product ?dyC .
1833
- # (?negDxS ?dyC) math:sum ?v .
1834
- # (?u 2.0) math:exponentiation ?u2 .
1835
- # (?v 2.0) math:exponentiation ?v2 .
1836
- # (?u2 ?l1) math:quotient ?u2Over .
1837
- # (?v2 ?l2) math:quotient ?v2Over .
1838
- # (?u2Over ?v2Over) math:sum ?md2 .
1839
- # } => {
1840
- # _:b8 :point ?p .
1841
- # _:b8 :u ?u .
1842
- # _:b8 :v ?v .
1843
- # _:b8 :md2 ?md2 .
1844
- # :PCA1 :score _:b8 .
1845
- # } .
1846
- # with substitution (on rule variables):
1847
- # ?c = "0.8387243717699311"^^xsd:decimal
1848
- # ?dx = "0.2857142857142856"^^xsd:decimal
1849
- # ?dxC = "0.23963553479140878"^^xsd:decimal
1850
- # ?dxS = "-0.1555874786943343"^^xsd:decimal
1851
- # ?dy = "8.82857142857143"^^xsd:decimal
1852
- # ?dyC = "7.404738025054535"^^xsd:decimal
1853
- # ?dyS = "-4.807653091654933"^^xsd:decimal
1854
- # ?l1 = "38.53691708607748"^^xsd:decimal
1855
- # ?l2 = "16.217776791473543"^^xsd:decimal
1856
- # ?md2 = "4.065911517796797"^^xsd:decimal
1857
- # ?mx = "6.714285714285714"^^xsd:decimal
1858
- # ?my = "4.171428571428572"^^xsd:decimal
1859
- # ?negDxS = "0.1555874786943343"^^xsd:decimal
1860
- # ?p = _:b6
1861
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
1862
- # ?s = "-0.5445561754301703"^^xsd:decimal
1863
- # ?theta = "-0.5758598575998168"^^xsd:decimal
1864
- # ?u = "-4.5680175568635235"^^xsd:decimal
1865
- # ?u2 = "20.866784399813394"^^xsd:decimal
1866
- # ?u2Over = "0.541475187369155"^^xsd:decimal
1867
- # ?v = "7.56032550374887"^^xsd:decimal
1868
- # ?v2 = "57.158521722635605"^^xsd:decimal
1869
- # ?v2Over = "3.5244363304276427"^^xsd:decimal
1870
- # ?x = 7.0
1871
- # ?y = 13.0
1872
- # Therefore the derived triple above is entailed by the rules and facts.
1873
- # ----------------------------------------------------------------------
1874
-
1875
26
  _:sk_1 :v "7.56032550374887"^^xsd:decimal .
1876
-
1877
- # ----------------------------------------------------------------------
1878
- # Proof for derived triple:
1879
- # _:sk_1 :md2 "4.065911517796797"^^xsd:decimal .
1880
- # It holds because the following instance of the rule body is provable:
1881
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
1882
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
1883
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
1884
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
1885
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
1886
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
1887
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
1888
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
1889
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b6 .
1890
- # _:b6 :x 7.0 .
1891
- # _:b6 :y 13.0 .
1892
- # (7.0 "6.714285714285714"^^xsd:decimal) math:difference "0.2857142857142856"^^xsd:decimal .
1893
- # (13.0 "4.171428571428572"^^xsd:decimal) math:difference "8.82857142857143"^^xsd:decimal .
1894
- # ("0.2857142857142856"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "0.23963553479140878"^^xsd:decimal .
1895
- # ("8.82857142857143"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-4.807653091654933"^^xsd:decimal .
1896
- # ("0.23963553479140878"^^xsd:decimal "-4.807653091654933"^^xsd:decimal) math:sum "-4.5680175568635235"^^xsd:decimal .
1897
- # ("0.2857142857142856"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-0.1555874786943343"^^xsd:decimal .
1898
- # (0.0 "-0.1555874786943343"^^xsd:decimal) math:difference "0.1555874786943343"^^xsd:decimal .
1899
- # ("8.82857142857143"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "7.404738025054535"^^xsd:decimal .
1900
- # ("0.1555874786943343"^^xsd:decimal "7.404738025054535"^^xsd:decimal) math:sum "7.56032550374887"^^xsd:decimal .
1901
- # ("-4.5680175568635235"^^xsd:decimal 2.0) math:exponentiation "20.866784399813394"^^xsd:decimal .
1902
- # ("7.56032550374887"^^xsd:decimal 2.0) math:exponentiation "57.158521722635605"^^xsd:decimal .
1903
- # ("20.866784399813394"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.541475187369155"^^xsd:decimal .
1904
- # ("57.158521722635605"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "3.5244363304276427"^^xsd:decimal .
1905
- # ("0.541475187369155"^^xsd:decimal "3.5244363304276427"^^xsd:decimal) math:sum "4.065911517796797"^^xsd:decimal .
1906
- # via the schematic forward rule:
1907
- # {
1908
- # :PCA1 :points ?pts .
1909
- # :PCA1 :meanX ?mx .
1910
- # :PCA1 :meanY ?my .
1911
- # :PCA1 :thetaRad ?theta .
1912
- # :PCA1 :lambda1 ?l1 .
1913
- # :PCA1 :lambda2 ?l2 .
1914
- # ?theta math:cos ?c .
1915
- # ?theta math:sin ?s .
1916
- # ?pts list:member ?p .
1917
- # ?p :x ?x .
1918
- # ?p :y ?y .
1919
- # (?x ?mx) math:difference ?dx .
1920
- # (?y ?my) math:difference ?dy .
1921
- # (?dx ?c) math:product ?dxC .
1922
- # (?dy ?s) math:product ?dyS .
1923
- # (?dxC ?dyS) math:sum ?u .
1924
- # (?dx ?s) math:product ?dxS .
1925
- # (0.0 ?dxS) math:difference ?negDxS .
1926
- # (?dy ?c) math:product ?dyC .
1927
- # (?negDxS ?dyC) math:sum ?v .
1928
- # (?u 2.0) math:exponentiation ?u2 .
1929
- # (?v 2.0) math:exponentiation ?v2 .
1930
- # (?u2 ?l1) math:quotient ?u2Over .
1931
- # (?v2 ?l2) math:quotient ?v2Over .
1932
- # (?u2Over ?v2Over) math:sum ?md2 .
1933
- # } => {
1934
- # _:b8 :point ?p .
1935
- # _:b8 :u ?u .
1936
- # _:b8 :v ?v .
1937
- # _:b8 :md2 ?md2 .
1938
- # :PCA1 :score _:b8 .
1939
- # } .
1940
- # with substitution (on rule variables):
1941
- # ?c = "0.8387243717699311"^^xsd:decimal
1942
- # ?dx = "0.2857142857142856"^^xsd:decimal
1943
- # ?dxC = "0.23963553479140878"^^xsd:decimal
1944
- # ?dxS = "-0.1555874786943343"^^xsd:decimal
1945
- # ?dy = "8.82857142857143"^^xsd:decimal
1946
- # ?dyC = "7.404738025054535"^^xsd:decimal
1947
- # ?dyS = "-4.807653091654933"^^xsd:decimal
1948
- # ?l1 = "38.53691708607748"^^xsd:decimal
1949
- # ?l2 = "16.217776791473543"^^xsd:decimal
1950
- # ?md2 = "4.065911517796797"^^xsd:decimal
1951
- # ?mx = "6.714285714285714"^^xsd:decimal
1952
- # ?my = "4.171428571428572"^^xsd:decimal
1953
- # ?negDxS = "0.1555874786943343"^^xsd:decimal
1954
- # ?p = _:b6
1955
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
1956
- # ?s = "-0.5445561754301703"^^xsd:decimal
1957
- # ?theta = "-0.5758598575998168"^^xsd:decimal
1958
- # ?u = "-4.5680175568635235"^^xsd:decimal
1959
- # ?u2 = "20.866784399813394"^^xsd:decimal
1960
- # ?u2Over = "0.541475187369155"^^xsd:decimal
1961
- # ?v = "7.56032550374887"^^xsd:decimal
1962
- # ?v2 = "57.158521722635605"^^xsd:decimal
1963
- # ?v2Over = "3.5244363304276427"^^xsd:decimal
1964
- # ?x = 7.0
1965
- # ?y = 13.0
1966
- # Therefore the derived triple above is entailed by the rules and facts.
1967
- # ----------------------------------------------------------------------
1968
-
1969
27
  _:sk_1 :md2 "4.065911517796797"^^xsd:decimal .
1970
-
1971
- # ----------------------------------------------------------------------
1972
- # Proof for derived triple:
1973
- # :PCA1 :score _:sk_1 .
1974
- # It holds because the following instance of the rule body is provable:
1975
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
1976
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
1977
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
1978
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
1979
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
1980
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
1981
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
1982
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
1983
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b6 .
1984
- # _:b6 :x 7.0 .
1985
- # _:b6 :y 13.0 .
1986
- # (7.0 "6.714285714285714"^^xsd:decimal) math:difference "0.2857142857142856"^^xsd:decimal .
1987
- # (13.0 "4.171428571428572"^^xsd:decimal) math:difference "8.82857142857143"^^xsd:decimal .
1988
- # ("0.2857142857142856"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "0.23963553479140878"^^xsd:decimal .
1989
- # ("8.82857142857143"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-4.807653091654933"^^xsd:decimal .
1990
- # ("0.23963553479140878"^^xsd:decimal "-4.807653091654933"^^xsd:decimal) math:sum "-4.5680175568635235"^^xsd:decimal .
1991
- # ("0.2857142857142856"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-0.1555874786943343"^^xsd:decimal .
1992
- # (0.0 "-0.1555874786943343"^^xsd:decimal) math:difference "0.1555874786943343"^^xsd:decimal .
1993
- # ("8.82857142857143"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "7.404738025054535"^^xsd:decimal .
1994
- # ("0.1555874786943343"^^xsd:decimal "7.404738025054535"^^xsd:decimal) math:sum "7.56032550374887"^^xsd:decimal .
1995
- # ("-4.5680175568635235"^^xsd:decimal 2.0) math:exponentiation "20.866784399813394"^^xsd:decimal .
1996
- # ("7.56032550374887"^^xsd:decimal 2.0) math:exponentiation "57.158521722635605"^^xsd:decimal .
1997
- # ("20.866784399813394"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.541475187369155"^^xsd:decimal .
1998
- # ("57.158521722635605"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "3.5244363304276427"^^xsd:decimal .
1999
- # ("0.541475187369155"^^xsd:decimal "3.5244363304276427"^^xsd:decimal) math:sum "4.065911517796797"^^xsd:decimal .
2000
- # via the schematic forward rule:
2001
- # {
2002
- # :PCA1 :points ?pts .
2003
- # :PCA1 :meanX ?mx .
2004
- # :PCA1 :meanY ?my .
2005
- # :PCA1 :thetaRad ?theta .
2006
- # :PCA1 :lambda1 ?l1 .
2007
- # :PCA1 :lambda2 ?l2 .
2008
- # ?theta math:cos ?c .
2009
- # ?theta math:sin ?s .
2010
- # ?pts list:member ?p .
2011
- # ?p :x ?x .
2012
- # ?p :y ?y .
2013
- # (?x ?mx) math:difference ?dx .
2014
- # (?y ?my) math:difference ?dy .
2015
- # (?dx ?c) math:product ?dxC .
2016
- # (?dy ?s) math:product ?dyS .
2017
- # (?dxC ?dyS) math:sum ?u .
2018
- # (?dx ?s) math:product ?dxS .
2019
- # (0.0 ?dxS) math:difference ?negDxS .
2020
- # (?dy ?c) math:product ?dyC .
2021
- # (?negDxS ?dyC) math:sum ?v .
2022
- # (?u 2.0) math:exponentiation ?u2 .
2023
- # (?v 2.0) math:exponentiation ?v2 .
2024
- # (?u2 ?l1) math:quotient ?u2Over .
2025
- # (?v2 ?l2) math:quotient ?v2Over .
2026
- # (?u2Over ?v2Over) math:sum ?md2 .
2027
- # } => {
2028
- # _:b8 :point ?p .
2029
- # _:b8 :u ?u .
2030
- # _:b8 :v ?v .
2031
- # _:b8 :md2 ?md2 .
2032
- # :PCA1 :score _:b8 .
2033
- # } .
2034
- # with substitution (on rule variables):
2035
- # ?c = "0.8387243717699311"^^xsd:decimal
2036
- # ?dx = "0.2857142857142856"^^xsd:decimal
2037
- # ?dxC = "0.23963553479140878"^^xsd:decimal
2038
- # ?dxS = "-0.1555874786943343"^^xsd:decimal
2039
- # ?dy = "8.82857142857143"^^xsd:decimal
2040
- # ?dyC = "7.404738025054535"^^xsd:decimal
2041
- # ?dyS = "-4.807653091654933"^^xsd:decimal
2042
- # ?l1 = "38.53691708607748"^^xsd:decimal
2043
- # ?l2 = "16.217776791473543"^^xsd:decimal
2044
- # ?md2 = "4.065911517796797"^^xsd:decimal
2045
- # ?mx = "6.714285714285714"^^xsd:decimal
2046
- # ?my = "4.171428571428572"^^xsd:decimal
2047
- # ?negDxS = "0.1555874786943343"^^xsd:decimal
2048
- # ?p = _:b6
2049
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
2050
- # ?s = "-0.5445561754301703"^^xsd:decimal
2051
- # ?theta = "-0.5758598575998168"^^xsd:decimal
2052
- # ?u = "-4.5680175568635235"^^xsd:decimal
2053
- # ?u2 = "20.866784399813394"^^xsd:decimal
2054
- # ?u2Over = "0.541475187369155"^^xsd:decimal
2055
- # ?v = "7.56032550374887"^^xsd:decimal
2056
- # ?v2 = "57.158521722635605"^^xsd:decimal
2057
- # ?v2Over = "3.5244363304276427"^^xsd:decimal
2058
- # ?x = 7.0
2059
- # ?y = 13.0
2060
- # Therefore the derived triple above is entailed by the rules and facts.
2061
- # ----------------------------------------------------------------------
2062
-
2063
28
  :PCA1 :score _:sk_1 .
2064
-
2065
- # ----------------------------------------------------------------------
2066
- # Proof for derived triple:
2067
- # _:sk_2 :point _:b5 .
2068
- # It holds because the following instance of the rule body is provable:
2069
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
2070
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
2071
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
2072
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
2073
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
2074
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
2075
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
2076
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
2077
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b5 .
2078
- # _:b5 :x 6.0 .
2079
- # _:b5 :y 7.9 .
2080
- # (6.0 "6.714285714285714"^^xsd:decimal) math:difference "-0.7142857142857144"^^xsd:decimal .
2081
- # (7.9 "4.171428571428572"^^xsd:decimal) math:difference "3.7285714285714286"^^xsd:decimal .
2082
- # ("-0.7142857142857144"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-0.5990888369785223"^^xsd:decimal .
2083
- # ("3.7285714285714286"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-2.0304165969610635"^^xsd:decimal .
2084
- # ("-0.5990888369785223"^^xsd:decimal "-2.0304165969610635"^^xsd:decimal) math:sum "-2.6295054339395856"^^xsd:decimal .
2085
- # ("-0.7142857142857144"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "0.388968696735836"^^xsd:decimal .
2086
- # (0.0 "0.388968696735836"^^xsd:decimal) math:difference "-0.388968696735836"^^xsd:decimal .
2087
- # ("3.7285714285714286"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "3.127243729027886"^^xsd:decimal .
2088
- # ("-0.388968696735836"^^xsd:decimal "3.127243729027886"^^xsd:decimal) math:sum "2.73827503229205"^^xsd:decimal .
2089
- # ("-2.6295054339395856"^^xsd:decimal 2.0) math:exponentiation "6.9142988271178085"^^xsd:decimal .
2090
- # ("2.73827503229205"^^xsd:decimal 2.0) math:exponentiation "7.498150152474028"^^xsd:decimal .
2091
- # ("6.9142988271178085"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.17942013398928033"^^xsd:decimal .
2092
- # ("7.498150152474028"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.4623414324222394"^^xsd:decimal .
2093
- # ("0.17942013398928033"^^xsd:decimal "0.4623414324222394"^^xsd:decimal) math:sum "0.6417615664115197"^^xsd:decimal .
2094
- # via the schematic forward rule:
2095
- # {
2096
- # :PCA1 :points ?pts .
2097
- # :PCA1 :meanX ?mx .
2098
- # :PCA1 :meanY ?my .
2099
- # :PCA1 :thetaRad ?theta .
2100
- # :PCA1 :lambda1 ?l1 .
2101
- # :PCA1 :lambda2 ?l2 .
2102
- # ?theta math:cos ?c .
2103
- # ?theta math:sin ?s .
2104
- # ?pts list:member ?p .
2105
- # ?p :x ?x .
2106
- # ?p :y ?y .
2107
- # (?x ?mx) math:difference ?dx .
2108
- # (?y ?my) math:difference ?dy .
2109
- # (?dx ?c) math:product ?dxC .
2110
- # (?dy ?s) math:product ?dyS .
2111
- # (?dxC ?dyS) math:sum ?u .
2112
- # (?dx ?s) math:product ?dxS .
2113
- # (0.0 ?dxS) math:difference ?negDxS .
2114
- # (?dy ?c) math:product ?dyC .
2115
- # (?negDxS ?dyC) math:sum ?v .
2116
- # (?u 2.0) math:exponentiation ?u2 .
2117
- # (?v 2.0) math:exponentiation ?v2 .
2118
- # (?u2 ?l1) math:quotient ?u2Over .
2119
- # (?v2 ?l2) math:quotient ?v2Over .
2120
- # (?u2Over ?v2Over) math:sum ?md2 .
2121
- # } => {
2122
- # _:b8 :point ?p .
2123
- # _:b8 :u ?u .
2124
- # _:b8 :v ?v .
2125
- # _:b8 :md2 ?md2 .
2126
- # :PCA1 :score _:b8 .
2127
- # } .
2128
- # with substitution (on rule variables):
2129
- # ?c = "0.8387243717699311"^^xsd:decimal
2130
- # ?dx = "-0.7142857142857144"^^xsd:decimal
2131
- # ?dxC = "-0.5990888369785223"^^xsd:decimal
2132
- # ?dxS = "0.388968696735836"^^xsd:decimal
2133
- # ?dy = "3.7285714285714286"^^xsd:decimal
2134
- # ?dyC = "3.127243729027886"^^xsd:decimal
2135
- # ?dyS = "-2.0304165969610635"^^xsd:decimal
2136
- # ?l1 = "38.53691708607748"^^xsd:decimal
2137
- # ?l2 = "16.217776791473543"^^xsd:decimal
2138
- # ?md2 = "0.6417615664115197"^^xsd:decimal
2139
- # ?mx = "6.714285714285714"^^xsd:decimal
2140
- # ?my = "4.171428571428572"^^xsd:decimal
2141
- # ?negDxS = "-0.388968696735836"^^xsd:decimal
2142
- # ?p = _:b5
2143
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
2144
- # ?s = "-0.5445561754301703"^^xsd:decimal
2145
- # ?theta = "-0.5758598575998168"^^xsd:decimal
2146
- # ?u = "-2.6295054339395856"^^xsd:decimal
2147
- # ?u2 = "6.9142988271178085"^^xsd:decimal
2148
- # ?u2Over = "0.17942013398928033"^^xsd:decimal
2149
- # ?v = "2.73827503229205"^^xsd:decimal
2150
- # ?v2 = "7.498150152474028"^^xsd:decimal
2151
- # ?v2Over = "0.4623414324222394"^^xsd:decimal
2152
- # ?x = 6.0
2153
- # ?y = 7.9
2154
- # Therefore the derived triple above is entailed by the rules and facts.
2155
- # ----------------------------------------------------------------------
2156
-
2157
29
  _:sk_2 :point _:b5 .
2158
-
2159
- # ----------------------------------------------------------------------
2160
- # Proof for derived triple:
2161
- # _:sk_2 :u "-2.6295054339395856"^^xsd:decimal .
2162
- # It holds because the following instance of the rule body is provable:
2163
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
2164
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
2165
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
2166
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
2167
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
2168
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
2169
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
2170
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
2171
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b5 .
2172
- # _:b5 :x 6.0 .
2173
- # _:b5 :y 7.9 .
2174
- # (6.0 "6.714285714285714"^^xsd:decimal) math:difference "-0.7142857142857144"^^xsd:decimal .
2175
- # (7.9 "4.171428571428572"^^xsd:decimal) math:difference "3.7285714285714286"^^xsd:decimal .
2176
- # ("-0.7142857142857144"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-0.5990888369785223"^^xsd:decimal .
2177
- # ("3.7285714285714286"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-2.0304165969610635"^^xsd:decimal .
2178
- # ("-0.5990888369785223"^^xsd:decimal "-2.0304165969610635"^^xsd:decimal) math:sum "-2.6295054339395856"^^xsd:decimal .
2179
- # ("-0.7142857142857144"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "0.388968696735836"^^xsd:decimal .
2180
- # (0.0 "0.388968696735836"^^xsd:decimal) math:difference "-0.388968696735836"^^xsd:decimal .
2181
- # ("3.7285714285714286"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "3.127243729027886"^^xsd:decimal .
2182
- # ("-0.388968696735836"^^xsd:decimal "3.127243729027886"^^xsd:decimal) math:sum "2.73827503229205"^^xsd:decimal .
2183
- # ("-2.6295054339395856"^^xsd:decimal 2.0) math:exponentiation "6.9142988271178085"^^xsd:decimal .
2184
- # ("2.73827503229205"^^xsd:decimal 2.0) math:exponentiation "7.498150152474028"^^xsd:decimal .
2185
- # ("6.9142988271178085"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.17942013398928033"^^xsd:decimal .
2186
- # ("7.498150152474028"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.4623414324222394"^^xsd:decimal .
2187
- # ("0.17942013398928033"^^xsd:decimal "0.4623414324222394"^^xsd:decimal) math:sum "0.6417615664115197"^^xsd:decimal .
2188
- # via the schematic forward rule:
2189
- # {
2190
- # :PCA1 :points ?pts .
2191
- # :PCA1 :meanX ?mx .
2192
- # :PCA1 :meanY ?my .
2193
- # :PCA1 :thetaRad ?theta .
2194
- # :PCA1 :lambda1 ?l1 .
2195
- # :PCA1 :lambda2 ?l2 .
2196
- # ?theta math:cos ?c .
2197
- # ?theta math:sin ?s .
2198
- # ?pts list:member ?p .
2199
- # ?p :x ?x .
2200
- # ?p :y ?y .
2201
- # (?x ?mx) math:difference ?dx .
2202
- # (?y ?my) math:difference ?dy .
2203
- # (?dx ?c) math:product ?dxC .
2204
- # (?dy ?s) math:product ?dyS .
2205
- # (?dxC ?dyS) math:sum ?u .
2206
- # (?dx ?s) math:product ?dxS .
2207
- # (0.0 ?dxS) math:difference ?negDxS .
2208
- # (?dy ?c) math:product ?dyC .
2209
- # (?negDxS ?dyC) math:sum ?v .
2210
- # (?u 2.0) math:exponentiation ?u2 .
2211
- # (?v 2.0) math:exponentiation ?v2 .
2212
- # (?u2 ?l1) math:quotient ?u2Over .
2213
- # (?v2 ?l2) math:quotient ?v2Over .
2214
- # (?u2Over ?v2Over) math:sum ?md2 .
2215
- # } => {
2216
- # _:b8 :point ?p .
2217
- # _:b8 :u ?u .
2218
- # _:b8 :v ?v .
2219
- # _:b8 :md2 ?md2 .
2220
- # :PCA1 :score _:b8 .
2221
- # } .
2222
- # with substitution (on rule variables):
2223
- # ?c = "0.8387243717699311"^^xsd:decimal
2224
- # ?dx = "-0.7142857142857144"^^xsd:decimal
2225
- # ?dxC = "-0.5990888369785223"^^xsd:decimal
2226
- # ?dxS = "0.388968696735836"^^xsd:decimal
2227
- # ?dy = "3.7285714285714286"^^xsd:decimal
2228
- # ?dyC = "3.127243729027886"^^xsd:decimal
2229
- # ?dyS = "-2.0304165969610635"^^xsd:decimal
2230
- # ?l1 = "38.53691708607748"^^xsd:decimal
2231
- # ?l2 = "16.217776791473543"^^xsd:decimal
2232
- # ?md2 = "0.6417615664115197"^^xsd:decimal
2233
- # ?mx = "6.714285714285714"^^xsd:decimal
2234
- # ?my = "4.171428571428572"^^xsd:decimal
2235
- # ?negDxS = "-0.388968696735836"^^xsd:decimal
2236
- # ?p = _:b5
2237
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
2238
- # ?s = "-0.5445561754301703"^^xsd:decimal
2239
- # ?theta = "-0.5758598575998168"^^xsd:decimal
2240
- # ?u = "-2.6295054339395856"^^xsd:decimal
2241
- # ?u2 = "6.9142988271178085"^^xsd:decimal
2242
- # ?u2Over = "0.17942013398928033"^^xsd:decimal
2243
- # ?v = "2.73827503229205"^^xsd:decimal
2244
- # ?v2 = "7.498150152474028"^^xsd:decimal
2245
- # ?v2Over = "0.4623414324222394"^^xsd:decimal
2246
- # ?x = 6.0
2247
- # ?y = 7.9
2248
- # Therefore the derived triple above is entailed by the rules and facts.
2249
- # ----------------------------------------------------------------------
2250
-
2251
30
  _:sk_2 :u "-2.6295054339395856"^^xsd:decimal .
2252
-
2253
- # ----------------------------------------------------------------------
2254
- # Proof for derived triple:
2255
- # _:sk_2 :v "2.73827503229205"^^xsd:decimal .
2256
- # It holds because the following instance of the rule body is provable:
2257
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
2258
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
2259
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
2260
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
2261
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
2262
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
2263
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
2264
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
2265
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b5 .
2266
- # _:b5 :x 6.0 .
2267
- # _:b5 :y 7.9 .
2268
- # (6.0 "6.714285714285714"^^xsd:decimal) math:difference "-0.7142857142857144"^^xsd:decimal .
2269
- # (7.9 "4.171428571428572"^^xsd:decimal) math:difference "3.7285714285714286"^^xsd:decimal .
2270
- # ("-0.7142857142857144"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-0.5990888369785223"^^xsd:decimal .
2271
- # ("3.7285714285714286"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-2.0304165969610635"^^xsd:decimal .
2272
- # ("-0.5990888369785223"^^xsd:decimal "-2.0304165969610635"^^xsd:decimal) math:sum "-2.6295054339395856"^^xsd:decimal .
2273
- # ("-0.7142857142857144"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "0.388968696735836"^^xsd:decimal .
2274
- # (0.0 "0.388968696735836"^^xsd:decimal) math:difference "-0.388968696735836"^^xsd:decimal .
2275
- # ("3.7285714285714286"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "3.127243729027886"^^xsd:decimal .
2276
- # ("-0.388968696735836"^^xsd:decimal "3.127243729027886"^^xsd:decimal) math:sum "2.73827503229205"^^xsd:decimal .
2277
- # ("-2.6295054339395856"^^xsd:decimal 2.0) math:exponentiation "6.9142988271178085"^^xsd:decimal .
2278
- # ("2.73827503229205"^^xsd:decimal 2.0) math:exponentiation "7.498150152474028"^^xsd:decimal .
2279
- # ("6.9142988271178085"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.17942013398928033"^^xsd:decimal .
2280
- # ("7.498150152474028"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.4623414324222394"^^xsd:decimal .
2281
- # ("0.17942013398928033"^^xsd:decimal "0.4623414324222394"^^xsd:decimal) math:sum "0.6417615664115197"^^xsd:decimal .
2282
- # via the schematic forward rule:
2283
- # {
2284
- # :PCA1 :points ?pts .
2285
- # :PCA1 :meanX ?mx .
2286
- # :PCA1 :meanY ?my .
2287
- # :PCA1 :thetaRad ?theta .
2288
- # :PCA1 :lambda1 ?l1 .
2289
- # :PCA1 :lambda2 ?l2 .
2290
- # ?theta math:cos ?c .
2291
- # ?theta math:sin ?s .
2292
- # ?pts list:member ?p .
2293
- # ?p :x ?x .
2294
- # ?p :y ?y .
2295
- # (?x ?mx) math:difference ?dx .
2296
- # (?y ?my) math:difference ?dy .
2297
- # (?dx ?c) math:product ?dxC .
2298
- # (?dy ?s) math:product ?dyS .
2299
- # (?dxC ?dyS) math:sum ?u .
2300
- # (?dx ?s) math:product ?dxS .
2301
- # (0.0 ?dxS) math:difference ?negDxS .
2302
- # (?dy ?c) math:product ?dyC .
2303
- # (?negDxS ?dyC) math:sum ?v .
2304
- # (?u 2.0) math:exponentiation ?u2 .
2305
- # (?v 2.0) math:exponentiation ?v2 .
2306
- # (?u2 ?l1) math:quotient ?u2Over .
2307
- # (?v2 ?l2) math:quotient ?v2Over .
2308
- # (?u2Over ?v2Over) math:sum ?md2 .
2309
- # } => {
2310
- # _:b8 :point ?p .
2311
- # _:b8 :u ?u .
2312
- # _:b8 :v ?v .
2313
- # _:b8 :md2 ?md2 .
2314
- # :PCA1 :score _:b8 .
2315
- # } .
2316
- # with substitution (on rule variables):
2317
- # ?c = "0.8387243717699311"^^xsd:decimal
2318
- # ?dx = "-0.7142857142857144"^^xsd:decimal
2319
- # ?dxC = "-0.5990888369785223"^^xsd:decimal
2320
- # ?dxS = "0.388968696735836"^^xsd:decimal
2321
- # ?dy = "3.7285714285714286"^^xsd:decimal
2322
- # ?dyC = "3.127243729027886"^^xsd:decimal
2323
- # ?dyS = "-2.0304165969610635"^^xsd:decimal
2324
- # ?l1 = "38.53691708607748"^^xsd:decimal
2325
- # ?l2 = "16.217776791473543"^^xsd:decimal
2326
- # ?md2 = "0.6417615664115197"^^xsd:decimal
2327
- # ?mx = "6.714285714285714"^^xsd:decimal
2328
- # ?my = "4.171428571428572"^^xsd:decimal
2329
- # ?negDxS = "-0.388968696735836"^^xsd:decimal
2330
- # ?p = _:b5
2331
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
2332
- # ?s = "-0.5445561754301703"^^xsd:decimal
2333
- # ?theta = "-0.5758598575998168"^^xsd:decimal
2334
- # ?u = "-2.6295054339395856"^^xsd:decimal
2335
- # ?u2 = "6.9142988271178085"^^xsd:decimal
2336
- # ?u2Over = "0.17942013398928033"^^xsd:decimal
2337
- # ?v = "2.73827503229205"^^xsd:decimal
2338
- # ?v2 = "7.498150152474028"^^xsd:decimal
2339
- # ?v2Over = "0.4623414324222394"^^xsd:decimal
2340
- # ?x = 6.0
2341
- # ?y = 7.9
2342
- # Therefore the derived triple above is entailed by the rules and facts.
2343
- # ----------------------------------------------------------------------
2344
-
2345
31
  _:sk_2 :v "2.73827503229205"^^xsd:decimal .
2346
-
2347
- # ----------------------------------------------------------------------
2348
- # Proof for derived triple:
2349
- # _:sk_2 :md2 "0.6417615664115197"^^xsd:decimal .
2350
- # It holds because the following instance of the rule body is provable:
2351
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
2352
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
2353
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
2354
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
2355
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
2356
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
2357
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
2358
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
2359
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b5 .
2360
- # _:b5 :x 6.0 .
2361
- # _:b5 :y 7.9 .
2362
- # (6.0 "6.714285714285714"^^xsd:decimal) math:difference "-0.7142857142857144"^^xsd:decimal .
2363
- # (7.9 "4.171428571428572"^^xsd:decimal) math:difference "3.7285714285714286"^^xsd:decimal .
2364
- # ("-0.7142857142857144"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-0.5990888369785223"^^xsd:decimal .
2365
- # ("3.7285714285714286"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-2.0304165969610635"^^xsd:decimal .
2366
- # ("-0.5990888369785223"^^xsd:decimal "-2.0304165969610635"^^xsd:decimal) math:sum "-2.6295054339395856"^^xsd:decimal .
2367
- # ("-0.7142857142857144"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "0.388968696735836"^^xsd:decimal .
2368
- # (0.0 "0.388968696735836"^^xsd:decimal) math:difference "-0.388968696735836"^^xsd:decimal .
2369
- # ("3.7285714285714286"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "3.127243729027886"^^xsd:decimal .
2370
- # ("-0.388968696735836"^^xsd:decimal "3.127243729027886"^^xsd:decimal) math:sum "2.73827503229205"^^xsd:decimal .
2371
- # ("-2.6295054339395856"^^xsd:decimal 2.0) math:exponentiation "6.9142988271178085"^^xsd:decimal .
2372
- # ("2.73827503229205"^^xsd:decimal 2.0) math:exponentiation "7.498150152474028"^^xsd:decimal .
2373
- # ("6.9142988271178085"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.17942013398928033"^^xsd:decimal .
2374
- # ("7.498150152474028"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.4623414324222394"^^xsd:decimal .
2375
- # ("0.17942013398928033"^^xsd:decimal "0.4623414324222394"^^xsd:decimal) math:sum "0.6417615664115197"^^xsd:decimal .
2376
- # via the schematic forward rule:
2377
- # {
2378
- # :PCA1 :points ?pts .
2379
- # :PCA1 :meanX ?mx .
2380
- # :PCA1 :meanY ?my .
2381
- # :PCA1 :thetaRad ?theta .
2382
- # :PCA1 :lambda1 ?l1 .
2383
- # :PCA1 :lambda2 ?l2 .
2384
- # ?theta math:cos ?c .
2385
- # ?theta math:sin ?s .
2386
- # ?pts list:member ?p .
2387
- # ?p :x ?x .
2388
- # ?p :y ?y .
2389
- # (?x ?mx) math:difference ?dx .
2390
- # (?y ?my) math:difference ?dy .
2391
- # (?dx ?c) math:product ?dxC .
2392
- # (?dy ?s) math:product ?dyS .
2393
- # (?dxC ?dyS) math:sum ?u .
2394
- # (?dx ?s) math:product ?dxS .
2395
- # (0.0 ?dxS) math:difference ?negDxS .
2396
- # (?dy ?c) math:product ?dyC .
2397
- # (?negDxS ?dyC) math:sum ?v .
2398
- # (?u 2.0) math:exponentiation ?u2 .
2399
- # (?v 2.0) math:exponentiation ?v2 .
2400
- # (?u2 ?l1) math:quotient ?u2Over .
2401
- # (?v2 ?l2) math:quotient ?v2Over .
2402
- # (?u2Over ?v2Over) math:sum ?md2 .
2403
- # } => {
2404
- # _:b8 :point ?p .
2405
- # _:b8 :u ?u .
2406
- # _:b8 :v ?v .
2407
- # _:b8 :md2 ?md2 .
2408
- # :PCA1 :score _:b8 .
2409
- # } .
2410
- # with substitution (on rule variables):
2411
- # ?c = "0.8387243717699311"^^xsd:decimal
2412
- # ?dx = "-0.7142857142857144"^^xsd:decimal
2413
- # ?dxC = "-0.5990888369785223"^^xsd:decimal
2414
- # ?dxS = "0.388968696735836"^^xsd:decimal
2415
- # ?dy = "3.7285714285714286"^^xsd:decimal
2416
- # ?dyC = "3.127243729027886"^^xsd:decimal
2417
- # ?dyS = "-2.0304165969610635"^^xsd:decimal
2418
- # ?l1 = "38.53691708607748"^^xsd:decimal
2419
- # ?l2 = "16.217776791473543"^^xsd:decimal
2420
- # ?md2 = "0.6417615664115197"^^xsd:decimal
2421
- # ?mx = "6.714285714285714"^^xsd:decimal
2422
- # ?my = "4.171428571428572"^^xsd:decimal
2423
- # ?negDxS = "-0.388968696735836"^^xsd:decimal
2424
- # ?p = _:b5
2425
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
2426
- # ?s = "-0.5445561754301703"^^xsd:decimal
2427
- # ?theta = "-0.5758598575998168"^^xsd:decimal
2428
- # ?u = "-2.6295054339395856"^^xsd:decimal
2429
- # ?u2 = "6.9142988271178085"^^xsd:decimal
2430
- # ?u2Over = "0.17942013398928033"^^xsd:decimal
2431
- # ?v = "2.73827503229205"^^xsd:decimal
2432
- # ?v2 = "7.498150152474028"^^xsd:decimal
2433
- # ?v2Over = "0.4623414324222394"^^xsd:decimal
2434
- # ?x = 6.0
2435
- # ?y = 7.9
2436
- # Therefore the derived triple above is entailed by the rules and facts.
2437
- # ----------------------------------------------------------------------
2438
-
2439
32
  _:sk_2 :md2 "0.6417615664115197"^^xsd:decimal .
2440
-
2441
- # ----------------------------------------------------------------------
2442
- # Proof for derived triple:
2443
- # :PCA1 :score _:sk_2 .
2444
- # It holds because the following instance of the rule body is provable:
2445
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
2446
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
2447
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
2448
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
2449
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
2450
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
2451
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
2452
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
2453
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b5 .
2454
- # _:b5 :x 6.0 .
2455
- # _:b5 :y 7.9 .
2456
- # (6.0 "6.714285714285714"^^xsd:decimal) math:difference "-0.7142857142857144"^^xsd:decimal .
2457
- # (7.9 "4.171428571428572"^^xsd:decimal) math:difference "3.7285714285714286"^^xsd:decimal .
2458
- # ("-0.7142857142857144"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-0.5990888369785223"^^xsd:decimal .
2459
- # ("3.7285714285714286"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-2.0304165969610635"^^xsd:decimal .
2460
- # ("-0.5990888369785223"^^xsd:decimal "-2.0304165969610635"^^xsd:decimal) math:sum "-2.6295054339395856"^^xsd:decimal .
2461
- # ("-0.7142857142857144"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "0.388968696735836"^^xsd:decimal .
2462
- # (0.0 "0.388968696735836"^^xsd:decimal) math:difference "-0.388968696735836"^^xsd:decimal .
2463
- # ("3.7285714285714286"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "3.127243729027886"^^xsd:decimal .
2464
- # ("-0.388968696735836"^^xsd:decimal "3.127243729027886"^^xsd:decimal) math:sum "2.73827503229205"^^xsd:decimal .
2465
- # ("-2.6295054339395856"^^xsd:decimal 2.0) math:exponentiation "6.9142988271178085"^^xsd:decimal .
2466
- # ("2.73827503229205"^^xsd:decimal 2.0) math:exponentiation "7.498150152474028"^^xsd:decimal .
2467
- # ("6.9142988271178085"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.17942013398928033"^^xsd:decimal .
2468
- # ("7.498150152474028"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.4623414324222394"^^xsd:decimal .
2469
- # ("0.17942013398928033"^^xsd:decimal "0.4623414324222394"^^xsd:decimal) math:sum "0.6417615664115197"^^xsd:decimal .
2470
- # via the schematic forward rule:
2471
- # {
2472
- # :PCA1 :points ?pts .
2473
- # :PCA1 :meanX ?mx .
2474
- # :PCA1 :meanY ?my .
2475
- # :PCA1 :thetaRad ?theta .
2476
- # :PCA1 :lambda1 ?l1 .
2477
- # :PCA1 :lambda2 ?l2 .
2478
- # ?theta math:cos ?c .
2479
- # ?theta math:sin ?s .
2480
- # ?pts list:member ?p .
2481
- # ?p :x ?x .
2482
- # ?p :y ?y .
2483
- # (?x ?mx) math:difference ?dx .
2484
- # (?y ?my) math:difference ?dy .
2485
- # (?dx ?c) math:product ?dxC .
2486
- # (?dy ?s) math:product ?dyS .
2487
- # (?dxC ?dyS) math:sum ?u .
2488
- # (?dx ?s) math:product ?dxS .
2489
- # (0.0 ?dxS) math:difference ?negDxS .
2490
- # (?dy ?c) math:product ?dyC .
2491
- # (?negDxS ?dyC) math:sum ?v .
2492
- # (?u 2.0) math:exponentiation ?u2 .
2493
- # (?v 2.0) math:exponentiation ?v2 .
2494
- # (?u2 ?l1) math:quotient ?u2Over .
2495
- # (?v2 ?l2) math:quotient ?v2Over .
2496
- # (?u2Over ?v2Over) math:sum ?md2 .
2497
- # } => {
2498
- # _:b8 :point ?p .
2499
- # _:b8 :u ?u .
2500
- # _:b8 :v ?v .
2501
- # _:b8 :md2 ?md2 .
2502
- # :PCA1 :score _:b8 .
2503
- # } .
2504
- # with substitution (on rule variables):
2505
- # ?c = "0.8387243717699311"^^xsd:decimal
2506
- # ?dx = "-0.7142857142857144"^^xsd:decimal
2507
- # ?dxC = "-0.5990888369785223"^^xsd:decimal
2508
- # ?dxS = "0.388968696735836"^^xsd:decimal
2509
- # ?dy = "3.7285714285714286"^^xsd:decimal
2510
- # ?dyC = "3.127243729027886"^^xsd:decimal
2511
- # ?dyS = "-2.0304165969610635"^^xsd:decimal
2512
- # ?l1 = "38.53691708607748"^^xsd:decimal
2513
- # ?l2 = "16.217776791473543"^^xsd:decimal
2514
- # ?md2 = "0.6417615664115197"^^xsd:decimal
2515
- # ?mx = "6.714285714285714"^^xsd:decimal
2516
- # ?my = "4.171428571428572"^^xsd:decimal
2517
- # ?negDxS = "-0.388968696735836"^^xsd:decimal
2518
- # ?p = _:b5
2519
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
2520
- # ?s = "-0.5445561754301703"^^xsd:decimal
2521
- # ?theta = "-0.5758598575998168"^^xsd:decimal
2522
- # ?u = "-2.6295054339395856"^^xsd:decimal
2523
- # ?u2 = "6.9142988271178085"^^xsd:decimal
2524
- # ?u2Over = "0.17942013398928033"^^xsd:decimal
2525
- # ?v = "2.73827503229205"^^xsd:decimal
2526
- # ?v2 = "7.498150152474028"^^xsd:decimal
2527
- # ?v2Over = "0.4623414324222394"^^xsd:decimal
2528
- # ?x = 6.0
2529
- # ?y = 7.9
2530
- # Therefore the derived triple above is entailed by the rules and facts.
2531
- # ----------------------------------------------------------------------
2532
-
2533
33
  :PCA1 :score _:sk_2 .
2534
-
2535
- # ----------------------------------------------------------------------
2536
- # Proof for derived triple:
2537
- # _:sk_3 :point _:b4 .
2538
- # It holds because the following instance of the rule body is provable:
2539
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
2540
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
2541
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
2542
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
2543
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
2544
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
2545
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
2546
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
2547
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b4 .
2548
- # _:b4 :x 5.0 .
2549
- # _:b4 :y 5.1 .
2550
- # (5.0 "6.714285714285714"^^xsd:decimal) math:difference "-1.7142857142857144"^^xsd:decimal .
2551
- # (5.1 "4.171428571428572"^^xsd:decimal) math:difference "0.9285714285714279"^^xsd:decimal .
2552
- # ("-1.7142857142857144"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-1.4378132087484534"^^xsd:decimal .
2553
- # ("0.9285714285714279"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-0.5056593057565864"^^xsd:decimal .
2554
- # ("-1.4378132087484534"^^xsd:decimal "-0.5056593057565864"^^xsd:decimal) math:sum "-1.9434725145050398"^^xsd:decimal .
2555
- # ("-1.7142857142857144"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "0.9335248721660063"^^xsd:decimal .
2556
- # (0.0 "0.9335248721660063"^^xsd:decimal) math:difference "-0.9335248721660063"^^xsd:decimal .
2557
- # ("0.9285714285714279"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "0.7788154880720783"^^xsd:decimal .
2558
- # ("-0.9335248721660063"^^xsd:decimal "0.7788154880720783"^^xsd:decimal) math:sum "-0.15470938409392798"^^xsd:decimal .
2559
- # ("-1.9434725145050398"^^xsd:decimal 2.0) math:exponentiation "3.777085414636542"^^xsd:decimal .
2560
- # ("-0.15470938409392798"^^xsd:decimal 2.0) math:exponentiation "0.023934993526722535"^^xsd:decimal .
2561
- # ("3.777085414636542"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.0980121322678694"^^xsd:decimal .
2562
- # ("0.023934993526722535"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.0014758492384299123"^^xsd:decimal .
2563
- # ("0.0980121322678694"^^xsd:decimal "0.0014758492384299123"^^xsd:decimal) math:sum "0.09948798150629931"^^xsd:decimal .
2564
- # via the schematic forward rule:
2565
- # {
2566
- # :PCA1 :points ?pts .
2567
- # :PCA1 :meanX ?mx .
2568
- # :PCA1 :meanY ?my .
2569
- # :PCA1 :thetaRad ?theta .
2570
- # :PCA1 :lambda1 ?l1 .
2571
- # :PCA1 :lambda2 ?l2 .
2572
- # ?theta math:cos ?c .
2573
- # ?theta math:sin ?s .
2574
- # ?pts list:member ?p .
2575
- # ?p :x ?x .
2576
- # ?p :y ?y .
2577
- # (?x ?mx) math:difference ?dx .
2578
- # (?y ?my) math:difference ?dy .
2579
- # (?dx ?c) math:product ?dxC .
2580
- # (?dy ?s) math:product ?dyS .
2581
- # (?dxC ?dyS) math:sum ?u .
2582
- # (?dx ?s) math:product ?dxS .
2583
- # (0.0 ?dxS) math:difference ?negDxS .
2584
- # (?dy ?c) math:product ?dyC .
2585
- # (?negDxS ?dyC) math:sum ?v .
2586
- # (?u 2.0) math:exponentiation ?u2 .
2587
- # (?v 2.0) math:exponentiation ?v2 .
2588
- # (?u2 ?l1) math:quotient ?u2Over .
2589
- # (?v2 ?l2) math:quotient ?v2Over .
2590
- # (?u2Over ?v2Over) math:sum ?md2 .
2591
- # } => {
2592
- # _:b8 :point ?p .
2593
- # _:b8 :u ?u .
2594
- # _:b8 :v ?v .
2595
- # _:b8 :md2 ?md2 .
2596
- # :PCA1 :score _:b8 .
2597
- # } .
2598
- # with substitution (on rule variables):
2599
- # ?c = "0.8387243717699311"^^xsd:decimal
2600
- # ?dx = "-1.7142857142857144"^^xsd:decimal
2601
- # ?dxC = "-1.4378132087484534"^^xsd:decimal
2602
- # ?dxS = "0.9335248721660063"^^xsd:decimal
2603
- # ?dy = "0.9285714285714279"^^xsd:decimal
2604
- # ?dyC = "0.7788154880720783"^^xsd:decimal
2605
- # ?dyS = "-0.5056593057565864"^^xsd:decimal
2606
- # ?l1 = "38.53691708607748"^^xsd:decimal
2607
- # ?l2 = "16.217776791473543"^^xsd:decimal
2608
- # ?md2 = "0.09948798150629931"^^xsd:decimal
2609
- # ?mx = "6.714285714285714"^^xsd:decimal
2610
- # ?my = "4.171428571428572"^^xsd:decimal
2611
- # ?negDxS = "-0.9335248721660063"^^xsd:decimal
2612
- # ?p = _:b4
2613
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
2614
- # ?s = "-0.5445561754301703"^^xsd:decimal
2615
- # ?theta = "-0.5758598575998168"^^xsd:decimal
2616
- # ?u = "-1.9434725145050398"^^xsd:decimal
2617
- # ?u2 = "3.777085414636542"^^xsd:decimal
2618
- # ?u2Over = "0.0980121322678694"^^xsd:decimal
2619
- # ?v = "-0.15470938409392798"^^xsd:decimal
2620
- # ?v2 = "0.023934993526722535"^^xsd:decimal
2621
- # ?v2Over = "0.0014758492384299123"^^xsd:decimal
2622
- # ?x = 5.0
2623
- # ?y = 5.1
2624
- # Therefore the derived triple above is entailed by the rules and facts.
2625
- # ----------------------------------------------------------------------
2626
-
2627
34
  _:sk_3 :point _:b4 .
2628
-
2629
- # ----------------------------------------------------------------------
2630
- # Proof for derived triple:
2631
- # _:sk_3 :u "-1.9434725145050398"^^xsd:decimal .
2632
- # It holds because the following instance of the rule body is provable:
2633
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
2634
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
2635
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
2636
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
2637
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
2638
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
2639
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
2640
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
2641
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b4 .
2642
- # _:b4 :x 5.0 .
2643
- # _:b4 :y 5.1 .
2644
- # (5.0 "6.714285714285714"^^xsd:decimal) math:difference "-1.7142857142857144"^^xsd:decimal .
2645
- # (5.1 "4.171428571428572"^^xsd:decimal) math:difference "0.9285714285714279"^^xsd:decimal .
2646
- # ("-1.7142857142857144"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-1.4378132087484534"^^xsd:decimal .
2647
- # ("0.9285714285714279"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-0.5056593057565864"^^xsd:decimal .
2648
- # ("-1.4378132087484534"^^xsd:decimal "-0.5056593057565864"^^xsd:decimal) math:sum "-1.9434725145050398"^^xsd:decimal .
2649
- # ("-1.7142857142857144"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "0.9335248721660063"^^xsd:decimal .
2650
- # (0.0 "0.9335248721660063"^^xsd:decimal) math:difference "-0.9335248721660063"^^xsd:decimal .
2651
- # ("0.9285714285714279"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "0.7788154880720783"^^xsd:decimal .
2652
- # ("-0.9335248721660063"^^xsd:decimal "0.7788154880720783"^^xsd:decimal) math:sum "-0.15470938409392798"^^xsd:decimal .
2653
- # ("-1.9434725145050398"^^xsd:decimal 2.0) math:exponentiation "3.777085414636542"^^xsd:decimal .
2654
- # ("-0.15470938409392798"^^xsd:decimal 2.0) math:exponentiation "0.023934993526722535"^^xsd:decimal .
2655
- # ("3.777085414636542"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.0980121322678694"^^xsd:decimal .
2656
- # ("0.023934993526722535"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.0014758492384299123"^^xsd:decimal .
2657
- # ("0.0980121322678694"^^xsd:decimal "0.0014758492384299123"^^xsd:decimal) math:sum "0.09948798150629931"^^xsd:decimal .
2658
- # via the schematic forward rule:
2659
- # {
2660
- # :PCA1 :points ?pts .
2661
- # :PCA1 :meanX ?mx .
2662
- # :PCA1 :meanY ?my .
2663
- # :PCA1 :thetaRad ?theta .
2664
- # :PCA1 :lambda1 ?l1 .
2665
- # :PCA1 :lambda2 ?l2 .
2666
- # ?theta math:cos ?c .
2667
- # ?theta math:sin ?s .
2668
- # ?pts list:member ?p .
2669
- # ?p :x ?x .
2670
- # ?p :y ?y .
2671
- # (?x ?mx) math:difference ?dx .
2672
- # (?y ?my) math:difference ?dy .
2673
- # (?dx ?c) math:product ?dxC .
2674
- # (?dy ?s) math:product ?dyS .
2675
- # (?dxC ?dyS) math:sum ?u .
2676
- # (?dx ?s) math:product ?dxS .
2677
- # (0.0 ?dxS) math:difference ?negDxS .
2678
- # (?dy ?c) math:product ?dyC .
2679
- # (?negDxS ?dyC) math:sum ?v .
2680
- # (?u 2.0) math:exponentiation ?u2 .
2681
- # (?v 2.0) math:exponentiation ?v2 .
2682
- # (?u2 ?l1) math:quotient ?u2Over .
2683
- # (?v2 ?l2) math:quotient ?v2Over .
2684
- # (?u2Over ?v2Over) math:sum ?md2 .
2685
- # } => {
2686
- # _:b8 :point ?p .
2687
- # _:b8 :u ?u .
2688
- # _:b8 :v ?v .
2689
- # _:b8 :md2 ?md2 .
2690
- # :PCA1 :score _:b8 .
2691
- # } .
2692
- # with substitution (on rule variables):
2693
- # ?c = "0.8387243717699311"^^xsd:decimal
2694
- # ?dx = "-1.7142857142857144"^^xsd:decimal
2695
- # ?dxC = "-1.4378132087484534"^^xsd:decimal
2696
- # ?dxS = "0.9335248721660063"^^xsd:decimal
2697
- # ?dy = "0.9285714285714279"^^xsd:decimal
2698
- # ?dyC = "0.7788154880720783"^^xsd:decimal
2699
- # ?dyS = "-0.5056593057565864"^^xsd:decimal
2700
- # ?l1 = "38.53691708607748"^^xsd:decimal
2701
- # ?l2 = "16.217776791473543"^^xsd:decimal
2702
- # ?md2 = "0.09948798150629931"^^xsd:decimal
2703
- # ?mx = "6.714285714285714"^^xsd:decimal
2704
- # ?my = "4.171428571428572"^^xsd:decimal
2705
- # ?negDxS = "-0.9335248721660063"^^xsd:decimal
2706
- # ?p = _:b4
2707
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
2708
- # ?s = "-0.5445561754301703"^^xsd:decimal
2709
- # ?theta = "-0.5758598575998168"^^xsd:decimal
2710
- # ?u = "-1.9434725145050398"^^xsd:decimal
2711
- # ?u2 = "3.777085414636542"^^xsd:decimal
2712
- # ?u2Over = "0.0980121322678694"^^xsd:decimal
2713
- # ?v = "-0.15470938409392798"^^xsd:decimal
2714
- # ?v2 = "0.023934993526722535"^^xsd:decimal
2715
- # ?v2Over = "0.0014758492384299123"^^xsd:decimal
2716
- # ?x = 5.0
2717
- # ?y = 5.1
2718
- # Therefore the derived triple above is entailed by the rules and facts.
2719
- # ----------------------------------------------------------------------
2720
-
2721
35
  _:sk_3 :u "-1.9434725145050398"^^xsd:decimal .
2722
-
2723
- # ----------------------------------------------------------------------
2724
- # Proof for derived triple:
2725
- # _:sk_3 :v "-0.15470938409392798"^^xsd:decimal .
2726
- # It holds because the following instance of the rule body is provable:
2727
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
2728
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
2729
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
2730
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
2731
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
2732
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
2733
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
2734
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
2735
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b4 .
2736
- # _:b4 :x 5.0 .
2737
- # _:b4 :y 5.1 .
2738
- # (5.0 "6.714285714285714"^^xsd:decimal) math:difference "-1.7142857142857144"^^xsd:decimal .
2739
- # (5.1 "4.171428571428572"^^xsd:decimal) math:difference "0.9285714285714279"^^xsd:decimal .
2740
- # ("-1.7142857142857144"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-1.4378132087484534"^^xsd:decimal .
2741
- # ("0.9285714285714279"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-0.5056593057565864"^^xsd:decimal .
2742
- # ("-1.4378132087484534"^^xsd:decimal "-0.5056593057565864"^^xsd:decimal) math:sum "-1.9434725145050398"^^xsd:decimal .
2743
- # ("-1.7142857142857144"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "0.9335248721660063"^^xsd:decimal .
2744
- # (0.0 "0.9335248721660063"^^xsd:decimal) math:difference "-0.9335248721660063"^^xsd:decimal .
2745
- # ("0.9285714285714279"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "0.7788154880720783"^^xsd:decimal .
2746
- # ("-0.9335248721660063"^^xsd:decimal "0.7788154880720783"^^xsd:decimal) math:sum "-0.15470938409392798"^^xsd:decimal .
2747
- # ("-1.9434725145050398"^^xsd:decimal 2.0) math:exponentiation "3.777085414636542"^^xsd:decimal .
2748
- # ("-0.15470938409392798"^^xsd:decimal 2.0) math:exponentiation "0.023934993526722535"^^xsd:decimal .
2749
- # ("3.777085414636542"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.0980121322678694"^^xsd:decimal .
2750
- # ("0.023934993526722535"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.0014758492384299123"^^xsd:decimal .
2751
- # ("0.0980121322678694"^^xsd:decimal "0.0014758492384299123"^^xsd:decimal) math:sum "0.09948798150629931"^^xsd:decimal .
2752
- # via the schematic forward rule:
2753
- # {
2754
- # :PCA1 :points ?pts .
2755
- # :PCA1 :meanX ?mx .
2756
- # :PCA1 :meanY ?my .
2757
- # :PCA1 :thetaRad ?theta .
2758
- # :PCA1 :lambda1 ?l1 .
2759
- # :PCA1 :lambda2 ?l2 .
2760
- # ?theta math:cos ?c .
2761
- # ?theta math:sin ?s .
2762
- # ?pts list:member ?p .
2763
- # ?p :x ?x .
2764
- # ?p :y ?y .
2765
- # (?x ?mx) math:difference ?dx .
2766
- # (?y ?my) math:difference ?dy .
2767
- # (?dx ?c) math:product ?dxC .
2768
- # (?dy ?s) math:product ?dyS .
2769
- # (?dxC ?dyS) math:sum ?u .
2770
- # (?dx ?s) math:product ?dxS .
2771
- # (0.0 ?dxS) math:difference ?negDxS .
2772
- # (?dy ?c) math:product ?dyC .
2773
- # (?negDxS ?dyC) math:sum ?v .
2774
- # (?u 2.0) math:exponentiation ?u2 .
2775
- # (?v 2.0) math:exponentiation ?v2 .
2776
- # (?u2 ?l1) math:quotient ?u2Over .
2777
- # (?v2 ?l2) math:quotient ?v2Over .
2778
- # (?u2Over ?v2Over) math:sum ?md2 .
2779
- # } => {
2780
- # _:b8 :point ?p .
2781
- # _:b8 :u ?u .
2782
- # _:b8 :v ?v .
2783
- # _:b8 :md2 ?md2 .
2784
- # :PCA1 :score _:b8 .
2785
- # } .
2786
- # with substitution (on rule variables):
2787
- # ?c = "0.8387243717699311"^^xsd:decimal
2788
- # ?dx = "-1.7142857142857144"^^xsd:decimal
2789
- # ?dxC = "-1.4378132087484534"^^xsd:decimal
2790
- # ?dxS = "0.9335248721660063"^^xsd:decimal
2791
- # ?dy = "0.9285714285714279"^^xsd:decimal
2792
- # ?dyC = "0.7788154880720783"^^xsd:decimal
2793
- # ?dyS = "-0.5056593057565864"^^xsd:decimal
2794
- # ?l1 = "38.53691708607748"^^xsd:decimal
2795
- # ?l2 = "16.217776791473543"^^xsd:decimal
2796
- # ?md2 = "0.09948798150629931"^^xsd:decimal
2797
- # ?mx = "6.714285714285714"^^xsd:decimal
2798
- # ?my = "4.171428571428572"^^xsd:decimal
2799
- # ?negDxS = "-0.9335248721660063"^^xsd:decimal
2800
- # ?p = _:b4
2801
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
2802
- # ?s = "-0.5445561754301703"^^xsd:decimal
2803
- # ?theta = "-0.5758598575998168"^^xsd:decimal
2804
- # ?u = "-1.9434725145050398"^^xsd:decimal
2805
- # ?u2 = "3.777085414636542"^^xsd:decimal
2806
- # ?u2Over = "0.0980121322678694"^^xsd:decimal
2807
- # ?v = "-0.15470938409392798"^^xsd:decimal
2808
- # ?v2 = "0.023934993526722535"^^xsd:decimal
2809
- # ?v2Over = "0.0014758492384299123"^^xsd:decimal
2810
- # ?x = 5.0
2811
- # ?y = 5.1
2812
- # Therefore the derived triple above is entailed by the rules and facts.
2813
- # ----------------------------------------------------------------------
2814
-
2815
36
  _:sk_3 :v "-0.15470938409392798"^^xsd:decimal .
2816
-
2817
- # ----------------------------------------------------------------------
2818
- # Proof for derived triple:
2819
- # _:sk_3 :md2 "0.09948798150629931"^^xsd:decimal .
2820
- # It holds because the following instance of the rule body is provable:
2821
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
2822
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
2823
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
2824
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
2825
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
2826
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
2827
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
2828
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
2829
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b4 .
2830
- # _:b4 :x 5.0 .
2831
- # _:b4 :y 5.1 .
2832
- # (5.0 "6.714285714285714"^^xsd:decimal) math:difference "-1.7142857142857144"^^xsd:decimal .
2833
- # (5.1 "4.171428571428572"^^xsd:decimal) math:difference "0.9285714285714279"^^xsd:decimal .
2834
- # ("-1.7142857142857144"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-1.4378132087484534"^^xsd:decimal .
2835
- # ("0.9285714285714279"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-0.5056593057565864"^^xsd:decimal .
2836
- # ("-1.4378132087484534"^^xsd:decimal "-0.5056593057565864"^^xsd:decimal) math:sum "-1.9434725145050398"^^xsd:decimal .
2837
- # ("-1.7142857142857144"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "0.9335248721660063"^^xsd:decimal .
2838
- # (0.0 "0.9335248721660063"^^xsd:decimal) math:difference "-0.9335248721660063"^^xsd:decimal .
2839
- # ("0.9285714285714279"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "0.7788154880720783"^^xsd:decimal .
2840
- # ("-0.9335248721660063"^^xsd:decimal "0.7788154880720783"^^xsd:decimal) math:sum "-0.15470938409392798"^^xsd:decimal .
2841
- # ("-1.9434725145050398"^^xsd:decimal 2.0) math:exponentiation "3.777085414636542"^^xsd:decimal .
2842
- # ("-0.15470938409392798"^^xsd:decimal 2.0) math:exponentiation "0.023934993526722535"^^xsd:decimal .
2843
- # ("3.777085414636542"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.0980121322678694"^^xsd:decimal .
2844
- # ("0.023934993526722535"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.0014758492384299123"^^xsd:decimal .
2845
- # ("0.0980121322678694"^^xsd:decimal "0.0014758492384299123"^^xsd:decimal) math:sum "0.09948798150629931"^^xsd:decimal .
2846
- # via the schematic forward rule:
2847
- # {
2848
- # :PCA1 :points ?pts .
2849
- # :PCA1 :meanX ?mx .
2850
- # :PCA1 :meanY ?my .
2851
- # :PCA1 :thetaRad ?theta .
2852
- # :PCA1 :lambda1 ?l1 .
2853
- # :PCA1 :lambda2 ?l2 .
2854
- # ?theta math:cos ?c .
2855
- # ?theta math:sin ?s .
2856
- # ?pts list:member ?p .
2857
- # ?p :x ?x .
2858
- # ?p :y ?y .
2859
- # (?x ?mx) math:difference ?dx .
2860
- # (?y ?my) math:difference ?dy .
2861
- # (?dx ?c) math:product ?dxC .
2862
- # (?dy ?s) math:product ?dyS .
2863
- # (?dxC ?dyS) math:sum ?u .
2864
- # (?dx ?s) math:product ?dxS .
2865
- # (0.0 ?dxS) math:difference ?negDxS .
2866
- # (?dy ?c) math:product ?dyC .
2867
- # (?negDxS ?dyC) math:sum ?v .
2868
- # (?u 2.0) math:exponentiation ?u2 .
2869
- # (?v 2.0) math:exponentiation ?v2 .
2870
- # (?u2 ?l1) math:quotient ?u2Over .
2871
- # (?v2 ?l2) math:quotient ?v2Over .
2872
- # (?u2Over ?v2Over) math:sum ?md2 .
2873
- # } => {
2874
- # _:b8 :point ?p .
2875
- # _:b8 :u ?u .
2876
- # _:b8 :v ?v .
2877
- # _:b8 :md2 ?md2 .
2878
- # :PCA1 :score _:b8 .
2879
- # } .
2880
- # with substitution (on rule variables):
2881
- # ?c = "0.8387243717699311"^^xsd:decimal
2882
- # ?dx = "-1.7142857142857144"^^xsd:decimal
2883
- # ?dxC = "-1.4378132087484534"^^xsd:decimal
2884
- # ?dxS = "0.9335248721660063"^^xsd:decimal
2885
- # ?dy = "0.9285714285714279"^^xsd:decimal
2886
- # ?dyC = "0.7788154880720783"^^xsd:decimal
2887
- # ?dyS = "-0.5056593057565864"^^xsd:decimal
2888
- # ?l1 = "38.53691708607748"^^xsd:decimal
2889
- # ?l2 = "16.217776791473543"^^xsd:decimal
2890
- # ?md2 = "0.09948798150629931"^^xsd:decimal
2891
- # ?mx = "6.714285714285714"^^xsd:decimal
2892
- # ?my = "4.171428571428572"^^xsd:decimal
2893
- # ?negDxS = "-0.9335248721660063"^^xsd:decimal
2894
- # ?p = _:b4
2895
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
2896
- # ?s = "-0.5445561754301703"^^xsd:decimal
2897
- # ?theta = "-0.5758598575998168"^^xsd:decimal
2898
- # ?u = "-1.9434725145050398"^^xsd:decimal
2899
- # ?u2 = "3.777085414636542"^^xsd:decimal
2900
- # ?u2Over = "0.0980121322678694"^^xsd:decimal
2901
- # ?v = "-0.15470938409392798"^^xsd:decimal
2902
- # ?v2 = "0.023934993526722535"^^xsd:decimal
2903
- # ?v2Over = "0.0014758492384299123"^^xsd:decimal
2904
- # ?x = 5.0
2905
- # ?y = 5.1
2906
- # Therefore the derived triple above is entailed by the rules and facts.
2907
- # ----------------------------------------------------------------------
2908
-
2909
37
  _:sk_3 :md2 "0.09948798150629931"^^xsd:decimal .
2910
-
2911
- # ----------------------------------------------------------------------
2912
- # Proof for derived triple:
2913
- # :PCA1 :score _:sk_3 .
2914
- # It holds because the following instance of the rule body is provable:
2915
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
2916
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
2917
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
2918
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
2919
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
2920
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
2921
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
2922
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
2923
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b4 .
2924
- # _:b4 :x 5.0 .
2925
- # _:b4 :y 5.1 .
2926
- # (5.0 "6.714285714285714"^^xsd:decimal) math:difference "-1.7142857142857144"^^xsd:decimal .
2927
- # (5.1 "4.171428571428572"^^xsd:decimal) math:difference "0.9285714285714279"^^xsd:decimal .
2928
- # ("-1.7142857142857144"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-1.4378132087484534"^^xsd:decimal .
2929
- # ("0.9285714285714279"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "-0.5056593057565864"^^xsd:decimal .
2930
- # ("-1.4378132087484534"^^xsd:decimal "-0.5056593057565864"^^xsd:decimal) math:sum "-1.9434725145050398"^^xsd:decimal .
2931
- # ("-1.7142857142857144"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "0.9335248721660063"^^xsd:decimal .
2932
- # (0.0 "0.9335248721660063"^^xsd:decimal) math:difference "-0.9335248721660063"^^xsd:decimal .
2933
- # ("0.9285714285714279"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "0.7788154880720783"^^xsd:decimal .
2934
- # ("-0.9335248721660063"^^xsd:decimal "0.7788154880720783"^^xsd:decimal) math:sum "-0.15470938409392798"^^xsd:decimal .
2935
- # ("-1.9434725145050398"^^xsd:decimal 2.0) math:exponentiation "3.777085414636542"^^xsd:decimal .
2936
- # ("-0.15470938409392798"^^xsd:decimal 2.0) math:exponentiation "0.023934993526722535"^^xsd:decimal .
2937
- # ("3.777085414636542"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.0980121322678694"^^xsd:decimal .
2938
- # ("0.023934993526722535"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.0014758492384299123"^^xsd:decimal .
2939
- # ("0.0980121322678694"^^xsd:decimal "0.0014758492384299123"^^xsd:decimal) math:sum "0.09948798150629931"^^xsd:decimal .
2940
- # via the schematic forward rule:
2941
- # {
2942
- # :PCA1 :points ?pts .
2943
- # :PCA1 :meanX ?mx .
2944
- # :PCA1 :meanY ?my .
2945
- # :PCA1 :thetaRad ?theta .
2946
- # :PCA1 :lambda1 ?l1 .
2947
- # :PCA1 :lambda2 ?l2 .
2948
- # ?theta math:cos ?c .
2949
- # ?theta math:sin ?s .
2950
- # ?pts list:member ?p .
2951
- # ?p :x ?x .
2952
- # ?p :y ?y .
2953
- # (?x ?mx) math:difference ?dx .
2954
- # (?y ?my) math:difference ?dy .
2955
- # (?dx ?c) math:product ?dxC .
2956
- # (?dy ?s) math:product ?dyS .
2957
- # (?dxC ?dyS) math:sum ?u .
2958
- # (?dx ?s) math:product ?dxS .
2959
- # (0.0 ?dxS) math:difference ?negDxS .
2960
- # (?dy ?c) math:product ?dyC .
2961
- # (?negDxS ?dyC) math:sum ?v .
2962
- # (?u 2.0) math:exponentiation ?u2 .
2963
- # (?v 2.0) math:exponentiation ?v2 .
2964
- # (?u2 ?l1) math:quotient ?u2Over .
2965
- # (?v2 ?l2) math:quotient ?v2Over .
2966
- # (?u2Over ?v2Over) math:sum ?md2 .
2967
- # } => {
2968
- # _:b8 :point ?p .
2969
- # _:b8 :u ?u .
2970
- # _:b8 :v ?v .
2971
- # _:b8 :md2 ?md2 .
2972
- # :PCA1 :score _:b8 .
2973
- # } .
2974
- # with substitution (on rule variables):
2975
- # ?c = "0.8387243717699311"^^xsd:decimal
2976
- # ?dx = "-1.7142857142857144"^^xsd:decimal
2977
- # ?dxC = "-1.4378132087484534"^^xsd:decimal
2978
- # ?dxS = "0.9335248721660063"^^xsd:decimal
2979
- # ?dy = "0.9285714285714279"^^xsd:decimal
2980
- # ?dyC = "0.7788154880720783"^^xsd:decimal
2981
- # ?dyS = "-0.5056593057565864"^^xsd:decimal
2982
- # ?l1 = "38.53691708607748"^^xsd:decimal
2983
- # ?l2 = "16.217776791473543"^^xsd:decimal
2984
- # ?md2 = "0.09948798150629931"^^xsd:decimal
2985
- # ?mx = "6.714285714285714"^^xsd:decimal
2986
- # ?my = "4.171428571428572"^^xsd:decimal
2987
- # ?negDxS = "-0.9335248721660063"^^xsd:decimal
2988
- # ?p = _:b4
2989
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
2990
- # ?s = "-0.5445561754301703"^^xsd:decimal
2991
- # ?theta = "-0.5758598575998168"^^xsd:decimal
2992
- # ?u = "-1.9434725145050398"^^xsd:decimal
2993
- # ?u2 = "3.777085414636542"^^xsd:decimal
2994
- # ?u2Over = "0.0980121322678694"^^xsd:decimal
2995
- # ?v = "-0.15470938409392798"^^xsd:decimal
2996
- # ?v2 = "0.023934993526722535"^^xsd:decimal
2997
- # ?v2Over = "0.0014758492384299123"^^xsd:decimal
2998
- # ?x = 5.0
2999
- # ?y = 5.1
3000
- # Therefore the derived triple above is entailed by the rules and facts.
3001
- # ----------------------------------------------------------------------
3002
-
3003
38
  :PCA1 :score _:sk_3 .
3004
-
3005
- # ----------------------------------------------------------------------
3006
- # Proof for derived triple:
3007
- # _:sk_4 :point _:b3 .
3008
- # It holds because the following instance of the rule body is provable:
3009
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
3010
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
3011
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
3012
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
3013
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
3014
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
3015
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
3016
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
3017
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b3 .
3018
- # _:b3 :x 4.0 .
3019
- # _:b3 :y 3.2 .
3020
- # (4.0 "6.714285714285714"^^xsd:decimal) math:difference "-2.7142857142857144"^^xsd:decimal .
3021
- # (3.2 "4.171428571428572"^^xsd:decimal) math:difference "-0.9714285714285715"^^xsd:decimal .
3022
- # ("-2.7142857142857144"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-2.2765375805183843"^^xsd:decimal .
3023
- # ("-0.9714285714285715"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "0.528997427560737"^^xsd:decimal .
3024
- # ("-2.2765375805183843"^^xsd:decimal "0.528997427560737"^^xsd:decimal) math:sum "-1.7475401529576473"^^xsd:decimal .
3025
- # ("-2.7142857142857144"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "1.4780810475961768"^^xsd:decimal .
3026
- # (0.0 "1.4780810475961768"^^xsd:decimal) math:difference "-1.4780810475961768"^^xsd:decimal .
3027
- # ("-0.9714285714285715"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-0.8147608182907903"^^xsd:decimal .
3028
- # ("-1.4780810475961768"^^xsd:decimal "-0.8147608182907903"^^xsd:decimal) math:sum "-2.292841865886967"^^xsd:decimal .
3029
- # ("-1.7475401529576473"^^xsd:decimal 2.0) math:exponentiation "3.0538965861992375"^^xsd:decimal .
3030
- # ("-2.292841865886967"^^xsd:decimal 2.0) math:exponentiation "5.257123821964029"^^xsd:decimal .
3031
- # ("3.0538965861992375"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.07924600142190777"^^xsd:decimal .
3032
- # ("5.257123821964029"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.3241581068453198"^^xsd:decimal .
3033
- # ("0.07924600142190777"^^xsd:decimal "0.3241581068453198"^^xsd:decimal) math:sum "0.4034041082672276"^^xsd:decimal .
3034
- # via the schematic forward rule:
3035
- # {
3036
- # :PCA1 :points ?pts .
3037
- # :PCA1 :meanX ?mx .
3038
- # :PCA1 :meanY ?my .
3039
- # :PCA1 :thetaRad ?theta .
3040
- # :PCA1 :lambda1 ?l1 .
3041
- # :PCA1 :lambda2 ?l2 .
3042
- # ?theta math:cos ?c .
3043
- # ?theta math:sin ?s .
3044
- # ?pts list:member ?p .
3045
- # ?p :x ?x .
3046
- # ?p :y ?y .
3047
- # (?x ?mx) math:difference ?dx .
3048
- # (?y ?my) math:difference ?dy .
3049
- # (?dx ?c) math:product ?dxC .
3050
- # (?dy ?s) math:product ?dyS .
3051
- # (?dxC ?dyS) math:sum ?u .
3052
- # (?dx ?s) math:product ?dxS .
3053
- # (0.0 ?dxS) math:difference ?negDxS .
3054
- # (?dy ?c) math:product ?dyC .
3055
- # (?negDxS ?dyC) math:sum ?v .
3056
- # (?u 2.0) math:exponentiation ?u2 .
3057
- # (?v 2.0) math:exponentiation ?v2 .
3058
- # (?u2 ?l1) math:quotient ?u2Over .
3059
- # (?v2 ?l2) math:quotient ?v2Over .
3060
- # (?u2Over ?v2Over) math:sum ?md2 .
3061
- # } => {
3062
- # _:b8 :point ?p .
3063
- # _:b8 :u ?u .
3064
- # _:b8 :v ?v .
3065
- # _:b8 :md2 ?md2 .
3066
- # :PCA1 :score _:b8 .
3067
- # } .
3068
- # with substitution (on rule variables):
3069
- # ?c = "0.8387243717699311"^^xsd:decimal
3070
- # ?dx = "-2.7142857142857144"^^xsd:decimal
3071
- # ?dxC = "-2.2765375805183843"^^xsd:decimal
3072
- # ?dxS = "1.4780810475961768"^^xsd:decimal
3073
- # ?dy = "-0.9714285714285715"^^xsd:decimal
3074
- # ?dyC = "-0.8147608182907903"^^xsd:decimal
3075
- # ?dyS = "0.528997427560737"^^xsd:decimal
3076
- # ?l1 = "38.53691708607748"^^xsd:decimal
3077
- # ?l2 = "16.217776791473543"^^xsd:decimal
3078
- # ?md2 = "0.4034041082672276"^^xsd:decimal
3079
- # ?mx = "6.714285714285714"^^xsd:decimal
3080
- # ?my = "4.171428571428572"^^xsd:decimal
3081
- # ?negDxS = "-1.4780810475961768"^^xsd:decimal
3082
- # ?p = _:b3
3083
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
3084
- # ?s = "-0.5445561754301703"^^xsd:decimal
3085
- # ?theta = "-0.5758598575998168"^^xsd:decimal
3086
- # ?u = "-1.7475401529576473"^^xsd:decimal
3087
- # ?u2 = "3.0538965861992375"^^xsd:decimal
3088
- # ?u2Over = "0.07924600142190777"^^xsd:decimal
3089
- # ?v = "-2.292841865886967"^^xsd:decimal
3090
- # ?v2 = "5.257123821964029"^^xsd:decimal
3091
- # ?v2Over = "0.3241581068453198"^^xsd:decimal
3092
- # ?x = 4.0
3093
- # ?y = 3.2
3094
- # Therefore the derived triple above is entailed by the rules and facts.
3095
- # ----------------------------------------------------------------------
3096
-
3097
39
  _:sk_4 :point _:b3 .
3098
-
3099
- # ----------------------------------------------------------------------
3100
- # Proof for derived triple:
3101
- # _:sk_4 :u "-1.7475401529576473"^^xsd:decimal .
3102
- # It holds because the following instance of the rule body is provable:
3103
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
3104
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
3105
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
3106
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
3107
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
3108
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
3109
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
3110
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
3111
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b3 .
3112
- # _:b3 :x 4.0 .
3113
- # _:b3 :y 3.2 .
3114
- # (4.0 "6.714285714285714"^^xsd:decimal) math:difference "-2.7142857142857144"^^xsd:decimal .
3115
- # (3.2 "4.171428571428572"^^xsd:decimal) math:difference "-0.9714285714285715"^^xsd:decimal .
3116
- # ("-2.7142857142857144"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-2.2765375805183843"^^xsd:decimal .
3117
- # ("-0.9714285714285715"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "0.528997427560737"^^xsd:decimal .
3118
- # ("-2.2765375805183843"^^xsd:decimal "0.528997427560737"^^xsd:decimal) math:sum "-1.7475401529576473"^^xsd:decimal .
3119
- # ("-2.7142857142857144"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "1.4780810475961768"^^xsd:decimal .
3120
- # (0.0 "1.4780810475961768"^^xsd:decimal) math:difference "-1.4780810475961768"^^xsd:decimal .
3121
- # ("-0.9714285714285715"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-0.8147608182907903"^^xsd:decimal .
3122
- # ("-1.4780810475961768"^^xsd:decimal "-0.8147608182907903"^^xsd:decimal) math:sum "-2.292841865886967"^^xsd:decimal .
3123
- # ("-1.7475401529576473"^^xsd:decimal 2.0) math:exponentiation "3.0538965861992375"^^xsd:decimal .
3124
- # ("-2.292841865886967"^^xsd:decimal 2.0) math:exponentiation "5.257123821964029"^^xsd:decimal .
3125
- # ("3.0538965861992375"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.07924600142190777"^^xsd:decimal .
3126
- # ("5.257123821964029"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.3241581068453198"^^xsd:decimal .
3127
- # ("0.07924600142190777"^^xsd:decimal "0.3241581068453198"^^xsd:decimal) math:sum "0.4034041082672276"^^xsd:decimal .
3128
- # via the schematic forward rule:
3129
- # {
3130
- # :PCA1 :points ?pts .
3131
- # :PCA1 :meanX ?mx .
3132
- # :PCA1 :meanY ?my .
3133
- # :PCA1 :thetaRad ?theta .
3134
- # :PCA1 :lambda1 ?l1 .
3135
- # :PCA1 :lambda2 ?l2 .
3136
- # ?theta math:cos ?c .
3137
- # ?theta math:sin ?s .
3138
- # ?pts list:member ?p .
3139
- # ?p :x ?x .
3140
- # ?p :y ?y .
3141
- # (?x ?mx) math:difference ?dx .
3142
- # (?y ?my) math:difference ?dy .
3143
- # (?dx ?c) math:product ?dxC .
3144
- # (?dy ?s) math:product ?dyS .
3145
- # (?dxC ?dyS) math:sum ?u .
3146
- # (?dx ?s) math:product ?dxS .
3147
- # (0.0 ?dxS) math:difference ?negDxS .
3148
- # (?dy ?c) math:product ?dyC .
3149
- # (?negDxS ?dyC) math:sum ?v .
3150
- # (?u 2.0) math:exponentiation ?u2 .
3151
- # (?v 2.0) math:exponentiation ?v2 .
3152
- # (?u2 ?l1) math:quotient ?u2Over .
3153
- # (?v2 ?l2) math:quotient ?v2Over .
3154
- # (?u2Over ?v2Over) math:sum ?md2 .
3155
- # } => {
3156
- # _:b8 :point ?p .
3157
- # _:b8 :u ?u .
3158
- # _:b8 :v ?v .
3159
- # _:b8 :md2 ?md2 .
3160
- # :PCA1 :score _:b8 .
3161
- # } .
3162
- # with substitution (on rule variables):
3163
- # ?c = "0.8387243717699311"^^xsd:decimal
3164
- # ?dx = "-2.7142857142857144"^^xsd:decimal
3165
- # ?dxC = "-2.2765375805183843"^^xsd:decimal
3166
- # ?dxS = "1.4780810475961768"^^xsd:decimal
3167
- # ?dy = "-0.9714285714285715"^^xsd:decimal
3168
- # ?dyC = "-0.8147608182907903"^^xsd:decimal
3169
- # ?dyS = "0.528997427560737"^^xsd:decimal
3170
- # ?l1 = "38.53691708607748"^^xsd:decimal
3171
- # ?l2 = "16.217776791473543"^^xsd:decimal
3172
- # ?md2 = "0.4034041082672276"^^xsd:decimal
3173
- # ?mx = "6.714285714285714"^^xsd:decimal
3174
- # ?my = "4.171428571428572"^^xsd:decimal
3175
- # ?negDxS = "-1.4780810475961768"^^xsd:decimal
3176
- # ?p = _:b3
3177
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
3178
- # ?s = "-0.5445561754301703"^^xsd:decimal
3179
- # ?theta = "-0.5758598575998168"^^xsd:decimal
3180
- # ?u = "-1.7475401529576473"^^xsd:decimal
3181
- # ?u2 = "3.0538965861992375"^^xsd:decimal
3182
- # ?u2Over = "0.07924600142190777"^^xsd:decimal
3183
- # ?v = "-2.292841865886967"^^xsd:decimal
3184
- # ?v2 = "5.257123821964029"^^xsd:decimal
3185
- # ?v2Over = "0.3241581068453198"^^xsd:decimal
3186
- # ?x = 4.0
3187
- # ?y = 3.2
3188
- # Therefore the derived triple above is entailed by the rules and facts.
3189
- # ----------------------------------------------------------------------
3190
-
3191
40
  _:sk_4 :u "-1.7475401529576473"^^xsd:decimal .
3192
-
3193
- # ----------------------------------------------------------------------
3194
- # Proof for derived triple:
3195
- # _:sk_4 :v "-2.292841865886967"^^xsd:decimal .
3196
- # It holds because the following instance of the rule body is provable:
3197
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
3198
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
3199
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
3200
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
3201
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
3202
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
3203
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
3204
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
3205
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b3 .
3206
- # _:b3 :x 4.0 .
3207
- # _:b3 :y 3.2 .
3208
- # (4.0 "6.714285714285714"^^xsd:decimal) math:difference "-2.7142857142857144"^^xsd:decimal .
3209
- # (3.2 "4.171428571428572"^^xsd:decimal) math:difference "-0.9714285714285715"^^xsd:decimal .
3210
- # ("-2.7142857142857144"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-2.2765375805183843"^^xsd:decimal .
3211
- # ("-0.9714285714285715"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "0.528997427560737"^^xsd:decimal .
3212
- # ("-2.2765375805183843"^^xsd:decimal "0.528997427560737"^^xsd:decimal) math:sum "-1.7475401529576473"^^xsd:decimal .
3213
- # ("-2.7142857142857144"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "1.4780810475961768"^^xsd:decimal .
3214
- # (0.0 "1.4780810475961768"^^xsd:decimal) math:difference "-1.4780810475961768"^^xsd:decimal .
3215
- # ("-0.9714285714285715"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-0.8147608182907903"^^xsd:decimal .
3216
- # ("-1.4780810475961768"^^xsd:decimal "-0.8147608182907903"^^xsd:decimal) math:sum "-2.292841865886967"^^xsd:decimal .
3217
- # ("-1.7475401529576473"^^xsd:decimal 2.0) math:exponentiation "3.0538965861992375"^^xsd:decimal .
3218
- # ("-2.292841865886967"^^xsd:decimal 2.0) math:exponentiation "5.257123821964029"^^xsd:decimal .
3219
- # ("3.0538965861992375"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.07924600142190777"^^xsd:decimal .
3220
- # ("5.257123821964029"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.3241581068453198"^^xsd:decimal .
3221
- # ("0.07924600142190777"^^xsd:decimal "0.3241581068453198"^^xsd:decimal) math:sum "0.4034041082672276"^^xsd:decimal .
3222
- # via the schematic forward rule:
3223
- # {
3224
- # :PCA1 :points ?pts .
3225
- # :PCA1 :meanX ?mx .
3226
- # :PCA1 :meanY ?my .
3227
- # :PCA1 :thetaRad ?theta .
3228
- # :PCA1 :lambda1 ?l1 .
3229
- # :PCA1 :lambda2 ?l2 .
3230
- # ?theta math:cos ?c .
3231
- # ?theta math:sin ?s .
3232
- # ?pts list:member ?p .
3233
- # ?p :x ?x .
3234
- # ?p :y ?y .
3235
- # (?x ?mx) math:difference ?dx .
3236
- # (?y ?my) math:difference ?dy .
3237
- # (?dx ?c) math:product ?dxC .
3238
- # (?dy ?s) math:product ?dyS .
3239
- # (?dxC ?dyS) math:sum ?u .
3240
- # (?dx ?s) math:product ?dxS .
3241
- # (0.0 ?dxS) math:difference ?negDxS .
3242
- # (?dy ?c) math:product ?dyC .
3243
- # (?negDxS ?dyC) math:sum ?v .
3244
- # (?u 2.0) math:exponentiation ?u2 .
3245
- # (?v 2.0) math:exponentiation ?v2 .
3246
- # (?u2 ?l1) math:quotient ?u2Over .
3247
- # (?v2 ?l2) math:quotient ?v2Over .
3248
- # (?u2Over ?v2Over) math:sum ?md2 .
3249
- # } => {
3250
- # _:b8 :point ?p .
3251
- # _:b8 :u ?u .
3252
- # _:b8 :v ?v .
3253
- # _:b8 :md2 ?md2 .
3254
- # :PCA1 :score _:b8 .
3255
- # } .
3256
- # with substitution (on rule variables):
3257
- # ?c = "0.8387243717699311"^^xsd:decimal
3258
- # ?dx = "-2.7142857142857144"^^xsd:decimal
3259
- # ?dxC = "-2.2765375805183843"^^xsd:decimal
3260
- # ?dxS = "1.4780810475961768"^^xsd:decimal
3261
- # ?dy = "-0.9714285714285715"^^xsd:decimal
3262
- # ?dyC = "-0.8147608182907903"^^xsd:decimal
3263
- # ?dyS = "0.528997427560737"^^xsd:decimal
3264
- # ?l1 = "38.53691708607748"^^xsd:decimal
3265
- # ?l2 = "16.217776791473543"^^xsd:decimal
3266
- # ?md2 = "0.4034041082672276"^^xsd:decimal
3267
- # ?mx = "6.714285714285714"^^xsd:decimal
3268
- # ?my = "4.171428571428572"^^xsd:decimal
3269
- # ?negDxS = "-1.4780810475961768"^^xsd:decimal
3270
- # ?p = _:b3
3271
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
3272
- # ?s = "-0.5445561754301703"^^xsd:decimal
3273
- # ?theta = "-0.5758598575998168"^^xsd:decimal
3274
- # ?u = "-1.7475401529576473"^^xsd:decimal
3275
- # ?u2 = "3.0538965861992375"^^xsd:decimal
3276
- # ?u2Over = "0.07924600142190777"^^xsd:decimal
3277
- # ?v = "-2.292841865886967"^^xsd:decimal
3278
- # ?v2 = "5.257123821964029"^^xsd:decimal
3279
- # ?v2Over = "0.3241581068453198"^^xsd:decimal
3280
- # ?x = 4.0
3281
- # ?y = 3.2
3282
- # Therefore the derived triple above is entailed by the rules and facts.
3283
- # ----------------------------------------------------------------------
3284
-
3285
41
  _:sk_4 :v "-2.292841865886967"^^xsd:decimal .
3286
-
3287
- # ----------------------------------------------------------------------
3288
- # Proof for derived triple:
3289
- # _:sk_4 :md2 "0.4034041082672276"^^xsd:decimal .
3290
- # It holds because the following instance of the rule body is provable:
3291
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
3292
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
3293
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
3294
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
3295
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
3296
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
3297
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
3298
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
3299
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b3 .
3300
- # _:b3 :x 4.0 .
3301
- # _:b3 :y 3.2 .
3302
- # (4.0 "6.714285714285714"^^xsd:decimal) math:difference "-2.7142857142857144"^^xsd:decimal .
3303
- # (3.2 "4.171428571428572"^^xsd:decimal) math:difference "-0.9714285714285715"^^xsd:decimal .
3304
- # ("-2.7142857142857144"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-2.2765375805183843"^^xsd:decimal .
3305
- # ("-0.9714285714285715"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "0.528997427560737"^^xsd:decimal .
3306
- # ("-2.2765375805183843"^^xsd:decimal "0.528997427560737"^^xsd:decimal) math:sum "-1.7475401529576473"^^xsd:decimal .
3307
- # ("-2.7142857142857144"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "1.4780810475961768"^^xsd:decimal .
3308
- # (0.0 "1.4780810475961768"^^xsd:decimal) math:difference "-1.4780810475961768"^^xsd:decimal .
3309
- # ("-0.9714285714285715"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-0.8147608182907903"^^xsd:decimal .
3310
- # ("-1.4780810475961768"^^xsd:decimal "-0.8147608182907903"^^xsd:decimal) math:sum "-2.292841865886967"^^xsd:decimal .
3311
- # ("-1.7475401529576473"^^xsd:decimal 2.0) math:exponentiation "3.0538965861992375"^^xsd:decimal .
3312
- # ("-2.292841865886967"^^xsd:decimal 2.0) math:exponentiation "5.257123821964029"^^xsd:decimal .
3313
- # ("3.0538965861992375"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.07924600142190777"^^xsd:decimal .
3314
- # ("5.257123821964029"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.3241581068453198"^^xsd:decimal .
3315
- # ("0.07924600142190777"^^xsd:decimal "0.3241581068453198"^^xsd:decimal) math:sum "0.4034041082672276"^^xsd:decimal .
3316
- # via the schematic forward rule:
3317
- # {
3318
- # :PCA1 :points ?pts .
3319
- # :PCA1 :meanX ?mx .
3320
- # :PCA1 :meanY ?my .
3321
- # :PCA1 :thetaRad ?theta .
3322
- # :PCA1 :lambda1 ?l1 .
3323
- # :PCA1 :lambda2 ?l2 .
3324
- # ?theta math:cos ?c .
3325
- # ?theta math:sin ?s .
3326
- # ?pts list:member ?p .
3327
- # ?p :x ?x .
3328
- # ?p :y ?y .
3329
- # (?x ?mx) math:difference ?dx .
3330
- # (?y ?my) math:difference ?dy .
3331
- # (?dx ?c) math:product ?dxC .
3332
- # (?dy ?s) math:product ?dyS .
3333
- # (?dxC ?dyS) math:sum ?u .
3334
- # (?dx ?s) math:product ?dxS .
3335
- # (0.0 ?dxS) math:difference ?negDxS .
3336
- # (?dy ?c) math:product ?dyC .
3337
- # (?negDxS ?dyC) math:sum ?v .
3338
- # (?u 2.0) math:exponentiation ?u2 .
3339
- # (?v 2.0) math:exponentiation ?v2 .
3340
- # (?u2 ?l1) math:quotient ?u2Over .
3341
- # (?v2 ?l2) math:quotient ?v2Over .
3342
- # (?u2Over ?v2Over) math:sum ?md2 .
3343
- # } => {
3344
- # _:b8 :point ?p .
3345
- # _:b8 :u ?u .
3346
- # _:b8 :v ?v .
3347
- # _:b8 :md2 ?md2 .
3348
- # :PCA1 :score _:b8 .
3349
- # } .
3350
- # with substitution (on rule variables):
3351
- # ?c = "0.8387243717699311"^^xsd:decimal
3352
- # ?dx = "-2.7142857142857144"^^xsd:decimal
3353
- # ?dxC = "-2.2765375805183843"^^xsd:decimal
3354
- # ?dxS = "1.4780810475961768"^^xsd:decimal
3355
- # ?dy = "-0.9714285714285715"^^xsd:decimal
3356
- # ?dyC = "-0.8147608182907903"^^xsd:decimal
3357
- # ?dyS = "0.528997427560737"^^xsd:decimal
3358
- # ?l1 = "38.53691708607748"^^xsd:decimal
3359
- # ?l2 = "16.217776791473543"^^xsd:decimal
3360
- # ?md2 = "0.4034041082672276"^^xsd:decimal
3361
- # ?mx = "6.714285714285714"^^xsd:decimal
3362
- # ?my = "4.171428571428572"^^xsd:decimal
3363
- # ?negDxS = "-1.4780810475961768"^^xsd:decimal
3364
- # ?p = _:b3
3365
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
3366
- # ?s = "-0.5445561754301703"^^xsd:decimal
3367
- # ?theta = "-0.5758598575998168"^^xsd:decimal
3368
- # ?u = "-1.7475401529576473"^^xsd:decimal
3369
- # ?u2 = "3.0538965861992375"^^xsd:decimal
3370
- # ?u2Over = "0.07924600142190777"^^xsd:decimal
3371
- # ?v = "-2.292841865886967"^^xsd:decimal
3372
- # ?v2 = "5.257123821964029"^^xsd:decimal
3373
- # ?v2Over = "0.3241581068453198"^^xsd:decimal
3374
- # ?x = 4.0
3375
- # ?y = 3.2
3376
- # Therefore the derived triple above is entailed by the rules and facts.
3377
- # ----------------------------------------------------------------------
3378
-
3379
42
  _:sk_4 :md2 "0.4034041082672276"^^xsd:decimal .
3380
-
3381
- # ----------------------------------------------------------------------
3382
- # Proof for derived triple:
3383
- # :PCA1 :score _:sk_4 .
3384
- # It holds because the following instance of the rule body is provable:
3385
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
3386
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
3387
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
3388
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
3389
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
3390
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
3391
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
3392
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
3393
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b3 .
3394
- # _:b3 :x 4.0 .
3395
- # _:b3 :y 3.2 .
3396
- # (4.0 "6.714285714285714"^^xsd:decimal) math:difference "-2.7142857142857144"^^xsd:decimal .
3397
- # (3.2 "4.171428571428572"^^xsd:decimal) math:difference "-0.9714285714285715"^^xsd:decimal .
3398
- # ("-2.7142857142857144"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-2.2765375805183843"^^xsd:decimal .
3399
- # ("-0.9714285714285715"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "0.528997427560737"^^xsd:decimal .
3400
- # ("-2.2765375805183843"^^xsd:decimal "0.528997427560737"^^xsd:decimal) math:sum "-1.7475401529576473"^^xsd:decimal .
3401
- # ("-2.7142857142857144"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "1.4780810475961768"^^xsd:decimal .
3402
- # (0.0 "1.4780810475961768"^^xsd:decimal) math:difference "-1.4780810475961768"^^xsd:decimal .
3403
- # ("-0.9714285714285715"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-0.8147608182907903"^^xsd:decimal .
3404
- # ("-1.4780810475961768"^^xsd:decimal "-0.8147608182907903"^^xsd:decimal) math:sum "-2.292841865886967"^^xsd:decimal .
3405
- # ("-1.7475401529576473"^^xsd:decimal 2.0) math:exponentiation "3.0538965861992375"^^xsd:decimal .
3406
- # ("-2.292841865886967"^^xsd:decimal 2.0) math:exponentiation "5.257123821964029"^^xsd:decimal .
3407
- # ("3.0538965861992375"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.07924600142190777"^^xsd:decimal .
3408
- # ("5.257123821964029"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.3241581068453198"^^xsd:decimal .
3409
- # ("0.07924600142190777"^^xsd:decimal "0.3241581068453198"^^xsd:decimal) math:sum "0.4034041082672276"^^xsd:decimal .
3410
- # via the schematic forward rule:
3411
- # {
3412
- # :PCA1 :points ?pts .
3413
- # :PCA1 :meanX ?mx .
3414
- # :PCA1 :meanY ?my .
3415
- # :PCA1 :thetaRad ?theta .
3416
- # :PCA1 :lambda1 ?l1 .
3417
- # :PCA1 :lambda2 ?l2 .
3418
- # ?theta math:cos ?c .
3419
- # ?theta math:sin ?s .
3420
- # ?pts list:member ?p .
3421
- # ?p :x ?x .
3422
- # ?p :y ?y .
3423
- # (?x ?mx) math:difference ?dx .
3424
- # (?y ?my) math:difference ?dy .
3425
- # (?dx ?c) math:product ?dxC .
3426
- # (?dy ?s) math:product ?dyS .
3427
- # (?dxC ?dyS) math:sum ?u .
3428
- # (?dx ?s) math:product ?dxS .
3429
- # (0.0 ?dxS) math:difference ?negDxS .
3430
- # (?dy ?c) math:product ?dyC .
3431
- # (?negDxS ?dyC) math:sum ?v .
3432
- # (?u 2.0) math:exponentiation ?u2 .
3433
- # (?v 2.0) math:exponentiation ?v2 .
3434
- # (?u2 ?l1) math:quotient ?u2Over .
3435
- # (?v2 ?l2) math:quotient ?v2Over .
3436
- # (?u2Over ?v2Over) math:sum ?md2 .
3437
- # } => {
3438
- # _:b8 :point ?p .
3439
- # _:b8 :u ?u .
3440
- # _:b8 :v ?v .
3441
- # _:b8 :md2 ?md2 .
3442
- # :PCA1 :score _:b8 .
3443
- # } .
3444
- # with substitution (on rule variables):
3445
- # ?c = "0.8387243717699311"^^xsd:decimal
3446
- # ?dx = "-2.7142857142857144"^^xsd:decimal
3447
- # ?dxC = "-2.2765375805183843"^^xsd:decimal
3448
- # ?dxS = "1.4780810475961768"^^xsd:decimal
3449
- # ?dy = "-0.9714285714285715"^^xsd:decimal
3450
- # ?dyC = "-0.8147608182907903"^^xsd:decimal
3451
- # ?dyS = "0.528997427560737"^^xsd:decimal
3452
- # ?l1 = "38.53691708607748"^^xsd:decimal
3453
- # ?l2 = "16.217776791473543"^^xsd:decimal
3454
- # ?md2 = "0.4034041082672276"^^xsd:decimal
3455
- # ?mx = "6.714285714285714"^^xsd:decimal
3456
- # ?my = "4.171428571428572"^^xsd:decimal
3457
- # ?negDxS = "-1.4780810475961768"^^xsd:decimal
3458
- # ?p = _:b3
3459
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
3460
- # ?s = "-0.5445561754301703"^^xsd:decimal
3461
- # ?theta = "-0.5758598575998168"^^xsd:decimal
3462
- # ?u = "-1.7475401529576473"^^xsd:decimal
3463
- # ?u2 = "3.0538965861992375"^^xsd:decimal
3464
- # ?u2Over = "0.07924600142190777"^^xsd:decimal
3465
- # ?v = "-2.292841865886967"^^xsd:decimal
3466
- # ?v2 = "5.257123821964029"^^xsd:decimal
3467
- # ?v2Over = "0.3241581068453198"^^xsd:decimal
3468
- # ?x = 4.0
3469
- # ?y = 3.2
3470
- # Therefore the derived triple above is entailed by the rules and facts.
3471
- # ----------------------------------------------------------------------
3472
-
3473
43
  :PCA1 :score _:sk_4 .
3474
-
3475
- # ----------------------------------------------------------------------
3476
- # Proof for derived triple:
3477
- # _:sk_5 :point _:b2 .
3478
- # It holds because the following instance of the rule body is provable:
3479
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
3480
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
3481
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
3482
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
3483
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
3484
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
3485
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
3486
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
3487
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b2 .
3488
- # _:b2 :x 3.0 .
3489
- # _:b2 :y 2.0 .
3490
- # (3.0 "6.714285714285714"^^xsd:decimal) math:difference "-3.7142857142857144"^^xsd:decimal .
3491
- # (2.0 "4.171428571428572"^^xsd:decimal) math:difference "-2.1714285714285717"^^xsd:decimal .
3492
- # ("-3.7142857142857144"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-3.1152619522883156"^^xsd:decimal .
3493
- # ("-2.1714285714285717"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "1.1824648380769414"^^xsd:decimal .
3494
- # ("-3.1152619522883156"^^xsd:decimal "1.1824648380769414"^^xsd:decimal) math:sum "-1.9327971142113742"^^xsd:decimal .
3495
- # ("-3.7142857142857144"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "2.022637223026347"^^xsd:decimal .
3496
- # (0.0 "2.022637223026347"^^xsd:decimal) math:difference "-2.022637223026347"^^xsd:decimal .
3497
- # ("-2.1714285714285717"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-1.8212300644147077"^^xsd:decimal .
3498
- # ("-2.022637223026347"^^xsd:decimal "-1.8212300644147077"^^xsd:decimal) math:sum "-3.843867287441055"^^xsd:decimal .
3499
- # ("-1.9327971142113742"^^xsd:decimal 2.0) math:exponentiation "3.735704684703816"^^xsd:decimal .
3500
- # ("-3.843867287441055"^^xsd:decimal 2.0) math:exponentiation "14.775315723459453"^^xsd:decimal .
3501
- # ("3.735704684703816"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.09693833775959837"^^xsd:decimal .
3502
- # ("14.775315723459453"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.9110567936307731"^^xsd:decimal .
3503
- # ("0.09693833775959837"^^xsd:decimal "0.9110567936307731"^^xsd:decimal) math:sum "1.0079951313903714"^^xsd:decimal .
3504
- # via the schematic forward rule:
3505
- # {
3506
- # :PCA1 :points ?pts .
3507
- # :PCA1 :meanX ?mx .
3508
- # :PCA1 :meanY ?my .
3509
- # :PCA1 :thetaRad ?theta .
3510
- # :PCA1 :lambda1 ?l1 .
3511
- # :PCA1 :lambda2 ?l2 .
3512
- # ?theta math:cos ?c .
3513
- # ?theta math:sin ?s .
3514
- # ?pts list:member ?p .
3515
- # ?p :x ?x .
3516
- # ?p :y ?y .
3517
- # (?x ?mx) math:difference ?dx .
3518
- # (?y ?my) math:difference ?dy .
3519
- # (?dx ?c) math:product ?dxC .
3520
- # (?dy ?s) math:product ?dyS .
3521
- # (?dxC ?dyS) math:sum ?u .
3522
- # (?dx ?s) math:product ?dxS .
3523
- # (0.0 ?dxS) math:difference ?negDxS .
3524
- # (?dy ?c) math:product ?dyC .
3525
- # (?negDxS ?dyC) math:sum ?v .
3526
- # (?u 2.0) math:exponentiation ?u2 .
3527
- # (?v 2.0) math:exponentiation ?v2 .
3528
- # (?u2 ?l1) math:quotient ?u2Over .
3529
- # (?v2 ?l2) math:quotient ?v2Over .
3530
- # (?u2Over ?v2Over) math:sum ?md2 .
3531
- # } => {
3532
- # _:b8 :point ?p .
3533
- # _:b8 :u ?u .
3534
- # _:b8 :v ?v .
3535
- # _:b8 :md2 ?md2 .
3536
- # :PCA1 :score _:b8 .
3537
- # } .
3538
- # with substitution (on rule variables):
3539
- # ?c = "0.8387243717699311"^^xsd:decimal
3540
- # ?dx = "-3.7142857142857144"^^xsd:decimal
3541
- # ?dxC = "-3.1152619522883156"^^xsd:decimal
3542
- # ?dxS = "2.022637223026347"^^xsd:decimal
3543
- # ?dy = "-2.1714285714285717"^^xsd:decimal
3544
- # ?dyC = "-1.8212300644147077"^^xsd:decimal
3545
- # ?dyS = "1.1824648380769414"^^xsd:decimal
3546
- # ?l1 = "38.53691708607748"^^xsd:decimal
3547
- # ?l2 = "16.217776791473543"^^xsd:decimal
3548
- # ?md2 = "1.0079951313903714"^^xsd:decimal
3549
- # ?mx = "6.714285714285714"^^xsd:decimal
3550
- # ?my = "4.171428571428572"^^xsd:decimal
3551
- # ?negDxS = "-2.022637223026347"^^xsd:decimal
3552
- # ?p = _:b2
3553
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
3554
- # ?s = "-0.5445561754301703"^^xsd:decimal
3555
- # ?theta = "-0.5758598575998168"^^xsd:decimal
3556
- # ?u = "-1.9327971142113742"^^xsd:decimal
3557
- # ?u2 = "3.735704684703816"^^xsd:decimal
3558
- # ?u2Over = "0.09693833775959837"^^xsd:decimal
3559
- # ?v = "-3.843867287441055"^^xsd:decimal
3560
- # ?v2 = "14.775315723459453"^^xsd:decimal
3561
- # ?v2Over = "0.9110567936307731"^^xsd:decimal
3562
- # ?x = 3.0
3563
- # ?y = 2.0
3564
- # Therefore the derived triple above is entailed by the rules and facts.
3565
- # ----------------------------------------------------------------------
3566
-
3567
44
  _:sk_5 :point _:b2 .
3568
-
3569
- # ----------------------------------------------------------------------
3570
- # Proof for derived triple:
3571
- # _:sk_5 :u "-1.9327971142113742"^^xsd:decimal .
3572
- # It holds because the following instance of the rule body is provable:
3573
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
3574
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
3575
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
3576
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
3577
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
3578
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
3579
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
3580
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
3581
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b2 .
3582
- # _:b2 :x 3.0 .
3583
- # _:b2 :y 2.0 .
3584
- # (3.0 "6.714285714285714"^^xsd:decimal) math:difference "-3.7142857142857144"^^xsd:decimal .
3585
- # (2.0 "4.171428571428572"^^xsd:decimal) math:difference "-2.1714285714285717"^^xsd:decimal .
3586
- # ("-3.7142857142857144"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-3.1152619522883156"^^xsd:decimal .
3587
- # ("-2.1714285714285717"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "1.1824648380769414"^^xsd:decimal .
3588
- # ("-3.1152619522883156"^^xsd:decimal "1.1824648380769414"^^xsd:decimal) math:sum "-1.9327971142113742"^^xsd:decimal .
3589
- # ("-3.7142857142857144"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "2.022637223026347"^^xsd:decimal .
3590
- # (0.0 "2.022637223026347"^^xsd:decimal) math:difference "-2.022637223026347"^^xsd:decimal .
3591
- # ("-2.1714285714285717"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-1.8212300644147077"^^xsd:decimal .
3592
- # ("-2.022637223026347"^^xsd:decimal "-1.8212300644147077"^^xsd:decimal) math:sum "-3.843867287441055"^^xsd:decimal .
3593
- # ("-1.9327971142113742"^^xsd:decimal 2.0) math:exponentiation "3.735704684703816"^^xsd:decimal .
3594
- # ("-3.843867287441055"^^xsd:decimal 2.0) math:exponentiation "14.775315723459453"^^xsd:decimal .
3595
- # ("3.735704684703816"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.09693833775959837"^^xsd:decimal .
3596
- # ("14.775315723459453"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.9110567936307731"^^xsd:decimal .
3597
- # ("0.09693833775959837"^^xsd:decimal "0.9110567936307731"^^xsd:decimal) math:sum "1.0079951313903714"^^xsd:decimal .
3598
- # via the schematic forward rule:
3599
- # {
3600
- # :PCA1 :points ?pts .
3601
- # :PCA1 :meanX ?mx .
3602
- # :PCA1 :meanY ?my .
3603
- # :PCA1 :thetaRad ?theta .
3604
- # :PCA1 :lambda1 ?l1 .
3605
- # :PCA1 :lambda2 ?l2 .
3606
- # ?theta math:cos ?c .
3607
- # ?theta math:sin ?s .
3608
- # ?pts list:member ?p .
3609
- # ?p :x ?x .
3610
- # ?p :y ?y .
3611
- # (?x ?mx) math:difference ?dx .
3612
- # (?y ?my) math:difference ?dy .
3613
- # (?dx ?c) math:product ?dxC .
3614
- # (?dy ?s) math:product ?dyS .
3615
- # (?dxC ?dyS) math:sum ?u .
3616
- # (?dx ?s) math:product ?dxS .
3617
- # (0.0 ?dxS) math:difference ?negDxS .
3618
- # (?dy ?c) math:product ?dyC .
3619
- # (?negDxS ?dyC) math:sum ?v .
3620
- # (?u 2.0) math:exponentiation ?u2 .
3621
- # (?v 2.0) math:exponentiation ?v2 .
3622
- # (?u2 ?l1) math:quotient ?u2Over .
3623
- # (?v2 ?l2) math:quotient ?v2Over .
3624
- # (?u2Over ?v2Over) math:sum ?md2 .
3625
- # } => {
3626
- # _:b8 :point ?p .
3627
- # _:b8 :u ?u .
3628
- # _:b8 :v ?v .
3629
- # _:b8 :md2 ?md2 .
3630
- # :PCA1 :score _:b8 .
3631
- # } .
3632
- # with substitution (on rule variables):
3633
- # ?c = "0.8387243717699311"^^xsd:decimal
3634
- # ?dx = "-3.7142857142857144"^^xsd:decimal
3635
- # ?dxC = "-3.1152619522883156"^^xsd:decimal
3636
- # ?dxS = "2.022637223026347"^^xsd:decimal
3637
- # ?dy = "-2.1714285714285717"^^xsd:decimal
3638
- # ?dyC = "-1.8212300644147077"^^xsd:decimal
3639
- # ?dyS = "1.1824648380769414"^^xsd:decimal
3640
- # ?l1 = "38.53691708607748"^^xsd:decimal
3641
- # ?l2 = "16.217776791473543"^^xsd:decimal
3642
- # ?md2 = "1.0079951313903714"^^xsd:decimal
3643
- # ?mx = "6.714285714285714"^^xsd:decimal
3644
- # ?my = "4.171428571428572"^^xsd:decimal
3645
- # ?negDxS = "-2.022637223026347"^^xsd:decimal
3646
- # ?p = _:b2
3647
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
3648
- # ?s = "-0.5445561754301703"^^xsd:decimal
3649
- # ?theta = "-0.5758598575998168"^^xsd:decimal
3650
- # ?u = "-1.9327971142113742"^^xsd:decimal
3651
- # ?u2 = "3.735704684703816"^^xsd:decimal
3652
- # ?u2Over = "0.09693833775959837"^^xsd:decimal
3653
- # ?v = "-3.843867287441055"^^xsd:decimal
3654
- # ?v2 = "14.775315723459453"^^xsd:decimal
3655
- # ?v2Over = "0.9110567936307731"^^xsd:decimal
3656
- # ?x = 3.0
3657
- # ?y = 2.0
3658
- # Therefore the derived triple above is entailed by the rules and facts.
3659
- # ----------------------------------------------------------------------
3660
-
3661
45
  _:sk_5 :u "-1.9327971142113742"^^xsd:decimal .
3662
-
3663
- # ----------------------------------------------------------------------
3664
- # Proof for derived triple:
3665
- # _:sk_5 :v "-3.843867287441055"^^xsd:decimal .
3666
- # It holds because the following instance of the rule body is provable:
3667
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
3668
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
3669
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
3670
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
3671
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
3672
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
3673
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
3674
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
3675
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b2 .
3676
- # _:b2 :x 3.0 .
3677
- # _:b2 :y 2.0 .
3678
- # (3.0 "6.714285714285714"^^xsd:decimal) math:difference "-3.7142857142857144"^^xsd:decimal .
3679
- # (2.0 "4.171428571428572"^^xsd:decimal) math:difference "-2.1714285714285717"^^xsd:decimal .
3680
- # ("-3.7142857142857144"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-3.1152619522883156"^^xsd:decimal .
3681
- # ("-2.1714285714285717"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "1.1824648380769414"^^xsd:decimal .
3682
- # ("-3.1152619522883156"^^xsd:decimal "1.1824648380769414"^^xsd:decimal) math:sum "-1.9327971142113742"^^xsd:decimal .
3683
- # ("-3.7142857142857144"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "2.022637223026347"^^xsd:decimal .
3684
- # (0.0 "2.022637223026347"^^xsd:decimal) math:difference "-2.022637223026347"^^xsd:decimal .
3685
- # ("-2.1714285714285717"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-1.8212300644147077"^^xsd:decimal .
3686
- # ("-2.022637223026347"^^xsd:decimal "-1.8212300644147077"^^xsd:decimal) math:sum "-3.843867287441055"^^xsd:decimal .
3687
- # ("-1.9327971142113742"^^xsd:decimal 2.0) math:exponentiation "3.735704684703816"^^xsd:decimal .
3688
- # ("-3.843867287441055"^^xsd:decimal 2.0) math:exponentiation "14.775315723459453"^^xsd:decimal .
3689
- # ("3.735704684703816"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.09693833775959837"^^xsd:decimal .
3690
- # ("14.775315723459453"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.9110567936307731"^^xsd:decimal .
3691
- # ("0.09693833775959837"^^xsd:decimal "0.9110567936307731"^^xsd:decimal) math:sum "1.0079951313903714"^^xsd:decimal .
3692
- # via the schematic forward rule:
3693
- # {
3694
- # :PCA1 :points ?pts .
3695
- # :PCA1 :meanX ?mx .
3696
- # :PCA1 :meanY ?my .
3697
- # :PCA1 :thetaRad ?theta .
3698
- # :PCA1 :lambda1 ?l1 .
3699
- # :PCA1 :lambda2 ?l2 .
3700
- # ?theta math:cos ?c .
3701
- # ?theta math:sin ?s .
3702
- # ?pts list:member ?p .
3703
- # ?p :x ?x .
3704
- # ?p :y ?y .
3705
- # (?x ?mx) math:difference ?dx .
3706
- # (?y ?my) math:difference ?dy .
3707
- # (?dx ?c) math:product ?dxC .
3708
- # (?dy ?s) math:product ?dyS .
3709
- # (?dxC ?dyS) math:sum ?u .
3710
- # (?dx ?s) math:product ?dxS .
3711
- # (0.0 ?dxS) math:difference ?negDxS .
3712
- # (?dy ?c) math:product ?dyC .
3713
- # (?negDxS ?dyC) math:sum ?v .
3714
- # (?u 2.0) math:exponentiation ?u2 .
3715
- # (?v 2.0) math:exponentiation ?v2 .
3716
- # (?u2 ?l1) math:quotient ?u2Over .
3717
- # (?v2 ?l2) math:quotient ?v2Over .
3718
- # (?u2Over ?v2Over) math:sum ?md2 .
3719
- # } => {
3720
- # _:b8 :point ?p .
3721
- # _:b8 :u ?u .
3722
- # _:b8 :v ?v .
3723
- # _:b8 :md2 ?md2 .
3724
- # :PCA1 :score _:b8 .
3725
- # } .
3726
- # with substitution (on rule variables):
3727
- # ?c = "0.8387243717699311"^^xsd:decimal
3728
- # ?dx = "-3.7142857142857144"^^xsd:decimal
3729
- # ?dxC = "-3.1152619522883156"^^xsd:decimal
3730
- # ?dxS = "2.022637223026347"^^xsd:decimal
3731
- # ?dy = "-2.1714285714285717"^^xsd:decimal
3732
- # ?dyC = "-1.8212300644147077"^^xsd:decimal
3733
- # ?dyS = "1.1824648380769414"^^xsd:decimal
3734
- # ?l1 = "38.53691708607748"^^xsd:decimal
3735
- # ?l2 = "16.217776791473543"^^xsd:decimal
3736
- # ?md2 = "1.0079951313903714"^^xsd:decimal
3737
- # ?mx = "6.714285714285714"^^xsd:decimal
3738
- # ?my = "4.171428571428572"^^xsd:decimal
3739
- # ?negDxS = "-2.022637223026347"^^xsd:decimal
3740
- # ?p = _:b2
3741
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
3742
- # ?s = "-0.5445561754301703"^^xsd:decimal
3743
- # ?theta = "-0.5758598575998168"^^xsd:decimal
3744
- # ?u = "-1.9327971142113742"^^xsd:decimal
3745
- # ?u2 = "3.735704684703816"^^xsd:decimal
3746
- # ?u2Over = "0.09693833775959837"^^xsd:decimal
3747
- # ?v = "-3.843867287441055"^^xsd:decimal
3748
- # ?v2 = "14.775315723459453"^^xsd:decimal
3749
- # ?v2Over = "0.9110567936307731"^^xsd:decimal
3750
- # ?x = 3.0
3751
- # ?y = 2.0
3752
- # Therefore the derived triple above is entailed by the rules and facts.
3753
- # ----------------------------------------------------------------------
3754
-
3755
46
  _:sk_5 :v "-3.843867287441055"^^xsd:decimal .
3756
-
3757
- # ----------------------------------------------------------------------
3758
- # Proof for derived triple:
3759
- # _:sk_5 :md2 "1.0079951313903714"^^xsd:decimal .
3760
- # It holds because the following instance of the rule body is provable:
3761
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
3762
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
3763
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
3764
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
3765
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
3766
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
3767
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
3768
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
3769
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b2 .
3770
- # _:b2 :x 3.0 .
3771
- # _:b2 :y 2.0 .
3772
- # (3.0 "6.714285714285714"^^xsd:decimal) math:difference "-3.7142857142857144"^^xsd:decimal .
3773
- # (2.0 "4.171428571428572"^^xsd:decimal) math:difference "-2.1714285714285717"^^xsd:decimal .
3774
- # ("-3.7142857142857144"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-3.1152619522883156"^^xsd:decimal .
3775
- # ("-2.1714285714285717"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "1.1824648380769414"^^xsd:decimal .
3776
- # ("-3.1152619522883156"^^xsd:decimal "1.1824648380769414"^^xsd:decimal) math:sum "-1.9327971142113742"^^xsd:decimal .
3777
- # ("-3.7142857142857144"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "2.022637223026347"^^xsd:decimal .
3778
- # (0.0 "2.022637223026347"^^xsd:decimal) math:difference "-2.022637223026347"^^xsd:decimal .
3779
- # ("-2.1714285714285717"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-1.8212300644147077"^^xsd:decimal .
3780
- # ("-2.022637223026347"^^xsd:decimal "-1.8212300644147077"^^xsd:decimal) math:sum "-3.843867287441055"^^xsd:decimal .
3781
- # ("-1.9327971142113742"^^xsd:decimal 2.0) math:exponentiation "3.735704684703816"^^xsd:decimal .
3782
- # ("-3.843867287441055"^^xsd:decimal 2.0) math:exponentiation "14.775315723459453"^^xsd:decimal .
3783
- # ("3.735704684703816"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.09693833775959837"^^xsd:decimal .
3784
- # ("14.775315723459453"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.9110567936307731"^^xsd:decimal .
3785
- # ("0.09693833775959837"^^xsd:decimal "0.9110567936307731"^^xsd:decimal) math:sum "1.0079951313903714"^^xsd:decimal .
3786
- # via the schematic forward rule:
3787
- # {
3788
- # :PCA1 :points ?pts .
3789
- # :PCA1 :meanX ?mx .
3790
- # :PCA1 :meanY ?my .
3791
- # :PCA1 :thetaRad ?theta .
3792
- # :PCA1 :lambda1 ?l1 .
3793
- # :PCA1 :lambda2 ?l2 .
3794
- # ?theta math:cos ?c .
3795
- # ?theta math:sin ?s .
3796
- # ?pts list:member ?p .
3797
- # ?p :x ?x .
3798
- # ?p :y ?y .
3799
- # (?x ?mx) math:difference ?dx .
3800
- # (?y ?my) math:difference ?dy .
3801
- # (?dx ?c) math:product ?dxC .
3802
- # (?dy ?s) math:product ?dyS .
3803
- # (?dxC ?dyS) math:sum ?u .
3804
- # (?dx ?s) math:product ?dxS .
3805
- # (0.0 ?dxS) math:difference ?negDxS .
3806
- # (?dy ?c) math:product ?dyC .
3807
- # (?negDxS ?dyC) math:sum ?v .
3808
- # (?u 2.0) math:exponentiation ?u2 .
3809
- # (?v 2.0) math:exponentiation ?v2 .
3810
- # (?u2 ?l1) math:quotient ?u2Over .
3811
- # (?v2 ?l2) math:quotient ?v2Over .
3812
- # (?u2Over ?v2Over) math:sum ?md2 .
3813
- # } => {
3814
- # _:b8 :point ?p .
3815
- # _:b8 :u ?u .
3816
- # _:b8 :v ?v .
3817
- # _:b8 :md2 ?md2 .
3818
- # :PCA1 :score _:b8 .
3819
- # } .
3820
- # with substitution (on rule variables):
3821
- # ?c = "0.8387243717699311"^^xsd:decimal
3822
- # ?dx = "-3.7142857142857144"^^xsd:decimal
3823
- # ?dxC = "-3.1152619522883156"^^xsd:decimal
3824
- # ?dxS = "2.022637223026347"^^xsd:decimal
3825
- # ?dy = "-2.1714285714285717"^^xsd:decimal
3826
- # ?dyC = "-1.8212300644147077"^^xsd:decimal
3827
- # ?dyS = "1.1824648380769414"^^xsd:decimal
3828
- # ?l1 = "38.53691708607748"^^xsd:decimal
3829
- # ?l2 = "16.217776791473543"^^xsd:decimal
3830
- # ?md2 = "1.0079951313903714"^^xsd:decimal
3831
- # ?mx = "6.714285714285714"^^xsd:decimal
3832
- # ?my = "4.171428571428572"^^xsd:decimal
3833
- # ?negDxS = "-2.022637223026347"^^xsd:decimal
3834
- # ?p = _:b2
3835
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
3836
- # ?s = "-0.5445561754301703"^^xsd:decimal
3837
- # ?theta = "-0.5758598575998168"^^xsd:decimal
3838
- # ?u = "-1.9327971142113742"^^xsd:decimal
3839
- # ?u2 = "3.735704684703816"^^xsd:decimal
3840
- # ?u2Over = "0.09693833775959837"^^xsd:decimal
3841
- # ?v = "-3.843867287441055"^^xsd:decimal
3842
- # ?v2 = "14.775315723459453"^^xsd:decimal
3843
- # ?v2Over = "0.9110567936307731"^^xsd:decimal
3844
- # ?x = 3.0
3845
- # ?y = 2.0
3846
- # Therefore the derived triple above is entailed by the rules and facts.
3847
- # ----------------------------------------------------------------------
3848
-
3849
47
  _:sk_5 :md2 "1.0079951313903714"^^xsd:decimal .
3850
-
3851
- # ----------------------------------------------------------------------
3852
- # Proof for derived triple:
3853
- # :PCA1 :score _:sk_5 .
3854
- # It holds because the following instance of the rule body is provable:
3855
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
3856
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
3857
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
3858
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
3859
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
3860
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
3861
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
3862
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
3863
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b2 .
3864
- # _:b2 :x 3.0 .
3865
- # _:b2 :y 2.0 .
3866
- # (3.0 "6.714285714285714"^^xsd:decimal) math:difference "-3.7142857142857144"^^xsd:decimal .
3867
- # (2.0 "4.171428571428572"^^xsd:decimal) math:difference "-2.1714285714285717"^^xsd:decimal .
3868
- # ("-3.7142857142857144"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-3.1152619522883156"^^xsd:decimal .
3869
- # ("-2.1714285714285717"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "1.1824648380769414"^^xsd:decimal .
3870
- # ("-3.1152619522883156"^^xsd:decimal "1.1824648380769414"^^xsd:decimal) math:sum "-1.9327971142113742"^^xsd:decimal .
3871
- # ("-3.7142857142857144"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "2.022637223026347"^^xsd:decimal .
3872
- # (0.0 "2.022637223026347"^^xsd:decimal) math:difference "-2.022637223026347"^^xsd:decimal .
3873
- # ("-2.1714285714285717"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-1.8212300644147077"^^xsd:decimal .
3874
- # ("-2.022637223026347"^^xsd:decimal "-1.8212300644147077"^^xsd:decimal) math:sum "-3.843867287441055"^^xsd:decimal .
3875
- # ("-1.9327971142113742"^^xsd:decimal 2.0) math:exponentiation "3.735704684703816"^^xsd:decimal .
3876
- # ("-3.843867287441055"^^xsd:decimal 2.0) math:exponentiation "14.775315723459453"^^xsd:decimal .
3877
- # ("3.735704684703816"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.09693833775959837"^^xsd:decimal .
3878
- # ("14.775315723459453"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "0.9110567936307731"^^xsd:decimal .
3879
- # ("0.09693833775959837"^^xsd:decimal "0.9110567936307731"^^xsd:decimal) math:sum "1.0079951313903714"^^xsd:decimal .
3880
- # via the schematic forward rule:
3881
- # {
3882
- # :PCA1 :points ?pts .
3883
- # :PCA1 :meanX ?mx .
3884
- # :PCA1 :meanY ?my .
3885
- # :PCA1 :thetaRad ?theta .
3886
- # :PCA1 :lambda1 ?l1 .
3887
- # :PCA1 :lambda2 ?l2 .
3888
- # ?theta math:cos ?c .
3889
- # ?theta math:sin ?s .
3890
- # ?pts list:member ?p .
3891
- # ?p :x ?x .
3892
- # ?p :y ?y .
3893
- # (?x ?mx) math:difference ?dx .
3894
- # (?y ?my) math:difference ?dy .
3895
- # (?dx ?c) math:product ?dxC .
3896
- # (?dy ?s) math:product ?dyS .
3897
- # (?dxC ?dyS) math:sum ?u .
3898
- # (?dx ?s) math:product ?dxS .
3899
- # (0.0 ?dxS) math:difference ?negDxS .
3900
- # (?dy ?c) math:product ?dyC .
3901
- # (?negDxS ?dyC) math:sum ?v .
3902
- # (?u 2.0) math:exponentiation ?u2 .
3903
- # (?v 2.0) math:exponentiation ?v2 .
3904
- # (?u2 ?l1) math:quotient ?u2Over .
3905
- # (?v2 ?l2) math:quotient ?v2Over .
3906
- # (?u2Over ?v2Over) math:sum ?md2 .
3907
- # } => {
3908
- # _:b8 :point ?p .
3909
- # _:b8 :u ?u .
3910
- # _:b8 :v ?v .
3911
- # _:b8 :md2 ?md2 .
3912
- # :PCA1 :score _:b8 .
3913
- # } .
3914
- # with substitution (on rule variables):
3915
- # ?c = "0.8387243717699311"^^xsd:decimal
3916
- # ?dx = "-3.7142857142857144"^^xsd:decimal
3917
- # ?dxC = "-3.1152619522883156"^^xsd:decimal
3918
- # ?dxS = "2.022637223026347"^^xsd:decimal
3919
- # ?dy = "-2.1714285714285717"^^xsd:decimal
3920
- # ?dyC = "-1.8212300644147077"^^xsd:decimal
3921
- # ?dyS = "1.1824648380769414"^^xsd:decimal
3922
- # ?l1 = "38.53691708607748"^^xsd:decimal
3923
- # ?l2 = "16.217776791473543"^^xsd:decimal
3924
- # ?md2 = "1.0079951313903714"^^xsd:decimal
3925
- # ?mx = "6.714285714285714"^^xsd:decimal
3926
- # ?my = "4.171428571428572"^^xsd:decimal
3927
- # ?negDxS = "-2.022637223026347"^^xsd:decimal
3928
- # ?p = _:b2
3929
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
3930
- # ?s = "-0.5445561754301703"^^xsd:decimal
3931
- # ?theta = "-0.5758598575998168"^^xsd:decimal
3932
- # ?u = "-1.9327971142113742"^^xsd:decimal
3933
- # ?u2 = "3.735704684703816"^^xsd:decimal
3934
- # ?u2Over = "0.09693833775959837"^^xsd:decimal
3935
- # ?v = "-3.843867287441055"^^xsd:decimal
3936
- # ?v2 = "14.775315723459453"^^xsd:decimal
3937
- # ?v2Over = "0.9110567936307731"^^xsd:decimal
3938
- # ?x = 3.0
3939
- # ?y = 2.0
3940
- # Therefore the derived triple above is entailed by the rules and facts.
3941
- # ----------------------------------------------------------------------
3942
-
3943
48
  :PCA1 :score _:sk_5 .
3944
-
3945
- # ----------------------------------------------------------------------
3946
- # Proof for derived triple:
3947
- # _:sk_6 :point _:b1 .
3948
- # It holds because the following instance of the rule body is provable:
3949
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
3950
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
3951
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
3952
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
3953
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
3954
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
3955
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
3956
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
3957
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b1 .
3958
- # _:b1 :x 2.0 .
3959
- # _:b1 :y 1.0 .
3960
- # (2.0 "6.714285714285714"^^xsd:decimal) math:difference "-4.714285714285714"^^xsd:decimal .
3961
- # (1.0 "4.171428571428572"^^xsd:decimal) math:difference "-3.1714285714285717"^^xsd:decimal .
3962
- # ("-4.714285714285714"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-3.9539863240582465"^^xsd:decimal .
3963
- # ("-3.1714285714285717"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "1.7270210135071118"^^xsd:decimal .
3964
- # ("-3.9539863240582465"^^xsd:decimal "1.7270210135071118"^^xsd:decimal) math:sum "-2.226965310551135"^^xsd:decimal .
3965
- # ("-4.714285714285714"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "2.567193398456517"^^xsd:decimal .
3966
- # (0.0 "2.567193398456517"^^xsd:decimal) math:difference "-2.567193398456517"^^xsd:decimal .
3967
- # ("-3.1714285714285717"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-2.659954436184639"^^xsd:decimal .
3968
- # ("-2.567193398456517"^^xsd:decimal "-2.659954436184639"^^xsd:decimal) math:sum "-5.227147834641157"^^xsd:decimal .
3969
- # ("-2.226965310551135"^^xsd:decimal 2.0) math:exponentiation "4.959374494398113"^^xsd:decimal .
3970
- # ("-5.227147834641157"^^xsd:decimal 2.0) math:exponentiation "27.323074485193732"^^xsd:decimal .
3971
- # ("4.959374494398113"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.1286915215174237"^^xsd:decimal .
3972
- # ("27.323074485193732"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "1.6847607928331318"^^xsd:decimal .
3973
- # ("0.1286915215174237"^^xsd:decimal "1.6847607928331318"^^xsd:decimal) math:sum "1.8134523143505556"^^xsd:decimal .
3974
- # via the schematic forward rule:
3975
- # {
3976
- # :PCA1 :points ?pts .
3977
- # :PCA1 :meanX ?mx .
3978
- # :PCA1 :meanY ?my .
3979
- # :PCA1 :thetaRad ?theta .
3980
- # :PCA1 :lambda1 ?l1 .
3981
- # :PCA1 :lambda2 ?l2 .
3982
- # ?theta math:cos ?c .
3983
- # ?theta math:sin ?s .
3984
- # ?pts list:member ?p .
3985
- # ?p :x ?x .
3986
- # ?p :y ?y .
3987
- # (?x ?mx) math:difference ?dx .
3988
- # (?y ?my) math:difference ?dy .
3989
- # (?dx ?c) math:product ?dxC .
3990
- # (?dy ?s) math:product ?dyS .
3991
- # (?dxC ?dyS) math:sum ?u .
3992
- # (?dx ?s) math:product ?dxS .
3993
- # (0.0 ?dxS) math:difference ?negDxS .
3994
- # (?dy ?c) math:product ?dyC .
3995
- # (?negDxS ?dyC) math:sum ?v .
3996
- # (?u 2.0) math:exponentiation ?u2 .
3997
- # (?v 2.0) math:exponentiation ?v2 .
3998
- # (?u2 ?l1) math:quotient ?u2Over .
3999
- # (?v2 ?l2) math:quotient ?v2Over .
4000
- # (?u2Over ?v2Over) math:sum ?md2 .
4001
- # } => {
4002
- # _:b8 :point ?p .
4003
- # _:b8 :u ?u .
4004
- # _:b8 :v ?v .
4005
- # _:b8 :md2 ?md2 .
4006
- # :PCA1 :score _:b8 .
4007
- # } .
4008
- # with substitution (on rule variables):
4009
- # ?c = "0.8387243717699311"^^xsd:decimal
4010
- # ?dx = "-4.714285714285714"^^xsd:decimal
4011
- # ?dxC = "-3.9539863240582465"^^xsd:decimal
4012
- # ?dxS = "2.567193398456517"^^xsd:decimal
4013
- # ?dy = "-3.1714285714285717"^^xsd:decimal
4014
- # ?dyC = "-2.659954436184639"^^xsd:decimal
4015
- # ?dyS = "1.7270210135071118"^^xsd:decimal
4016
- # ?l1 = "38.53691708607748"^^xsd:decimal
4017
- # ?l2 = "16.217776791473543"^^xsd:decimal
4018
- # ?md2 = "1.8134523143505556"^^xsd:decimal
4019
- # ?mx = "6.714285714285714"^^xsd:decimal
4020
- # ?my = "4.171428571428572"^^xsd:decimal
4021
- # ?negDxS = "-2.567193398456517"^^xsd:decimal
4022
- # ?p = _:b1
4023
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
4024
- # ?s = "-0.5445561754301703"^^xsd:decimal
4025
- # ?theta = "-0.5758598575998168"^^xsd:decimal
4026
- # ?u = "-2.226965310551135"^^xsd:decimal
4027
- # ?u2 = "4.959374494398113"^^xsd:decimal
4028
- # ?u2Over = "0.1286915215174237"^^xsd:decimal
4029
- # ?v = "-5.227147834641157"^^xsd:decimal
4030
- # ?v2 = "27.323074485193732"^^xsd:decimal
4031
- # ?v2Over = "1.6847607928331318"^^xsd:decimal
4032
- # ?x = 2.0
4033
- # ?y = 1.0
4034
- # Therefore the derived triple above is entailed by the rules and facts.
4035
- # ----------------------------------------------------------------------
4036
-
4037
49
  _:sk_6 :point _:b1 .
4038
-
4039
- # ----------------------------------------------------------------------
4040
- # Proof for derived triple:
4041
- # _:sk_6 :u "-2.226965310551135"^^xsd:decimal .
4042
- # It holds because the following instance of the rule body is provable:
4043
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
4044
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
4045
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
4046
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
4047
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
4048
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
4049
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
4050
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
4051
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b1 .
4052
- # _:b1 :x 2.0 .
4053
- # _:b1 :y 1.0 .
4054
- # (2.0 "6.714285714285714"^^xsd:decimal) math:difference "-4.714285714285714"^^xsd:decimal .
4055
- # (1.0 "4.171428571428572"^^xsd:decimal) math:difference "-3.1714285714285717"^^xsd:decimal .
4056
- # ("-4.714285714285714"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-3.9539863240582465"^^xsd:decimal .
4057
- # ("-3.1714285714285717"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "1.7270210135071118"^^xsd:decimal .
4058
- # ("-3.9539863240582465"^^xsd:decimal "1.7270210135071118"^^xsd:decimal) math:sum "-2.226965310551135"^^xsd:decimal .
4059
- # ("-4.714285714285714"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "2.567193398456517"^^xsd:decimal .
4060
- # (0.0 "2.567193398456517"^^xsd:decimal) math:difference "-2.567193398456517"^^xsd:decimal .
4061
- # ("-3.1714285714285717"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-2.659954436184639"^^xsd:decimal .
4062
- # ("-2.567193398456517"^^xsd:decimal "-2.659954436184639"^^xsd:decimal) math:sum "-5.227147834641157"^^xsd:decimal .
4063
- # ("-2.226965310551135"^^xsd:decimal 2.0) math:exponentiation "4.959374494398113"^^xsd:decimal .
4064
- # ("-5.227147834641157"^^xsd:decimal 2.0) math:exponentiation "27.323074485193732"^^xsd:decimal .
4065
- # ("4.959374494398113"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.1286915215174237"^^xsd:decimal .
4066
- # ("27.323074485193732"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "1.6847607928331318"^^xsd:decimal .
4067
- # ("0.1286915215174237"^^xsd:decimal "1.6847607928331318"^^xsd:decimal) math:sum "1.8134523143505556"^^xsd:decimal .
4068
- # via the schematic forward rule:
4069
- # {
4070
- # :PCA1 :points ?pts .
4071
- # :PCA1 :meanX ?mx .
4072
- # :PCA1 :meanY ?my .
4073
- # :PCA1 :thetaRad ?theta .
4074
- # :PCA1 :lambda1 ?l1 .
4075
- # :PCA1 :lambda2 ?l2 .
4076
- # ?theta math:cos ?c .
4077
- # ?theta math:sin ?s .
4078
- # ?pts list:member ?p .
4079
- # ?p :x ?x .
4080
- # ?p :y ?y .
4081
- # (?x ?mx) math:difference ?dx .
4082
- # (?y ?my) math:difference ?dy .
4083
- # (?dx ?c) math:product ?dxC .
4084
- # (?dy ?s) math:product ?dyS .
4085
- # (?dxC ?dyS) math:sum ?u .
4086
- # (?dx ?s) math:product ?dxS .
4087
- # (0.0 ?dxS) math:difference ?negDxS .
4088
- # (?dy ?c) math:product ?dyC .
4089
- # (?negDxS ?dyC) math:sum ?v .
4090
- # (?u 2.0) math:exponentiation ?u2 .
4091
- # (?v 2.0) math:exponentiation ?v2 .
4092
- # (?u2 ?l1) math:quotient ?u2Over .
4093
- # (?v2 ?l2) math:quotient ?v2Over .
4094
- # (?u2Over ?v2Over) math:sum ?md2 .
4095
- # } => {
4096
- # _:b8 :point ?p .
4097
- # _:b8 :u ?u .
4098
- # _:b8 :v ?v .
4099
- # _:b8 :md2 ?md2 .
4100
- # :PCA1 :score _:b8 .
4101
- # } .
4102
- # with substitution (on rule variables):
4103
- # ?c = "0.8387243717699311"^^xsd:decimal
4104
- # ?dx = "-4.714285714285714"^^xsd:decimal
4105
- # ?dxC = "-3.9539863240582465"^^xsd:decimal
4106
- # ?dxS = "2.567193398456517"^^xsd:decimal
4107
- # ?dy = "-3.1714285714285717"^^xsd:decimal
4108
- # ?dyC = "-2.659954436184639"^^xsd:decimal
4109
- # ?dyS = "1.7270210135071118"^^xsd:decimal
4110
- # ?l1 = "38.53691708607748"^^xsd:decimal
4111
- # ?l2 = "16.217776791473543"^^xsd:decimal
4112
- # ?md2 = "1.8134523143505556"^^xsd:decimal
4113
- # ?mx = "6.714285714285714"^^xsd:decimal
4114
- # ?my = "4.171428571428572"^^xsd:decimal
4115
- # ?negDxS = "-2.567193398456517"^^xsd:decimal
4116
- # ?p = _:b1
4117
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
4118
- # ?s = "-0.5445561754301703"^^xsd:decimal
4119
- # ?theta = "-0.5758598575998168"^^xsd:decimal
4120
- # ?u = "-2.226965310551135"^^xsd:decimal
4121
- # ?u2 = "4.959374494398113"^^xsd:decimal
4122
- # ?u2Over = "0.1286915215174237"^^xsd:decimal
4123
- # ?v = "-5.227147834641157"^^xsd:decimal
4124
- # ?v2 = "27.323074485193732"^^xsd:decimal
4125
- # ?v2Over = "1.6847607928331318"^^xsd:decimal
4126
- # ?x = 2.0
4127
- # ?y = 1.0
4128
- # Therefore the derived triple above is entailed by the rules and facts.
4129
- # ----------------------------------------------------------------------
4130
-
4131
50
  _:sk_6 :u "-2.226965310551135"^^xsd:decimal .
4132
-
4133
- # ----------------------------------------------------------------------
4134
- # Proof for derived triple:
4135
- # _:sk_6 :v "-5.227147834641157"^^xsd:decimal .
4136
- # It holds because the following instance of the rule body is provable:
4137
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
4138
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
4139
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
4140
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
4141
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
4142
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
4143
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
4144
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
4145
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b1 .
4146
- # _:b1 :x 2.0 .
4147
- # _:b1 :y 1.0 .
4148
- # (2.0 "6.714285714285714"^^xsd:decimal) math:difference "-4.714285714285714"^^xsd:decimal .
4149
- # (1.0 "4.171428571428572"^^xsd:decimal) math:difference "-3.1714285714285717"^^xsd:decimal .
4150
- # ("-4.714285714285714"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-3.9539863240582465"^^xsd:decimal .
4151
- # ("-3.1714285714285717"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "1.7270210135071118"^^xsd:decimal .
4152
- # ("-3.9539863240582465"^^xsd:decimal "1.7270210135071118"^^xsd:decimal) math:sum "-2.226965310551135"^^xsd:decimal .
4153
- # ("-4.714285714285714"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "2.567193398456517"^^xsd:decimal .
4154
- # (0.0 "2.567193398456517"^^xsd:decimal) math:difference "-2.567193398456517"^^xsd:decimal .
4155
- # ("-3.1714285714285717"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-2.659954436184639"^^xsd:decimal .
4156
- # ("-2.567193398456517"^^xsd:decimal "-2.659954436184639"^^xsd:decimal) math:sum "-5.227147834641157"^^xsd:decimal .
4157
- # ("-2.226965310551135"^^xsd:decimal 2.0) math:exponentiation "4.959374494398113"^^xsd:decimal .
4158
- # ("-5.227147834641157"^^xsd:decimal 2.0) math:exponentiation "27.323074485193732"^^xsd:decimal .
4159
- # ("4.959374494398113"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.1286915215174237"^^xsd:decimal .
4160
- # ("27.323074485193732"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "1.6847607928331318"^^xsd:decimal .
4161
- # ("0.1286915215174237"^^xsd:decimal "1.6847607928331318"^^xsd:decimal) math:sum "1.8134523143505556"^^xsd:decimal .
4162
- # via the schematic forward rule:
4163
- # {
4164
- # :PCA1 :points ?pts .
4165
- # :PCA1 :meanX ?mx .
4166
- # :PCA1 :meanY ?my .
4167
- # :PCA1 :thetaRad ?theta .
4168
- # :PCA1 :lambda1 ?l1 .
4169
- # :PCA1 :lambda2 ?l2 .
4170
- # ?theta math:cos ?c .
4171
- # ?theta math:sin ?s .
4172
- # ?pts list:member ?p .
4173
- # ?p :x ?x .
4174
- # ?p :y ?y .
4175
- # (?x ?mx) math:difference ?dx .
4176
- # (?y ?my) math:difference ?dy .
4177
- # (?dx ?c) math:product ?dxC .
4178
- # (?dy ?s) math:product ?dyS .
4179
- # (?dxC ?dyS) math:sum ?u .
4180
- # (?dx ?s) math:product ?dxS .
4181
- # (0.0 ?dxS) math:difference ?negDxS .
4182
- # (?dy ?c) math:product ?dyC .
4183
- # (?negDxS ?dyC) math:sum ?v .
4184
- # (?u 2.0) math:exponentiation ?u2 .
4185
- # (?v 2.0) math:exponentiation ?v2 .
4186
- # (?u2 ?l1) math:quotient ?u2Over .
4187
- # (?v2 ?l2) math:quotient ?v2Over .
4188
- # (?u2Over ?v2Over) math:sum ?md2 .
4189
- # } => {
4190
- # _:b8 :point ?p .
4191
- # _:b8 :u ?u .
4192
- # _:b8 :v ?v .
4193
- # _:b8 :md2 ?md2 .
4194
- # :PCA1 :score _:b8 .
4195
- # } .
4196
- # with substitution (on rule variables):
4197
- # ?c = "0.8387243717699311"^^xsd:decimal
4198
- # ?dx = "-4.714285714285714"^^xsd:decimal
4199
- # ?dxC = "-3.9539863240582465"^^xsd:decimal
4200
- # ?dxS = "2.567193398456517"^^xsd:decimal
4201
- # ?dy = "-3.1714285714285717"^^xsd:decimal
4202
- # ?dyC = "-2.659954436184639"^^xsd:decimal
4203
- # ?dyS = "1.7270210135071118"^^xsd:decimal
4204
- # ?l1 = "38.53691708607748"^^xsd:decimal
4205
- # ?l2 = "16.217776791473543"^^xsd:decimal
4206
- # ?md2 = "1.8134523143505556"^^xsd:decimal
4207
- # ?mx = "6.714285714285714"^^xsd:decimal
4208
- # ?my = "4.171428571428572"^^xsd:decimal
4209
- # ?negDxS = "-2.567193398456517"^^xsd:decimal
4210
- # ?p = _:b1
4211
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
4212
- # ?s = "-0.5445561754301703"^^xsd:decimal
4213
- # ?theta = "-0.5758598575998168"^^xsd:decimal
4214
- # ?u = "-2.226965310551135"^^xsd:decimal
4215
- # ?u2 = "4.959374494398113"^^xsd:decimal
4216
- # ?u2Over = "0.1286915215174237"^^xsd:decimal
4217
- # ?v = "-5.227147834641157"^^xsd:decimal
4218
- # ?v2 = "27.323074485193732"^^xsd:decimal
4219
- # ?v2Over = "1.6847607928331318"^^xsd:decimal
4220
- # ?x = 2.0
4221
- # ?y = 1.0
4222
- # Therefore the derived triple above is entailed by the rules and facts.
4223
- # ----------------------------------------------------------------------
4224
-
4225
51
  _:sk_6 :v "-5.227147834641157"^^xsd:decimal .
4226
-
4227
- # ----------------------------------------------------------------------
4228
- # Proof for derived triple:
4229
- # _:sk_6 :md2 "1.8134523143505556"^^xsd:decimal .
4230
- # It holds because the following instance of the rule body is provable:
4231
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
4232
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
4233
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
4234
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
4235
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
4236
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
4237
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
4238
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
4239
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b1 .
4240
- # _:b1 :x 2.0 .
4241
- # _:b1 :y 1.0 .
4242
- # (2.0 "6.714285714285714"^^xsd:decimal) math:difference "-4.714285714285714"^^xsd:decimal .
4243
- # (1.0 "4.171428571428572"^^xsd:decimal) math:difference "-3.1714285714285717"^^xsd:decimal .
4244
- # ("-4.714285714285714"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-3.9539863240582465"^^xsd:decimal .
4245
- # ("-3.1714285714285717"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "1.7270210135071118"^^xsd:decimal .
4246
- # ("-3.9539863240582465"^^xsd:decimal "1.7270210135071118"^^xsd:decimal) math:sum "-2.226965310551135"^^xsd:decimal .
4247
- # ("-4.714285714285714"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "2.567193398456517"^^xsd:decimal .
4248
- # (0.0 "2.567193398456517"^^xsd:decimal) math:difference "-2.567193398456517"^^xsd:decimal .
4249
- # ("-3.1714285714285717"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-2.659954436184639"^^xsd:decimal .
4250
- # ("-2.567193398456517"^^xsd:decimal "-2.659954436184639"^^xsd:decimal) math:sum "-5.227147834641157"^^xsd:decimal .
4251
- # ("-2.226965310551135"^^xsd:decimal 2.0) math:exponentiation "4.959374494398113"^^xsd:decimal .
4252
- # ("-5.227147834641157"^^xsd:decimal 2.0) math:exponentiation "27.323074485193732"^^xsd:decimal .
4253
- # ("4.959374494398113"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.1286915215174237"^^xsd:decimal .
4254
- # ("27.323074485193732"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "1.6847607928331318"^^xsd:decimal .
4255
- # ("0.1286915215174237"^^xsd:decimal "1.6847607928331318"^^xsd:decimal) math:sum "1.8134523143505556"^^xsd:decimal .
4256
- # via the schematic forward rule:
4257
- # {
4258
- # :PCA1 :points ?pts .
4259
- # :PCA1 :meanX ?mx .
4260
- # :PCA1 :meanY ?my .
4261
- # :PCA1 :thetaRad ?theta .
4262
- # :PCA1 :lambda1 ?l1 .
4263
- # :PCA1 :lambda2 ?l2 .
4264
- # ?theta math:cos ?c .
4265
- # ?theta math:sin ?s .
4266
- # ?pts list:member ?p .
4267
- # ?p :x ?x .
4268
- # ?p :y ?y .
4269
- # (?x ?mx) math:difference ?dx .
4270
- # (?y ?my) math:difference ?dy .
4271
- # (?dx ?c) math:product ?dxC .
4272
- # (?dy ?s) math:product ?dyS .
4273
- # (?dxC ?dyS) math:sum ?u .
4274
- # (?dx ?s) math:product ?dxS .
4275
- # (0.0 ?dxS) math:difference ?negDxS .
4276
- # (?dy ?c) math:product ?dyC .
4277
- # (?negDxS ?dyC) math:sum ?v .
4278
- # (?u 2.0) math:exponentiation ?u2 .
4279
- # (?v 2.0) math:exponentiation ?v2 .
4280
- # (?u2 ?l1) math:quotient ?u2Over .
4281
- # (?v2 ?l2) math:quotient ?v2Over .
4282
- # (?u2Over ?v2Over) math:sum ?md2 .
4283
- # } => {
4284
- # _:b8 :point ?p .
4285
- # _:b8 :u ?u .
4286
- # _:b8 :v ?v .
4287
- # _:b8 :md2 ?md2 .
4288
- # :PCA1 :score _:b8 .
4289
- # } .
4290
- # with substitution (on rule variables):
4291
- # ?c = "0.8387243717699311"^^xsd:decimal
4292
- # ?dx = "-4.714285714285714"^^xsd:decimal
4293
- # ?dxC = "-3.9539863240582465"^^xsd:decimal
4294
- # ?dxS = "2.567193398456517"^^xsd:decimal
4295
- # ?dy = "-3.1714285714285717"^^xsd:decimal
4296
- # ?dyC = "-2.659954436184639"^^xsd:decimal
4297
- # ?dyS = "1.7270210135071118"^^xsd:decimal
4298
- # ?l1 = "38.53691708607748"^^xsd:decimal
4299
- # ?l2 = "16.217776791473543"^^xsd:decimal
4300
- # ?md2 = "1.8134523143505556"^^xsd:decimal
4301
- # ?mx = "6.714285714285714"^^xsd:decimal
4302
- # ?my = "4.171428571428572"^^xsd:decimal
4303
- # ?negDxS = "-2.567193398456517"^^xsd:decimal
4304
- # ?p = _:b1
4305
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
4306
- # ?s = "-0.5445561754301703"^^xsd:decimal
4307
- # ?theta = "-0.5758598575998168"^^xsd:decimal
4308
- # ?u = "-2.226965310551135"^^xsd:decimal
4309
- # ?u2 = "4.959374494398113"^^xsd:decimal
4310
- # ?u2Over = "0.1286915215174237"^^xsd:decimal
4311
- # ?v = "-5.227147834641157"^^xsd:decimal
4312
- # ?v2 = "27.323074485193732"^^xsd:decimal
4313
- # ?v2Over = "1.6847607928331318"^^xsd:decimal
4314
- # ?x = 2.0
4315
- # ?y = 1.0
4316
- # Therefore the derived triple above is entailed by the rules and facts.
4317
- # ----------------------------------------------------------------------
4318
-
4319
52
  _:sk_6 :md2 "1.8134523143505556"^^xsd:decimal .
4320
-
4321
- # ----------------------------------------------------------------------
4322
- # Proof for derived triple:
4323
- # :PCA1 :score _:sk_6 .
4324
- # It holds because the following instance of the rule body is provable:
4325
- # :PCA1 :points (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) .
4326
- # :PCA1 :meanX "6.714285714285714"^^xsd:decimal .
4327
- # :PCA1 :meanY "4.171428571428572"^^xsd:decimal .
4328
- # :PCA1 :thetaRad "-0.5758598575998168"^^xsd:decimal .
4329
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
4330
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
4331
- # "-0.5758598575998168"^^xsd:decimal math:cos "0.8387243717699311"^^xsd:decimal .
4332
- # "-0.5758598575998168"^^xsd:decimal math:sin "-0.5445561754301703"^^xsd:decimal .
4333
- # (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7) list:member _:b1 .
4334
- # _:b1 :x 2.0 .
4335
- # _:b1 :y 1.0 .
4336
- # (2.0 "6.714285714285714"^^xsd:decimal) math:difference "-4.714285714285714"^^xsd:decimal .
4337
- # (1.0 "4.171428571428572"^^xsd:decimal) math:difference "-3.1714285714285717"^^xsd:decimal .
4338
- # ("-4.714285714285714"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-3.9539863240582465"^^xsd:decimal .
4339
- # ("-3.1714285714285717"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "1.7270210135071118"^^xsd:decimal .
4340
- # ("-3.9539863240582465"^^xsd:decimal "1.7270210135071118"^^xsd:decimal) math:sum "-2.226965310551135"^^xsd:decimal .
4341
- # ("-4.714285714285714"^^xsd:decimal "-0.5445561754301703"^^xsd:decimal) math:product "2.567193398456517"^^xsd:decimal .
4342
- # (0.0 "2.567193398456517"^^xsd:decimal) math:difference "-2.567193398456517"^^xsd:decimal .
4343
- # ("-3.1714285714285717"^^xsd:decimal "0.8387243717699311"^^xsd:decimal) math:product "-2.659954436184639"^^xsd:decimal .
4344
- # ("-2.567193398456517"^^xsd:decimal "-2.659954436184639"^^xsd:decimal) math:sum "-5.227147834641157"^^xsd:decimal .
4345
- # ("-2.226965310551135"^^xsd:decimal 2.0) math:exponentiation "4.959374494398113"^^xsd:decimal .
4346
- # ("-5.227147834641157"^^xsd:decimal 2.0) math:exponentiation "27.323074485193732"^^xsd:decimal .
4347
- # ("4.959374494398113"^^xsd:decimal "38.53691708607748"^^xsd:decimal) math:quotient "0.1286915215174237"^^xsd:decimal .
4348
- # ("27.323074485193732"^^xsd:decimal "16.217776791473543"^^xsd:decimal) math:quotient "1.6847607928331318"^^xsd:decimal .
4349
- # ("0.1286915215174237"^^xsd:decimal "1.6847607928331318"^^xsd:decimal) math:sum "1.8134523143505556"^^xsd:decimal .
4350
- # via the schematic forward rule:
4351
- # {
4352
- # :PCA1 :points ?pts .
4353
- # :PCA1 :meanX ?mx .
4354
- # :PCA1 :meanY ?my .
4355
- # :PCA1 :thetaRad ?theta .
4356
- # :PCA1 :lambda1 ?l1 .
4357
- # :PCA1 :lambda2 ?l2 .
4358
- # ?theta math:cos ?c .
4359
- # ?theta math:sin ?s .
4360
- # ?pts list:member ?p .
4361
- # ?p :x ?x .
4362
- # ?p :y ?y .
4363
- # (?x ?mx) math:difference ?dx .
4364
- # (?y ?my) math:difference ?dy .
4365
- # (?dx ?c) math:product ?dxC .
4366
- # (?dy ?s) math:product ?dyS .
4367
- # (?dxC ?dyS) math:sum ?u .
4368
- # (?dx ?s) math:product ?dxS .
4369
- # (0.0 ?dxS) math:difference ?negDxS .
4370
- # (?dy ?c) math:product ?dyC .
4371
- # (?negDxS ?dyC) math:sum ?v .
4372
- # (?u 2.0) math:exponentiation ?u2 .
4373
- # (?v 2.0) math:exponentiation ?v2 .
4374
- # (?u2 ?l1) math:quotient ?u2Over .
4375
- # (?v2 ?l2) math:quotient ?v2Over .
4376
- # (?u2Over ?v2Over) math:sum ?md2 .
4377
- # } => {
4378
- # _:b8 :point ?p .
4379
- # _:b8 :u ?u .
4380
- # _:b8 :v ?v .
4381
- # _:b8 :md2 ?md2 .
4382
- # :PCA1 :score _:b8 .
4383
- # } .
4384
- # with substitution (on rule variables):
4385
- # ?c = "0.8387243717699311"^^xsd:decimal
4386
- # ?dx = "-4.714285714285714"^^xsd:decimal
4387
- # ?dxC = "-3.9539863240582465"^^xsd:decimal
4388
- # ?dxS = "2.567193398456517"^^xsd:decimal
4389
- # ?dy = "-3.1714285714285717"^^xsd:decimal
4390
- # ?dyC = "-2.659954436184639"^^xsd:decimal
4391
- # ?dyS = "1.7270210135071118"^^xsd:decimal
4392
- # ?l1 = "38.53691708607748"^^xsd:decimal
4393
- # ?l2 = "16.217776791473543"^^xsd:decimal
4394
- # ?md2 = "1.8134523143505556"^^xsd:decimal
4395
- # ?mx = "6.714285714285714"^^xsd:decimal
4396
- # ?my = "4.171428571428572"^^xsd:decimal
4397
- # ?negDxS = "-2.567193398456517"^^xsd:decimal
4398
- # ?p = _:b1
4399
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5 _:b6 _:b7)
4400
- # ?s = "-0.5445561754301703"^^xsd:decimal
4401
- # ?theta = "-0.5758598575998168"^^xsd:decimal
4402
- # ?u = "-2.226965310551135"^^xsd:decimal
4403
- # ?u2 = "4.959374494398113"^^xsd:decimal
4404
- # ?u2Over = "0.1286915215174237"^^xsd:decimal
4405
- # ?v = "-5.227147834641157"^^xsd:decimal
4406
- # ?v2 = "27.323074485193732"^^xsd:decimal
4407
- # ?v2Over = "1.6847607928331318"^^xsd:decimal
4408
- # ?x = 2.0
4409
- # ?y = 1.0
4410
- # Therefore the derived triple above is entailed by the rules and facts.
4411
- # ----------------------------------------------------------------------
4412
-
4413
53
  :PCA1 :score _:sk_6 .
4414
-
4415
- # ----------------------------------------------------------------------
4416
- # Proof for derived triple:
4417
- # :PCA1 :sigma1 "6.207810973771469"^^xsd:decimal .
4418
- # It holds because the following instance of the rule body is provable:
4419
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
4420
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
4421
- # ("38.53691708607748"^^xsd:decimal 0.5) math:exponentiation "6.207810973771469"^^xsd:decimal .
4422
- # ("16.217776791473543"^^xsd:decimal 0.5) math:exponentiation "4.027130093686265"^^xsd:decimal .
4423
- # (5.991 0.5) math:exponentiation "2.4476519360399265"^^xsd:decimal .
4424
- # ("2.4476519360399265"^^xsd:decimal "6.207810973771469"^^xsd:decimal) math:product "15.194560548521638"^^xsd:decimal .
4425
- # ("2.4476519360399265"^^xsd:decimal "4.027130093686265"^^xsd:decimal) math:product "9.857012770495835"^^xsd:decimal .
4426
- # (3.141592653589793 "15.194560548521638"^^xsd:decimal) math:product "47.73511979376087"^^xsd:decimal .
4427
- # ("47.73511979376087"^^xsd:decimal "9.857012770495835"^^xsd:decimal) math:product "470.52568540824944"^^xsd:decimal .
4428
- # via the schematic forward rule:
4429
- # {
4430
- # :PCA1 :lambda1 ?l1 .
4431
- # :PCA1 :lambda2 ?l2 .
4432
- # (?l1 0.5) math:exponentiation ?sigma1 .
4433
- # (?l2 0.5) math:exponentiation ?sigma2 .
4434
- # (5.991 0.5) math:exponentiation ?k95 .
4435
- # (?k95 ?sigma1) math:product ?a95 .
4436
- # (?k95 ?sigma2) math:product ?b95 .
4437
- # (3.141592653589793 ?a95) math:product ?piA .
4438
- # (?piA ?b95) math:product ?area95 .
4439
- # } => {
4440
- # :PCA1 :sigma1 ?sigma1 .
4441
- # :PCA1 :sigma2 ?sigma2 .
4442
- # _:b11 :k ?k95 .
4443
- # _:b11 :a ?a95 .
4444
- # _:b11 :b ?b95 .
4445
- # _:b11 :area ?area95 .
4446
- # :PCA1 :ellipse95 _:b11 .
4447
- # } .
4448
- # with substitution (on rule variables):
4449
- # ?a95 = "15.194560548521638"^^xsd:decimal
4450
- # ?area95 = "470.52568540824944"^^xsd:decimal
4451
- # ?b95 = "9.857012770495835"^^xsd:decimal
4452
- # ?k95 = "2.4476519360399265"^^xsd:decimal
4453
- # ?l1 = "38.53691708607748"^^xsd:decimal
4454
- # ?l2 = "16.217776791473543"^^xsd:decimal
4455
- # ?piA = "47.73511979376087"^^xsd:decimal
4456
- # ?sigma1 = "6.207810973771469"^^xsd:decimal
4457
- # ?sigma2 = "4.027130093686265"^^xsd:decimal
4458
- # Therefore the derived triple above is entailed by the rules and facts.
4459
- # ----------------------------------------------------------------------
4460
-
4461
54
  :PCA1 :sigma1 "6.207810973771469"^^xsd:decimal .
4462
-
4463
- # ----------------------------------------------------------------------
4464
- # Proof for derived triple:
4465
- # :PCA1 :sigma2 "4.027130093686265"^^xsd:decimal .
4466
- # It holds because the following instance of the rule body is provable:
4467
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
4468
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
4469
- # ("38.53691708607748"^^xsd:decimal 0.5) math:exponentiation "6.207810973771469"^^xsd:decimal .
4470
- # ("16.217776791473543"^^xsd:decimal 0.5) math:exponentiation "4.027130093686265"^^xsd:decimal .
4471
- # (5.991 0.5) math:exponentiation "2.4476519360399265"^^xsd:decimal .
4472
- # ("2.4476519360399265"^^xsd:decimal "6.207810973771469"^^xsd:decimal) math:product "15.194560548521638"^^xsd:decimal .
4473
- # ("2.4476519360399265"^^xsd:decimal "4.027130093686265"^^xsd:decimal) math:product "9.857012770495835"^^xsd:decimal .
4474
- # (3.141592653589793 "15.194560548521638"^^xsd:decimal) math:product "47.73511979376087"^^xsd:decimal .
4475
- # ("47.73511979376087"^^xsd:decimal "9.857012770495835"^^xsd:decimal) math:product "470.52568540824944"^^xsd:decimal .
4476
- # via the schematic forward rule:
4477
- # {
4478
- # :PCA1 :lambda1 ?l1 .
4479
- # :PCA1 :lambda2 ?l2 .
4480
- # (?l1 0.5) math:exponentiation ?sigma1 .
4481
- # (?l2 0.5) math:exponentiation ?sigma2 .
4482
- # (5.991 0.5) math:exponentiation ?k95 .
4483
- # (?k95 ?sigma1) math:product ?a95 .
4484
- # (?k95 ?sigma2) math:product ?b95 .
4485
- # (3.141592653589793 ?a95) math:product ?piA .
4486
- # (?piA ?b95) math:product ?area95 .
4487
- # } => {
4488
- # :PCA1 :sigma1 ?sigma1 .
4489
- # :PCA1 :sigma2 ?sigma2 .
4490
- # _:b11 :k ?k95 .
4491
- # _:b11 :a ?a95 .
4492
- # _:b11 :b ?b95 .
4493
- # _:b11 :area ?area95 .
4494
- # :PCA1 :ellipse95 _:b11 .
4495
- # } .
4496
- # with substitution (on rule variables):
4497
- # ?a95 = "15.194560548521638"^^xsd:decimal
4498
- # ?area95 = "470.52568540824944"^^xsd:decimal
4499
- # ?b95 = "9.857012770495835"^^xsd:decimal
4500
- # ?k95 = "2.4476519360399265"^^xsd:decimal
4501
- # ?l1 = "38.53691708607748"^^xsd:decimal
4502
- # ?l2 = "16.217776791473543"^^xsd:decimal
4503
- # ?piA = "47.73511979376087"^^xsd:decimal
4504
- # ?sigma1 = "6.207810973771469"^^xsd:decimal
4505
- # ?sigma2 = "4.027130093686265"^^xsd:decimal
4506
- # Therefore the derived triple above is entailed by the rules and facts.
4507
- # ----------------------------------------------------------------------
4508
-
4509
55
  :PCA1 :sigma2 "4.027130093686265"^^xsd:decimal .
4510
-
4511
- # ----------------------------------------------------------------------
4512
- # Proof for derived triple:
4513
- # _:sk_7 :k "2.4476519360399265"^^xsd:decimal .
4514
- # It holds because the following instance of the rule body is provable:
4515
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
4516
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
4517
- # ("38.53691708607748"^^xsd:decimal 0.5) math:exponentiation "6.207810973771469"^^xsd:decimal .
4518
- # ("16.217776791473543"^^xsd:decimal 0.5) math:exponentiation "4.027130093686265"^^xsd:decimal .
4519
- # (5.991 0.5) math:exponentiation "2.4476519360399265"^^xsd:decimal .
4520
- # ("2.4476519360399265"^^xsd:decimal "6.207810973771469"^^xsd:decimal) math:product "15.194560548521638"^^xsd:decimal .
4521
- # ("2.4476519360399265"^^xsd:decimal "4.027130093686265"^^xsd:decimal) math:product "9.857012770495835"^^xsd:decimal .
4522
- # (3.141592653589793 "15.194560548521638"^^xsd:decimal) math:product "47.73511979376087"^^xsd:decimal .
4523
- # ("47.73511979376087"^^xsd:decimal "9.857012770495835"^^xsd:decimal) math:product "470.52568540824944"^^xsd:decimal .
4524
- # via the schematic forward rule:
4525
- # {
4526
- # :PCA1 :lambda1 ?l1 .
4527
- # :PCA1 :lambda2 ?l2 .
4528
- # (?l1 0.5) math:exponentiation ?sigma1 .
4529
- # (?l2 0.5) math:exponentiation ?sigma2 .
4530
- # (5.991 0.5) math:exponentiation ?k95 .
4531
- # (?k95 ?sigma1) math:product ?a95 .
4532
- # (?k95 ?sigma2) math:product ?b95 .
4533
- # (3.141592653589793 ?a95) math:product ?piA .
4534
- # (?piA ?b95) math:product ?area95 .
4535
- # } => {
4536
- # :PCA1 :sigma1 ?sigma1 .
4537
- # :PCA1 :sigma2 ?sigma2 .
4538
- # _:b11 :k ?k95 .
4539
- # _:b11 :a ?a95 .
4540
- # _:b11 :b ?b95 .
4541
- # _:b11 :area ?area95 .
4542
- # :PCA1 :ellipse95 _:b11 .
4543
- # } .
4544
- # with substitution (on rule variables):
4545
- # ?a95 = "15.194560548521638"^^xsd:decimal
4546
- # ?area95 = "470.52568540824944"^^xsd:decimal
4547
- # ?b95 = "9.857012770495835"^^xsd:decimal
4548
- # ?k95 = "2.4476519360399265"^^xsd:decimal
4549
- # ?l1 = "38.53691708607748"^^xsd:decimal
4550
- # ?l2 = "16.217776791473543"^^xsd:decimal
4551
- # ?piA = "47.73511979376087"^^xsd:decimal
4552
- # ?sigma1 = "6.207810973771469"^^xsd:decimal
4553
- # ?sigma2 = "4.027130093686265"^^xsd:decimal
4554
- # Therefore the derived triple above is entailed by the rules and facts.
4555
- # ----------------------------------------------------------------------
4556
-
4557
56
  _:sk_7 :k "2.4476519360399265"^^xsd:decimal .
4558
-
4559
- # ----------------------------------------------------------------------
4560
- # Proof for derived triple:
4561
- # _:sk_7 :a "15.194560548521638"^^xsd:decimal .
4562
- # It holds because the following instance of the rule body is provable:
4563
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
4564
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
4565
- # ("38.53691708607748"^^xsd:decimal 0.5) math:exponentiation "6.207810973771469"^^xsd:decimal .
4566
- # ("16.217776791473543"^^xsd:decimal 0.5) math:exponentiation "4.027130093686265"^^xsd:decimal .
4567
- # (5.991 0.5) math:exponentiation "2.4476519360399265"^^xsd:decimal .
4568
- # ("2.4476519360399265"^^xsd:decimal "6.207810973771469"^^xsd:decimal) math:product "15.194560548521638"^^xsd:decimal .
4569
- # ("2.4476519360399265"^^xsd:decimal "4.027130093686265"^^xsd:decimal) math:product "9.857012770495835"^^xsd:decimal .
4570
- # (3.141592653589793 "15.194560548521638"^^xsd:decimal) math:product "47.73511979376087"^^xsd:decimal .
4571
- # ("47.73511979376087"^^xsd:decimal "9.857012770495835"^^xsd:decimal) math:product "470.52568540824944"^^xsd:decimal .
4572
- # via the schematic forward rule:
4573
- # {
4574
- # :PCA1 :lambda1 ?l1 .
4575
- # :PCA1 :lambda2 ?l2 .
4576
- # (?l1 0.5) math:exponentiation ?sigma1 .
4577
- # (?l2 0.5) math:exponentiation ?sigma2 .
4578
- # (5.991 0.5) math:exponentiation ?k95 .
4579
- # (?k95 ?sigma1) math:product ?a95 .
4580
- # (?k95 ?sigma2) math:product ?b95 .
4581
- # (3.141592653589793 ?a95) math:product ?piA .
4582
- # (?piA ?b95) math:product ?area95 .
4583
- # } => {
4584
- # :PCA1 :sigma1 ?sigma1 .
4585
- # :PCA1 :sigma2 ?sigma2 .
4586
- # _:b11 :k ?k95 .
4587
- # _:b11 :a ?a95 .
4588
- # _:b11 :b ?b95 .
4589
- # _:b11 :area ?area95 .
4590
- # :PCA1 :ellipse95 _:b11 .
4591
- # } .
4592
- # with substitution (on rule variables):
4593
- # ?a95 = "15.194560548521638"^^xsd:decimal
4594
- # ?area95 = "470.52568540824944"^^xsd:decimal
4595
- # ?b95 = "9.857012770495835"^^xsd:decimal
4596
- # ?k95 = "2.4476519360399265"^^xsd:decimal
4597
- # ?l1 = "38.53691708607748"^^xsd:decimal
4598
- # ?l2 = "16.217776791473543"^^xsd:decimal
4599
- # ?piA = "47.73511979376087"^^xsd:decimal
4600
- # ?sigma1 = "6.207810973771469"^^xsd:decimal
4601
- # ?sigma2 = "4.027130093686265"^^xsd:decimal
4602
- # Therefore the derived triple above is entailed by the rules and facts.
4603
- # ----------------------------------------------------------------------
4604
-
4605
57
  _:sk_7 :a "15.194560548521638"^^xsd:decimal .
4606
-
4607
- # ----------------------------------------------------------------------
4608
- # Proof for derived triple:
4609
- # _:sk_7 :b "9.857012770495835"^^xsd:decimal .
4610
- # It holds because the following instance of the rule body is provable:
4611
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
4612
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
4613
- # ("38.53691708607748"^^xsd:decimal 0.5) math:exponentiation "6.207810973771469"^^xsd:decimal .
4614
- # ("16.217776791473543"^^xsd:decimal 0.5) math:exponentiation "4.027130093686265"^^xsd:decimal .
4615
- # (5.991 0.5) math:exponentiation "2.4476519360399265"^^xsd:decimal .
4616
- # ("2.4476519360399265"^^xsd:decimal "6.207810973771469"^^xsd:decimal) math:product "15.194560548521638"^^xsd:decimal .
4617
- # ("2.4476519360399265"^^xsd:decimal "4.027130093686265"^^xsd:decimal) math:product "9.857012770495835"^^xsd:decimal .
4618
- # (3.141592653589793 "15.194560548521638"^^xsd:decimal) math:product "47.73511979376087"^^xsd:decimal .
4619
- # ("47.73511979376087"^^xsd:decimal "9.857012770495835"^^xsd:decimal) math:product "470.52568540824944"^^xsd:decimal .
4620
- # via the schematic forward rule:
4621
- # {
4622
- # :PCA1 :lambda1 ?l1 .
4623
- # :PCA1 :lambda2 ?l2 .
4624
- # (?l1 0.5) math:exponentiation ?sigma1 .
4625
- # (?l2 0.5) math:exponentiation ?sigma2 .
4626
- # (5.991 0.5) math:exponentiation ?k95 .
4627
- # (?k95 ?sigma1) math:product ?a95 .
4628
- # (?k95 ?sigma2) math:product ?b95 .
4629
- # (3.141592653589793 ?a95) math:product ?piA .
4630
- # (?piA ?b95) math:product ?area95 .
4631
- # } => {
4632
- # :PCA1 :sigma1 ?sigma1 .
4633
- # :PCA1 :sigma2 ?sigma2 .
4634
- # _:b11 :k ?k95 .
4635
- # _:b11 :a ?a95 .
4636
- # _:b11 :b ?b95 .
4637
- # _:b11 :area ?area95 .
4638
- # :PCA1 :ellipse95 _:b11 .
4639
- # } .
4640
- # with substitution (on rule variables):
4641
- # ?a95 = "15.194560548521638"^^xsd:decimal
4642
- # ?area95 = "470.52568540824944"^^xsd:decimal
4643
- # ?b95 = "9.857012770495835"^^xsd:decimal
4644
- # ?k95 = "2.4476519360399265"^^xsd:decimal
4645
- # ?l1 = "38.53691708607748"^^xsd:decimal
4646
- # ?l2 = "16.217776791473543"^^xsd:decimal
4647
- # ?piA = "47.73511979376087"^^xsd:decimal
4648
- # ?sigma1 = "6.207810973771469"^^xsd:decimal
4649
- # ?sigma2 = "4.027130093686265"^^xsd:decimal
4650
- # Therefore the derived triple above is entailed by the rules and facts.
4651
- # ----------------------------------------------------------------------
4652
-
4653
58
  _:sk_7 :b "9.857012770495835"^^xsd:decimal .
4654
-
4655
- # ----------------------------------------------------------------------
4656
- # Proof for derived triple:
4657
- # _:sk_7 :area "470.52568540824944"^^xsd:decimal .
4658
- # It holds because the following instance of the rule body is provable:
4659
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
4660
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
4661
- # ("38.53691708607748"^^xsd:decimal 0.5) math:exponentiation "6.207810973771469"^^xsd:decimal .
4662
- # ("16.217776791473543"^^xsd:decimal 0.5) math:exponentiation "4.027130093686265"^^xsd:decimal .
4663
- # (5.991 0.5) math:exponentiation "2.4476519360399265"^^xsd:decimal .
4664
- # ("2.4476519360399265"^^xsd:decimal "6.207810973771469"^^xsd:decimal) math:product "15.194560548521638"^^xsd:decimal .
4665
- # ("2.4476519360399265"^^xsd:decimal "4.027130093686265"^^xsd:decimal) math:product "9.857012770495835"^^xsd:decimal .
4666
- # (3.141592653589793 "15.194560548521638"^^xsd:decimal) math:product "47.73511979376087"^^xsd:decimal .
4667
- # ("47.73511979376087"^^xsd:decimal "9.857012770495835"^^xsd:decimal) math:product "470.52568540824944"^^xsd:decimal .
4668
- # via the schematic forward rule:
4669
- # {
4670
- # :PCA1 :lambda1 ?l1 .
4671
- # :PCA1 :lambda2 ?l2 .
4672
- # (?l1 0.5) math:exponentiation ?sigma1 .
4673
- # (?l2 0.5) math:exponentiation ?sigma2 .
4674
- # (5.991 0.5) math:exponentiation ?k95 .
4675
- # (?k95 ?sigma1) math:product ?a95 .
4676
- # (?k95 ?sigma2) math:product ?b95 .
4677
- # (3.141592653589793 ?a95) math:product ?piA .
4678
- # (?piA ?b95) math:product ?area95 .
4679
- # } => {
4680
- # :PCA1 :sigma1 ?sigma1 .
4681
- # :PCA1 :sigma2 ?sigma2 .
4682
- # _:b11 :k ?k95 .
4683
- # _:b11 :a ?a95 .
4684
- # _:b11 :b ?b95 .
4685
- # _:b11 :area ?area95 .
4686
- # :PCA1 :ellipse95 _:b11 .
4687
- # } .
4688
- # with substitution (on rule variables):
4689
- # ?a95 = "15.194560548521638"^^xsd:decimal
4690
- # ?area95 = "470.52568540824944"^^xsd:decimal
4691
- # ?b95 = "9.857012770495835"^^xsd:decimal
4692
- # ?k95 = "2.4476519360399265"^^xsd:decimal
4693
- # ?l1 = "38.53691708607748"^^xsd:decimal
4694
- # ?l2 = "16.217776791473543"^^xsd:decimal
4695
- # ?piA = "47.73511979376087"^^xsd:decimal
4696
- # ?sigma1 = "6.207810973771469"^^xsd:decimal
4697
- # ?sigma2 = "4.027130093686265"^^xsd:decimal
4698
- # Therefore the derived triple above is entailed by the rules and facts.
4699
- # ----------------------------------------------------------------------
4700
-
4701
59
  _:sk_7 :area "470.52568540824944"^^xsd:decimal .
4702
-
4703
- # ----------------------------------------------------------------------
4704
- # Proof for derived triple:
4705
- # :PCA1 :ellipse95 _:sk_7 .
4706
- # It holds because the following instance of the rule body is provable:
4707
- # :PCA1 :lambda1 "38.53691708607748"^^xsd:decimal .
4708
- # :PCA1 :lambda2 "16.217776791473543"^^xsd:decimal .
4709
- # ("38.53691708607748"^^xsd:decimal 0.5) math:exponentiation "6.207810973771469"^^xsd:decimal .
4710
- # ("16.217776791473543"^^xsd:decimal 0.5) math:exponentiation "4.027130093686265"^^xsd:decimal .
4711
- # (5.991 0.5) math:exponentiation "2.4476519360399265"^^xsd:decimal .
4712
- # ("2.4476519360399265"^^xsd:decimal "6.207810973771469"^^xsd:decimal) math:product "15.194560548521638"^^xsd:decimal .
4713
- # ("2.4476519360399265"^^xsd:decimal "4.027130093686265"^^xsd:decimal) math:product "9.857012770495835"^^xsd:decimal .
4714
- # (3.141592653589793 "15.194560548521638"^^xsd:decimal) math:product "47.73511979376087"^^xsd:decimal .
4715
- # ("47.73511979376087"^^xsd:decimal "9.857012770495835"^^xsd:decimal) math:product "470.52568540824944"^^xsd:decimal .
4716
- # via the schematic forward rule:
4717
- # {
4718
- # :PCA1 :lambda1 ?l1 .
4719
- # :PCA1 :lambda2 ?l2 .
4720
- # (?l1 0.5) math:exponentiation ?sigma1 .
4721
- # (?l2 0.5) math:exponentiation ?sigma2 .
4722
- # (5.991 0.5) math:exponentiation ?k95 .
4723
- # (?k95 ?sigma1) math:product ?a95 .
4724
- # (?k95 ?sigma2) math:product ?b95 .
4725
- # (3.141592653589793 ?a95) math:product ?piA .
4726
- # (?piA ?b95) math:product ?area95 .
4727
- # } => {
4728
- # :PCA1 :sigma1 ?sigma1 .
4729
- # :PCA1 :sigma2 ?sigma2 .
4730
- # _:b11 :k ?k95 .
4731
- # _:b11 :a ?a95 .
4732
- # _:b11 :b ?b95 .
4733
- # _:b11 :area ?area95 .
4734
- # :PCA1 :ellipse95 _:b11 .
4735
- # } .
4736
- # with substitution (on rule variables):
4737
- # ?a95 = "15.194560548521638"^^xsd:decimal
4738
- # ?area95 = "470.52568540824944"^^xsd:decimal
4739
- # ?b95 = "9.857012770495835"^^xsd:decimal
4740
- # ?k95 = "2.4476519360399265"^^xsd:decimal
4741
- # ?l1 = "38.53691708607748"^^xsd:decimal
4742
- # ?l2 = "16.217776791473543"^^xsd:decimal
4743
- # ?piA = "47.73511979376087"^^xsd:decimal
4744
- # ?sigma1 = "6.207810973771469"^^xsd:decimal
4745
- # ?sigma2 = "4.027130093686265"^^xsd:decimal
4746
- # Therefore the derived triple above is entailed by the rules and facts.
4747
- # ----------------------------------------------------------------------
4748
-
4749
60
  :PCA1 :ellipse95 _:sk_7 .
4750
-