eyeling 1.6.13 → 1.6.15

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (77) hide show
  1. package/README.md +8 -19
  2. package/examples/output/age.n3 +0 -17
  3. package/examples/output/alignment-demo.n3 +0 -572
  4. package/examples/output/backward.n3 +0 -15
  5. package/examples/output/basic-monadic.n3 +0 -105
  6. package/examples/output/brussels-brew-club.n3 +0 -476
  7. package/examples/output/cat-koko.n3 +0 -108
  8. package/examples/output/cobalt-kepler-kitchen.n3 +0 -7064
  9. package/examples/output/complex.n3 +0 -46
  10. package/examples/output/control-system.n3 +0 -75
  11. package/examples/output/cranberry-calculus.n3 +0 -1313
  12. package/examples/output/crypto-builtins-tests.n3 +0 -60
  13. package/examples/output/deep-taxonomy-10.n3 +0 -602
  14. package/examples/output/deep-taxonomy-100.n3 +1 -5733
  15. package/examples/output/deep-taxonomy-1000.n3 +1 -57033
  16. package/examples/output/deep-taxonomy-10000.n3 +1 -570033
  17. package/examples/output/derived-backward-rule-2.n3 +0 -58
  18. package/examples/output/derived-backward-rule.n3 +0 -44
  19. package/examples/output/derived-rule.n3 +0 -42
  20. package/examples/output/dijkstra.n3 +0 -297
  21. package/examples/output/dog.n3 +0 -30
  22. package/examples/output/drone-corridor-planner.n3 +0 -799
  23. package/examples/output/easter.n3 +0 -3570
  24. package/examples/output/equals.n3 +0 -15
  25. package/examples/output/ev-roundtrip-planner.n3 +0 -392
  26. package/examples/output/existential-rule.n3 +0 -34
  27. package/examples/output/expression-eval.n3 +0 -20
  28. package/examples/output/family-cousins.n3 +0 -636
  29. package/examples/output/fibonacci.n3 +0 -36
  30. package/examples/output/french-cities.n3 +0 -484
  31. package/examples/output/good-cobbler.n3 +0 -22
  32. package/examples/output/gps.n3 +0 -62
  33. package/examples/output/gray-code-counter.n3 +0 -17
  34. package/examples/output/hanoi.n3 +0 -17
  35. package/examples/output/jade-eigen-loom.n3 +0 -4690
  36. package/examples/output/json-pointer.n3 +0 -529
  37. package/examples/output/json-reconcile-vat.n3 +0 -12882
  38. package/examples/output/light-eaters.n3 +0 -311
  39. package/examples/output/list-builtins-tests.n3 +0 -167
  40. package/examples/output/list-iterate.n3 +0 -124
  41. package/examples/output/lldm.n3 +0 -960
  42. package/examples/output/log-collect-all-in.n3 +0 -117
  43. package/examples/output/log-for-all-in.n3 +0 -27
  44. package/examples/output/log-not-includes.n3 +0 -59
  45. package/examples/output/log-skolem.n3 +0 -17
  46. package/examples/output/log-uri.n3 +0 -42
  47. package/examples/output/math-builtins-tests.n3 +0 -4434
  48. package/examples/output/minimal-skos-alignment.n3 +0 -39
  49. package/examples/output/monkey.n3 +0 -36
  50. package/examples/output/odrl-trust.n3 +0 -46
  51. package/examples/output/oslo-steps-library-scholarly.n3 +0 -1260
  52. package/examples/output/oslo-steps-workflow-composition.n3 +0 -180
  53. package/examples/output/peano.n3 +0 -23
  54. package/examples/output/pi.n3 +0 -17
  55. package/examples/output/pillar.n3 +0 -32
  56. package/examples/output/polygon.n3 +0 -17
  57. package/examples/output/rdf-list.n3 +0 -28
  58. package/examples/output/reordering.n3 +0 -26
  59. package/examples/output/ruby-runge-workshop.n3 +0 -613
  60. package/examples/output/rule-matching.n3 +0 -26
  61. package/examples/output/saffron-slopeworks.n3 +0 -1447
  62. package/examples/output/self-referential.n3 +0 -81
  63. package/examples/output/similar.n3 +0 -15
  64. package/examples/output/snaf.n3 +0 -23
  65. package/examples/output/socrates.n3 +0 -21
  66. package/examples/output/spectral-week.n3 +0 -350
  67. package/examples/output/string-builtins-tests.n3 +0 -240
  68. package/examples/output/topaz-markov-mill.n3 +0 -4178
  69. package/examples/output/traffic-skos-aggregate.n3 +0 -3151
  70. package/examples/output/turing.n3 +0 -36
  71. package/examples/output/ultramarine-simpson-forge.n3 +0 -3873
  72. package/examples/output/witch.n3 +0 -107
  73. package/examples/output/zebra.n3 +0 -111
  74. package/eyeling.js +129 -25
  75. package/index.js +13 -6
  76. package/package.json +1 -1
  77. package/test/examples.test.js +1 -1
@@ -1,3937 +1,64 @@
1
1
  @prefix : <http://example.org/ultramarine-simpson#> .
2
2
  @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
3
3
 
4
- # ----------------------------------------------------------------------
5
- # Proof for derived triple:
6
- # _:b5 :y "4.909297426825682"^^xsd:decimal .
7
- # It holds because the following instance of the rule body is provable:
8
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
9
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
10
- # _:b5 :x 2.0 .
11
- # _:b5 :coef 1.0 .
12
- # 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
13
- # (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
14
- # ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
15
- # 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
16
- # (2.0 2.0) math:product "4"^^xsd:decimal .
17
- # ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
18
- # ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
19
- # (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
20
- # ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
21
- # via the schematic forward rule:
22
- # {
23
- # :Simpson1 :samples ?ss .
24
- # ?ss list:member ?s .
25
- # ?s :x ?x .
26
- # ?s :coef ?c .
27
- # ?x math:sin ?sinx .
28
- # (?x 2.0) math:exponentiation ?x2 .
29
- # (?sinx ?x2) math:sum ?y .
30
- # ?x math:cos ?cosx .
31
- # (2.0 ?x) math:product ?twox .
32
- # (?cosx ?twox) math:sum ?dy .
33
- # (?dy 2.0) math:exponentiation ?dy2 .
34
- # (1.0 ?dy2) math:sum ?onePlus .
35
- # (?onePlus 0.5) math:exponentiation ?ds .
36
- # } => {
37
- # ?s :y ?y .
38
- # ?s :dy ?dy .
39
- # ?s :ds ?ds .
40
- # _:b6 :sample ?s .
41
- # _:b6 :x ?x .
42
- # _:b6 :coef ?c .
43
- # _:b6 :y ?y .
44
- # _:b6 :dy ?dy .
45
- # _:b6 :ds ?ds .
46
- # :Simpson1 :sampleResult _:b6 .
47
- # } .
48
- # with substitution (on rule variables):
49
- # ?c = 1.0
50
- # ?cosx = "-0.4161468365471424"^^xsd:decimal
51
- # ?ds = "3.720753081997118"^^xsd:decimal
52
- # ?dy = "3.5838531634528574"^^xsd:decimal
53
- # ?dy2 = "12.844003497191053"^^xsd:decimal
54
- # ?onePlus = "13.844003497191053"^^xsd:decimal
55
- # ?s = _:b5
56
- # ?sinx = "0.9092974268256817"^^xsd:decimal
57
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
58
- # ?twox = "4"^^xsd:decimal
59
- # ?x = 2.0
60
- # ?x2 = "4"^^xsd:decimal
61
- # ?y = "4.909297426825682"^^xsd:decimal
62
- # Therefore the derived triple above is entailed by the rules and facts.
63
- # ----------------------------------------------------------------------
64
-
65
4
  _:b5 :y "4.909297426825682"^^xsd:decimal .
66
-
67
- # ----------------------------------------------------------------------
68
- # Proof for derived triple:
69
- # _:b5 :dy "3.5838531634528574"^^xsd:decimal .
70
- # It holds because the following instance of the rule body is provable:
71
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
72
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
73
- # _:b5 :x 2.0 .
74
- # _:b5 :coef 1.0 .
75
- # 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
76
- # (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
77
- # ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
78
- # 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
79
- # (2.0 2.0) math:product "4"^^xsd:decimal .
80
- # ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
81
- # ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
82
- # (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
83
- # ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
84
- # via the schematic forward rule:
85
- # {
86
- # :Simpson1 :samples ?ss .
87
- # ?ss list:member ?s .
88
- # ?s :x ?x .
89
- # ?s :coef ?c .
90
- # ?x math:sin ?sinx .
91
- # (?x 2.0) math:exponentiation ?x2 .
92
- # (?sinx ?x2) math:sum ?y .
93
- # ?x math:cos ?cosx .
94
- # (2.0 ?x) math:product ?twox .
95
- # (?cosx ?twox) math:sum ?dy .
96
- # (?dy 2.0) math:exponentiation ?dy2 .
97
- # (1.0 ?dy2) math:sum ?onePlus .
98
- # (?onePlus 0.5) math:exponentiation ?ds .
99
- # } => {
100
- # ?s :y ?y .
101
- # ?s :dy ?dy .
102
- # ?s :ds ?ds .
103
- # _:b6 :sample ?s .
104
- # _:b6 :x ?x .
105
- # _:b6 :coef ?c .
106
- # _:b6 :y ?y .
107
- # _:b6 :dy ?dy .
108
- # _:b6 :ds ?ds .
109
- # :Simpson1 :sampleResult _:b6 .
110
- # } .
111
- # with substitution (on rule variables):
112
- # ?c = 1.0
113
- # ?cosx = "-0.4161468365471424"^^xsd:decimal
114
- # ?ds = "3.720753081997118"^^xsd:decimal
115
- # ?dy = "3.5838531634528574"^^xsd:decimal
116
- # ?dy2 = "12.844003497191053"^^xsd:decimal
117
- # ?onePlus = "13.844003497191053"^^xsd:decimal
118
- # ?s = _:b5
119
- # ?sinx = "0.9092974268256817"^^xsd:decimal
120
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
121
- # ?twox = "4"^^xsd:decimal
122
- # ?x = 2.0
123
- # ?x2 = "4"^^xsd:decimal
124
- # ?y = "4.909297426825682"^^xsd:decimal
125
- # Therefore the derived triple above is entailed by the rules and facts.
126
- # ----------------------------------------------------------------------
127
-
128
5
  _:b5 :dy "3.5838531634528574"^^xsd:decimal .
129
-
130
- # ----------------------------------------------------------------------
131
- # Proof for derived triple:
132
- # _:b5 :ds "3.720753081997118"^^xsd:decimal .
133
- # It holds because the following instance of the rule body is provable:
134
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
135
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
136
- # _:b5 :x 2.0 .
137
- # _:b5 :coef 1.0 .
138
- # 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
139
- # (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
140
- # ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
141
- # 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
142
- # (2.0 2.0) math:product "4"^^xsd:decimal .
143
- # ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
144
- # ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
145
- # (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
146
- # ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
147
- # via the schematic forward rule:
148
- # {
149
- # :Simpson1 :samples ?ss .
150
- # ?ss list:member ?s .
151
- # ?s :x ?x .
152
- # ?s :coef ?c .
153
- # ?x math:sin ?sinx .
154
- # (?x 2.0) math:exponentiation ?x2 .
155
- # (?sinx ?x2) math:sum ?y .
156
- # ?x math:cos ?cosx .
157
- # (2.0 ?x) math:product ?twox .
158
- # (?cosx ?twox) math:sum ?dy .
159
- # (?dy 2.0) math:exponentiation ?dy2 .
160
- # (1.0 ?dy2) math:sum ?onePlus .
161
- # (?onePlus 0.5) math:exponentiation ?ds .
162
- # } => {
163
- # ?s :y ?y .
164
- # ?s :dy ?dy .
165
- # ?s :ds ?ds .
166
- # _:b6 :sample ?s .
167
- # _:b6 :x ?x .
168
- # _:b6 :coef ?c .
169
- # _:b6 :y ?y .
170
- # _:b6 :dy ?dy .
171
- # _:b6 :ds ?ds .
172
- # :Simpson1 :sampleResult _:b6 .
173
- # } .
174
- # with substitution (on rule variables):
175
- # ?c = 1.0
176
- # ?cosx = "-0.4161468365471424"^^xsd:decimal
177
- # ?ds = "3.720753081997118"^^xsd:decimal
178
- # ?dy = "3.5838531634528574"^^xsd:decimal
179
- # ?dy2 = "12.844003497191053"^^xsd:decimal
180
- # ?onePlus = "13.844003497191053"^^xsd:decimal
181
- # ?s = _:b5
182
- # ?sinx = "0.9092974268256817"^^xsd:decimal
183
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
184
- # ?twox = "4"^^xsd:decimal
185
- # ?x = 2.0
186
- # ?x2 = "4"^^xsd:decimal
187
- # ?y = "4.909297426825682"^^xsd:decimal
188
- # Therefore the derived triple above is entailed by the rules and facts.
189
- # ----------------------------------------------------------------------
190
-
191
6
  _:b5 :ds "3.720753081997118"^^xsd:decimal .
192
-
193
- # ----------------------------------------------------------------------
194
- # Proof for derived triple:
195
- # _:sk_0 :sample _:b5 .
196
- # It holds because the following instance of the rule body is provable:
197
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
198
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
199
- # _:b5 :x 2.0 .
200
- # _:b5 :coef 1.0 .
201
- # 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
202
- # (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
203
- # ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
204
- # 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
205
- # (2.0 2.0) math:product "4"^^xsd:decimal .
206
- # ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
207
- # ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
208
- # (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
209
- # ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
210
- # via the schematic forward rule:
211
- # {
212
- # :Simpson1 :samples ?ss .
213
- # ?ss list:member ?s .
214
- # ?s :x ?x .
215
- # ?s :coef ?c .
216
- # ?x math:sin ?sinx .
217
- # (?x 2.0) math:exponentiation ?x2 .
218
- # (?sinx ?x2) math:sum ?y .
219
- # ?x math:cos ?cosx .
220
- # (2.0 ?x) math:product ?twox .
221
- # (?cosx ?twox) math:sum ?dy .
222
- # (?dy 2.0) math:exponentiation ?dy2 .
223
- # (1.0 ?dy2) math:sum ?onePlus .
224
- # (?onePlus 0.5) math:exponentiation ?ds .
225
- # } => {
226
- # ?s :y ?y .
227
- # ?s :dy ?dy .
228
- # ?s :ds ?ds .
229
- # _:b6 :sample ?s .
230
- # _:b6 :x ?x .
231
- # _:b6 :coef ?c .
232
- # _:b6 :y ?y .
233
- # _:b6 :dy ?dy .
234
- # _:b6 :ds ?ds .
235
- # :Simpson1 :sampleResult _:b6 .
236
- # } .
237
- # with substitution (on rule variables):
238
- # ?c = 1.0
239
- # ?cosx = "-0.4161468365471424"^^xsd:decimal
240
- # ?ds = "3.720753081997118"^^xsd:decimal
241
- # ?dy = "3.5838531634528574"^^xsd:decimal
242
- # ?dy2 = "12.844003497191053"^^xsd:decimal
243
- # ?onePlus = "13.844003497191053"^^xsd:decimal
244
- # ?s = _:b5
245
- # ?sinx = "0.9092974268256817"^^xsd:decimal
246
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
247
- # ?twox = "4"^^xsd:decimal
248
- # ?x = 2.0
249
- # ?x2 = "4"^^xsd:decimal
250
- # ?y = "4.909297426825682"^^xsd:decimal
251
- # Therefore the derived triple above is entailed by the rules and facts.
252
- # ----------------------------------------------------------------------
253
-
254
7
  _:sk_0 :sample _:b5 .
255
-
256
- # ----------------------------------------------------------------------
257
- # Proof for derived triple:
258
- # _:sk_0 :x 2.0 .
259
- # It holds because the following instance of the rule body is provable:
260
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
261
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
262
- # _:b5 :x 2.0 .
263
- # _:b5 :coef 1.0 .
264
- # 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
265
- # (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
266
- # ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
267
- # 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
268
- # (2.0 2.0) math:product "4"^^xsd:decimal .
269
- # ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
270
- # ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
271
- # (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
272
- # ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
273
- # via the schematic forward rule:
274
- # {
275
- # :Simpson1 :samples ?ss .
276
- # ?ss list:member ?s .
277
- # ?s :x ?x .
278
- # ?s :coef ?c .
279
- # ?x math:sin ?sinx .
280
- # (?x 2.0) math:exponentiation ?x2 .
281
- # (?sinx ?x2) math:sum ?y .
282
- # ?x math:cos ?cosx .
283
- # (2.0 ?x) math:product ?twox .
284
- # (?cosx ?twox) math:sum ?dy .
285
- # (?dy 2.0) math:exponentiation ?dy2 .
286
- # (1.0 ?dy2) math:sum ?onePlus .
287
- # (?onePlus 0.5) math:exponentiation ?ds .
288
- # } => {
289
- # ?s :y ?y .
290
- # ?s :dy ?dy .
291
- # ?s :ds ?ds .
292
- # _:b6 :sample ?s .
293
- # _:b6 :x ?x .
294
- # _:b6 :coef ?c .
295
- # _:b6 :y ?y .
296
- # _:b6 :dy ?dy .
297
- # _:b6 :ds ?ds .
298
- # :Simpson1 :sampleResult _:b6 .
299
- # } .
300
- # with substitution (on rule variables):
301
- # ?c = 1.0
302
- # ?cosx = "-0.4161468365471424"^^xsd:decimal
303
- # ?ds = "3.720753081997118"^^xsd:decimal
304
- # ?dy = "3.5838531634528574"^^xsd:decimal
305
- # ?dy2 = "12.844003497191053"^^xsd:decimal
306
- # ?onePlus = "13.844003497191053"^^xsd:decimal
307
- # ?s = _:b5
308
- # ?sinx = "0.9092974268256817"^^xsd:decimal
309
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
310
- # ?twox = "4"^^xsd:decimal
311
- # ?x = 2.0
312
- # ?x2 = "4"^^xsd:decimal
313
- # ?y = "4.909297426825682"^^xsd:decimal
314
- # Therefore the derived triple above is entailed by the rules and facts.
315
- # ----------------------------------------------------------------------
316
-
317
8
  _:sk_0 :x 2.0 .
318
-
319
- # ----------------------------------------------------------------------
320
- # Proof for derived triple:
321
- # _:sk_0 :coef 1.0 .
322
- # It holds because the following instance of the rule body is provable:
323
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
324
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
325
- # _:b5 :x 2.0 .
326
- # _:b5 :coef 1.0 .
327
- # 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
328
- # (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
329
- # ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
330
- # 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
331
- # (2.0 2.0) math:product "4"^^xsd:decimal .
332
- # ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
333
- # ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
334
- # (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
335
- # ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
336
- # via the schematic forward rule:
337
- # {
338
- # :Simpson1 :samples ?ss .
339
- # ?ss list:member ?s .
340
- # ?s :x ?x .
341
- # ?s :coef ?c .
342
- # ?x math:sin ?sinx .
343
- # (?x 2.0) math:exponentiation ?x2 .
344
- # (?sinx ?x2) math:sum ?y .
345
- # ?x math:cos ?cosx .
346
- # (2.0 ?x) math:product ?twox .
347
- # (?cosx ?twox) math:sum ?dy .
348
- # (?dy 2.0) math:exponentiation ?dy2 .
349
- # (1.0 ?dy2) math:sum ?onePlus .
350
- # (?onePlus 0.5) math:exponentiation ?ds .
351
- # } => {
352
- # ?s :y ?y .
353
- # ?s :dy ?dy .
354
- # ?s :ds ?ds .
355
- # _:b6 :sample ?s .
356
- # _:b6 :x ?x .
357
- # _:b6 :coef ?c .
358
- # _:b6 :y ?y .
359
- # _:b6 :dy ?dy .
360
- # _:b6 :ds ?ds .
361
- # :Simpson1 :sampleResult _:b6 .
362
- # } .
363
- # with substitution (on rule variables):
364
- # ?c = 1.0
365
- # ?cosx = "-0.4161468365471424"^^xsd:decimal
366
- # ?ds = "3.720753081997118"^^xsd:decimal
367
- # ?dy = "3.5838531634528574"^^xsd:decimal
368
- # ?dy2 = "12.844003497191053"^^xsd:decimal
369
- # ?onePlus = "13.844003497191053"^^xsd:decimal
370
- # ?s = _:b5
371
- # ?sinx = "0.9092974268256817"^^xsd:decimal
372
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
373
- # ?twox = "4"^^xsd:decimal
374
- # ?x = 2.0
375
- # ?x2 = "4"^^xsd:decimal
376
- # ?y = "4.909297426825682"^^xsd:decimal
377
- # Therefore the derived triple above is entailed by the rules and facts.
378
- # ----------------------------------------------------------------------
379
-
380
9
  _:sk_0 :coef 1.0 .
381
-
382
- # ----------------------------------------------------------------------
383
- # Proof for derived triple:
384
- # _:sk_0 :y "4.909297426825682"^^xsd:decimal .
385
- # It holds because the following instance of the rule body is provable:
386
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
387
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
388
- # _:b5 :x 2.0 .
389
- # _:b5 :coef 1.0 .
390
- # 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
391
- # (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
392
- # ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
393
- # 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
394
- # (2.0 2.0) math:product "4"^^xsd:decimal .
395
- # ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
396
- # ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
397
- # (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
398
- # ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
399
- # via the schematic forward rule:
400
- # {
401
- # :Simpson1 :samples ?ss .
402
- # ?ss list:member ?s .
403
- # ?s :x ?x .
404
- # ?s :coef ?c .
405
- # ?x math:sin ?sinx .
406
- # (?x 2.0) math:exponentiation ?x2 .
407
- # (?sinx ?x2) math:sum ?y .
408
- # ?x math:cos ?cosx .
409
- # (2.0 ?x) math:product ?twox .
410
- # (?cosx ?twox) math:sum ?dy .
411
- # (?dy 2.0) math:exponentiation ?dy2 .
412
- # (1.0 ?dy2) math:sum ?onePlus .
413
- # (?onePlus 0.5) math:exponentiation ?ds .
414
- # } => {
415
- # ?s :y ?y .
416
- # ?s :dy ?dy .
417
- # ?s :ds ?ds .
418
- # _:b6 :sample ?s .
419
- # _:b6 :x ?x .
420
- # _:b6 :coef ?c .
421
- # _:b6 :y ?y .
422
- # _:b6 :dy ?dy .
423
- # _:b6 :ds ?ds .
424
- # :Simpson1 :sampleResult _:b6 .
425
- # } .
426
- # with substitution (on rule variables):
427
- # ?c = 1.0
428
- # ?cosx = "-0.4161468365471424"^^xsd:decimal
429
- # ?ds = "3.720753081997118"^^xsd:decimal
430
- # ?dy = "3.5838531634528574"^^xsd:decimal
431
- # ?dy2 = "12.844003497191053"^^xsd:decimal
432
- # ?onePlus = "13.844003497191053"^^xsd:decimal
433
- # ?s = _:b5
434
- # ?sinx = "0.9092974268256817"^^xsd:decimal
435
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
436
- # ?twox = "4"^^xsd:decimal
437
- # ?x = 2.0
438
- # ?x2 = "4"^^xsd:decimal
439
- # ?y = "4.909297426825682"^^xsd:decimal
440
- # Therefore the derived triple above is entailed by the rules and facts.
441
- # ----------------------------------------------------------------------
442
-
443
10
  _:sk_0 :y "4.909297426825682"^^xsd:decimal .
444
-
445
- # ----------------------------------------------------------------------
446
- # Proof for derived triple:
447
- # _:sk_0 :dy "3.5838531634528574"^^xsd:decimal .
448
- # It holds because the following instance of the rule body is provable:
449
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
450
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
451
- # _:b5 :x 2.0 .
452
- # _:b5 :coef 1.0 .
453
- # 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
454
- # (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
455
- # ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
456
- # 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
457
- # (2.0 2.0) math:product "4"^^xsd:decimal .
458
- # ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
459
- # ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
460
- # (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
461
- # ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
462
- # via the schematic forward rule:
463
- # {
464
- # :Simpson1 :samples ?ss .
465
- # ?ss list:member ?s .
466
- # ?s :x ?x .
467
- # ?s :coef ?c .
468
- # ?x math:sin ?sinx .
469
- # (?x 2.0) math:exponentiation ?x2 .
470
- # (?sinx ?x2) math:sum ?y .
471
- # ?x math:cos ?cosx .
472
- # (2.0 ?x) math:product ?twox .
473
- # (?cosx ?twox) math:sum ?dy .
474
- # (?dy 2.0) math:exponentiation ?dy2 .
475
- # (1.0 ?dy2) math:sum ?onePlus .
476
- # (?onePlus 0.5) math:exponentiation ?ds .
477
- # } => {
478
- # ?s :y ?y .
479
- # ?s :dy ?dy .
480
- # ?s :ds ?ds .
481
- # _:b6 :sample ?s .
482
- # _:b6 :x ?x .
483
- # _:b6 :coef ?c .
484
- # _:b6 :y ?y .
485
- # _:b6 :dy ?dy .
486
- # _:b6 :ds ?ds .
487
- # :Simpson1 :sampleResult _:b6 .
488
- # } .
489
- # with substitution (on rule variables):
490
- # ?c = 1.0
491
- # ?cosx = "-0.4161468365471424"^^xsd:decimal
492
- # ?ds = "3.720753081997118"^^xsd:decimal
493
- # ?dy = "3.5838531634528574"^^xsd:decimal
494
- # ?dy2 = "12.844003497191053"^^xsd:decimal
495
- # ?onePlus = "13.844003497191053"^^xsd:decimal
496
- # ?s = _:b5
497
- # ?sinx = "0.9092974268256817"^^xsd:decimal
498
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
499
- # ?twox = "4"^^xsd:decimal
500
- # ?x = 2.0
501
- # ?x2 = "4"^^xsd:decimal
502
- # ?y = "4.909297426825682"^^xsd:decimal
503
- # Therefore the derived triple above is entailed by the rules and facts.
504
- # ----------------------------------------------------------------------
505
-
506
11
  _:sk_0 :dy "3.5838531634528574"^^xsd:decimal .
507
-
508
- # ----------------------------------------------------------------------
509
- # Proof for derived triple:
510
- # _:sk_0 :ds "3.720753081997118"^^xsd:decimal .
511
- # It holds because the following instance of the rule body is provable:
512
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
513
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
514
- # _:b5 :x 2.0 .
515
- # _:b5 :coef 1.0 .
516
- # 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
517
- # (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
518
- # ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
519
- # 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
520
- # (2.0 2.0) math:product "4"^^xsd:decimal .
521
- # ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
522
- # ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
523
- # (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
524
- # ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
525
- # via the schematic forward rule:
526
- # {
527
- # :Simpson1 :samples ?ss .
528
- # ?ss list:member ?s .
529
- # ?s :x ?x .
530
- # ?s :coef ?c .
531
- # ?x math:sin ?sinx .
532
- # (?x 2.0) math:exponentiation ?x2 .
533
- # (?sinx ?x2) math:sum ?y .
534
- # ?x math:cos ?cosx .
535
- # (2.0 ?x) math:product ?twox .
536
- # (?cosx ?twox) math:sum ?dy .
537
- # (?dy 2.0) math:exponentiation ?dy2 .
538
- # (1.0 ?dy2) math:sum ?onePlus .
539
- # (?onePlus 0.5) math:exponentiation ?ds .
540
- # } => {
541
- # ?s :y ?y .
542
- # ?s :dy ?dy .
543
- # ?s :ds ?ds .
544
- # _:b6 :sample ?s .
545
- # _:b6 :x ?x .
546
- # _:b6 :coef ?c .
547
- # _:b6 :y ?y .
548
- # _:b6 :dy ?dy .
549
- # _:b6 :ds ?ds .
550
- # :Simpson1 :sampleResult _:b6 .
551
- # } .
552
- # with substitution (on rule variables):
553
- # ?c = 1.0
554
- # ?cosx = "-0.4161468365471424"^^xsd:decimal
555
- # ?ds = "3.720753081997118"^^xsd:decimal
556
- # ?dy = "3.5838531634528574"^^xsd:decimal
557
- # ?dy2 = "12.844003497191053"^^xsd:decimal
558
- # ?onePlus = "13.844003497191053"^^xsd:decimal
559
- # ?s = _:b5
560
- # ?sinx = "0.9092974268256817"^^xsd:decimal
561
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
562
- # ?twox = "4"^^xsd:decimal
563
- # ?x = 2.0
564
- # ?x2 = "4"^^xsd:decimal
565
- # ?y = "4.909297426825682"^^xsd:decimal
566
- # Therefore the derived triple above is entailed by the rules and facts.
567
- # ----------------------------------------------------------------------
568
-
569
12
  _:sk_0 :ds "3.720753081997118"^^xsd:decimal .
570
-
571
- # ----------------------------------------------------------------------
572
- # Proof for derived triple:
573
- # :Simpson1 :sampleResult _:sk_0 .
574
- # It holds because the following instance of the rule body is provable:
575
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
576
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b5 .
577
- # _:b5 :x 2.0 .
578
- # _:b5 :coef 1.0 .
579
- # 2.0 math:sin "0.9092974268256817"^^xsd:decimal .
580
- # (2.0 2.0) math:exponentiation "4"^^xsd:decimal .
581
- # ("0.9092974268256817"^^xsd:decimal "4"^^xsd:decimal) math:sum "4.909297426825682"^^xsd:decimal .
582
- # 2.0 math:cos "-0.4161468365471424"^^xsd:decimal .
583
- # (2.0 2.0) math:product "4"^^xsd:decimal .
584
- # ("-0.4161468365471424"^^xsd:decimal "4"^^xsd:decimal) math:sum "3.5838531634528574"^^xsd:decimal .
585
- # ("3.5838531634528574"^^xsd:decimal 2.0) math:exponentiation "12.844003497191053"^^xsd:decimal .
586
- # (1.0 "12.844003497191053"^^xsd:decimal) math:sum "13.844003497191053"^^xsd:decimal .
587
- # ("13.844003497191053"^^xsd:decimal 0.5) math:exponentiation "3.720753081997118"^^xsd:decimal .
588
- # via the schematic forward rule:
589
- # {
590
- # :Simpson1 :samples ?ss .
591
- # ?ss list:member ?s .
592
- # ?s :x ?x .
593
- # ?s :coef ?c .
594
- # ?x math:sin ?sinx .
595
- # (?x 2.0) math:exponentiation ?x2 .
596
- # (?sinx ?x2) math:sum ?y .
597
- # ?x math:cos ?cosx .
598
- # (2.0 ?x) math:product ?twox .
599
- # (?cosx ?twox) math:sum ?dy .
600
- # (?dy 2.0) math:exponentiation ?dy2 .
601
- # (1.0 ?dy2) math:sum ?onePlus .
602
- # (?onePlus 0.5) math:exponentiation ?ds .
603
- # } => {
604
- # ?s :y ?y .
605
- # ?s :dy ?dy .
606
- # ?s :ds ?ds .
607
- # _:b6 :sample ?s .
608
- # _:b6 :x ?x .
609
- # _:b6 :coef ?c .
610
- # _:b6 :y ?y .
611
- # _:b6 :dy ?dy .
612
- # _:b6 :ds ?ds .
613
- # :Simpson1 :sampleResult _:b6 .
614
- # } .
615
- # with substitution (on rule variables):
616
- # ?c = 1.0
617
- # ?cosx = "-0.4161468365471424"^^xsd:decimal
618
- # ?ds = "3.720753081997118"^^xsd:decimal
619
- # ?dy = "3.5838531634528574"^^xsd:decimal
620
- # ?dy2 = "12.844003497191053"^^xsd:decimal
621
- # ?onePlus = "13.844003497191053"^^xsd:decimal
622
- # ?s = _:b5
623
- # ?sinx = "0.9092974268256817"^^xsd:decimal
624
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
625
- # ?twox = "4"^^xsd:decimal
626
- # ?x = 2.0
627
- # ?x2 = "4"^^xsd:decimal
628
- # ?y = "4.909297426825682"^^xsd:decimal
629
- # Therefore the derived triple above is entailed by the rules and facts.
630
- # ----------------------------------------------------------------------
631
-
632
13
  :Simpson1 :sampleResult _:sk_0 .
633
-
634
- # ----------------------------------------------------------------------
635
- # Proof for derived triple:
636
- # _:b4 :y "3.2474949866040546"^^xsd:decimal .
637
- # It holds because the following instance of the rule body is provable:
638
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
639
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
640
- # _:b4 :x 1.5 .
641
- # _:b4 :coef 4.0 .
642
- # 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
643
- # (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
644
- # ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
645
- # 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
646
- # (2.0 1.5) math:product "3"^^xsd:decimal .
647
- # ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
648
- # ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
649
- # (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
650
- # ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
651
- # via the schematic forward rule:
652
- # {
653
- # :Simpson1 :samples ?ss .
654
- # ?ss list:member ?s .
655
- # ?s :x ?x .
656
- # ?s :coef ?c .
657
- # ?x math:sin ?sinx .
658
- # (?x 2.0) math:exponentiation ?x2 .
659
- # (?sinx ?x2) math:sum ?y .
660
- # ?x math:cos ?cosx .
661
- # (2.0 ?x) math:product ?twox .
662
- # (?cosx ?twox) math:sum ?dy .
663
- # (?dy 2.0) math:exponentiation ?dy2 .
664
- # (1.0 ?dy2) math:sum ?onePlus .
665
- # (?onePlus 0.5) math:exponentiation ?ds .
666
- # } => {
667
- # ?s :y ?y .
668
- # ?s :dy ?dy .
669
- # ?s :ds ?ds .
670
- # _:b6 :sample ?s .
671
- # _:b6 :x ?x .
672
- # _:b6 :coef ?c .
673
- # _:b6 :y ?y .
674
- # _:b6 :dy ?dy .
675
- # _:b6 :ds ?ds .
676
- # :Simpson1 :sampleResult _:b6 .
677
- # } .
678
- # with substitution (on rule variables):
679
- # ?c = 4.0
680
- # ?cosx = "0.0707372016677029"^^xsd:decimal
681
- # ?ds = "3.229462333222977"^^xsd:decimal
682
- # ?dy = "3.070737201667703"^^xsd:decimal
683
- # ?dy2 = "9.429426961705994"^^xsd:decimal
684
- # ?onePlus = "10.429426961705994"^^xsd:decimal
685
- # ?s = _:b4
686
- # ?sinx = "0.9974949866040544"^^xsd:decimal
687
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
688
- # ?twox = "3"^^xsd:decimal
689
- # ?x = 1.5
690
- # ?x2 = "2.25"^^xsd:decimal
691
- # ?y = "3.2474949866040546"^^xsd:decimal
692
- # Therefore the derived triple above is entailed by the rules and facts.
693
- # ----------------------------------------------------------------------
694
-
695
14
  _:b4 :y "3.2474949866040546"^^xsd:decimal .
696
-
697
- # ----------------------------------------------------------------------
698
- # Proof for derived triple:
699
- # _:b4 :dy "3.070737201667703"^^xsd:decimal .
700
- # It holds because the following instance of the rule body is provable:
701
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
702
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
703
- # _:b4 :x 1.5 .
704
- # _:b4 :coef 4.0 .
705
- # 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
706
- # (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
707
- # ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
708
- # 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
709
- # (2.0 1.5) math:product "3"^^xsd:decimal .
710
- # ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
711
- # ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
712
- # (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
713
- # ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
714
- # via the schematic forward rule:
715
- # {
716
- # :Simpson1 :samples ?ss .
717
- # ?ss list:member ?s .
718
- # ?s :x ?x .
719
- # ?s :coef ?c .
720
- # ?x math:sin ?sinx .
721
- # (?x 2.0) math:exponentiation ?x2 .
722
- # (?sinx ?x2) math:sum ?y .
723
- # ?x math:cos ?cosx .
724
- # (2.0 ?x) math:product ?twox .
725
- # (?cosx ?twox) math:sum ?dy .
726
- # (?dy 2.0) math:exponentiation ?dy2 .
727
- # (1.0 ?dy2) math:sum ?onePlus .
728
- # (?onePlus 0.5) math:exponentiation ?ds .
729
- # } => {
730
- # ?s :y ?y .
731
- # ?s :dy ?dy .
732
- # ?s :ds ?ds .
733
- # _:b6 :sample ?s .
734
- # _:b6 :x ?x .
735
- # _:b6 :coef ?c .
736
- # _:b6 :y ?y .
737
- # _:b6 :dy ?dy .
738
- # _:b6 :ds ?ds .
739
- # :Simpson1 :sampleResult _:b6 .
740
- # } .
741
- # with substitution (on rule variables):
742
- # ?c = 4.0
743
- # ?cosx = "0.0707372016677029"^^xsd:decimal
744
- # ?ds = "3.229462333222977"^^xsd:decimal
745
- # ?dy = "3.070737201667703"^^xsd:decimal
746
- # ?dy2 = "9.429426961705994"^^xsd:decimal
747
- # ?onePlus = "10.429426961705994"^^xsd:decimal
748
- # ?s = _:b4
749
- # ?sinx = "0.9974949866040544"^^xsd:decimal
750
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
751
- # ?twox = "3"^^xsd:decimal
752
- # ?x = 1.5
753
- # ?x2 = "2.25"^^xsd:decimal
754
- # ?y = "3.2474949866040546"^^xsd:decimal
755
- # Therefore the derived triple above is entailed by the rules and facts.
756
- # ----------------------------------------------------------------------
757
-
758
15
  _:b4 :dy "3.070737201667703"^^xsd:decimal .
759
-
760
- # ----------------------------------------------------------------------
761
- # Proof for derived triple:
762
- # _:b4 :ds "3.229462333222977"^^xsd:decimal .
763
- # It holds because the following instance of the rule body is provable:
764
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
765
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
766
- # _:b4 :x 1.5 .
767
- # _:b4 :coef 4.0 .
768
- # 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
769
- # (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
770
- # ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
771
- # 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
772
- # (2.0 1.5) math:product "3"^^xsd:decimal .
773
- # ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
774
- # ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
775
- # (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
776
- # ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
777
- # via the schematic forward rule:
778
- # {
779
- # :Simpson1 :samples ?ss .
780
- # ?ss list:member ?s .
781
- # ?s :x ?x .
782
- # ?s :coef ?c .
783
- # ?x math:sin ?sinx .
784
- # (?x 2.0) math:exponentiation ?x2 .
785
- # (?sinx ?x2) math:sum ?y .
786
- # ?x math:cos ?cosx .
787
- # (2.0 ?x) math:product ?twox .
788
- # (?cosx ?twox) math:sum ?dy .
789
- # (?dy 2.0) math:exponentiation ?dy2 .
790
- # (1.0 ?dy2) math:sum ?onePlus .
791
- # (?onePlus 0.5) math:exponentiation ?ds .
792
- # } => {
793
- # ?s :y ?y .
794
- # ?s :dy ?dy .
795
- # ?s :ds ?ds .
796
- # _:b6 :sample ?s .
797
- # _:b6 :x ?x .
798
- # _:b6 :coef ?c .
799
- # _:b6 :y ?y .
800
- # _:b6 :dy ?dy .
801
- # _:b6 :ds ?ds .
802
- # :Simpson1 :sampleResult _:b6 .
803
- # } .
804
- # with substitution (on rule variables):
805
- # ?c = 4.0
806
- # ?cosx = "0.0707372016677029"^^xsd:decimal
807
- # ?ds = "3.229462333222977"^^xsd:decimal
808
- # ?dy = "3.070737201667703"^^xsd:decimal
809
- # ?dy2 = "9.429426961705994"^^xsd:decimal
810
- # ?onePlus = "10.429426961705994"^^xsd:decimal
811
- # ?s = _:b4
812
- # ?sinx = "0.9974949866040544"^^xsd:decimal
813
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
814
- # ?twox = "3"^^xsd:decimal
815
- # ?x = 1.5
816
- # ?x2 = "2.25"^^xsd:decimal
817
- # ?y = "3.2474949866040546"^^xsd:decimal
818
- # Therefore the derived triple above is entailed by the rules and facts.
819
- # ----------------------------------------------------------------------
820
-
821
16
  _:b4 :ds "3.229462333222977"^^xsd:decimal .
822
-
823
- # ----------------------------------------------------------------------
824
- # Proof for derived triple:
825
- # _:sk_1 :sample _:b4 .
826
- # It holds because the following instance of the rule body is provable:
827
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
828
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
829
- # _:b4 :x 1.5 .
830
- # _:b4 :coef 4.0 .
831
- # 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
832
- # (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
833
- # ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
834
- # 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
835
- # (2.0 1.5) math:product "3"^^xsd:decimal .
836
- # ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
837
- # ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
838
- # (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
839
- # ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
840
- # via the schematic forward rule:
841
- # {
842
- # :Simpson1 :samples ?ss .
843
- # ?ss list:member ?s .
844
- # ?s :x ?x .
845
- # ?s :coef ?c .
846
- # ?x math:sin ?sinx .
847
- # (?x 2.0) math:exponentiation ?x2 .
848
- # (?sinx ?x2) math:sum ?y .
849
- # ?x math:cos ?cosx .
850
- # (2.0 ?x) math:product ?twox .
851
- # (?cosx ?twox) math:sum ?dy .
852
- # (?dy 2.0) math:exponentiation ?dy2 .
853
- # (1.0 ?dy2) math:sum ?onePlus .
854
- # (?onePlus 0.5) math:exponentiation ?ds .
855
- # } => {
856
- # ?s :y ?y .
857
- # ?s :dy ?dy .
858
- # ?s :ds ?ds .
859
- # _:b6 :sample ?s .
860
- # _:b6 :x ?x .
861
- # _:b6 :coef ?c .
862
- # _:b6 :y ?y .
863
- # _:b6 :dy ?dy .
864
- # _:b6 :ds ?ds .
865
- # :Simpson1 :sampleResult _:b6 .
866
- # } .
867
- # with substitution (on rule variables):
868
- # ?c = 4.0
869
- # ?cosx = "0.0707372016677029"^^xsd:decimal
870
- # ?ds = "3.229462333222977"^^xsd:decimal
871
- # ?dy = "3.070737201667703"^^xsd:decimal
872
- # ?dy2 = "9.429426961705994"^^xsd:decimal
873
- # ?onePlus = "10.429426961705994"^^xsd:decimal
874
- # ?s = _:b4
875
- # ?sinx = "0.9974949866040544"^^xsd:decimal
876
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
877
- # ?twox = "3"^^xsd:decimal
878
- # ?x = 1.5
879
- # ?x2 = "2.25"^^xsd:decimal
880
- # ?y = "3.2474949866040546"^^xsd:decimal
881
- # Therefore the derived triple above is entailed by the rules and facts.
882
- # ----------------------------------------------------------------------
883
-
884
17
  _:sk_1 :sample _:b4 .
885
-
886
- # ----------------------------------------------------------------------
887
- # Proof for derived triple:
888
- # _:sk_1 :x 1.5 .
889
- # It holds because the following instance of the rule body is provable:
890
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
891
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
892
- # _:b4 :x 1.5 .
893
- # _:b4 :coef 4.0 .
894
- # 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
895
- # (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
896
- # ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
897
- # 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
898
- # (2.0 1.5) math:product "3"^^xsd:decimal .
899
- # ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
900
- # ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
901
- # (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
902
- # ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
903
- # via the schematic forward rule:
904
- # {
905
- # :Simpson1 :samples ?ss .
906
- # ?ss list:member ?s .
907
- # ?s :x ?x .
908
- # ?s :coef ?c .
909
- # ?x math:sin ?sinx .
910
- # (?x 2.0) math:exponentiation ?x2 .
911
- # (?sinx ?x2) math:sum ?y .
912
- # ?x math:cos ?cosx .
913
- # (2.0 ?x) math:product ?twox .
914
- # (?cosx ?twox) math:sum ?dy .
915
- # (?dy 2.0) math:exponentiation ?dy2 .
916
- # (1.0 ?dy2) math:sum ?onePlus .
917
- # (?onePlus 0.5) math:exponentiation ?ds .
918
- # } => {
919
- # ?s :y ?y .
920
- # ?s :dy ?dy .
921
- # ?s :ds ?ds .
922
- # _:b6 :sample ?s .
923
- # _:b6 :x ?x .
924
- # _:b6 :coef ?c .
925
- # _:b6 :y ?y .
926
- # _:b6 :dy ?dy .
927
- # _:b6 :ds ?ds .
928
- # :Simpson1 :sampleResult _:b6 .
929
- # } .
930
- # with substitution (on rule variables):
931
- # ?c = 4.0
932
- # ?cosx = "0.0707372016677029"^^xsd:decimal
933
- # ?ds = "3.229462333222977"^^xsd:decimal
934
- # ?dy = "3.070737201667703"^^xsd:decimal
935
- # ?dy2 = "9.429426961705994"^^xsd:decimal
936
- # ?onePlus = "10.429426961705994"^^xsd:decimal
937
- # ?s = _:b4
938
- # ?sinx = "0.9974949866040544"^^xsd:decimal
939
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
940
- # ?twox = "3"^^xsd:decimal
941
- # ?x = 1.5
942
- # ?x2 = "2.25"^^xsd:decimal
943
- # ?y = "3.2474949866040546"^^xsd:decimal
944
- # Therefore the derived triple above is entailed by the rules and facts.
945
- # ----------------------------------------------------------------------
946
-
947
18
  _:sk_1 :x 1.5 .
948
-
949
- # ----------------------------------------------------------------------
950
- # Proof for derived triple:
951
- # _:sk_1 :coef 4.0 .
952
- # It holds because the following instance of the rule body is provable:
953
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
954
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
955
- # _:b4 :x 1.5 .
956
- # _:b4 :coef 4.0 .
957
- # 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
958
- # (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
959
- # ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
960
- # 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
961
- # (2.0 1.5) math:product "3"^^xsd:decimal .
962
- # ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
963
- # ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
964
- # (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
965
- # ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
966
- # via the schematic forward rule:
967
- # {
968
- # :Simpson1 :samples ?ss .
969
- # ?ss list:member ?s .
970
- # ?s :x ?x .
971
- # ?s :coef ?c .
972
- # ?x math:sin ?sinx .
973
- # (?x 2.0) math:exponentiation ?x2 .
974
- # (?sinx ?x2) math:sum ?y .
975
- # ?x math:cos ?cosx .
976
- # (2.0 ?x) math:product ?twox .
977
- # (?cosx ?twox) math:sum ?dy .
978
- # (?dy 2.0) math:exponentiation ?dy2 .
979
- # (1.0 ?dy2) math:sum ?onePlus .
980
- # (?onePlus 0.5) math:exponentiation ?ds .
981
- # } => {
982
- # ?s :y ?y .
983
- # ?s :dy ?dy .
984
- # ?s :ds ?ds .
985
- # _:b6 :sample ?s .
986
- # _:b6 :x ?x .
987
- # _:b6 :coef ?c .
988
- # _:b6 :y ?y .
989
- # _:b6 :dy ?dy .
990
- # _:b6 :ds ?ds .
991
- # :Simpson1 :sampleResult _:b6 .
992
- # } .
993
- # with substitution (on rule variables):
994
- # ?c = 4.0
995
- # ?cosx = "0.0707372016677029"^^xsd:decimal
996
- # ?ds = "3.229462333222977"^^xsd:decimal
997
- # ?dy = "3.070737201667703"^^xsd:decimal
998
- # ?dy2 = "9.429426961705994"^^xsd:decimal
999
- # ?onePlus = "10.429426961705994"^^xsd:decimal
1000
- # ?s = _:b4
1001
- # ?sinx = "0.9974949866040544"^^xsd:decimal
1002
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1003
- # ?twox = "3"^^xsd:decimal
1004
- # ?x = 1.5
1005
- # ?x2 = "2.25"^^xsd:decimal
1006
- # ?y = "3.2474949866040546"^^xsd:decimal
1007
- # Therefore the derived triple above is entailed by the rules and facts.
1008
- # ----------------------------------------------------------------------
1009
-
1010
19
  _:sk_1 :coef 4.0 .
1011
-
1012
- # ----------------------------------------------------------------------
1013
- # Proof for derived triple:
1014
- # _:sk_1 :y "3.2474949866040546"^^xsd:decimal .
1015
- # It holds because the following instance of the rule body is provable:
1016
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1017
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
1018
- # _:b4 :x 1.5 .
1019
- # _:b4 :coef 4.0 .
1020
- # 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
1021
- # (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
1022
- # ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
1023
- # 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
1024
- # (2.0 1.5) math:product "3"^^xsd:decimal .
1025
- # ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
1026
- # ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
1027
- # (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
1028
- # ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
1029
- # via the schematic forward rule:
1030
- # {
1031
- # :Simpson1 :samples ?ss .
1032
- # ?ss list:member ?s .
1033
- # ?s :x ?x .
1034
- # ?s :coef ?c .
1035
- # ?x math:sin ?sinx .
1036
- # (?x 2.0) math:exponentiation ?x2 .
1037
- # (?sinx ?x2) math:sum ?y .
1038
- # ?x math:cos ?cosx .
1039
- # (2.0 ?x) math:product ?twox .
1040
- # (?cosx ?twox) math:sum ?dy .
1041
- # (?dy 2.0) math:exponentiation ?dy2 .
1042
- # (1.0 ?dy2) math:sum ?onePlus .
1043
- # (?onePlus 0.5) math:exponentiation ?ds .
1044
- # } => {
1045
- # ?s :y ?y .
1046
- # ?s :dy ?dy .
1047
- # ?s :ds ?ds .
1048
- # _:b6 :sample ?s .
1049
- # _:b6 :x ?x .
1050
- # _:b6 :coef ?c .
1051
- # _:b6 :y ?y .
1052
- # _:b6 :dy ?dy .
1053
- # _:b6 :ds ?ds .
1054
- # :Simpson1 :sampleResult _:b6 .
1055
- # } .
1056
- # with substitution (on rule variables):
1057
- # ?c = 4.0
1058
- # ?cosx = "0.0707372016677029"^^xsd:decimal
1059
- # ?ds = "3.229462333222977"^^xsd:decimal
1060
- # ?dy = "3.070737201667703"^^xsd:decimal
1061
- # ?dy2 = "9.429426961705994"^^xsd:decimal
1062
- # ?onePlus = "10.429426961705994"^^xsd:decimal
1063
- # ?s = _:b4
1064
- # ?sinx = "0.9974949866040544"^^xsd:decimal
1065
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1066
- # ?twox = "3"^^xsd:decimal
1067
- # ?x = 1.5
1068
- # ?x2 = "2.25"^^xsd:decimal
1069
- # ?y = "3.2474949866040546"^^xsd:decimal
1070
- # Therefore the derived triple above is entailed by the rules and facts.
1071
- # ----------------------------------------------------------------------
1072
-
1073
20
  _:sk_1 :y "3.2474949866040546"^^xsd:decimal .
1074
-
1075
- # ----------------------------------------------------------------------
1076
- # Proof for derived triple:
1077
- # _:sk_1 :dy "3.070737201667703"^^xsd:decimal .
1078
- # It holds because the following instance of the rule body is provable:
1079
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1080
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
1081
- # _:b4 :x 1.5 .
1082
- # _:b4 :coef 4.0 .
1083
- # 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
1084
- # (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
1085
- # ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
1086
- # 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
1087
- # (2.0 1.5) math:product "3"^^xsd:decimal .
1088
- # ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
1089
- # ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
1090
- # (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
1091
- # ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
1092
- # via the schematic forward rule:
1093
- # {
1094
- # :Simpson1 :samples ?ss .
1095
- # ?ss list:member ?s .
1096
- # ?s :x ?x .
1097
- # ?s :coef ?c .
1098
- # ?x math:sin ?sinx .
1099
- # (?x 2.0) math:exponentiation ?x2 .
1100
- # (?sinx ?x2) math:sum ?y .
1101
- # ?x math:cos ?cosx .
1102
- # (2.0 ?x) math:product ?twox .
1103
- # (?cosx ?twox) math:sum ?dy .
1104
- # (?dy 2.0) math:exponentiation ?dy2 .
1105
- # (1.0 ?dy2) math:sum ?onePlus .
1106
- # (?onePlus 0.5) math:exponentiation ?ds .
1107
- # } => {
1108
- # ?s :y ?y .
1109
- # ?s :dy ?dy .
1110
- # ?s :ds ?ds .
1111
- # _:b6 :sample ?s .
1112
- # _:b6 :x ?x .
1113
- # _:b6 :coef ?c .
1114
- # _:b6 :y ?y .
1115
- # _:b6 :dy ?dy .
1116
- # _:b6 :ds ?ds .
1117
- # :Simpson1 :sampleResult _:b6 .
1118
- # } .
1119
- # with substitution (on rule variables):
1120
- # ?c = 4.0
1121
- # ?cosx = "0.0707372016677029"^^xsd:decimal
1122
- # ?ds = "3.229462333222977"^^xsd:decimal
1123
- # ?dy = "3.070737201667703"^^xsd:decimal
1124
- # ?dy2 = "9.429426961705994"^^xsd:decimal
1125
- # ?onePlus = "10.429426961705994"^^xsd:decimal
1126
- # ?s = _:b4
1127
- # ?sinx = "0.9974949866040544"^^xsd:decimal
1128
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1129
- # ?twox = "3"^^xsd:decimal
1130
- # ?x = 1.5
1131
- # ?x2 = "2.25"^^xsd:decimal
1132
- # ?y = "3.2474949866040546"^^xsd:decimal
1133
- # Therefore the derived triple above is entailed by the rules and facts.
1134
- # ----------------------------------------------------------------------
1135
-
1136
21
  _:sk_1 :dy "3.070737201667703"^^xsd:decimal .
1137
-
1138
- # ----------------------------------------------------------------------
1139
- # Proof for derived triple:
1140
- # _:sk_1 :ds "3.229462333222977"^^xsd:decimal .
1141
- # It holds because the following instance of the rule body is provable:
1142
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1143
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
1144
- # _:b4 :x 1.5 .
1145
- # _:b4 :coef 4.0 .
1146
- # 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
1147
- # (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
1148
- # ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
1149
- # 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
1150
- # (2.0 1.5) math:product "3"^^xsd:decimal .
1151
- # ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
1152
- # ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
1153
- # (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
1154
- # ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
1155
- # via the schematic forward rule:
1156
- # {
1157
- # :Simpson1 :samples ?ss .
1158
- # ?ss list:member ?s .
1159
- # ?s :x ?x .
1160
- # ?s :coef ?c .
1161
- # ?x math:sin ?sinx .
1162
- # (?x 2.0) math:exponentiation ?x2 .
1163
- # (?sinx ?x2) math:sum ?y .
1164
- # ?x math:cos ?cosx .
1165
- # (2.0 ?x) math:product ?twox .
1166
- # (?cosx ?twox) math:sum ?dy .
1167
- # (?dy 2.0) math:exponentiation ?dy2 .
1168
- # (1.0 ?dy2) math:sum ?onePlus .
1169
- # (?onePlus 0.5) math:exponentiation ?ds .
1170
- # } => {
1171
- # ?s :y ?y .
1172
- # ?s :dy ?dy .
1173
- # ?s :ds ?ds .
1174
- # _:b6 :sample ?s .
1175
- # _:b6 :x ?x .
1176
- # _:b6 :coef ?c .
1177
- # _:b6 :y ?y .
1178
- # _:b6 :dy ?dy .
1179
- # _:b6 :ds ?ds .
1180
- # :Simpson1 :sampleResult _:b6 .
1181
- # } .
1182
- # with substitution (on rule variables):
1183
- # ?c = 4.0
1184
- # ?cosx = "0.0707372016677029"^^xsd:decimal
1185
- # ?ds = "3.229462333222977"^^xsd:decimal
1186
- # ?dy = "3.070737201667703"^^xsd:decimal
1187
- # ?dy2 = "9.429426961705994"^^xsd:decimal
1188
- # ?onePlus = "10.429426961705994"^^xsd:decimal
1189
- # ?s = _:b4
1190
- # ?sinx = "0.9974949866040544"^^xsd:decimal
1191
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1192
- # ?twox = "3"^^xsd:decimal
1193
- # ?x = 1.5
1194
- # ?x2 = "2.25"^^xsd:decimal
1195
- # ?y = "3.2474949866040546"^^xsd:decimal
1196
- # Therefore the derived triple above is entailed by the rules and facts.
1197
- # ----------------------------------------------------------------------
1198
-
1199
22
  _:sk_1 :ds "3.229462333222977"^^xsd:decimal .
1200
-
1201
- # ----------------------------------------------------------------------
1202
- # Proof for derived triple:
1203
- # :Simpson1 :sampleResult _:sk_1 .
1204
- # It holds because the following instance of the rule body is provable:
1205
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1206
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b4 .
1207
- # _:b4 :x 1.5 .
1208
- # _:b4 :coef 4.0 .
1209
- # 1.5 math:sin "0.9974949866040544"^^xsd:decimal .
1210
- # (1.5 2.0) math:exponentiation "2.25"^^xsd:decimal .
1211
- # ("0.9974949866040544"^^xsd:decimal "2.25"^^xsd:decimal) math:sum "3.2474949866040546"^^xsd:decimal .
1212
- # 1.5 math:cos "0.0707372016677029"^^xsd:decimal .
1213
- # (2.0 1.5) math:product "3"^^xsd:decimal .
1214
- # ("0.0707372016677029"^^xsd:decimal "3"^^xsd:decimal) math:sum "3.070737201667703"^^xsd:decimal .
1215
- # ("3.070737201667703"^^xsd:decimal 2.0) math:exponentiation "9.429426961705994"^^xsd:decimal .
1216
- # (1.0 "9.429426961705994"^^xsd:decimal) math:sum "10.429426961705994"^^xsd:decimal .
1217
- # ("10.429426961705994"^^xsd:decimal 0.5) math:exponentiation "3.229462333222977"^^xsd:decimal .
1218
- # via the schematic forward rule:
1219
- # {
1220
- # :Simpson1 :samples ?ss .
1221
- # ?ss list:member ?s .
1222
- # ?s :x ?x .
1223
- # ?s :coef ?c .
1224
- # ?x math:sin ?sinx .
1225
- # (?x 2.0) math:exponentiation ?x2 .
1226
- # (?sinx ?x2) math:sum ?y .
1227
- # ?x math:cos ?cosx .
1228
- # (2.0 ?x) math:product ?twox .
1229
- # (?cosx ?twox) math:sum ?dy .
1230
- # (?dy 2.0) math:exponentiation ?dy2 .
1231
- # (1.0 ?dy2) math:sum ?onePlus .
1232
- # (?onePlus 0.5) math:exponentiation ?ds .
1233
- # } => {
1234
- # ?s :y ?y .
1235
- # ?s :dy ?dy .
1236
- # ?s :ds ?ds .
1237
- # _:b6 :sample ?s .
1238
- # _:b6 :x ?x .
1239
- # _:b6 :coef ?c .
1240
- # _:b6 :y ?y .
1241
- # _:b6 :dy ?dy .
1242
- # _:b6 :ds ?ds .
1243
- # :Simpson1 :sampleResult _:b6 .
1244
- # } .
1245
- # with substitution (on rule variables):
1246
- # ?c = 4.0
1247
- # ?cosx = "0.0707372016677029"^^xsd:decimal
1248
- # ?ds = "3.229462333222977"^^xsd:decimal
1249
- # ?dy = "3.070737201667703"^^xsd:decimal
1250
- # ?dy2 = "9.429426961705994"^^xsd:decimal
1251
- # ?onePlus = "10.429426961705994"^^xsd:decimal
1252
- # ?s = _:b4
1253
- # ?sinx = "0.9974949866040544"^^xsd:decimal
1254
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1255
- # ?twox = "3"^^xsd:decimal
1256
- # ?x = 1.5
1257
- # ?x2 = "2.25"^^xsd:decimal
1258
- # ?y = "3.2474949866040546"^^xsd:decimal
1259
- # Therefore the derived triple above is entailed by the rules and facts.
1260
- # ----------------------------------------------------------------------
1261
-
1262
23
  :Simpson1 :sampleResult _:sk_1 .
1263
-
1264
- # ----------------------------------------------------------------------
1265
- # Proof for derived triple:
1266
- # _:b3 :y "1.8414709848078965"^^xsd:decimal .
1267
- # It holds because the following instance of the rule body is provable:
1268
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1269
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1270
- # _:b3 :x 1.0 .
1271
- # _:b3 :coef 2.0 .
1272
- # 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
1273
- # (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
1274
- # ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
1275
- # 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
1276
- # (2.0 1.0) math:product "2"^^xsd:decimal .
1277
- # ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
1278
- # ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
1279
- # (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
1280
- # ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
1281
- # via the schematic forward rule:
1282
- # {
1283
- # :Simpson1 :samples ?ss .
1284
- # ?ss list:member ?s .
1285
- # ?s :x ?x .
1286
- # ?s :coef ?c .
1287
- # ?x math:sin ?sinx .
1288
- # (?x 2.0) math:exponentiation ?x2 .
1289
- # (?sinx ?x2) math:sum ?y .
1290
- # ?x math:cos ?cosx .
1291
- # (2.0 ?x) math:product ?twox .
1292
- # (?cosx ?twox) math:sum ?dy .
1293
- # (?dy 2.0) math:exponentiation ?dy2 .
1294
- # (1.0 ?dy2) math:sum ?onePlus .
1295
- # (?onePlus 0.5) math:exponentiation ?ds .
1296
- # } => {
1297
- # ?s :y ?y .
1298
- # ?s :dy ?dy .
1299
- # ?s :ds ?ds .
1300
- # _:b6 :sample ?s .
1301
- # _:b6 :x ?x .
1302
- # _:b6 :coef ?c .
1303
- # _:b6 :y ?y .
1304
- # _:b6 :dy ?dy .
1305
- # _:b6 :ds ?ds .
1306
- # :Simpson1 :sampleResult _:b6 .
1307
- # } .
1308
- # with substitution (on rule variables):
1309
- # ?c = 2.0
1310
- # ?cosx = "0.5403023058681398"^^xsd:decimal
1311
- # ?ds = "2.7300431874237794"^^xsd:decimal
1312
- # ?dy = "2.5403023058681398"^^xsd:decimal
1313
- # ?dy2 = "6.453135805198988"^^xsd:decimal
1314
- # ?onePlus = "7.453135805198988"^^xsd:decimal
1315
- # ?s = _:b3
1316
- # ?sinx = "0.8414709848078965"^^xsd:decimal
1317
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1318
- # ?twox = "2"^^xsd:decimal
1319
- # ?x = 1.0
1320
- # ?x2 = "1"^^xsd:decimal
1321
- # ?y = "1.8414709848078965"^^xsd:decimal
1322
- # Therefore the derived triple above is entailed by the rules and facts.
1323
- # ----------------------------------------------------------------------
1324
-
1325
24
  _:b3 :y "1.8414709848078965"^^xsd:decimal .
1326
-
1327
- # ----------------------------------------------------------------------
1328
- # Proof for derived triple:
1329
- # _:b3 :dy "2.5403023058681398"^^xsd:decimal .
1330
- # It holds because the following instance of the rule body is provable:
1331
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1332
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1333
- # _:b3 :x 1.0 .
1334
- # _:b3 :coef 2.0 .
1335
- # 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
1336
- # (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
1337
- # ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
1338
- # 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
1339
- # (2.0 1.0) math:product "2"^^xsd:decimal .
1340
- # ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
1341
- # ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
1342
- # (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
1343
- # ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
1344
- # via the schematic forward rule:
1345
- # {
1346
- # :Simpson1 :samples ?ss .
1347
- # ?ss list:member ?s .
1348
- # ?s :x ?x .
1349
- # ?s :coef ?c .
1350
- # ?x math:sin ?sinx .
1351
- # (?x 2.0) math:exponentiation ?x2 .
1352
- # (?sinx ?x2) math:sum ?y .
1353
- # ?x math:cos ?cosx .
1354
- # (2.0 ?x) math:product ?twox .
1355
- # (?cosx ?twox) math:sum ?dy .
1356
- # (?dy 2.0) math:exponentiation ?dy2 .
1357
- # (1.0 ?dy2) math:sum ?onePlus .
1358
- # (?onePlus 0.5) math:exponentiation ?ds .
1359
- # } => {
1360
- # ?s :y ?y .
1361
- # ?s :dy ?dy .
1362
- # ?s :ds ?ds .
1363
- # _:b6 :sample ?s .
1364
- # _:b6 :x ?x .
1365
- # _:b6 :coef ?c .
1366
- # _:b6 :y ?y .
1367
- # _:b6 :dy ?dy .
1368
- # _:b6 :ds ?ds .
1369
- # :Simpson1 :sampleResult _:b6 .
1370
- # } .
1371
- # with substitution (on rule variables):
1372
- # ?c = 2.0
1373
- # ?cosx = "0.5403023058681398"^^xsd:decimal
1374
- # ?ds = "2.7300431874237794"^^xsd:decimal
1375
- # ?dy = "2.5403023058681398"^^xsd:decimal
1376
- # ?dy2 = "6.453135805198988"^^xsd:decimal
1377
- # ?onePlus = "7.453135805198988"^^xsd:decimal
1378
- # ?s = _:b3
1379
- # ?sinx = "0.8414709848078965"^^xsd:decimal
1380
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1381
- # ?twox = "2"^^xsd:decimal
1382
- # ?x = 1.0
1383
- # ?x2 = "1"^^xsd:decimal
1384
- # ?y = "1.8414709848078965"^^xsd:decimal
1385
- # Therefore the derived triple above is entailed by the rules and facts.
1386
- # ----------------------------------------------------------------------
1387
-
1388
25
  _:b3 :dy "2.5403023058681398"^^xsd:decimal .
1389
-
1390
- # ----------------------------------------------------------------------
1391
- # Proof for derived triple:
1392
- # _:b3 :ds "2.7300431874237794"^^xsd:decimal .
1393
- # It holds because the following instance of the rule body is provable:
1394
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1395
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1396
- # _:b3 :x 1.0 .
1397
- # _:b3 :coef 2.0 .
1398
- # 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
1399
- # (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
1400
- # ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
1401
- # 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
1402
- # (2.0 1.0) math:product "2"^^xsd:decimal .
1403
- # ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
1404
- # ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
1405
- # (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
1406
- # ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
1407
- # via the schematic forward rule:
1408
- # {
1409
- # :Simpson1 :samples ?ss .
1410
- # ?ss list:member ?s .
1411
- # ?s :x ?x .
1412
- # ?s :coef ?c .
1413
- # ?x math:sin ?sinx .
1414
- # (?x 2.0) math:exponentiation ?x2 .
1415
- # (?sinx ?x2) math:sum ?y .
1416
- # ?x math:cos ?cosx .
1417
- # (2.0 ?x) math:product ?twox .
1418
- # (?cosx ?twox) math:sum ?dy .
1419
- # (?dy 2.0) math:exponentiation ?dy2 .
1420
- # (1.0 ?dy2) math:sum ?onePlus .
1421
- # (?onePlus 0.5) math:exponentiation ?ds .
1422
- # } => {
1423
- # ?s :y ?y .
1424
- # ?s :dy ?dy .
1425
- # ?s :ds ?ds .
1426
- # _:b6 :sample ?s .
1427
- # _:b6 :x ?x .
1428
- # _:b6 :coef ?c .
1429
- # _:b6 :y ?y .
1430
- # _:b6 :dy ?dy .
1431
- # _:b6 :ds ?ds .
1432
- # :Simpson1 :sampleResult _:b6 .
1433
- # } .
1434
- # with substitution (on rule variables):
1435
- # ?c = 2.0
1436
- # ?cosx = "0.5403023058681398"^^xsd:decimal
1437
- # ?ds = "2.7300431874237794"^^xsd:decimal
1438
- # ?dy = "2.5403023058681398"^^xsd:decimal
1439
- # ?dy2 = "6.453135805198988"^^xsd:decimal
1440
- # ?onePlus = "7.453135805198988"^^xsd:decimal
1441
- # ?s = _:b3
1442
- # ?sinx = "0.8414709848078965"^^xsd:decimal
1443
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1444
- # ?twox = "2"^^xsd:decimal
1445
- # ?x = 1.0
1446
- # ?x2 = "1"^^xsd:decimal
1447
- # ?y = "1.8414709848078965"^^xsd:decimal
1448
- # Therefore the derived triple above is entailed by the rules and facts.
1449
- # ----------------------------------------------------------------------
1450
-
1451
26
  _:b3 :ds "2.7300431874237794"^^xsd:decimal .
1452
-
1453
- # ----------------------------------------------------------------------
1454
- # Proof for derived triple:
1455
- # _:sk_2 :sample _:b3 .
1456
- # It holds because the following instance of the rule body is provable:
1457
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1458
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1459
- # _:b3 :x 1.0 .
1460
- # _:b3 :coef 2.0 .
1461
- # 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
1462
- # (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
1463
- # ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
1464
- # 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
1465
- # (2.0 1.0) math:product "2"^^xsd:decimal .
1466
- # ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
1467
- # ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
1468
- # (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
1469
- # ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
1470
- # via the schematic forward rule:
1471
- # {
1472
- # :Simpson1 :samples ?ss .
1473
- # ?ss list:member ?s .
1474
- # ?s :x ?x .
1475
- # ?s :coef ?c .
1476
- # ?x math:sin ?sinx .
1477
- # (?x 2.0) math:exponentiation ?x2 .
1478
- # (?sinx ?x2) math:sum ?y .
1479
- # ?x math:cos ?cosx .
1480
- # (2.0 ?x) math:product ?twox .
1481
- # (?cosx ?twox) math:sum ?dy .
1482
- # (?dy 2.0) math:exponentiation ?dy2 .
1483
- # (1.0 ?dy2) math:sum ?onePlus .
1484
- # (?onePlus 0.5) math:exponentiation ?ds .
1485
- # } => {
1486
- # ?s :y ?y .
1487
- # ?s :dy ?dy .
1488
- # ?s :ds ?ds .
1489
- # _:b6 :sample ?s .
1490
- # _:b6 :x ?x .
1491
- # _:b6 :coef ?c .
1492
- # _:b6 :y ?y .
1493
- # _:b6 :dy ?dy .
1494
- # _:b6 :ds ?ds .
1495
- # :Simpson1 :sampleResult _:b6 .
1496
- # } .
1497
- # with substitution (on rule variables):
1498
- # ?c = 2.0
1499
- # ?cosx = "0.5403023058681398"^^xsd:decimal
1500
- # ?ds = "2.7300431874237794"^^xsd:decimal
1501
- # ?dy = "2.5403023058681398"^^xsd:decimal
1502
- # ?dy2 = "6.453135805198988"^^xsd:decimal
1503
- # ?onePlus = "7.453135805198988"^^xsd:decimal
1504
- # ?s = _:b3
1505
- # ?sinx = "0.8414709848078965"^^xsd:decimal
1506
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1507
- # ?twox = "2"^^xsd:decimal
1508
- # ?x = 1.0
1509
- # ?x2 = "1"^^xsd:decimal
1510
- # ?y = "1.8414709848078965"^^xsd:decimal
1511
- # Therefore the derived triple above is entailed by the rules and facts.
1512
- # ----------------------------------------------------------------------
1513
-
1514
27
  _:sk_2 :sample _:b3 .
1515
-
1516
- # ----------------------------------------------------------------------
1517
- # Proof for derived triple:
1518
- # _:sk_2 :x 1.0 .
1519
- # It holds because the following instance of the rule body is provable:
1520
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1521
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1522
- # _:b3 :x 1.0 .
1523
- # _:b3 :coef 2.0 .
1524
- # 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
1525
- # (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
1526
- # ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
1527
- # 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
1528
- # (2.0 1.0) math:product "2"^^xsd:decimal .
1529
- # ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
1530
- # ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
1531
- # (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
1532
- # ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
1533
- # via the schematic forward rule:
1534
- # {
1535
- # :Simpson1 :samples ?ss .
1536
- # ?ss list:member ?s .
1537
- # ?s :x ?x .
1538
- # ?s :coef ?c .
1539
- # ?x math:sin ?sinx .
1540
- # (?x 2.0) math:exponentiation ?x2 .
1541
- # (?sinx ?x2) math:sum ?y .
1542
- # ?x math:cos ?cosx .
1543
- # (2.0 ?x) math:product ?twox .
1544
- # (?cosx ?twox) math:sum ?dy .
1545
- # (?dy 2.0) math:exponentiation ?dy2 .
1546
- # (1.0 ?dy2) math:sum ?onePlus .
1547
- # (?onePlus 0.5) math:exponentiation ?ds .
1548
- # } => {
1549
- # ?s :y ?y .
1550
- # ?s :dy ?dy .
1551
- # ?s :ds ?ds .
1552
- # _:b6 :sample ?s .
1553
- # _:b6 :x ?x .
1554
- # _:b6 :coef ?c .
1555
- # _:b6 :y ?y .
1556
- # _:b6 :dy ?dy .
1557
- # _:b6 :ds ?ds .
1558
- # :Simpson1 :sampleResult _:b6 .
1559
- # } .
1560
- # with substitution (on rule variables):
1561
- # ?c = 2.0
1562
- # ?cosx = "0.5403023058681398"^^xsd:decimal
1563
- # ?ds = "2.7300431874237794"^^xsd:decimal
1564
- # ?dy = "2.5403023058681398"^^xsd:decimal
1565
- # ?dy2 = "6.453135805198988"^^xsd:decimal
1566
- # ?onePlus = "7.453135805198988"^^xsd:decimal
1567
- # ?s = _:b3
1568
- # ?sinx = "0.8414709848078965"^^xsd:decimal
1569
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1570
- # ?twox = "2"^^xsd:decimal
1571
- # ?x = 1.0
1572
- # ?x2 = "1"^^xsd:decimal
1573
- # ?y = "1.8414709848078965"^^xsd:decimal
1574
- # Therefore the derived triple above is entailed by the rules and facts.
1575
- # ----------------------------------------------------------------------
1576
-
1577
28
  _:sk_2 :x 1.0 .
1578
-
1579
- # ----------------------------------------------------------------------
1580
- # Proof for derived triple:
1581
- # _:sk_2 :coef 2.0 .
1582
- # It holds because the following instance of the rule body is provable:
1583
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1584
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1585
- # _:b3 :x 1.0 .
1586
- # _:b3 :coef 2.0 .
1587
- # 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
1588
- # (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
1589
- # ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
1590
- # 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
1591
- # (2.0 1.0) math:product "2"^^xsd:decimal .
1592
- # ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
1593
- # ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
1594
- # (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
1595
- # ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
1596
- # via the schematic forward rule:
1597
- # {
1598
- # :Simpson1 :samples ?ss .
1599
- # ?ss list:member ?s .
1600
- # ?s :x ?x .
1601
- # ?s :coef ?c .
1602
- # ?x math:sin ?sinx .
1603
- # (?x 2.0) math:exponentiation ?x2 .
1604
- # (?sinx ?x2) math:sum ?y .
1605
- # ?x math:cos ?cosx .
1606
- # (2.0 ?x) math:product ?twox .
1607
- # (?cosx ?twox) math:sum ?dy .
1608
- # (?dy 2.0) math:exponentiation ?dy2 .
1609
- # (1.0 ?dy2) math:sum ?onePlus .
1610
- # (?onePlus 0.5) math:exponentiation ?ds .
1611
- # } => {
1612
- # ?s :y ?y .
1613
- # ?s :dy ?dy .
1614
- # ?s :ds ?ds .
1615
- # _:b6 :sample ?s .
1616
- # _:b6 :x ?x .
1617
- # _:b6 :coef ?c .
1618
- # _:b6 :y ?y .
1619
- # _:b6 :dy ?dy .
1620
- # _:b6 :ds ?ds .
1621
- # :Simpson1 :sampleResult _:b6 .
1622
- # } .
1623
- # with substitution (on rule variables):
1624
- # ?c = 2.0
1625
- # ?cosx = "0.5403023058681398"^^xsd:decimal
1626
- # ?ds = "2.7300431874237794"^^xsd:decimal
1627
- # ?dy = "2.5403023058681398"^^xsd:decimal
1628
- # ?dy2 = "6.453135805198988"^^xsd:decimal
1629
- # ?onePlus = "7.453135805198988"^^xsd:decimal
1630
- # ?s = _:b3
1631
- # ?sinx = "0.8414709848078965"^^xsd:decimal
1632
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1633
- # ?twox = "2"^^xsd:decimal
1634
- # ?x = 1.0
1635
- # ?x2 = "1"^^xsd:decimal
1636
- # ?y = "1.8414709848078965"^^xsd:decimal
1637
- # Therefore the derived triple above is entailed by the rules and facts.
1638
- # ----------------------------------------------------------------------
1639
-
1640
29
  _:sk_2 :coef 2.0 .
1641
-
1642
- # ----------------------------------------------------------------------
1643
- # Proof for derived triple:
1644
- # _:sk_2 :y "1.8414709848078965"^^xsd:decimal .
1645
- # It holds because the following instance of the rule body is provable:
1646
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1647
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1648
- # _:b3 :x 1.0 .
1649
- # _:b3 :coef 2.0 .
1650
- # 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
1651
- # (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
1652
- # ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
1653
- # 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
1654
- # (2.0 1.0) math:product "2"^^xsd:decimal .
1655
- # ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
1656
- # ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
1657
- # (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
1658
- # ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
1659
- # via the schematic forward rule:
1660
- # {
1661
- # :Simpson1 :samples ?ss .
1662
- # ?ss list:member ?s .
1663
- # ?s :x ?x .
1664
- # ?s :coef ?c .
1665
- # ?x math:sin ?sinx .
1666
- # (?x 2.0) math:exponentiation ?x2 .
1667
- # (?sinx ?x2) math:sum ?y .
1668
- # ?x math:cos ?cosx .
1669
- # (2.0 ?x) math:product ?twox .
1670
- # (?cosx ?twox) math:sum ?dy .
1671
- # (?dy 2.0) math:exponentiation ?dy2 .
1672
- # (1.0 ?dy2) math:sum ?onePlus .
1673
- # (?onePlus 0.5) math:exponentiation ?ds .
1674
- # } => {
1675
- # ?s :y ?y .
1676
- # ?s :dy ?dy .
1677
- # ?s :ds ?ds .
1678
- # _:b6 :sample ?s .
1679
- # _:b6 :x ?x .
1680
- # _:b6 :coef ?c .
1681
- # _:b6 :y ?y .
1682
- # _:b6 :dy ?dy .
1683
- # _:b6 :ds ?ds .
1684
- # :Simpson1 :sampleResult _:b6 .
1685
- # } .
1686
- # with substitution (on rule variables):
1687
- # ?c = 2.0
1688
- # ?cosx = "0.5403023058681398"^^xsd:decimal
1689
- # ?ds = "2.7300431874237794"^^xsd:decimal
1690
- # ?dy = "2.5403023058681398"^^xsd:decimal
1691
- # ?dy2 = "6.453135805198988"^^xsd:decimal
1692
- # ?onePlus = "7.453135805198988"^^xsd:decimal
1693
- # ?s = _:b3
1694
- # ?sinx = "0.8414709848078965"^^xsd:decimal
1695
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1696
- # ?twox = "2"^^xsd:decimal
1697
- # ?x = 1.0
1698
- # ?x2 = "1"^^xsd:decimal
1699
- # ?y = "1.8414709848078965"^^xsd:decimal
1700
- # Therefore the derived triple above is entailed by the rules and facts.
1701
- # ----------------------------------------------------------------------
1702
-
1703
30
  _:sk_2 :y "1.8414709848078965"^^xsd:decimal .
1704
-
1705
- # ----------------------------------------------------------------------
1706
- # Proof for derived triple:
1707
- # _:sk_2 :dy "2.5403023058681398"^^xsd:decimal .
1708
- # It holds because the following instance of the rule body is provable:
1709
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1710
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1711
- # _:b3 :x 1.0 .
1712
- # _:b3 :coef 2.0 .
1713
- # 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
1714
- # (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
1715
- # ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
1716
- # 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
1717
- # (2.0 1.0) math:product "2"^^xsd:decimal .
1718
- # ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
1719
- # ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
1720
- # (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
1721
- # ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
1722
- # via the schematic forward rule:
1723
- # {
1724
- # :Simpson1 :samples ?ss .
1725
- # ?ss list:member ?s .
1726
- # ?s :x ?x .
1727
- # ?s :coef ?c .
1728
- # ?x math:sin ?sinx .
1729
- # (?x 2.0) math:exponentiation ?x2 .
1730
- # (?sinx ?x2) math:sum ?y .
1731
- # ?x math:cos ?cosx .
1732
- # (2.0 ?x) math:product ?twox .
1733
- # (?cosx ?twox) math:sum ?dy .
1734
- # (?dy 2.0) math:exponentiation ?dy2 .
1735
- # (1.0 ?dy2) math:sum ?onePlus .
1736
- # (?onePlus 0.5) math:exponentiation ?ds .
1737
- # } => {
1738
- # ?s :y ?y .
1739
- # ?s :dy ?dy .
1740
- # ?s :ds ?ds .
1741
- # _:b6 :sample ?s .
1742
- # _:b6 :x ?x .
1743
- # _:b6 :coef ?c .
1744
- # _:b6 :y ?y .
1745
- # _:b6 :dy ?dy .
1746
- # _:b6 :ds ?ds .
1747
- # :Simpson1 :sampleResult _:b6 .
1748
- # } .
1749
- # with substitution (on rule variables):
1750
- # ?c = 2.0
1751
- # ?cosx = "0.5403023058681398"^^xsd:decimal
1752
- # ?ds = "2.7300431874237794"^^xsd:decimal
1753
- # ?dy = "2.5403023058681398"^^xsd:decimal
1754
- # ?dy2 = "6.453135805198988"^^xsd:decimal
1755
- # ?onePlus = "7.453135805198988"^^xsd:decimal
1756
- # ?s = _:b3
1757
- # ?sinx = "0.8414709848078965"^^xsd:decimal
1758
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1759
- # ?twox = "2"^^xsd:decimal
1760
- # ?x = 1.0
1761
- # ?x2 = "1"^^xsd:decimal
1762
- # ?y = "1.8414709848078965"^^xsd:decimal
1763
- # Therefore the derived triple above is entailed by the rules and facts.
1764
- # ----------------------------------------------------------------------
1765
-
1766
31
  _:sk_2 :dy "2.5403023058681398"^^xsd:decimal .
1767
-
1768
- # ----------------------------------------------------------------------
1769
- # Proof for derived triple:
1770
- # _:sk_2 :ds "2.7300431874237794"^^xsd:decimal .
1771
- # It holds because the following instance of the rule body is provable:
1772
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1773
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1774
- # _:b3 :x 1.0 .
1775
- # _:b3 :coef 2.0 .
1776
- # 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
1777
- # (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
1778
- # ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
1779
- # 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
1780
- # (2.0 1.0) math:product "2"^^xsd:decimal .
1781
- # ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
1782
- # ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
1783
- # (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
1784
- # ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
1785
- # via the schematic forward rule:
1786
- # {
1787
- # :Simpson1 :samples ?ss .
1788
- # ?ss list:member ?s .
1789
- # ?s :x ?x .
1790
- # ?s :coef ?c .
1791
- # ?x math:sin ?sinx .
1792
- # (?x 2.0) math:exponentiation ?x2 .
1793
- # (?sinx ?x2) math:sum ?y .
1794
- # ?x math:cos ?cosx .
1795
- # (2.0 ?x) math:product ?twox .
1796
- # (?cosx ?twox) math:sum ?dy .
1797
- # (?dy 2.0) math:exponentiation ?dy2 .
1798
- # (1.0 ?dy2) math:sum ?onePlus .
1799
- # (?onePlus 0.5) math:exponentiation ?ds .
1800
- # } => {
1801
- # ?s :y ?y .
1802
- # ?s :dy ?dy .
1803
- # ?s :ds ?ds .
1804
- # _:b6 :sample ?s .
1805
- # _:b6 :x ?x .
1806
- # _:b6 :coef ?c .
1807
- # _:b6 :y ?y .
1808
- # _:b6 :dy ?dy .
1809
- # _:b6 :ds ?ds .
1810
- # :Simpson1 :sampleResult _:b6 .
1811
- # } .
1812
- # with substitution (on rule variables):
1813
- # ?c = 2.0
1814
- # ?cosx = "0.5403023058681398"^^xsd:decimal
1815
- # ?ds = "2.7300431874237794"^^xsd:decimal
1816
- # ?dy = "2.5403023058681398"^^xsd:decimal
1817
- # ?dy2 = "6.453135805198988"^^xsd:decimal
1818
- # ?onePlus = "7.453135805198988"^^xsd:decimal
1819
- # ?s = _:b3
1820
- # ?sinx = "0.8414709848078965"^^xsd:decimal
1821
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1822
- # ?twox = "2"^^xsd:decimal
1823
- # ?x = 1.0
1824
- # ?x2 = "1"^^xsd:decimal
1825
- # ?y = "1.8414709848078965"^^xsd:decimal
1826
- # Therefore the derived triple above is entailed by the rules and facts.
1827
- # ----------------------------------------------------------------------
1828
-
1829
32
  _:sk_2 :ds "2.7300431874237794"^^xsd:decimal .
1830
-
1831
- # ----------------------------------------------------------------------
1832
- # Proof for derived triple:
1833
- # :Simpson1 :sampleResult _:sk_2 .
1834
- # It holds because the following instance of the rule body is provable:
1835
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1836
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b3 .
1837
- # _:b3 :x 1.0 .
1838
- # _:b3 :coef 2.0 .
1839
- # 1.0 math:sin "0.8414709848078965"^^xsd:decimal .
1840
- # (1.0 2.0) math:exponentiation "1"^^xsd:decimal .
1841
- # ("0.8414709848078965"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8414709848078965"^^xsd:decimal .
1842
- # 1.0 math:cos "0.5403023058681398"^^xsd:decimal .
1843
- # (2.0 1.0) math:product "2"^^xsd:decimal .
1844
- # ("0.5403023058681398"^^xsd:decimal "2"^^xsd:decimal) math:sum "2.5403023058681398"^^xsd:decimal .
1845
- # ("2.5403023058681398"^^xsd:decimal 2.0) math:exponentiation "6.453135805198988"^^xsd:decimal .
1846
- # (1.0 "6.453135805198988"^^xsd:decimal) math:sum "7.453135805198988"^^xsd:decimal .
1847
- # ("7.453135805198988"^^xsd:decimal 0.5) math:exponentiation "2.7300431874237794"^^xsd:decimal .
1848
- # via the schematic forward rule:
1849
- # {
1850
- # :Simpson1 :samples ?ss .
1851
- # ?ss list:member ?s .
1852
- # ?s :x ?x .
1853
- # ?s :coef ?c .
1854
- # ?x math:sin ?sinx .
1855
- # (?x 2.0) math:exponentiation ?x2 .
1856
- # (?sinx ?x2) math:sum ?y .
1857
- # ?x math:cos ?cosx .
1858
- # (2.0 ?x) math:product ?twox .
1859
- # (?cosx ?twox) math:sum ?dy .
1860
- # (?dy 2.0) math:exponentiation ?dy2 .
1861
- # (1.0 ?dy2) math:sum ?onePlus .
1862
- # (?onePlus 0.5) math:exponentiation ?ds .
1863
- # } => {
1864
- # ?s :y ?y .
1865
- # ?s :dy ?dy .
1866
- # ?s :ds ?ds .
1867
- # _:b6 :sample ?s .
1868
- # _:b6 :x ?x .
1869
- # _:b6 :coef ?c .
1870
- # _:b6 :y ?y .
1871
- # _:b6 :dy ?dy .
1872
- # _:b6 :ds ?ds .
1873
- # :Simpson1 :sampleResult _:b6 .
1874
- # } .
1875
- # with substitution (on rule variables):
1876
- # ?c = 2.0
1877
- # ?cosx = "0.5403023058681398"^^xsd:decimal
1878
- # ?ds = "2.7300431874237794"^^xsd:decimal
1879
- # ?dy = "2.5403023058681398"^^xsd:decimal
1880
- # ?dy2 = "6.453135805198988"^^xsd:decimal
1881
- # ?onePlus = "7.453135805198988"^^xsd:decimal
1882
- # ?s = _:b3
1883
- # ?sinx = "0.8414709848078965"^^xsd:decimal
1884
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1885
- # ?twox = "2"^^xsd:decimal
1886
- # ?x = 1.0
1887
- # ?x2 = "1"^^xsd:decimal
1888
- # ?y = "1.8414709848078965"^^xsd:decimal
1889
- # Therefore the derived triple above is entailed by the rules and facts.
1890
- # ----------------------------------------------------------------------
1891
-
1892
33
  :Simpson1 :sampleResult _:sk_2 .
1893
-
1894
- # ----------------------------------------------------------------------
1895
- # Proof for derived triple:
1896
- # _:b2 :y "0.729425538604203"^^xsd:decimal .
1897
- # It holds because the following instance of the rule body is provable:
1898
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1899
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
1900
- # _:b2 :x 0.5 .
1901
- # _:b2 :coef 4.0 .
1902
- # 0.5 math:sin "0.479425538604203"^^xsd:decimal .
1903
- # (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
1904
- # ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
1905
- # 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
1906
- # (2.0 0.5) math:product "1"^^xsd:decimal .
1907
- # ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
1908
- # ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
1909
- # (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
1910
- # ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
1911
- # via the schematic forward rule:
1912
- # {
1913
- # :Simpson1 :samples ?ss .
1914
- # ?ss list:member ?s .
1915
- # ?s :x ?x .
1916
- # ?s :coef ?c .
1917
- # ?x math:sin ?sinx .
1918
- # (?x 2.0) math:exponentiation ?x2 .
1919
- # (?sinx ?x2) math:sum ?y .
1920
- # ?x math:cos ?cosx .
1921
- # (2.0 ?x) math:product ?twox .
1922
- # (?cosx ?twox) math:sum ?dy .
1923
- # (?dy 2.0) math:exponentiation ?dy2 .
1924
- # (1.0 ?dy2) math:sum ?onePlus .
1925
- # (?onePlus 0.5) math:exponentiation ?ds .
1926
- # } => {
1927
- # ?s :y ?y .
1928
- # ?s :dy ?dy .
1929
- # ?s :ds ?ds .
1930
- # _:b6 :sample ?s .
1931
- # _:b6 :x ?x .
1932
- # _:b6 :coef ?c .
1933
- # _:b6 :y ?y .
1934
- # _:b6 :dy ?dy .
1935
- # _:b6 :ds ?ds .
1936
- # :Simpson1 :sampleResult _:b6 .
1937
- # } .
1938
- # with substitution (on rule variables):
1939
- # ?c = 4.0
1940
- # ?cosx = "0.8775825618903728"^^xsd:decimal
1941
- # ?ds = "2.12727907823934"^^xsd:decimal
1942
- # ?dy = "1.8775825618903728"^^xsd:decimal
1943
- # ?dy2 = "3.5253162767148156"^^xsd:decimal
1944
- # ?onePlus = "4.525316276714816"^^xsd:decimal
1945
- # ?s = _:b2
1946
- # ?sinx = "0.479425538604203"^^xsd:decimal
1947
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
1948
- # ?twox = "1"^^xsd:decimal
1949
- # ?x = 0.5
1950
- # ?x2 = "0.25"^^xsd:decimal
1951
- # ?y = "0.729425538604203"^^xsd:decimal
1952
- # Therefore the derived triple above is entailed by the rules and facts.
1953
- # ----------------------------------------------------------------------
1954
-
1955
34
  _:b2 :y "0.729425538604203"^^xsd:decimal .
1956
-
1957
- # ----------------------------------------------------------------------
1958
- # Proof for derived triple:
1959
- # _:b2 :dy "1.8775825618903728"^^xsd:decimal .
1960
- # It holds because the following instance of the rule body is provable:
1961
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
1962
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
1963
- # _:b2 :x 0.5 .
1964
- # _:b2 :coef 4.0 .
1965
- # 0.5 math:sin "0.479425538604203"^^xsd:decimal .
1966
- # (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
1967
- # ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
1968
- # 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
1969
- # (2.0 0.5) math:product "1"^^xsd:decimal .
1970
- # ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
1971
- # ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
1972
- # (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
1973
- # ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
1974
- # via the schematic forward rule:
1975
- # {
1976
- # :Simpson1 :samples ?ss .
1977
- # ?ss list:member ?s .
1978
- # ?s :x ?x .
1979
- # ?s :coef ?c .
1980
- # ?x math:sin ?sinx .
1981
- # (?x 2.0) math:exponentiation ?x2 .
1982
- # (?sinx ?x2) math:sum ?y .
1983
- # ?x math:cos ?cosx .
1984
- # (2.0 ?x) math:product ?twox .
1985
- # (?cosx ?twox) math:sum ?dy .
1986
- # (?dy 2.0) math:exponentiation ?dy2 .
1987
- # (1.0 ?dy2) math:sum ?onePlus .
1988
- # (?onePlus 0.5) math:exponentiation ?ds .
1989
- # } => {
1990
- # ?s :y ?y .
1991
- # ?s :dy ?dy .
1992
- # ?s :ds ?ds .
1993
- # _:b6 :sample ?s .
1994
- # _:b6 :x ?x .
1995
- # _:b6 :coef ?c .
1996
- # _:b6 :y ?y .
1997
- # _:b6 :dy ?dy .
1998
- # _:b6 :ds ?ds .
1999
- # :Simpson1 :sampleResult _:b6 .
2000
- # } .
2001
- # with substitution (on rule variables):
2002
- # ?c = 4.0
2003
- # ?cosx = "0.8775825618903728"^^xsd:decimal
2004
- # ?ds = "2.12727907823934"^^xsd:decimal
2005
- # ?dy = "1.8775825618903728"^^xsd:decimal
2006
- # ?dy2 = "3.5253162767148156"^^xsd:decimal
2007
- # ?onePlus = "4.525316276714816"^^xsd:decimal
2008
- # ?s = _:b2
2009
- # ?sinx = "0.479425538604203"^^xsd:decimal
2010
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2011
- # ?twox = "1"^^xsd:decimal
2012
- # ?x = 0.5
2013
- # ?x2 = "0.25"^^xsd:decimal
2014
- # ?y = "0.729425538604203"^^xsd:decimal
2015
- # Therefore the derived triple above is entailed by the rules and facts.
2016
- # ----------------------------------------------------------------------
2017
-
2018
35
  _:b2 :dy "1.8775825618903728"^^xsd:decimal .
2019
-
2020
- # ----------------------------------------------------------------------
2021
- # Proof for derived triple:
2022
- # _:b2 :ds "2.12727907823934"^^xsd:decimal .
2023
- # It holds because the following instance of the rule body is provable:
2024
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2025
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2026
- # _:b2 :x 0.5 .
2027
- # _:b2 :coef 4.0 .
2028
- # 0.5 math:sin "0.479425538604203"^^xsd:decimal .
2029
- # (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
2030
- # ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
2031
- # 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
2032
- # (2.0 0.5) math:product "1"^^xsd:decimal .
2033
- # ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
2034
- # ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
2035
- # (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
2036
- # ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
2037
- # via the schematic forward rule:
2038
- # {
2039
- # :Simpson1 :samples ?ss .
2040
- # ?ss list:member ?s .
2041
- # ?s :x ?x .
2042
- # ?s :coef ?c .
2043
- # ?x math:sin ?sinx .
2044
- # (?x 2.0) math:exponentiation ?x2 .
2045
- # (?sinx ?x2) math:sum ?y .
2046
- # ?x math:cos ?cosx .
2047
- # (2.0 ?x) math:product ?twox .
2048
- # (?cosx ?twox) math:sum ?dy .
2049
- # (?dy 2.0) math:exponentiation ?dy2 .
2050
- # (1.0 ?dy2) math:sum ?onePlus .
2051
- # (?onePlus 0.5) math:exponentiation ?ds .
2052
- # } => {
2053
- # ?s :y ?y .
2054
- # ?s :dy ?dy .
2055
- # ?s :ds ?ds .
2056
- # _:b6 :sample ?s .
2057
- # _:b6 :x ?x .
2058
- # _:b6 :coef ?c .
2059
- # _:b6 :y ?y .
2060
- # _:b6 :dy ?dy .
2061
- # _:b6 :ds ?ds .
2062
- # :Simpson1 :sampleResult _:b6 .
2063
- # } .
2064
- # with substitution (on rule variables):
2065
- # ?c = 4.0
2066
- # ?cosx = "0.8775825618903728"^^xsd:decimal
2067
- # ?ds = "2.12727907823934"^^xsd:decimal
2068
- # ?dy = "1.8775825618903728"^^xsd:decimal
2069
- # ?dy2 = "3.5253162767148156"^^xsd:decimal
2070
- # ?onePlus = "4.525316276714816"^^xsd:decimal
2071
- # ?s = _:b2
2072
- # ?sinx = "0.479425538604203"^^xsd:decimal
2073
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2074
- # ?twox = "1"^^xsd:decimal
2075
- # ?x = 0.5
2076
- # ?x2 = "0.25"^^xsd:decimal
2077
- # ?y = "0.729425538604203"^^xsd:decimal
2078
- # Therefore the derived triple above is entailed by the rules and facts.
2079
- # ----------------------------------------------------------------------
2080
-
2081
36
  _:b2 :ds "2.12727907823934"^^xsd:decimal .
2082
-
2083
- # ----------------------------------------------------------------------
2084
- # Proof for derived triple:
2085
- # _:sk_3 :sample _:b2 .
2086
- # It holds because the following instance of the rule body is provable:
2087
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2088
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2089
- # _:b2 :x 0.5 .
2090
- # _:b2 :coef 4.0 .
2091
- # 0.5 math:sin "0.479425538604203"^^xsd:decimal .
2092
- # (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
2093
- # ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
2094
- # 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
2095
- # (2.0 0.5) math:product "1"^^xsd:decimal .
2096
- # ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
2097
- # ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
2098
- # (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
2099
- # ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
2100
- # via the schematic forward rule:
2101
- # {
2102
- # :Simpson1 :samples ?ss .
2103
- # ?ss list:member ?s .
2104
- # ?s :x ?x .
2105
- # ?s :coef ?c .
2106
- # ?x math:sin ?sinx .
2107
- # (?x 2.0) math:exponentiation ?x2 .
2108
- # (?sinx ?x2) math:sum ?y .
2109
- # ?x math:cos ?cosx .
2110
- # (2.0 ?x) math:product ?twox .
2111
- # (?cosx ?twox) math:sum ?dy .
2112
- # (?dy 2.0) math:exponentiation ?dy2 .
2113
- # (1.0 ?dy2) math:sum ?onePlus .
2114
- # (?onePlus 0.5) math:exponentiation ?ds .
2115
- # } => {
2116
- # ?s :y ?y .
2117
- # ?s :dy ?dy .
2118
- # ?s :ds ?ds .
2119
- # _:b6 :sample ?s .
2120
- # _:b6 :x ?x .
2121
- # _:b6 :coef ?c .
2122
- # _:b6 :y ?y .
2123
- # _:b6 :dy ?dy .
2124
- # _:b6 :ds ?ds .
2125
- # :Simpson1 :sampleResult _:b6 .
2126
- # } .
2127
- # with substitution (on rule variables):
2128
- # ?c = 4.0
2129
- # ?cosx = "0.8775825618903728"^^xsd:decimal
2130
- # ?ds = "2.12727907823934"^^xsd:decimal
2131
- # ?dy = "1.8775825618903728"^^xsd:decimal
2132
- # ?dy2 = "3.5253162767148156"^^xsd:decimal
2133
- # ?onePlus = "4.525316276714816"^^xsd:decimal
2134
- # ?s = _:b2
2135
- # ?sinx = "0.479425538604203"^^xsd:decimal
2136
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2137
- # ?twox = "1"^^xsd:decimal
2138
- # ?x = 0.5
2139
- # ?x2 = "0.25"^^xsd:decimal
2140
- # ?y = "0.729425538604203"^^xsd:decimal
2141
- # Therefore the derived triple above is entailed by the rules and facts.
2142
- # ----------------------------------------------------------------------
2143
-
2144
37
  _:sk_3 :sample _:b2 .
2145
-
2146
- # ----------------------------------------------------------------------
2147
- # Proof for derived triple:
2148
- # _:sk_3 :x 0.5 .
2149
- # It holds because the following instance of the rule body is provable:
2150
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2151
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2152
- # _:b2 :x 0.5 .
2153
- # _:b2 :coef 4.0 .
2154
- # 0.5 math:sin "0.479425538604203"^^xsd:decimal .
2155
- # (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
2156
- # ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
2157
- # 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
2158
- # (2.0 0.5) math:product "1"^^xsd:decimal .
2159
- # ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
2160
- # ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
2161
- # (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
2162
- # ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
2163
- # via the schematic forward rule:
2164
- # {
2165
- # :Simpson1 :samples ?ss .
2166
- # ?ss list:member ?s .
2167
- # ?s :x ?x .
2168
- # ?s :coef ?c .
2169
- # ?x math:sin ?sinx .
2170
- # (?x 2.0) math:exponentiation ?x2 .
2171
- # (?sinx ?x2) math:sum ?y .
2172
- # ?x math:cos ?cosx .
2173
- # (2.0 ?x) math:product ?twox .
2174
- # (?cosx ?twox) math:sum ?dy .
2175
- # (?dy 2.0) math:exponentiation ?dy2 .
2176
- # (1.0 ?dy2) math:sum ?onePlus .
2177
- # (?onePlus 0.5) math:exponentiation ?ds .
2178
- # } => {
2179
- # ?s :y ?y .
2180
- # ?s :dy ?dy .
2181
- # ?s :ds ?ds .
2182
- # _:b6 :sample ?s .
2183
- # _:b6 :x ?x .
2184
- # _:b6 :coef ?c .
2185
- # _:b6 :y ?y .
2186
- # _:b6 :dy ?dy .
2187
- # _:b6 :ds ?ds .
2188
- # :Simpson1 :sampleResult _:b6 .
2189
- # } .
2190
- # with substitution (on rule variables):
2191
- # ?c = 4.0
2192
- # ?cosx = "0.8775825618903728"^^xsd:decimal
2193
- # ?ds = "2.12727907823934"^^xsd:decimal
2194
- # ?dy = "1.8775825618903728"^^xsd:decimal
2195
- # ?dy2 = "3.5253162767148156"^^xsd:decimal
2196
- # ?onePlus = "4.525316276714816"^^xsd:decimal
2197
- # ?s = _:b2
2198
- # ?sinx = "0.479425538604203"^^xsd:decimal
2199
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2200
- # ?twox = "1"^^xsd:decimal
2201
- # ?x = 0.5
2202
- # ?x2 = "0.25"^^xsd:decimal
2203
- # ?y = "0.729425538604203"^^xsd:decimal
2204
- # Therefore the derived triple above is entailed by the rules and facts.
2205
- # ----------------------------------------------------------------------
2206
-
2207
38
  _:sk_3 :x 0.5 .
2208
-
2209
- # ----------------------------------------------------------------------
2210
- # Proof for derived triple:
2211
- # _:sk_3 :coef 4.0 .
2212
- # It holds because the following instance of the rule body is provable:
2213
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2214
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2215
- # _:b2 :x 0.5 .
2216
- # _:b2 :coef 4.0 .
2217
- # 0.5 math:sin "0.479425538604203"^^xsd:decimal .
2218
- # (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
2219
- # ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
2220
- # 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
2221
- # (2.0 0.5) math:product "1"^^xsd:decimal .
2222
- # ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
2223
- # ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
2224
- # (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
2225
- # ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
2226
- # via the schematic forward rule:
2227
- # {
2228
- # :Simpson1 :samples ?ss .
2229
- # ?ss list:member ?s .
2230
- # ?s :x ?x .
2231
- # ?s :coef ?c .
2232
- # ?x math:sin ?sinx .
2233
- # (?x 2.0) math:exponentiation ?x2 .
2234
- # (?sinx ?x2) math:sum ?y .
2235
- # ?x math:cos ?cosx .
2236
- # (2.0 ?x) math:product ?twox .
2237
- # (?cosx ?twox) math:sum ?dy .
2238
- # (?dy 2.0) math:exponentiation ?dy2 .
2239
- # (1.0 ?dy2) math:sum ?onePlus .
2240
- # (?onePlus 0.5) math:exponentiation ?ds .
2241
- # } => {
2242
- # ?s :y ?y .
2243
- # ?s :dy ?dy .
2244
- # ?s :ds ?ds .
2245
- # _:b6 :sample ?s .
2246
- # _:b6 :x ?x .
2247
- # _:b6 :coef ?c .
2248
- # _:b6 :y ?y .
2249
- # _:b6 :dy ?dy .
2250
- # _:b6 :ds ?ds .
2251
- # :Simpson1 :sampleResult _:b6 .
2252
- # } .
2253
- # with substitution (on rule variables):
2254
- # ?c = 4.0
2255
- # ?cosx = "0.8775825618903728"^^xsd:decimal
2256
- # ?ds = "2.12727907823934"^^xsd:decimal
2257
- # ?dy = "1.8775825618903728"^^xsd:decimal
2258
- # ?dy2 = "3.5253162767148156"^^xsd:decimal
2259
- # ?onePlus = "4.525316276714816"^^xsd:decimal
2260
- # ?s = _:b2
2261
- # ?sinx = "0.479425538604203"^^xsd:decimal
2262
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2263
- # ?twox = "1"^^xsd:decimal
2264
- # ?x = 0.5
2265
- # ?x2 = "0.25"^^xsd:decimal
2266
- # ?y = "0.729425538604203"^^xsd:decimal
2267
- # Therefore the derived triple above is entailed by the rules and facts.
2268
- # ----------------------------------------------------------------------
2269
-
2270
39
  _:sk_3 :coef 4.0 .
2271
-
2272
- # ----------------------------------------------------------------------
2273
- # Proof for derived triple:
2274
- # _:sk_3 :y "0.729425538604203"^^xsd:decimal .
2275
- # It holds because the following instance of the rule body is provable:
2276
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2277
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2278
- # _:b2 :x 0.5 .
2279
- # _:b2 :coef 4.0 .
2280
- # 0.5 math:sin "0.479425538604203"^^xsd:decimal .
2281
- # (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
2282
- # ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
2283
- # 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
2284
- # (2.0 0.5) math:product "1"^^xsd:decimal .
2285
- # ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
2286
- # ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
2287
- # (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
2288
- # ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
2289
- # via the schematic forward rule:
2290
- # {
2291
- # :Simpson1 :samples ?ss .
2292
- # ?ss list:member ?s .
2293
- # ?s :x ?x .
2294
- # ?s :coef ?c .
2295
- # ?x math:sin ?sinx .
2296
- # (?x 2.0) math:exponentiation ?x2 .
2297
- # (?sinx ?x2) math:sum ?y .
2298
- # ?x math:cos ?cosx .
2299
- # (2.0 ?x) math:product ?twox .
2300
- # (?cosx ?twox) math:sum ?dy .
2301
- # (?dy 2.0) math:exponentiation ?dy2 .
2302
- # (1.0 ?dy2) math:sum ?onePlus .
2303
- # (?onePlus 0.5) math:exponentiation ?ds .
2304
- # } => {
2305
- # ?s :y ?y .
2306
- # ?s :dy ?dy .
2307
- # ?s :ds ?ds .
2308
- # _:b6 :sample ?s .
2309
- # _:b6 :x ?x .
2310
- # _:b6 :coef ?c .
2311
- # _:b6 :y ?y .
2312
- # _:b6 :dy ?dy .
2313
- # _:b6 :ds ?ds .
2314
- # :Simpson1 :sampleResult _:b6 .
2315
- # } .
2316
- # with substitution (on rule variables):
2317
- # ?c = 4.0
2318
- # ?cosx = "0.8775825618903728"^^xsd:decimal
2319
- # ?ds = "2.12727907823934"^^xsd:decimal
2320
- # ?dy = "1.8775825618903728"^^xsd:decimal
2321
- # ?dy2 = "3.5253162767148156"^^xsd:decimal
2322
- # ?onePlus = "4.525316276714816"^^xsd:decimal
2323
- # ?s = _:b2
2324
- # ?sinx = "0.479425538604203"^^xsd:decimal
2325
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2326
- # ?twox = "1"^^xsd:decimal
2327
- # ?x = 0.5
2328
- # ?x2 = "0.25"^^xsd:decimal
2329
- # ?y = "0.729425538604203"^^xsd:decimal
2330
- # Therefore the derived triple above is entailed by the rules and facts.
2331
- # ----------------------------------------------------------------------
2332
-
2333
40
  _:sk_3 :y "0.729425538604203"^^xsd:decimal .
2334
-
2335
- # ----------------------------------------------------------------------
2336
- # Proof for derived triple:
2337
- # _:sk_3 :dy "1.8775825618903728"^^xsd:decimal .
2338
- # It holds because the following instance of the rule body is provable:
2339
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2340
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2341
- # _:b2 :x 0.5 .
2342
- # _:b2 :coef 4.0 .
2343
- # 0.5 math:sin "0.479425538604203"^^xsd:decimal .
2344
- # (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
2345
- # ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
2346
- # 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
2347
- # (2.0 0.5) math:product "1"^^xsd:decimal .
2348
- # ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
2349
- # ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
2350
- # (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
2351
- # ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
2352
- # via the schematic forward rule:
2353
- # {
2354
- # :Simpson1 :samples ?ss .
2355
- # ?ss list:member ?s .
2356
- # ?s :x ?x .
2357
- # ?s :coef ?c .
2358
- # ?x math:sin ?sinx .
2359
- # (?x 2.0) math:exponentiation ?x2 .
2360
- # (?sinx ?x2) math:sum ?y .
2361
- # ?x math:cos ?cosx .
2362
- # (2.0 ?x) math:product ?twox .
2363
- # (?cosx ?twox) math:sum ?dy .
2364
- # (?dy 2.0) math:exponentiation ?dy2 .
2365
- # (1.0 ?dy2) math:sum ?onePlus .
2366
- # (?onePlus 0.5) math:exponentiation ?ds .
2367
- # } => {
2368
- # ?s :y ?y .
2369
- # ?s :dy ?dy .
2370
- # ?s :ds ?ds .
2371
- # _:b6 :sample ?s .
2372
- # _:b6 :x ?x .
2373
- # _:b6 :coef ?c .
2374
- # _:b6 :y ?y .
2375
- # _:b6 :dy ?dy .
2376
- # _:b6 :ds ?ds .
2377
- # :Simpson1 :sampleResult _:b6 .
2378
- # } .
2379
- # with substitution (on rule variables):
2380
- # ?c = 4.0
2381
- # ?cosx = "0.8775825618903728"^^xsd:decimal
2382
- # ?ds = "2.12727907823934"^^xsd:decimal
2383
- # ?dy = "1.8775825618903728"^^xsd:decimal
2384
- # ?dy2 = "3.5253162767148156"^^xsd:decimal
2385
- # ?onePlus = "4.525316276714816"^^xsd:decimal
2386
- # ?s = _:b2
2387
- # ?sinx = "0.479425538604203"^^xsd:decimal
2388
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2389
- # ?twox = "1"^^xsd:decimal
2390
- # ?x = 0.5
2391
- # ?x2 = "0.25"^^xsd:decimal
2392
- # ?y = "0.729425538604203"^^xsd:decimal
2393
- # Therefore the derived triple above is entailed by the rules and facts.
2394
- # ----------------------------------------------------------------------
2395
-
2396
41
  _:sk_3 :dy "1.8775825618903728"^^xsd:decimal .
2397
-
2398
- # ----------------------------------------------------------------------
2399
- # Proof for derived triple:
2400
- # _:sk_3 :ds "2.12727907823934"^^xsd:decimal .
2401
- # It holds because the following instance of the rule body is provable:
2402
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2403
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2404
- # _:b2 :x 0.5 .
2405
- # _:b2 :coef 4.0 .
2406
- # 0.5 math:sin "0.479425538604203"^^xsd:decimal .
2407
- # (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
2408
- # ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
2409
- # 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
2410
- # (2.0 0.5) math:product "1"^^xsd:decimal .
2411
- # ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
2412
- # ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
2413
- # (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
2414
- # ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
2415
- # via the schematic forward rule:
2416
- # {
2417
- # :Simpson1 :samples ?ss .
2418
- # ?ss list:member ?s .
2419
- # ?s :x ?x .
2420
- # ?s :coef ?c .
2421
- # ?x math:sin ?sinx .
2422
- # (?x 2.0) math:exponentiation ?x2 .
2423
- # (?sinx ?x2) math:sum ?y .
2424
- # ?x math:cos ?cosx .
2425
- # (2.0 ?x) math:product ?twox .
2426
- # (?cosx ?twox) math:sum ?dy .
2427
- # (?dy 2.0) math:exponentiation ?dy2 .
2428
- # (1.0 ?dy2) math:sum ?onePlus .
2429
- # (?onePlus 0.5) math:exponentiation ?ds .
2430
- # } => {
2431
- # ?s :y ?y .
2432
- # ?s :dy ?dy .
2433
- # ?s :ds ?ds .
2434
- # _:b6 :sample ?s .
2435
- # _:b6 :x ?x .
2436
- # _:b6 :coef ?c .
2437
- # _:b6 :y ?y .
2438
- # _:b6 :dy ?dy .
2439
- # _:b6 :ds ?ds .
2440
- # :Simpson1 :sampleResult _:b6 .
2441
- # } .
2442
- # with substitution (on rule variables):
2443
- # ?c = 4.0
2444
- # ?cosx = "0.8775825618903728"^^xsd:decimal
2445
- # ?ds = "2.12727907823934"^^xsd:decimal
2446
- # ?dy = "1.8775825618903728"^^xsd:decimal
2447
- # ?dy2 = "3.5253162767148156"^^xsd:decimal
2448
- # ?onePlus = "4.525316276714816"^^xsd:decimal
2449
- # ?s = _:b2
2450
- # ?sinx = "0.479425538604203"^^xsd:decimal
2451
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2452
- # ?twox = "1"^^xsd:decimal
2453
- # ?x = 0.5
2454
- # ?x2 = "0.25"^^xsd:decimal
2455
- # ?y = "0.729425538604203"^^xsd:decimal
2456
- # Therefore the derived triple above is entailed by the rules and facts.
2457
- # ----------------------------------------------------------------------
2458
-
2459
42
  _:sk_3 :ds "2.12727907823934"^^xsd:decimal .
2460
-
2461
- # ----------------------------------------------------------------------
2462
- # Proof for derived triple:
2463
- # :Simpson1 :sampleResult _:sk_3 .
2464
- # It holds because the following instance of the rule body is provable:
2465
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2466
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b2 .
2467
- # _:b2 :x 0.5 .
2468
- # _:b2 :coef 4.0 .
2469
- # 0.5 math:sin "0.479425538604203"^^xsd:decimal .
2470
- # (0.5 2.0) math:exponentiation "0.25"^^xsd:decimal .
2471
- # ("0.479425538604203"^^xsd:decimal "0.25"^^xsd:decimal) math:sum "0.729425538604203"^^xsd:decimal .
2472
- # 0.5 math:cos "0.8775825618903728"^^xsd:decimal .
2473
- # (2.0 0.5) math:product "1"^^xsd:decimal .
2474
- # ("0.8775825618903728"^^xsd:decimal "1"^^xsd:decimal) math:sum "1.8775825618903728"^^xsd:decimal .
2475
- # ("1.8775825618903728"^^xsd:decimal 2.0) math:exponentiation "3.5253162767148156"^^xsd:decimal .
2476
- # (1.0 "3.5253162767148156"^^xsd:decimal) math:sum "4.525316276714816"^^xsd:decimal .
2477
- # ("4.525316276714816"^^xsd:decimal 0.5) math:exponentiation "2.12727907823934"^^xsd:decimal .
2478
- # via the schematic forward rule:
2479
- # {
2480
- # :Simpson1 :samples ?ss .
2481
- # ?ss list:member ?s .
2482
- # ?s :x ?x .
2483
- # ?s :coef ?c .
2484
- # ?x math:sin ?sinx .
2485
- # (?x 2.0) math:exponentiation ?x2 .
2486
- # (?sinx ?x2) math:sum ?y .
2487
- # ?x math:cos ?cosx .
2488
- # (2.0 ?x) math:product ?twox .
2489
- # (?cosx ?twox) math:sum ?dy .
2490
- # (?dy 2.0) math:exponentiation ?dy2 .
2491
- # (1.0 ?dy2) math:sum ?onePlus .
2492
- # (?onePlus 0.5) math:exponentiation ?ds .
2493
- # } => {
2494
- # ?s :y ?y .
2495
- # ?s :dy ?dy .
2496
- # ?s :ds ?ds .
2497
- # _:b6 :sample ?s .
2498
- # _:b6 :x ?x .
2499
- # _:b6 :coef ?c .
2500
- # _:b6 :y ?y .
2501
- # _:b6 :dy ?dy .
2502
- # _:b6 :ds ?ds .
2503
- # :Simpson1 :sampleResult _:b6 .
2504
- # } .
2505
- # with substitution (on rule variables):
2506
- # ?c = 4.0
2507
- # ?cosx = "0.8775825618903728"^^xsd:decimal
2508
- # ?ds = "2.12727907823934"^^xsd:decimal
2509
- # ?dy = "1.8775825618903728"^^xsd:decimal
2510
- # ?dy2 = "3.5253162767148156"^^xsd:decimal
2511
- # ?onePlus = "4.525316276714816"^^xsd:decimal
2512
- # ?s = _:b2
2513
- # ?sinx = "0.479425538604203"^^xsd:decimal
2514
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2515
- # ?twox = "1"^^xsd:decimal
2516
- # ?x = 0.5
2517
- # ?x2 = "0.25"^^xsd:decimal
2518
- # ?y = "0.729425538604203"^^xsd:decimal
2519
- # Therefore the derived triple above is entailed by the rules and facts.
2520
- # ----------------------------------------------------------------------
2521
-
2522
43
  :Simpson1 :sampleResult _:sk_3 .
2523
-
2524
- # ----------------------------------------------------------------------
2525
- # Proof for derived triple:
2526
- # _:b1 :y "0"^^xsd:decimal .
2527
- # It holds because the following instance of the rule body is provable:
2528
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2529
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2530
- # _:b1 :x 0.0 .
2531
- # _:b1 :coef 1.0 .
2532
- # 0.0 math:sin "0"^^xsd:decimal .
2533
- # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
2534
- # ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
2535
- # 0.0 math:cos "1"^^xsd:decimal .
2536
- # (2.0 0.0) math:product "0"^^xsd:decimal .
2537
- # ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
2538
- # ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
2539
- # (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
2540
- # ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
2541
- # via the schematic forward rule:
2542
- # {
2543
- # :Simpson1 :samples ?ss .
2544
- # ?ss list:member ?s .
2545
- # ?s :x ?x .
2546
- # ?s :coef ?c .
2547
- # ?x math:sin ?sinx .
2548
- # (?x 2.0) math:exponentiation ?x2 .
2549
- # (?sinx ?x2) math:sum ?y .
2550
- # ?x math:cos ?cosx .
2551
- # (2.0 ?x) math:product ?twox .
2552
- # (?cosx ?twox) math:sum ?dy .
2553
- # (?dy 2.0) math:exponentiation ?dy2 .
2554
- # (1.0 ?dy2) math:sum ?onePlus .
2555
- # (?onePlus 0.5) math:exponentiation ?ds .
2556
- # } => {
2557
- # ?s :y ?y .
2558
- # ?s :dy ?dy .
2559
- # ?s :ds ?ds .
2560
- # _:b6 :sample ?s .
2561
- # _:b6 :x ?x .
2562
- # _:b6 :coef ?c .
2563
- # _:b6 :y ?y .
2564
- # _:b6 :dy ?dy .
2565
- # _:b6 :ds ?ds .
2566
- # :Simpson1 :sampleResult _:b6 .
2567
- # } .
2568
- # with substitution (on rule variables):
2569
- # ?c = 1.0
2570
- # ?cosx = "1"^^xsd:decimal
2571
- # ?ds = "1.4142135623730951"^^xsd:decimal
2572
- # ?dy = "1"^^xsd:decimal
2573
- # ?dy2 = "1"^^xsd:decimal
2574
- # ?onePlus = "2"^^xsd:decimal
2575
- # ?s = _:b1
2576
- # ?sinx = "0"^^xsd:decimal
2577
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2578
- # ?twox = "0"^^xsd:decimal
2579
- # ?x = 0.0
2580
- # ?x2 = "0"^^xsd:decimal
2581
- # ?y = "0"^^xsd:decimal
2582
- # Therefore the derived triple above is entailed by the rules and facts.
2583
- # ----------------------------------------------------------------------
2584
-
2585
44
  _:b1 :y "0"^^xsd:decimal .
2586
-
2587
- # ----------------------------------------------------------------------
2588
- # Proof for derived triple:
2589
- # _:b1 :dy "1"^^xsd:decimal .
2590
- # It holds because the following instance of the rule body is provable:
2591
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2592
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2593
- # _:b1 :x 0.0 .
2594
- # _:b1 :coef 1.0 .
2595
- # 0.0 math:sin "0"^^xsd:decimal .
2596
- # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
2597
- # ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
2598
- # 0.0 math:cos "1"^^xsd:decimal .
2599
- # (2.0 0.0) math:product "0"^^xsd:decimal .
2600
- # ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
2601
- # ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
2602
- # (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
2603
- # ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
2604
- # via the schematic forward rule:
2605
- # {
2606
- # :Simpson1 :samples ?ss .
2607
- # ?ss list:member ?s .
2608
- # ?s :x ?x .
2609
- # ?s :coef ?c .
2610
- # ?x math:sin ?sinx .
2611
- # (?x 2.0) math:exponentiation ?x2 .
2612
- # (?sinx ?x2) math:sum ?y .
2613
- # ?x math:cos ?cosx .
2614
- # (2.0 ?x) math:product ?twox .
2615
- # (?cosx ?twox) math:sum ?dy .
2616
- # (?dy 2.0) math:exponentiation ?dy2 .
2617
- # (1.0 ?dy2) math:sum ?onePlus .
2618
- # (?onePlus 0.5) math:exponentiation ?ds .
2619
- # } => {
2620
- # ?s :y ?y .
2621
- # ?s :dy ?dy .
2622
- # ?s :ds ?ds .
2623
- # _:b6 :sample ?s .
2624
- # _:b6 :x ?x .
2625
- # _:b6 :coef ?c .
2626
- # _:b6 :y ?y .
2627
- # _:b6 :dy ?dy .
2628
- # _:b6 :ds ?ds .
2629
- # :Simpson1 :sampleResult _:b6 .
2630
- # } .
2631
- # with substitution (on rule variables):
2632
- # ?c = 1.0
2633
- # ?cosx = "1"^^xsd:decimal
2634
- # ?ds = "1.4142135623730951"^^xsd:decimal
2635
- # ?dy = "1"^^xsd:decimal
2636
- # ?dy2 = "1"^^xsd:decimal
2637
- # ?onePlus = "2"^^xsd:decimal
2638
- # ?s = _:b1
2639
- # ?sinx = "0"^^xsd:decimal
2640
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2641
- # ?twox = "0"^^xsd:decimal
2642
- # ?x = 0.0
2643
- # ?x2 = "0"^^xsd:decimal
2644
- # ?y = "0"^^xsd:decimal
2645
- # Therefore the derived triple above is entailed by the rules and facts.
2646
- # ----------------------------------------------------------------------
2647
-
2648
45
  _:b1 :dy "1"^^xsd:decimal .
2649
-
2650
- # ----------------------------------------------------------------------
2651
- # Proof for derived triple:
2652
- # _:b1 :ds "1.4142135623730951"^^xsd:decimal .
2653
- # It holds because the following instance of the rule body is provable:
2654
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2655
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2656
- # _:b1 :x 0.0 .
2657
- # _:b1 :coef 1.0 .
2658
- # 0.0 math:sin "0"^^xsd:decimal .
2659
- # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
2660
- # ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
2661
- # 0.0 math:cos "1"^^xsd:decimal .
2662
- # (2.0 0.0) math:product "0"^^xsd:decimal .
2663
- # ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
2664
- # ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
2665
- # (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
2666
- # ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
2667
- # via the schematic forward rule:
2668
- # {
2669
- # :Simpson1 :samples ?ss .
2670
- # ?ss list:member ?s .
2671
- # ?s :x ?x .
2672
- # ?s :coef ?c .
2673
- # ?x math:sin ?sinx .
2674
- # (?x 2.0) math:exponentiation ?x2 .
2675
- # (?sinx ?x2) math:sum ?y .
2676
- # ?x math:cos ?cosx .
2677
- # (2.0 ?x) math:product ?twox .
2678
- # (?cosx ?twox) math:sum ?dy .
2679
- # (?dy 2.0) math:exponentiation ?dy2 .
2680
- # (1.0 ?dy2) math:sum ?onePlus .
2681
- # (?onePlus 0.5) math:exponentiation ?ds .
2682
- # } => {
2683
- # ?s :y ?y .
2684
- # ?s :dy ?dy .
2685
- # ?s :ds ?ds .
2686
- # _:b6 :sample ?s .
2687
- # _:b6 :x ?x .
2688
- # _:b6 :coef ?c .
2689
- # _:b6 :y ?y .
2690
- # _:b6 :dy ?dy .
2691
- # _:b6 :ds ?ds .
2692
- # :Simpson1 :sampleResult _:b6 .
2693
- # } .
2694
- # with substitution (on rule variables):
2695
- # ?c = 1.0
2696
- # ?cosx = "1"^^xsd:decimal
2697
- # ?ds = "1.4142135623730951"^^xsd:decimal
2698
- # ?dy = "1"^^xsd:decimal
2699
- # ?dy2 = "1"^^xsd:decimal
2700
- # ?onePlus = "2"^^xsd:decimal
2701
- # ?s = _:b1
2702
- # ?sinx = "0"^^xsd:decimal
2703
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2704
- # ?twox = "0"^^xsd:decimal
2705
- # ?x = 0.0
2706
- # ?x2 = "0"^^xsd:decimal
2707
- # ?y = "0"^^xsd:decimal
2708
- # Therefore the derived triple above is entailed by the rules and facts.
2709
- # ----------------------------------------------------------------------
2710
-
2711
46
  _:b1 :ds "1.4142135623730951"^^xsd:decimal .
2712
-
2713
- # ----------------------------------------------------------------------
2714
- # Proof for derived triple:
2715
- # _:sk_4 :sample _:b1 .
2716
- # It holds because the following instance of the rule body is provable:
2717
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2718
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2719
- # _:b1 :x 0.0 .
2720
- # _:b1 :coef 1.0 .
2721
- # 0.0 math:sin "0"^^xsd:decimal .
2722
- # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
2723
- # ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
2724
- # 0.0 math:cos "1"^^xsd:decimal .
2725
- # (2.0 0.0) math:product "0"^^xsd:decimal .
2726
- # ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
2727
- # ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
2728
- # (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
2729
- # ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
2730
- # via the schematic forward rule:
2731
- # {
2732
- # :Simpson1 :samples ?ss .
2733
- # ?ss list:member ?s .
2734
- # ?s :x ?x .
2735
- # ?s :coef ?c .
2736
- # ?x math:sin ?sinx .
2737
- # (?x 2.0) math:exponentiation ?x2 .
2738
- # (?sinx ?x2) math:sum ?y .
2739
- # ?x math:cos ?cosx .
2740
- # (2.0 ?x) math:product ?twox .
2741
- # (?cosx ?twox) math:sum ?dy .
2742
- # (?dy 2.0) math:exponentiation ?dy2 .
2743
- # (1.0 ?dy2) math:sum ?onePlus .
2744
- # (?onePlus 0.5) math:exponentiation ?ds .
2745
- # } => {
2746
- # ?s :y ?y .
2747
- # ?s :dy ?dy .
2748
- # ?s :ds ?ds .
2749
- # _:b6 :sample ?s .
2750
- # _:b6 :x ?x .
2751
- # _:b6 :coef ?c .
2752
- # _:b6 :y ?y .
2753
- # _:b6 :dy ?dy .
2754
- # _:b6 :ds ?ds .
2755
- # :Simpson1 :sampleResult _:b6 .
2756
- # } .
2757
- # with substitution (on rule variables):
2758
- # ?c = 1.0
2759
- # ?cosx = "1"^^xsd:decimal
2760
- # ?ds = "1.4142135623730951"^^xsd:decimal
2761
- # ?dy = "1"^^xsd:decimal
2762
- # ?dy2 = "1"^^xsd:decimal
2763
- # ?onePlus = "2"^^xsd:decimal
2764
- # ?s = _:b1
2765
- # ?sinx = "0"^^xsd:decimal
2766
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2767
- # ?twox = "0"^^xsd:decimal
2768
- # ?x = 0.0
2769
- # ?x2 = "0"^^xsd:decimal
2770
- # ?y = "0"^^xsd:decimal
2771
- # Therefore the derived triple above is entailed by the rules and facts.
2772
- # ----------------------------------------------------------------------
2773
-
2774
47
  _:sk_4 :sample _:b1 .
2775
-
2776
- # ----------------------------------------------------------------------
2777
- # Proof for derived triple:
2778
- # _:sk_4 :x 0.0 .
2779
- # It holds because the following instance of the rule body is provable:
2780
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2781
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2782
- # _:b1 :x 0.0 .
2783
- # _:b1 :coef 1.0 .
2784
- # 0.0 math:sin "0"^^xsd:decimal .
2785
- # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
2786
- # ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
2787
- # 0.0 math:cos "1"^^xsd:decimal .
2788
- # (2.0 0.0) math:product "0"^^xsd:decimal .
2789
- # ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
2790
- # ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
2791
- # (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
2792
- # ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
2793
- # via the schematic forward rule:
2794
- # {
2795
- # :Simpson1 :samples ?ss .
2796
- # ?ss list:member ?s .
2797
- # ?s :x ?x .
2798
- # ?s :coef ?c .
2799
- # ?x math:sin ?sinx .
2800
- # (?x 2.0) math:exponentiation ?x2 .
2801
- # (?sinx ?x2) math:sum ?y .
2802
- # ?x math:cos ?cosx .
2803
- # (2.0 ?x) math:product ?twox .
2804
- # (?cosx ?twox) math:sum ?dy .
2805
- # (?dy 2.0) math:exponentiation ?dy2 .
2806
- # (1.0 ?dy2) math:sum ?onePlus .
2807
- # (?onePlus 0.5) math:exponentiation ?ds .
2808
- # } => {
2809
- # ?s :y ?y .
2810
- # ?s :dy ?dy .
2811
- # ?s :ds ?ds .
2812
- # _:b6 :sample ?s .
2813
- # _:b6 :x ?x .
2814
- # _:b6 :coef ?c .
2815
- # _:b6 :y ?y .
2816
- # _:b6 :dy ?dy .
2817
- # _:b6 :ds ?ds .
2818
- # :Simpson1 :sampleResult _:b6 .
2819
- # } .
2820
- # with substitution (on rule variables):
2821
- # ?c = 1.0
2822
- # ?cosx = "1"^^xsd:decimal
2823
- # ?ds = "1.4142135623730951"^^xsd:decimal
2824
- # ?dy = "1"^^xsd:decimal
2825
- # ?dy2 = "1"^^xsd:decimal
2826
- # ?onePlus = "2"^^xsd:decimal
2827
- # ?s = _:b1
2828
- # ?sinx = "0"^^xsd:decimal
2829
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2830
- # ?twox = "0"^^xsd:decimal
2831
- # ?x = 0.0
2832
- # ?x2 = "0"^^xsd:decimal
2833
- # ?y = "0"^^xsd:decimal
2834
- # Therefore the derived triple above is entailed by the rules and facts.
2835
- # ----------------------------------------------------------------------
2836
-
2837
48
  _:sk_4 :x 0.0 .
2838
-
2839
- # ----------------------------------------------------------------------
2840
- # Proof for derived triple:
2841
- # _:sk_4 :coef 1.0 .
2842
- # It holds because the following instance of the rule body is provable:
2843
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2844
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2845
- # _:b1 :x 0.0 .
2846
- # _:b1 :coef 1.0 .
2847
- # 0.0 math:sin "0"^^xsd:decimal .
2848
- # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
2849
- # ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
2850
- # 0.0 math:cos "1"^^xsd:decimal .
2851
- # (2.0 0.0) math:product "0"^^xsd:decimal .
2852
- # ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
2853
- # ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
2854
- # (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
2855
- # ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
2856
- # via the schematic forward rule:
2857
- # {
2858
- # :Simpson1 :samples ?ss .
2859
- # ?ss list:member ?s .
2860
- # ?s :x ?x .
2861
- # ?s :coef ?c .
2862
- # ?x math:sin ?sinx .
2863
- # (?x 2.0) math:exponentiation ?x2 .
2864
- # (?sinx ?x2) math:sum ?y .
2865
- # ?x math:cos ?cosx .
2866
- # (2.0 ?x) math:product ?twox .
2867
- # (?cosx ?twox) math:sum ?dy .
2868
- # (?dy 2.0) math:exponentiation ?dy2 .
2869
- # (1.0 ?dy2) math:sum ?onePlus .
2870
- # (?onePlus 0.5) math:exponentiation ?ds .
2871
- # } => {
2872
- # ?s :y ?y .
2873
- # ?s :dy ?dy .
2874
- # ?s :ds ?ds .
2875
- # _:b6 :sample ?s .
2876
- # _:b6 :x ?x .
2877
- # _:b6 :coef ?c .
2878
- # _:b6 :y ?y .
2879
- # _:b6 :dy ?dy .
2880
- # _:b6 :ds ?ds .
2881
- # :Simpson1 :sampleResult _:b6 .
2882
- # } .
2883
- # with substitution (on rule variables):
2884
- # ?c = 1.0
2885
- # ?cosx = "1"^^xsd:decimal
2886
- # ?ds = "1.4142135623730951"^^xsd:decimal
2887
- # ?dy = "1"^^xsd:decimal
2888
- # ?dy2 = "1"^^xsd:decimal
2889
- # ?onePlus = "2"^^xsd:decimal
2890
- # ?s = _:b1
2891
- # ?sinx = "0"^^xsd:decimal
2892
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2893
- # ?twox = "0"^^xsd:decimal
2894
- # ?x = 0.0
2895
- # ?x2 = "0"^^xsd:decimal
2896
- # ?y = "0"^^xsd:decimal
2897
- # Therefore the derived triple above is entailed by the rules and facts.
2898
- # ----------------------------------------------------------------------
2899
-
2900
49
  _:sk_4 :coef 1.0 .
2901
-
2902
- # ----------------------------------------------------------------------
2903
- # Proof for derived triple:
2904
- # _:sk_4 :y "0"^^xsd:decimal .
2905
- # It holds because the following instance of the rule body is provable:
2906
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2907
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2908
- # _:b1 :x 0.0 .
2909
- # _:b1 :coef 1.0 .
2910
- # 0.0 math:sin "0"^^xsd:decimal .
2911
- # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
2912
- # ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
2913
- # 0.0 math:cos "1"^^xsd:decimal .
2914
- # (2.0 0.0) math:product "0"^^xsd:decimal .
2915
- # ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
2916
- # ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
2917
- # (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
2918
- # ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
2919
- # via the schematic forward rule:
2920
- # {
2921
- # :Simpson1 :samples ?ss .
2922
- # ?ss list:member ?s .
2923
- # ?s :x ?x .
2924
- # ?s :coef ?c .
2925
- # ?x math:sin ?sinx .
2926
- # (?x 2.0) math:exponentiation ?x2 .
2927
- # (?sinx ?x2) math:sum ?y .
2928
- # ?x math:cos ?cosx .
2929
- # (2.0 ?x) math:product ?twox .
2930
- # (?cosx ?twox) math:sum ?dy .
2931
- # (?dy 2.0) math:exponentiation ?dy2 .
2932
- # (1.0 ?dy2) math:sum ?onePlus .
2933
- # (?onePlus 0.5) math:exponentiation ?ds .
2934
- # } => {
2935
- # ?s :y ?y .
2936
- # ?s :dy ?dy .
2937
- # ?s :ds ?ds .
2938
- # _:b6 :sample ?s .
2939
- # _:b6 :x ?x .
2940
- # _:b6 :coef ?c .
2941
- # _:b6 :y ?y .
2942
- # _:b6 :dy ?dy .
2943
- # _:b6 :ds ?ds .
2944
- # :Simpson1 :sampleResult _:b6 .
2945
- # } .
2946
- # with substitution (on rule variables):
2947
- # ?c = 1.0
2948
- # ?cosx = "1"^^xsd:decimal
2949
- # ?ds = "1.4142135623730951"^^xsd:decimal
2950
- # ?dy = "1"^^xsd:decimal
2951
- # ?dy2 = "1"^^xsd:decimal
2952
- # ?onePlus = "2"^^xsd:decimal
2953
- # ?s = _:b1
2954
- # ?sinx = "0"^^xsd:decimal
2955
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
2956
- # ?twox = "0"^^xsd:decimal
2957
- # ?x = 0.0
2958
- # ?x2 = "0"^^xsd:decimal
2959
- # ?y = "0"^^xsd:decimal
2960
- # Therefore the derived triple above is entailed by the rules and facts.
2961
- # ----------------------------------------------------------------------
2962
-
2963
50
  _:sk_4 :y "0"^^xsd:decimal .
2964
-
2965
- # ----------------------------------------------------------------------
2966
- # Proof for derived triple:
2967
- # _:sk_4 :dy "1"^^xsd:decimal .
2968
- # It holds because the following instance of the rule body is provable:
2969
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
2970
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
2971
- # _:b1 :x 0.0 .
2972
- # _:b1 :coef 1.0 .
2973
- # 0.0 math:sin "0"^^xsd:decimal .
2974
- # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
2975
- # ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
2976
- # 0.0 math:cos "1"^^xsd:decimal .
2977
- # (2.0 0.0) math:product "0"^^xsd:decimal .
2978
- # ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
2979
- # ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
2980
- # (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
2981
- # ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
2982
- # via the schematic forward rule:
2983
- # {
2984
- # :Simpson1 :samples ?ss .
2985
- # ?ss list:member ?s .
2986
- # ?s :x ?x .
2987
- # ?s :coef ?c .
2988
- # ?x math:sin ?sinx .
2989
- # (?x 2.0) math:exponentiation ?x2 .
2990
- # (?sinx ?x2) math:sum ?y .
2991
- # ?x math:cos ?cosx .
2992
- # (2.0 ?x) math:product ?twox .
2993
- # (?cosx ?twox) math:sum ?dy .
2994
- # (?dy 2.0) math:exponentiation ?dy2 .
2995
- # (1.0 ?dy2) math:sum ?onePlus .
2996
- # (?onePlus 0.5) math:exponentiation ?ds .
2997
- # } => {
2998
- # ?s :y ?y .
2999
- # ?s :dy ?dy .
3000
- # ?s :ds ?ds .
3001
- # _:b6 :sample ?s .
3002
- # _:b6 :x ?x .
3003
- # _:b6 :coef ?c .
3004
- # _:b6 :y ?y .
3005
- # _:b6 :dy ?dy .
3006
- # _:b6 :ds ?ds .
3007
- # :Simpson1 :sampleResult _:b6 .
3008
- # } .
3009
- # with substitution (on rule variables):
3010
- # ?c = 1.0
3011
- # ?cosx = "1"^^xsd:decimal
3012
- # ?ds = "1.4142135623730951"^^xsd:decimal
3013
- # ?dy = "1"^^xsd:decimal
3014
- # ?dy2 = "1"^^xsd:decimal
3015
- # ?onePlus = "2"^^xsd:decimal
3016
- # ?s = _:b1
3017
- # ?sinx = "0"^^xsd:decimal
3018
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
3019
- # ?twox = "0"^^xsd:decimal
3020
- # ?x = 0.0
3021
- # ?x2 = "0"^^xsd:decimal
3022
- # ?y = "0"^^xsd:decimal
3023
- # Therefore the derived triple above is entailed by the rules and facts.
3024
- # ----------------------------------------------------------------------
3025
-
3026
51
  _:sk_4 :dy "1"^^xsd:decimal .
3027
-
3028
- # ----------------------------------------------------------------------
3029
- # Proof for derived triple:
3030
- # _:sk_4 :ds "1.4142135623730951"^^xsd:decimal .
3031
- # It holds because the following instance of the rule body is provable:
3032
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
3033
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
3034
- # _:b1 :x 0.0 .
3035
- # _:b1 :coef 1.0 .
3036
- # 0.0 math:sin "0"^^xsd:decimal .
3037
- # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
3038
- # ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
3039
- # 0.0 math:cos "1"^^xsd:decimal .
3040
- # (2.0 0.0) math:product "0"^^xsd:decimal .
3041
- # ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
3042
- # ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
3043
- # (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
3044
- # ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
3045
- # via the schematic forward rule:
3046
- # {
3047
- # :Simpson1 :samples ?ss .
3048
- # ?ss list:member ?s .
3049
- # ?s :x ?x .
3050
- # ?s :coef ?c .
3051
- # ?x math:sin ?sinx .
3052
- # (?x 2.0) math:exponentiation ?x2 .
3053
- # (?sinx ?x2) math:sum ?y .
3054
- # ?x math:cos ?cosx .
3055
- # (2.0 ?x) math:product ?twox .
3056
- # (?cosx ?twox) math:sum ?dy .
3057
- # (?dy 2.0) math:exponentiation ?dy2 .
3058
- # (1.0 ?dy2) math:sum ?onePlus .
3059
- # (?onePlus 0.5) math:exponentiation ?ds .
3060
- # } => {
3061
- # ?s :y ?y .
3062
- # ?s :dy ?dy .
3063
- # ?s :ds ?ds .
3064
- # _:b6 :sample ?s .
3065
- # _:b6 :x ?x .
3066
- # _:b6 :coef ?c .
3067
- # _:b6 :y ?y .
3068
- # _:b6 :dy ?dy .
3069
- # _:b6 :ds ?ds .
3070
- # :Simpson1 :sampleResult _:b6 .
3071
- # } .
3072
- # with substitution (on rule variables):
3073
- # ?c = 1.0
3074
- # ?cosx = "1"^^xsd:decimal
3075
- # ?ds = "1.4142135623730951"^^xsd:decimal
3076
- # ?dy = "1"^^xsd:decimal
3077
- # ?dy2 = "1"^^xsd:decimal
3078
- # ?onePlus = "2"^^xsd:decimal
3079
- # ?s = _:b1
3080
- # ?sinx = "0"^^xsd:decimal
3081
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
3082
- # ?twox = "0"^^xsd:decimal
3083
- # ?x = 0.0
3084
- # ?x2 = "0"^^xsd:decimal
3085
- # ?y = "0"^^xsd:decimal
3086
- # Therefore the derived triple above is entailed by the rules and facts.
3087
- # ----------------------------------------------------------------------
3088
-
3089
52
  _:sk_4 :ds "1.4142135623730951"^^xsd:decimal .
3090
-
3091
- # ----------------------------------------------------------------------
3092
- # Proof for derived triple:
3093
- # :Simpson1 :sampleResult _:sk_4 .
3094
- # It holds because the following instance of the rule body is provable:
3095
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
3096
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member _:b1 .
3097
- # _:b1 :x 0.0 .
3098
- # _:b1 :coef 1.0 .
3099
- # 0.0 math:sin "0"^^xsd:decimal .
3100
- # (0.0 2.0) math:exponentiation "0"^^xsd:decimal .
3101
- # ("0"^^xsd:decimal "0"^^xsd:decimal) math:sum "0"^^xsd:decimal .
3102
- # 0.0 math:cos "1"^^xsd:decimal .
3103
- # (2.0 0.0) math:product "0"^^xsd:decimal .
3104
- # ("1"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
3105
- # ("1"^^xsd:decimal 2.0) math:exponentiation "1"^^xsd:decimal .
3106
- # (1.0 "1"^^xsd:decimal) math:sum "2"^^xsd:decimal .
3107
- # ("2"^^xsd:decimal 0.5) math:exponentiation "1.4142135623730951"^^xsd:decimal .
3108
- # via the schematic forward rule:
3109
- # {
3110
- # :Simpson1 :samples ?ss .
3111
- # ?ss list:member ?s .
3112
- # ?s :x ?x .
3113
- # ?s :coef ?c .
3114
- # ?x math:sin ?sinx .
3115
- # (?x 2.0) math:exponentiation ?x2 .
3116
- # (?sinx ?x2) math:sum ?y .
3117
- # ?x math:cos ?cosx .
3118
- # (2.0 ?x) math:product ?twox .
3119
- # (?cosx ?twox) math:sum ?dy .
3120
- # (?dy 2.0) math:exponentiation ?dy2 .
3121
- # (1.0 ?dy2) math:sum ?onePlus .
3122
- # (?onePlus 0.5) math:exponentiation ?ds .
3123
- # } => {
3124
- # ?s :y ?y .
3125
- # ?s :dy ?dy .
3126
- # ?s :ds ?ds .
3127
- # _:b6 :sample ?s .
3128
- # _:b6 :x ?x .
3129
- # _:b6 :coef ?c .
3130
- # _:b6 :y ?y .
3131
- # _:b6 :dy ?dy .
3132
- # _:b6 :ds ?ds .
3133
- # :Simpson1 :sampleResult _:b6 .
3134
- # } .
3135
- # with substitution (on rule variables):
3136
- # ?c = 1.0
3137
- # ?cosx = "1"^^xsd:decimal
3138
- # ?ds = "1.4142135623730951"^^xsd:decimal
3139
- # ?dy = "1"^^xsd:decimal
3140
- # ?dy2 = "1"^^xsd:decimal
3141
- # ?onePlus = "2"^^xsd:decimal
3142
- # ?s = _:b1
3143
- # ?sinx = "0"^^xsd:decimal
3144
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
3145
- # ?twox = "0"^^xsd:decimal
3146
- # ?x = 0.0
3147
- # ?x2 = "0"^^xsd:decimal
3148
- # ?y = "0"^^xsd:decimal
3149
- # Therefore the derived triple above is entailed by the rules and facts.
3150
- # ----------------------------------------------------------------------
3151
-
3152
53
  :Simpson1 :sampleResult _:sk_4 .
3153
-
3154
- # ----------------------------------------------------------------------
3155
- # Proof for derived triple:
3156
- # :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
3157
- # It holds because the following instance of the rule body is provable:
3158
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
3159
- # (?wy {
3160
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3161
- # ?s :coef ?c .
3162
- # ?s :y ?y .
3163
- # (?c ?y) math:product ?wy .
3164
- # } ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b1 .
3165
- # ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal) math:sum "24.499921497274507"^^xsd:decimal .
3166
- # (?wxy {
3167
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3168
- # ?s :coef ?c .
3169
- # ?s :x ?x .
3170
- # ?s :y ?y .
3171
- # (?x ?y) math:product ?xy .
3172
- # (?c ?xy) math:product ?wxy .
3173
- # } ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b2 .
3174
- # ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal) math:sum "34.445357820099886"^^xsd:decimal .
3175
- # (?wy2 {
3176
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3177
- # ?s :coef ?c .
3178
- # ?s :y ?y .
3179
- # (?y 2.0) math:exponentiation ?y2 .
3180
- # (?c ?y2) math:product ?wy2 .
3181
- # } ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b3 .
3182
- # ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal) math:sum "75.19637321836198"^^xsd:decimal .
3183
- # (?wds {
3184
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3185
- # ?s :coef ?c .
3186
- # ?s :ds ?ds .
3187
- # (?c ?ds) math:product ?wds .
3188
- # } ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)) log:collectAllIn ?_b4 .
3189
- # ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal) math:sum "32.02201866506704"^^xsd:decimal .
3190
- # via the schematic forward rule:
3191
- # {
3192
- # :Simpson1 :samples ?ss .
3193
- # (?wy {
3194
- # ?ss list:member ?s .
3195
- # ?s :coef ?c .
3196
- # ?s :y ?y .
3197
- # (?c ?y) math:product ?wy .
3198
- # } ?wys) log:collectAllIn ?_b1 .
3199
- # ?wys math:sum ?sumWY .
3200
- # (?wxy {
3201
- # ?ss list:member ?s .
3202
- # ?s :coef ?c .
3203
- # ?s :x ?x .
3204
- # ?s :y ?y .
3205
- # (?x ?y) math:product ?xy .
3206
- # (?c ?xy) math:product ?wxy .
3207
- # } ?wxys) log:collectAllIn ?_b2 .
3208
- # ?wxys math:sum ?sumWXY .
3209
- # (?wy2 {
3210
- # ?ss list:member ?s .
3211
- # ?s :coef ?c .
3212
- # ?s :y ?y .
3213
- # (?y 2.0) math:exponentiation ?y2 .
3214
- # (?c ?y2) math:product ?wy2 .
3215
- # } ?wy2s) log:collectAllIn ?_b3 .
3216
- # ?wy2s math:sum ?sumWY2 .
3217
- # (?wds {
3218
- # ?ss list:member ?s .
3219
- # ?s :coef ?c .
3220
- # ?s :ds ?ds .
3221
- # (?c ?ds) math:product ?wds .
3222
- # } ?wdss) log:collectAllIn ?_b4 .
3223
- # ?wdss math:sum ?sumWDS .
3224
- # } => {
3225
- # :Simpson1 :sumWY ?sumWY .
3226
- # :Simpson1 :sumWXY ?sumWXY .
3227
- # :Simpson1 :sumWY2 ?sumWY2 .
3228
- # :Simpson1 :sumWDS ?sumWDS .
3229
- # } .
3230
- # with substitution (on rule variables):
3231
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
3232
- # ?sumWDS = "32.02201866506704"^^xsd:decimal
3233
- # ?sumWXY = "34.445357820099886"^^xsd:decimal
3234
- # ?sumWY = "24.499921497274507"^^xsd:decimal
3235
- # ?sumWY2 = "75.19637321836198"^^xsd:decimal
3236
- # ?wdss = ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)
3237
- # ?wxys = ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)
3238
- # ?wy2s = ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)
3239
- # ?wys = ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)
3240
- # Therefore the derived triple above is entailed by the rules and facts.
3241
- # ----------------------------------------------------------------------
3242
-
3243
54
  :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
3244
-
3245
- # ----------------------------------------------------------------------
3246
- # Proof for derived triple:
3247
- # :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
3248
- # It holds because the following instance of the rule body is provable:
3249
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
3250
- # (?wy {
3251
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3252
- # ?s :coef ?c .
3253
- # ?s :y ?y .
3254
- # (?c ?y) math:product ?wy .
3255
- # } ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b1 .
3256
- # ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal) math:sum "24.499921497274507"^^xsd:decimal .
3257
- # (?wxy {
3258
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3259
- # ?s :coef ?c .
3260
- # ?s :x ?x .
3261
- # ?s :y ?y .
3262
- # (?x ?y) math:product ?xy .
3263
- # (?c ?xy) math:product ?wxy .
3264
- # } ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b2 .
3265
- # ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal) math:sum "34.445357820099886"^^xsd:decimal .
3266
- # (?wy2 {
3267
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3268
- # ?s :coef ?c .
3269
- # ?s :y ?y .
3270
- # (?y 2.0) math:exponentiation ?y2 .
3271
- # (?c ?y2) math:product ?wy2 .
3272
- # } ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b3 .
3273
- # ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal) math:sum "75.19637321836198"^^xsd:decimal .
3274
- # (?wds {
3275
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3276
- # ?s :coef ?c .
3277
- # ?s :ds ?ds .
3278
- # (?c ?ds) math:product ?wds .
3279
- # } ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)) log:collectAllIn ?_b4 .
3280
- # ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal) math:sum "32.02201866506704"^^xsd:decimal .
3281
- # via the schematic forward rule:
3282
- # {
3283
- # :Simpson1 :samples ?ss .
3284
- # (?wy {
3285
- # ?ss list:member ?s .
3286
- # ?s :coef ?c .
3287
- # ?s :y ?y .
3288
- # (?c ?y) math:product ?wy .
3289
- # } ?wys) log:collectAllIn ?_b1 .
3290
- # ?wys math:sum ?sumWY .
3291
- # (?wxy {
3292
- # ?ss list:member ?s .
3293
- # ?s :coef ?c .
3294
- # ?s :x ?x .
3295
- # ?s :y ?y .
3296
- # (?x ?y) math:product ?xy .
3297
- # (?c ?xy) math:product ?wxy .
3298
- # } ?wxys) log:collectAllIn ?_b2 .
3299
- # ?wxys math:sum ?sumWXY .
3300
- # (?wy2 {
3301
- # ?ss list:member ?s .
3302
- # ?s :coef ?c .
3303
- # ?s :y ?y .
3304
- # (?y 2.0) math:exponentiation ?y2 .
3305
- # (?c ?y2) math:product ?wy2 .
3306
- # } ?wy2s) log:collectAllIn ?_b3 .
3307
- # ?wy2s math:sum ?sumWY2 .
3308
- # (?wds {
3309
- # ?ss list:member ?s .
3310
- # ?s :coef ?c .
3311
- # ?s :ds ?ds .
3312
- # (?c ?ds) math:product ?wds .
3313
- # } ?wdss) log:collectAllIn ?_b4 .
3314
- # ?wdss math:sum ?sumWDS .
3315
- # } => {
3316
- # :Simpson1 :sumWY ?sumWY .
3317
- # :Simpson1 :sumWXY ?sumWXY .
3318
- # :Simpson1 :sumWY2 ?sumWY2 .
3319
- # :Simpson1 :sumWDS ?sumWDS .
3320
- # } .
3321
- # with substitution (on rule variables):
3322
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
3323
- # ?sumWDS = "32.02201866506704"^^xsd:decimal
3324
- # ?sumWXY = "34.445357820099886"^^xsd:decimal
3325
- # ?sumWY = "24.499921497274507"^^xsd:decimal
3326
- # ?sumWY2 = "75.19637321836198"^^xsd:decimal
3327
- # ?wdss = ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)
3328
- # ?wxys = ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)
3329
- # ?wy2s = ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)
3330
- # ?wys = ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)
3331
- # Therefore the derived triple above is entailed by the rules and facts.
3332
- # ----------------------------------------------------------------------
3333
-
3334
55
  :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
3335
-
3336
- # ----------------------------------------------------------------------
3337
- # Proof for derived triple:
3338
- # :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
3339
- # It holds because the following instance of the rule body is provable:
3340
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
3341
- # (?wy {
3342
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3343
- # ?s :coef ?c .
3344
- # ?s :y ?y .
3345
- # (?c ?y) math:product ?wy .
3346
- # } ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b1 .
3347
- # ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal) math:sum "24.499921497274507"^^xsd:decimal .
3348
- # (?wxy {
3349
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3350
- # ?s :coef ?c .
3351
- # ?s :x ?x .
3352
- # ?s :y ?y .
3353
- # (?x ?y) math:product ?xy .
3354
- # (?c ?xy) math:product ?wxy .
3355
- # } ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b2 .
3356
- # ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal) math:sum "34.445357820099886"^^xsd:decimal .
3357
- # (?wy2 {
3358
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3359
- # ?s :coef ?c .
3360
- # ?s :y ?y .
3361
- # (?y 2.0) math:exponentiation ?y2 .
3362
- # (?c ?y2) math:product ?wy2 .
3363
- # } ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b3 .
3364
- # ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal) math:sum "75.19637321836198"^^xsd:decimal .
3365
- # (?wds {
3366
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3367
- # ?s :coef ?c .
3368
- # ?s :ds ?ds .
3369
- # (?c ?ds) math:product ?wds .
3370
- # } ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)) log:collectAllIn ?_b4 .
3371
- # ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal) math:sum "32.02201866506704"^^xsd:decimal .
3372
- # via the schematic forward rule:
3373
- # {
3374
- # :Simpson1 :samples ?ss .
3375
- # (?wy {
3376
- # ?ss list:member ?s .
3377
- # ?s :coef ?c .
3378
- # ?s :y ?y .
3379
- # (?c ?y) math:product ?wy .
3380
- # } ?wys) log:collectAllIn ?_b1 .
3381
- # ?wys math:sum ?sumWY .
3382
- # (?wxy {
3383
- # ?ss list:member ?s .
3384
- # ?s :coef ?c .
3385
- # ?s :x ?x .
3386
- # ?s :y ?y .
3387
- # (?x ?y) math:product ?xy .
3388
- # (?c ?xy) math:product ?wxy .
3389
- # } ?wxys) log:collectAllIn ?_b2 .
3390
- # ?wxys math:sum ?sumWXY .
3391
- # (?wy2 {
3392
- # ?ss list:member ?s .
3393
- # ?s :coef ?c .
3394
- # ?s :y ?y .
3395
- # (?y 2.0) math:exponentiation ?y2 .
3396
- # (?c ?y2) math:product ?wy2 .
3397
- # } ?wy2s) log:collectAllIn ?_b3 .
3398
- # ?wy2s math:sum ?sumWY2 .
3399
- # (?wds {
3400
- # ?ss list:member ?s .
3401
- # ?s :coef ?c .
3402
- # ?s :ds ?ds .
3403
- # (?c ?ds) math:product ?wds .
3404
- # } ?wdss) log:collectAllIn ?_b4 .
3405
- # ?wdss math:sum ?sumWDS .
3406
- # } => {
3407
- # :Simpson1 :sumWY ?sumWY .
3408
- # :Simpson1 :sumWXY ?sumWXY .
3409
- # :Simpson1 :sumWY2 ?sumWY2 .
3410
- # :Simpson1 :sumWDS ?sumWDS .
3411
- # } .
3412
- # with substitution (on rule variables):
3413
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
3414
- # ?sumWDS = "32.02201866506704"^^xsd:decimal
3415
- # ?sumWXY = "34.445357820099886"^^xsd:decimal
3416
- # ?sumWY = "24.499921497274507"^^xsd:decimal
3417
- # ?sumWY2 = "75.19637321836198"^^xsd:decimal
3418
- # ?wdss = ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)
3419
- # ?wxys = ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)
3420
- # ?wy2s = ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)
3421
- # ?wys = ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)
3422
- # Therefore the derived triple above is entailed by the rules and facts.
3423
- # ----------------------------------------------------------------------
3424
-
3425
56
  :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
3426
-
3427
- # ----------------------------------------------------------------------
3428
- # Proof for derived triple:
3429
- # :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
3430
- # It holds because the following instance of the rule body is provable:
3431
- # :Simpson1 :samples (_:b1 _:b2 _:b3 _:b4 _:b5) .
3432
- # (?wy {
3433
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3434
- # ?s :coef ?c .
3435
- # ?s :y ?y .
3436
- # (?c ?y) math:product ?wy .
3437
- # } ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b1 .
3438
- # ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal) math:sum "24.499921497274507"^^xsd:decimal .
3439
- # (?wxy {
3440
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3441
- # ?s :coef ?c .
3442
- # ?s :x ?x .
3443
- # ?s :y ?y .
3444
- # (?x ?y) math:product ?xy .
3445
- # (?c ?xy) math:product ?wxy .
3446
- # } ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b2 .
3447
- # ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal) math:sum "34.445357820099886"^^xsd:decimal .
3448
- # (?wy2 {
3449
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3450
- # ?s :coef ?c .
3451
- # ?s :y ?y .
3452
- # (?y 2.0) math:exponentiation ?y2 .
3453
- # (?c ?y2) math:product ?wy2 .
3454
- # } ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b3 .
3455
- # ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal) math:sum "75.19637321836198"^^xsd:decimal .
3456
- # (?wds {
3457
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?s .
3458
- # ?s :coef ?c .
3459
- # ?s :ds ?ds .
3460
- # (?c ?ds) math:product ?wds .
3461
- # } ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)) log:collectAllIn ?_b4 .
3462
- # ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal) math:sum "32.02201866506704"^^xsd:decimal .
3463
- # via the schematic forward rule:
3464
- # {
3465
- # :Simpson1 :samples ?ss .
3466
- # (?wy {
3467
- # ?ss list:member ?s .
3468
- # ?s :coef ?c .
3469
- # ?s :y ?y .
3470
- # (?c ?y) math:product ?wy .
3471
- # } ?wys) log:collectAllIn ?_b1 .
3472
- # ?wys math:sum ?sumWY .
3473
- # (?wxy {
3474
- # ?ss list:member ?s .
3475
- # ?s :coef ?c .
3476
- # ?s :x ?x .
3477
- # ?s :y ?y .
3478
- # (?x ?y) math:product ?xy .
3479
- # (?c ?xy) math:product ?wxy .
3480
- # } ?wxys) log:collectAllIn ?_b2 .
3481
- # ?wxys math:sum ?sumWXY .
3482
- # (?wy2 {
3483
- # ?ss list:member ?s .
3484
- # ?s :coef ?c .
3485
- # ?s :y ?y .
3486
- # (?y 2.0) math:exponentiation ?y2 .
3487
- # (?c ?y2) math:product ?wy2 .
3488
- # } ?wy2s) log:collectAllIn ?_b3 .
3489
- # ?wy2s math:sum ?sumWY2 .
3490
- # (?wds {
3491
- # ?ss list:member ?s .
3492
- # ?s :coef ?c .
3493
- # ?s :ds ?ds .
3494
- # (?c ?ds) math:product ?wds .
3495
- # } ?wdss) log:collectAllIn ?_b4 .
3496
- # ?wdss math:sum ?sumWDS .
3497
- # } => {
3498
- # :Simpson1 :sumWY ?sumWY .
3499
- # :Simpson1 :sumWXY ?sumWXY .
3500
- # :Simpson1 :sumWY2 ?sumWY2 .
3501
- # :Simpson1 :sumWDS ?sumWDS .
3502
- # } .
3503
- # with substitution (on rule variables):
3504
- # ?ss = (_:b1 _:b2 _:b3 _:b4 _:b5)
3505
- # ?sumWDS = "32.02201866506704"^^xsd:decimal
3506
- # ?sumWXY = "34.445357820099886"^^xsd:decimal
3507
- # ?sumWY = "24.499921497274507"^^xsd:decimal
3508
- # ?sumWY2 = "75.19637321836198"^^xsd:decimal
3509
- # ?wdss = ("3.720753081997118"^^xsd:decimal "12.917849332891908"^^xsd:decimal "5.460086374847559"^^xsd:decimal "8.50911631295736"^^xsd:decimal "1.4142135623730951"^^xsd:decimal)
3510
- # ?wxys = ("9.818594853651364"^^xsd:decimal "19.484969919624326"^^xsd:decimal "3.682941969615793"^^xsd:decimal "1.458851077208406"^^xsd:decimal "0"^^xsd:decimal)
3511
- # ?wy2s = ("24.10120122503726"^^xsd:decimal "42.18489475207387"^^xsd:decimal "6.782030775778728"^^xsd:decimal "2.1282464654721265"^^xsd:decimal "0"^^xsd:decimal)
3512
- # ?wys = ("4.909297426825682"^^xsd:decimal "12.989979946416218"^^xsd:decimal "3.682941969615793"^^xsd:decimal "2.917702154416812"^^xsd:decimal "0"^^xsd:decimal)
3513
- # Therefore the derived triple above is entailed by the rules and facts.
3514
- # ----------------------------------------------------------------------
3515
-
3516
57
  :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
3517
-
3518
- # ----------------------------------------------------------------------
3519
- # Proof for derived triple:
3520
- # :Simpson1 :areaUnderCurve "4.083320249545751"^^xsd:decimal .
3521
- # It holds because the following instance of the rule body is provable:
3522
- # :Simpson1 :h 0.5 .
3523
- # :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
3524
- # :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
3525
- # :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
3526
- # :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
3527
- # (0.5 3.0) math:quotient "0.16666666666666666"^^xsd:decimal .
3528
- # ("0.16666666666666666"^^xsd:decimal "24.499921497274507"^^xsd:decimal) math:product "4.083320249545751"^^xsd:decimal .
3529
- # ("0.16666666666666666"^^xsd:decimal "34.445357820099886"^^xsd:decimal) math:product "5.740892970016647"^^xsd:decimal .
3530
- # ("0.16666666666666666"^^xsd:decimal "75.19637321836198"^^xsd:decimal) math:product "12.532728869726997"^^xsd:decimal .
3531
- # (0.5 "12.532728869726997"^^xsd:decimal) math:product "6.266364434863498"^^xsd:decimal .
3532
- # ("0.16666666666666666"^^xsd:decimal "32.02201866506704"^^xsd:decimal) math:product "5.337003110844506"^^xsd:decimal .
3533
- # ("5.740892970016647"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.405937477143825"^^xsd:decimal .
3534
- # ("6.266364434863498"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.5346247788330099"^^xsd:decimal .
3535
- # via the schematic forward rule:
3536
- # {
3537
- # :Simpson1 :h ?h .
3538
- # :Simpson1 :sumWY ?sumWY .
3539
- # :Simpson1 :sumWXY ?sumWXY .
3540
- # :Simpson1 :sumWY2 ?sumWY2 .
3541
- # :Simpson1 :sumWDS ?sumWDS .
3542
- # (?h 3.0) math:quotient ?fac .
3543
- # (?fac ?sumWY) math:product ?A .
3544
- # (?fac ?sumWXY) math:product ?My .
3545
- # (?fac ?sumWY2) math:product ?Iy2 .
3546
- # (0.5 ?Iy2) math:product ?Mx .
3547
- # (?fac ?sumWDS) math:product ?L .
3548
- # (?My ?A) math:quotient ?xbar .
3549
- # (?Mx ?A) math:quotient ?ybar .
3550
- # } => {
3551
- # :Simpson1 :areaUnderCurve ?A .
3552
- # :Simpson1 :arcLength ?L .
3553
- # :Simpson1 :momentAboutY ?My .
3554
- # :Simpson1 :momentAboutX ?Mx .
3555
- # _:b7 :xbar ?xbar .
3556
- # _:b7 :ybar ?ybar .
3557
- # :Simpson1 :centroid _:b7 .
3558
- # } .
3559
- # with substitution (on rule variables):
3560
- # ?A = "4.083320249545751"^^xsd:decimal
3561
- # ?Iy2 = "12.532728869726997"^^xsd:decimal
3562
- # ?L = "5.337003110844506"^^xsd:decimal
3563
- # ?Mx = "6.266364434863498"^^xsd:decimal
3564
- # ?My = "5.740892970016647"^^xsd:decimal
3565
- # ?fac = "0.16666666666666666"^^xsd:decimal
3566
- # ?h = 0.5
3567
- # ?sumWDS = "32.02201866506704"^^xsd:decimal
3568
- # ?sumWXY = "34.445357820099886"^^xsd:decimal
3569
- # ?sumWY = "24.499921497274507"^^xsd:decimal
3570
- # ?sumWY2 = "75.19637321836198"^^xsd:decimal
3571
- # ?xbar = "1.405937477143825"^^xsd:decimal
3572
- # ?ybar = "1.5346247788330099"^^xsd:decimal
3573
- # Therefore the derived triple above is entailed by the rules and facts.
3574
- # ----------------------------------------------------------------------
3575
-
3576
58
  :Simpson1 :areaUnderCurve "4.083320249545751"^^xsd:decimal .
3577
-
3578
- # ----------------------------------------------------------------------
3579
- # Proof for derived triple:
3580
- # :Simpson1 :arcLength "5.337003110844506"^^xsd:decimal .
3581
- # It holds because the following instance of the rule body is provable:
3582
- # :Simpson1 :h 0.5 .
3583
- # :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
3584
- # :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
3585
- # :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
3586
- # :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
3587
- # (0.5 3.0) math:quotient "0.16666666666666666"^^xsd:decimal .
3588
- # ("0.16666666666666666"^^xsd:decimal "24.499921497274507"^^xsd:decimal) math:product "4.083320249545751"^^xsd:decimal .
3589
- # ("0.16666666666666666"^^xsd:decimal "34.445357820099886"^^xsd:decimal) math:product "5.740892970016647"^^xsd:decimal .
3590
- # ("0.16666666666666666"^^xsd:decimal "75.19637321836198"^^xsd:decimal) math:product "12.532728869726997"^^xsd:decimal .
3591
- # (0.5 "12.532728869726997"^^xsd:decimal) math:product "6.266364434863498"^^xsd:decimal .
3592
- # ("0.16666666666666666"^^xsd:decimal "32.02201866506704"^^xsd:decimal) math:product "5.337003110844506"^^xsd:decimal .
3593
- # ("5.740892970016647"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.405937477143825"^^xsd:decimal .
3594
- # ("6.266364434863498"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.5346247788330099"^^xsd:decimal .
3595
- # via the schematic forward rule:
3596
- # {
3597
- # :Simpson1 :h ?h .
3598
- # :Simpson1 :sumWY ?sumWY .
3599
- # :Simpson1 :sumWXY ?sumWXY .
3600
- # :Simpson1 :sumWY2 ?sumWY2 .
3601
- # :Simpson1 :sumWDS ?sumWDS .
3602
- # (?h 3.0) math:quotient ?fac .
3603
- # (?fac ?sumWY) math:product ?A .
3604
- # (?fac ?sumWXY) math:product ?My .
3605
- # (?fac ?sumWY2) math:product ?Iy2 .
3606
- # (0.5 ?Iy2) math:product ?Mx .
3607
- # (?fac ?sumWDS) math:product ?L .
3608
- # (?My ?A) math:quotient ?xbar .
3609
- # (?Mx ?A) math:quotient ?ybar .
3610
- # } => {
3611
- # :Simpson1 :areaUnderCurve ?A .
3612
- # :Simpson1 :arcLength ?L .
3613
- # :Simpson1 :momentAboutY ?My .
3614
- # :Simpson1 :momentAboutX ?Mx .
3615
- # _:b7 :xbar ?xbar .
3616
- # _:b7 :ybar ?ybar .
3617
- # :Simpson1 :centroid _:b7 .
3618
- # } .
3619
- # with substitution (on rule variables):
3620
- # ?A = "4.083320249545751"^^xsd:decimal
3621
- # ?Iy2 = "12.532728869726997"^^xsd:decimal
3622
- # ?L = "5.337003110844506"^^xsd:decimal
3623
- # ?Mx = "6.266364434863498"^^xsd:decimal
3624
- # ?My = "5.740892970016647"^^xsd:decimal
3625
- # ?fac = "0.16666666666666666"^^xsd:decimal
3626
- # ?h = 0.5
3627
- # ?sumWDS = "32.02201866506704"^^xsd:decimal
3628
- # ?sumWXY = "34.445357820099886"^^xsd:decimal
3629
- # ?sumWY = "24.499921497274507"^^xsd:decimal
3630
- # ?sumWY2 = "75.19637321836198"^^xsd:decimal
3631
- # ?xbar = "1.405937477143825"^^xsd:decimal
3632
- # ?ybar = "1.5346247788330099"^^xsd:decimal
3633
- # Therefore the derived triple above is entailed by the rules and facts.
3634
- # ----------------------------------------------------------------------
3635
-
3636
59
  :Simpson1 :arcLength "5.337003110844506"^^xsd:decimal .
3637
-
3638
- # ----------------------------------------------------------------------
3639
- # Proof for derived triple:
3640
- # :Simpson1 :momentAboutY "5.740892970016647"^^xsd:decimal .
3641
- # It holds because the following instance of the rule body is provable:
3642
- # :Simpson1 :h 0.5 .
3643
- # :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
3644
- # :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
3645
- # :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
3646
- # :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
3647
- # (0.5 3.0) math:quotient "0.16666666666666666"^^xsd:decimal .
3648
- # ("0.16666666666666666"^^xsd:decimal "24.499921497274507"^^xsd:decimal) math:product "4.083320249545751"^^xsd:decimal .
3649
- # ("0.16666666666666666"^^xsd:decimal "34.445357820099886"^^xsd:decimal) math:product "5.740892970016647"^^xsd:decimal .
3650
- # ("0.16666666666666666"^^xsd:decimal "75.19637321836198"^^xsd:decimal) math:product "12.532728869726997"^^xsd:decimal .
3651
- # (0.5 "12.532728869726997"^^xsd:decimal) math:product "6.266364434863498"^^xsd:decimal .
3652
- # ("0.16666666666666666"^^xsd:decimal "32.02201866506704"^^xsd:decimal) math:product "5.337003110844506"^^xsd:decimal .
3653
- # ("5.740892970016647"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.405937477143825"^^xsd:decimal .
3654
- # ("6.266364434863498"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.5346247788330099"^^xsd:decimal .
3655
- # via the schematic forward rule:
3656
- # {
3657
- # :Simpson1 :h ?h .
3658
- # :Simpson1 :sumWY ?sumWY .
3659
- # :Simpson1 :sumWXY ?sumWXY .
3660
- # :Simpson1 :sumWY2 ?sumWY2 .
3661
- # :Simpson1 :sumWDS ?sumWDS .
3662
- # (?h 3.0) math:quotient ?fac .
3663
- # (?fac ?sumWY) math:product ?A .
3664
- # (?fac ?sumWXY) math:product ?My .
3665
- # (?fac ?sumWY2) math:product ?Iy2 .
3666
- # (0.5 ?Iy2) math:product ?Mx .
3667
- # (?fac ?sumWDS) math:product ?L .
3668
- # (?My ?A) math:quotient ?xbar .
3669
- # (?Mx ?A) math:quotient ?ybar .
3670
- # } => {
3671
- # :Simpson1 :areaUnderCurve ?A .
3672
- # :Simpson1 :arcLength ?L .
3673
- # :Simpson1 :momentAboutY ?My .
3674
- # :Simpson1 :momentAboutX ?Mx .
3675
- # _:b7 :xbar ?xbar .
3676
- # _:b7 :ybar ?ybar .
3677
- # :Simpson1 :centroid _:b7 .
3678
- # } .
3679
- # with substitution (on rule variables):
3680
- # ?A = "4.083320249545751"^^xsd:decimal
3681
- # ?Iy2 = "12.532728869726997"^^xsd:decimal
3682
- # ?L = "5.337003110844506"^^xsd:decimal
3683
- # ?Mx = "6.266364434863498"^^xsd:decimal
3684
- # ?My = "5.740892970016647"^^xsd:decimal
3685
- # ?fac = "0.16666666666666666"^^xsd:decimal
3686
- # ?h = 0.5
3687
- # ?sumWDS = "32.02201866506704"^^xsd:decimal
3688
- # ?sumWXY = "34.445357820099886"^^xsd:decimal
3689
- # ?sumWY = "24.499921497274507"^^xsd:decimal
3690
- # ?sumWY2 = "75.19637321836198"^^xsd:decimal
3691
- # ?xbar = "1.405937477143825"^^xsd:decimal
3692
- # ?ybar = "1.5346247788330099"^^xsd:decimal
3693
- # Therefore the derived triple above is entailed by the rules and facts.
3694
- # ----------------------------------------------------------------------
3695
-
3696
60
  :Simpson1 :momentAboutY "5.740892970016647"^^xsd:decimal .
3697
-
3698
- # ----------------------------------------------------------------------
3699
- # Proof for derived triple:
3700
- # :Simpson1 :momentAboutX "6.266364434863498"^^xsd:decimal .
3701
- # It holds because the following instance of the rule body is provable:
3702
- # :Simpson1 :h 0.5 .
3703
- # :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
3704
- # :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
3705
- # :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
3706
- # :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
3707
- # (0.5 3.0) math:quotient "0.16666666666666666"^^xsd:decimal .
3708
- # ("0.16666666666666666"^^xsd:decimal "24.499921497274507"^^xsd:decimal) math:product "4.083320249545751"^^xsd:decimal .
3709
- # ("0.16666666666666666"^^xsd:decimal "34.445357820099886"^^xsd:decimal) math:product "5.740892970016647"^^xsd:decimal .
3710
- # ("0.16666666666666666"^^xsd:decimal "75.19637321836198"^^xsd:decimal) math:product "12.532728869726997"^^xsd:decimal .
3711
- # (0.5 "12.532728869726997"^^xsd:decimal) math:product "6.266364434863498"^^xsd:decimal .
3712
- # ("0.16666666666666666"^^xsd:decimal "32.02201866506704"^^xsd:decimal) math:product "5.337003110844506"^^xsd:decimal .
3713
- # ("5.740892970016647"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.405937477143825"^^xsd:decimal .
3714
- # ("6.266364434863498"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.5346247788330099"^^xsd:decimal .
3715
- # via the schematic forward rule:
3716
- # {
3717
- # :Simpson1 :h ?h .
3718
- # :Simpson1 :sumWY ?sumWY .
3719
- # :Simpson1 :sumWXY ?sumWXY .
3720
- # :Simpson1 :sumWY2 ?sumWY2 .
3721
- # :Simpson1 :sumWDS ?sumWDS .
3722
- # (?h 3.0) math:quotient ?fac .
3723
- # (?fac ?sumWY) math:product ?A .
3724
- # (?fac ?sumWXY) math:product ?My .
3725
- # (?fac ?sumWY2) math:product ?Iy2 .
3726
- # (0.5 ?Iy2) math:product ?Mx .
3727
- # (?fac ?sumWDS) math:product ?L .
3728
- # (?My ?A) math:quotient ?xbar .
3729
- # (?Mx ?A) math:quotient ?ybar .
3730
- # } => {
3731
- # :Simpson1 :areaUnderCurve ?A .
3732
- # :Simpson1 :arcLength ?L .
3733
- # :Simpson1 :momentAboutY ?My .
3734
- # :Simpson1 :momentAboutX ?Mx .
3735
- # _:b7 :xbar ?xbar .
3736
- # _:b7 :ybar ?ybar .
3737
- # :Simpson1 :centroid _:b7 .
3738
- # } .
3739
- # with substitution (on rule variables):
3740
- # ?A = "4.083320249545751"^^xsd:decimal
3741
- # ?Iy2 = "12.532728869726997"^^xsd:decimal
3742
- # ?L = "5.337003110844506"^^xsd:decimal
3743
- # ?Mx = "6.266364434863498"^^xsd:decimal
3744
- # ?My = "5.740892970016647"^^xsd:decimal
3745
- # ?fac = "0.16666666666666666"^^xsd:decimal
3746
- # ?h = 0.5
3747
- # ?sumWDS = "32.02201866506704"^^xsd:decimal
3748
- # ?sumWXY = "34.445357820099886"^^xsd:decimal
3749
- # ?sumWY = "24.499921497274507"^^xsd:decimal
3750
- # ?sumWY2 = "75.19637321836198"^^xsd:decimal
3751
- # ?xbar = "1.405937477143825"^^xsd:decimal
3752
- # ?ybar = "1.5346247788330099"^^xsd:decimal
3753
- # Therefore the derived triple above is entailed by the rules and facts.
3754
- # ----------------------------------------------------------------------
3755
-
3756
61
  :Simpson1 :momentAboutX "6.266364434863498"^^xsd:decimal .
3757
-
3758
- # ----------------------------------------------------------------------
3759
- # Proof for derived triple:
3760
- # _:sk_5 :xbar "1.405937477143825"^^xsd:decimal .
3761
- # It holds because the following instance of the rule body is provable:
3762
- # :Simpson1 :h 0.5 .
3763
- # :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
3764
- # :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
3765
- # :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
3766
- # :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
3767
- # (0.5 3.0) math:quotient "0.16666666666666666"^^xsd:decimal .
3768
- # ("0.16666666666666666"^^xsd:decimal "24.499921497274507"^^xsd:decimal) math:product "4.083320249545751"^^xsd:decimal .
3769
- # ("0.16666666666666666"^^xsd:decimal "34.445357820099886"^^xsd:decimal) math:product "5.740892970016647"^^xsd:decimal .
3770
- # ("0.16666666666666666"^^xsd:decimal "75.19637321836198"^^xsd:decimal) math:product "12.532728869726997"^^xsd:decimal .
3771
- # (0.5 "12.532728869726997"^^xsd:decimal) math:product "6.266364434863498"^^xsd:decimal .
3772
- # ("0.16666666666666666"^^xsd:decimal "32.02201866506704"^^xsd:decimal) math:product "5.337003110844506"^^xsd:decimal .
3773
- # ("5.740892970016647"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.405937477143825"^^xsd:decimal .
3774
- # ("6.266364434863498"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.5346247788330099"^^xsd:decimal .
3775
- # via the schematic forward rule:
3776
- # {
3777
- # :Simpson1 :h ?h .
3778
- # :Simpson1 :sumWY ?sumWY .
3779
- # :Simpson1 :sumWXY ?sumWXY .
3780
- # :Simpson1 :sumWY2 ?sumWY2 .
3781
- # :Simpson1 :sumWDS ?sumWDS .
3782
- # (?h 3.0) math:quotient ?fac .
3783
- # (?fac ?sumWY) math:product ?A .
3784
- # (?fac ?sumWXY) math:product ?My .
3785
- # (?fac ?sumWY2) math:product ?Iy2 .
3786
- # (0.5 ?Iy2) math:product ?Mx .
3787
- # (?fac ?sumWDS) math:product ?L .
3788
- # (?My ?A) math:quotient ?xbar .
3789
- # (?Mx ?A) math:quotient ?ybar .
3790
- # } => {
3791
- # :Simpson1 :areaUnderCurve ?A .
3792
- # :Simpson1 :arcLength ?L .
3793
- # :Simpson1 :momentAboutY ?My .
3794
- # :Simpson1 :momentAboutX ?Mx .
3795
- # _:b7 :xbar ?xbar .
3796
- # _:b7 :ybar ?ybar .
3797
- # :Simpson1 :centroid _:b7 .
3798
- # } .
3799
- # with substitution (on rule variables):
3800
- # ?A = "4.083320249545751"^^xsd:decimal
3801
- # ?Iy2 = "12.532728869726997"^^xsd:decimal
3802
- # ?L = "5.337003110844506"^^xsd:decimal
3803
- # ?Mx = "6.266364434863498"^^xsd:decimal
3804
- # ?My = "5.740892970016647"^^xsd:decimal
3805
- # ?fac = "0.16666666666666666"^^xsd:decimal
3806
- # ?h = 0.5
3807
- # ?sumWDS = "32.02201866506704"^^xsd:decimal
3808
- # ?sumWXY = "34.445357820099886"^^xsd:decimal
3809
- # ?sumWY = "24.499921497274507"^^xsd:decimal
3810
- # ?sumWY2 = "75.19637321836198"^^xsd:decimal
3811
- # ?xbar = "1.405937477143825"^^xsd:decimal
3812
- # ?ybar = "1.5346247788330099"^^xsd:decimal
3813
- # Therefore the derived triple above is entailed by the rules and facts.
3814
- # ----------------------------------------------------------------------
3815
-
3816
62
  _:sk_5 :xbar "1.405937477143825"^^xsd:decimal .
3817
-
3818
- # ----------------------------------------------------------------------
3819
- # Proof for derived triple:
3820
- # _:sk_5 :ybar "1.5346247788330099"^^xsd:decimal .
3821
- # It holds because the following instance of the rule body is provable:
3822
- # :Simpson1 :h 0.5 .
3823
- # :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
3824
- # :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
3825
- # :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
3826
- # :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
3827
- # (0.5 3.0) math:quotient "0.16666666666666666"^^xsd:decimal .
3828
- # ("0.16666666666666666"^^xsd:decimal "24.499921497274507"^^xsd:decimal) math:product "4.083320249545751"^^xsd:decimal .
3829
- # ("0.16666666666666666"^^xsd:decimal "34.445357820099886"^^xsd:decimal) math:product "5.740892970016647"^^xsd:decimal .
3830
- # ("0.16666666666666666"^^xsd:decimal "75.19637321836198"^^xsd:decimal) math:product "12.532728869726997"^^xsd:decimal .
3831
- # (0.5 "12.532728869726997"^^xsd:decimal) math:product "6.266364434863498"^^xsd:decimal .
3832
- # ("0.16666666666666666"^^xsd:decimal "32.02201866506704"^^xsd:decimal) math:product "5.337003110844506"^^xsd:decimal .
3833
- # ("5.740892970016647"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.405937477143825"^^xsd:decimal .
3834
- # ("6.266364434863498"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.5346247788330099"^^xsd:decimal .
3835
- # via the schematic forward rule:
3836
- # {
3837
- # :Simpson1 :h ?h .
3838
- # :Simpson1 :sumWY ?sumWY .
3839
- # :Simpson1 :sumWXY ?sumWXY .
3840
- # :Simpson1 :sumWY2 ?sumWY2 .
3841
- # :Simpson1 :sumWDS ?sumWDS .
3842
- # (?h 3.0) math:quotient ?fac .
3843
- # (?fac ?sumWY) math:product ?A .
3844
- # (?fac ?sumWXY) math:product ?My .
3845
- # (?fac ?sumWY2) math:product ?Iy2 .
3846
- # (0.5 ?Iy2) math:product ?Mx .
3847
- # (?fac ?sumWDS) math:product ?L .
3848
- # (?My ?A) math:quotient ?xbar .
3849
- # (?Mx ?A) math:quotient ?ybar .
3850
- # } => {
3851
- # :Simpson1 :areaUnderCurve ?A .
3852
- # :Simpson1 :arcLength ?L .
3853
- # :Simpson1 :momentAboutY ?My .
3854
- # :Simpson1 :momentAboutX ?Mx .
3855
- # _:b7 :xbar ?xbar .
3856
- # _:b7 :ybar ?ybar .
3857
- # :Simpson1 :centroid _:b7 .
3858
- # } .
3859
- # with substitution (on rule variables):
3860
- # ?A = "4.083320249545751"^^xsd:decimal
3861
- # ?Iy2 = "12.532728869726997"^^xsd:decimal
3862
- # ?L = "5.337003110844506"^^xsd:decimal
3863
- # ?Mx = "6.266364434863498"^^xsd:decimal
3864
- # ?My = "5.740892970016647"^^xsd:decimal
3865
- # ?fac = "0.16666666666666666"^^xsd:decimal
3866
- # ?h = 0.5
3867
- # ?sumWDS = "32.02201866506704"^^xsd:decimal
3868
- # ?sumWXY = "34.445357820099886"^^xsd:decimal
3869
- # ?sumWY = "24.499921497274507"^^xsd:decimal
3870
- # ?sumWY2 = "75.19637321836198"^^xsd:decimal
3871
- # ?xbar = "1.405937477143825"^^xsd:decimal
3872
- # ?ybar = "1.5346247788330099"^^xsd:decimal
3873
- # Therefore the derived triple above is entailed by the rules and facts.
3874
- # ----------------------------------------------------------------------
3875
-
3876
63
  _:sk_5 :ybar "1.5346247788330099"^^xsd:decimal .
3877
-
3878
- # ----------------------------------------------------------------------
3879
- # Proof for derived triple:
3880
- # :Simpson1 :centroid _:sk_5 .
3881
- # It holds because the following instance of the rule body is provable:
3882
- # :Simpson1 :h 0.5 .
3883
- # :Simpson1 :sumWY "24.499921497274507"^^xsd:decimal .
3884
- # :Simpson1 :sumWXY "34.445357820099886"^^xsd:decimal .
3885
- # :Simpson1 :sumWY2 "75.19637321836198"^^xsd:decimal .
3886
- # :Simpson1 :sumWDS "32.02201866506704"^^xsd:decimal .
3887
- # (0.5 3.0) math:quotient "0.16666666666666666"^^xsd:decimal .
3888
- # ("0.16666666666666666"^^xsd:decimal "24.499921497274507"^^xsd:decimal) math:product "4.083320249545751"^^xsd:decimal .
3889
- # ("0.16666666666666666"^^xsd:decimal "34.445357820099886"^^xsd:decimal) math:product "5.740892970016647"^^xsd:decimal .
3890
- # ("0.16666666666666666"^^xsd:decimal "75.19637321836198"^^xsd:decimal) math:product "12.532728869726997"^^xsd:decimal .
3891
- # (0.5 "12.532728869726997"^^xsd:decimal) math:product "6.266364434863498"^^xsd:decimal .
3892
- # ("0.16666666666666666"^^xsd:decimal "32.02201866506704"^^xsd:decimal) math:product "5.337003110844506"^^xsd:decimal .
3893
- # ("5.740892970016647"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.405937477143825"^^xsd:decimal .
3894
- # ("6.266364434863498"^^xsd:decimal "4.083320249545751"^^xsd:decimal) math:quotient "1.5346247788330099"^^xsd:decimal .
3895
- # via the schematic forward rule:
3896
- # {
3897
- # :Simpson1 :h ?h .
3898
- # :Simpson1 :sumWY ?sumWY .
3899
- # :Simpson1 :sumWXY ?sumWXY .
3900
- # :Simpson1 :sumWY2 ?sumWY2 .
3901
- # :Simpson1 :sumWDS ?sumWDS .
3902
- # (?h 3.0) math:quotient ?fac .
3903
- # (?fac ?sumWY) math:product ?A .
3904
- # (?fac ?sumWXY) math:product ?My .
3905
- # (?fac ?sumWY2) math:product ?Iy2 .
3906
- # (0.5 ?Iy2) math:product ?Mx .
3907
- # (?fac ?sumWDS) math:product ?L .
3908
- # (?My ?A) math:quotient ?xbar .
3909
- # (?Mx ?A) math:quotient ?ybar .
3910
- # } => {
3911
- # :Simpson1 :areaUnderCurve ?A .
3912
- # :Simpson1 :arcLength ?L .
3913
- # :Simpson1 :momentAboutY ?My .
3914
- # :Simpson1 :momentAboutX ?Mx .
3915
- # _:b7 :xbar ?xbar .
3916
- # _:b7 :ybar ?ybar .
3917
- # :Simpson1 :centroid _:b7 .
3918
- # } .
3919
- # with substitution (on rule variables):
3920
- # ?A = "4.083320249545751"^^xsd:decimal
3921
- # ?Iy2 = "12.532728869726997"^^xsd:decimal
3922
- # ?L = "5.337003110844506"^^xsd:decimal
3923
- # ?Mx = "6.266364434863498"^^xsd:decimal
3924
- # ?My = "5.740892970016647"^^xsd:decimal
3925
- # ?fac = "0.16666666666666666"^^xsd:decimal
3926
- # ?h = 0.5
3927
- # ?sumWDS = "32.02201866506704"^^xsd:decimal
3928
- # ?sumWXY = "34.445357820099886"^^xsd:decimal
3929
- # ?sumWY = "24.499921497274507"^^xsd:decimal
3930
- # ?sumWY2 = "75.19637321836198"^^xsd:decimal
3931
- # ?xbar = "1.405937477143825"^^xsd:decimal
3932
- # ?ybar = "1.5346247788330099"^^xsd:decimal
3933
- # Therefore the derived triple above is entailed by the rules and facts.
3934
- # ----------------------------------------------------------------------
3935
-
3936
64
  :Simpson1 :centroid _:sk_5 .
3937
-