eyeling 1.6.13 → 1.6.15
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +8 -19
- package/examples/output/age.n3 +0 -17
- package/examples/output/alignment-demo.n3 +0 -572
- package/examples/output/backward.n3 +0 -15
- package/examples/output/basic-monadic.n3 +0 -105
- package/examples/output/brussels-brew-club.n3 +0 -476
- package/examples/output/cat-koko.n3 +0 -108
- package/examples/output/cobalt-kepler-kitchen.n3 +0 -7064
- package/examples/output/complex.n3 +0 -46
- package/examples/output/control-system.n3 +0 -75
- package/examples/output/cranberry-calculus.n3 +0 -1313
- package/examples/output/crypto-builtins-tests.n3 +0 -60
- package/examples/output/deep-taxonomy-10.n3 +0 -602
- package/examples/output/deep-taxonomy-100.n3 +1 -5733
- package/examples/output/deep-taxonomy-1000.n3 +1 -57033
- package/examples/output/deep-taxonomy-10000.n3 +1 -570033
- package/examples/output/derived-backward-rule-2.n3 +0 -58
- package/examples/output/derived-backward-rule.n3 +0 -44
- package/examples/output/derived-rule.n3 +0 -42
- package/examples/output/dijkstra.n3 +0 -297
- package/examples/output/dog.n3 +0 -30
- package/examples/output/drone-corridor-planner.n3 +0 -799
- package/examples/output/easter.n3 +0 -3570
- package/examples/output/equals.n3 +0 -15
- package/examples/output/ev-roundtrip-planner.n3 +0 -392
- package/examples/output/existential-rule.n3 +0 -34
- package/examples/output/expression-eval.n3 +0 -20
- package/examples/output/family-cousins.n3 +0 -636
- package/examples/output/fibonacci.n3 +0 -36
- package/examples/output/french-cities.n3 +0 -484
- package/examples/output/good-cobbler.n3 +0 -22
- package/examples/output/gps.n3 +0 -62
- package/examples/output/gray-code-counter.n3 +0 -17
- package/examples/output/hanoi.n3 +0 -17
- package/examples/output/jade-eigen-loom.n3 +0 -4690
- package/examples/output/json-pointer.n3 +0 -529
- package/examples/output/json-reconcile-vat.n3 +0 -12882
- package/examples/output/light-eaters.n3 +0 -311
- package/examples/output/list-builtins-tests.n3 +0 -167
- package/examples/output/list-iterate.n3 +0 -124
- package/examples/output/lldm.n3 +0 -960
- package/examples/output/log-collect-all-in.n3 +0 -117
- package/examples/output/log-for-all-in.n3 +0 -27
- package/examples/output/log-not-includes.n3 +0 -59
- package/examples/output/log-skolem.n3 +0 -17
- package/examples/output/log-uri.n3 +0 -42
- package/examples/output/math-builtins-tests.n3 +0 -4434
- package/examples/output/minimal-skos-alignment.n3 +0 -39
- package/examples/output/monkey.n3 +0 -36
- package/examples/output/odrl-trust.n3 +0 -46
- package/examples/output/oslo-steps-library-scholarly.n3 +0 -1260
- package/examples/output/oslo-steps-workflow-composition.n3 +0 -180
- package/examples/output/peano.n3 +0 -23
- package/examples/output/pi.n3 +0 -17
- package/examples/output/pillar.n3 +0 -32
- package/examples/output/polygon.n3 +0 -17
- package/examples/output/rdf-list.n3 +0 -28
- package/examples/output/reordering.n3 +0 -26
- package/examples/output/ruby-runge-workshop.n3 +0 -613
- package/examples/output/rule-matching.n3 +0 -26
- package/examples/output/saffron-slopeworks.n3 +0 -1447
- package/examples/output/self-referential.n3 +0 -81
- package/examples/output/similar.n3 +0 -15
- package/examples/output/snaf.n3 +0 -23
- package/examples/output/socrates.n3 +0 -21
- package/examples/output/spectral-week.n3 +0 -350
- package/examples/output/string-builtins-tests.n3 +0 -240
- package/examples/output/topaz-markov-mill.n3 +0 -4178
- package/examples/output/traffic-skos-aggregate.n3 +0 -3151
- package/examples/output/turing.n3 +0 -36
- package/examples/output/ultramarine-simpson-forge.n3 +0 -3873
- package/examples/output/witch.n3 +0 -107
- package/examples/output/zebra.n3 +0 -111
- package/eyeling.js +129 -25
- package/index.js +13 -6
- package/package.json +1 -1
- package/test/examples.test.js +1 -1
package/examples/output/lldm.n3
CHANGED
|
@@ -1,1001 +1,41 @@
|
|
|
1
1
|
@prefix : <http://www.agfa.com/w3c/2002/10/medicad/op/lldmP#> .
|
|
2
2
|
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
|
|
3
3
|
|
|
4
|
-
# ----------------------------------------------------------------------
|
|
5
|
-
# Proof for derived triple:
|
|
6
|
-
# :meas47 :dx12Cm "-35"^^xsd:decimal .
|
|
7
|
-
# It holds because the following instance of the rule body is provable:
|
|
8
|
-
# :meas47 a :Measurement .
|
|
9
|
-
# :meas47 :p1xCm 10.1 .
|
|
10
|
-
# :meas47 :p2xCm 45.1 .
|
|
11
|
-
# (10.1 45.1) math:difference "-35"^^xsd:decimal .
|
|
12
|
-
# via the schematic forward rule:
|
|
13
|
-
# {
|
|
14
|
-
# ?M a :Measurement .
|
|
15
|
-
# ?M :p1xCm ?X .
|
|
16
|
-
# ?M :p2xCm ?Y .
|
|
17
|
-
# (?X ?Y) math:difference ?Z .
|
|
18
|
-
# } => {
|
|
19
|
-
# ?M :dx12Cm ?Z .
|
|
20
|
-
# } .
|
|
21
|
-
# with substitution (on rule variables):
|
|
22
|
-
# ?M = :meas47
|
|
23
|
-
# ?X = 10.1
|
|
24
|
-
# ?Y = 45.1
|
|
25
|
-
# ?Z = "-35"^^xsd:decimal
|
|
26
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
27
|
-
# ----------------------------------------------------------------------
|
|
28
|
-
|
|
29
4
|
:meas47 :dx12Cm "-35"^^xsd:decimal .
|
|
30
|
-
|
|
31
|
-
# ----------------------------------------------------------------------
|
|
32
|
-
# Proof for derived triple:
|
|
33
|
-
# :meas47 :dy12Cm "2.2"^^xsd:decimal .
|
|
34
|
-
# It holds because the following instance of the rule body is provable:
|
|
35
|
-
# :meas47 a :Measurement .
|
|
36
|
-
# :meas47 :p1yCm 7.8 .
|
|
37
|
-
# :meas47 :p2yCm 5.6 .
|
|
38
|
-
# (7.8 5.6) math:difference "2.2"^^xsd:decimal .
|
|
39
|
-
# via the schematic forward rule:
|
|
40
|
-
# {
|
|
41
|
-
# ?M a :Measurement .
|
|
42
|
-
# ?M :p1yCm ?X .
|
|
43
|
-
# ?M :p2yCm ?Y .
|
|
44
|
-
# (?X ?Y) math:difference ?Z .
|
|
45
|
-
# } => {
|
|
46
|
-
# ?M :dy12Cm ?Z .
|
|
47
|
-
# } .
|
|
48
|
-
# with substitution (on rule variables):
|
|
49
|
-
# ?M = :meas47
|
|
50
|
-
# ?X = 7.8
|
|
51
|
-
# ?Y = 5.6
|
|
52
|
-
# ?Z = "2.2"^^xsd:decimal
|
|
53
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
54
|
-
# ----------------------------------------------------------------------
|
|
55
|
-
|
|
56
5
|
:meas47 :dy12Cm "2.2"^^xsd:decimal .
|
|
57
|
-
|
|
58
|
-
# ----------------------------------------------------------------------
|
|
59
|
-
# Proof for derived triple:
|
|
60
|
-
# :meas47 :dy13Cm "-22"^^xsd:decimal .
|
|
61
|
-
# It holds because the following instance of the rule body is provable:
|
|
62
|
-
# :meas47 a :Measurement .
|
|
63
|
-
# :meas47 :p1yCm 7.8 .
|
|
64
|
-
# :meas47 :p3yCm 29.8 .
|
|
65
|
-
# (7.8 29.8) math:difference "-22"^^xsd:decimal .
|
|
66
|
-
# via the schematic forward rule:
|
|
67
|
-
# {
|
|
68
|
-
# ?M a :Measurement .
|
|
69
|
-
# ?M :p1yCm ?X .
|
|
70
|
-
# ?M :p3yCm ?Y .
|
|
71
|
-
# (?X ?Y) math:difference ?Z .
|
|
72
|
-
# } => {
|
|
73
|
-
# ?M :dy13Cm ?Z .
|
|
74
|
-
# } .
|
|
75
|
-
# with substitution (on rule variables):
|
|
76
|
-
# ?M = :meas47
|
|
77
|
-
# ?X = 7.8
|
|
78
|
-
# ?Y = 29.8
|
|
79
|
-
# ?Z = "-22"^^xsd:decimal
|
|
80
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
81
|
-
# ----------------------------------------------------------------------
|
|
82
|
-
|
|
83
6
|
:meas47 :dy13Cm "-22"^^xsd:decimal .
|
|
84
|
-
|
|
85
|
-
# ----------------------------------------------------------------------
|
|
86
|
-
# Proof for derived triple:
|
|
87
|
-
# :meas47 :dy24Cm "-22.9"^^xsd:decimal .
|
|
88
|
-
# It holds because the following instance of the rule body is provable:
|
|
89
|
-
# :meas47 a :Measurement .
|
|
90
|
-
# :meas47 :p2yCm 5.6 .
|
|
91
|
-
# :meas47 :p4yCm 28.5 .
|
|
92
|
-
# (5.6 28.5) math:difference "-22.9"^^xsd:decimal .
|
|
93
|
-
# via the schematic forward rule:
|
|
94
|
-
# {
|
|
95
|
-
# ?M a :Measurement .
|
|
96
|
-
# ?M :p2yCm ?X .
|
|
97
|
-
# ?M :p4yCm ?Y .
|
|
98
|
-
# (?X ?Y) math:difference ?Z .
|
|
99
|
-
# } => {
|
|
100
|
-
# ?M :dy24Cm ?Z .
|
|
101
|
-
# } .
|
|
102
|
-
# with substitution (on rule variables):
|
|
103
|
-
# ?M = :meas47
|
|
104
|
-
# ?X = 5.6
|
|
105
|
-
# ?Y = 28.5
|
|
106
|
-
# ?Z = "-22.9"^^xsd:decimal
|
|
107
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
108
|
-
# ----------------------------------------------------------------------
|
|
109
|
-
|
|
110
7
|
:meas47 :dy24Cm "-22.9"^^xsd:decimal .
|
|
111
|
-
|
|
112
|
-
# ----------------------------------------------------------------------
|
|
113
|
-
# Proof for derived triple:
|
|
114
|
-
# :meas47 :cL1 "-0.06285714285714286"^^xsd:decimal .
|
|
115
|
-
# It holds because the following instance of the rule body is provable:
|
|
116
|
-
# :meas47 a :Measurement .
|
|
117
|
-
# :meas47 :dy12Cm "2.2"^^xsd:decimal .
|
|
118
|
-
# :meas47 :dx12Cm "-35"^^xsd:decimal .
|
|
119
|
-
# ("2.2"^^xsd:decimal "-35"^^xsd:decimal) math:quotient "-0.06285714285714286"^^xsd:decimal .
|
|
120
|
-
# via the schematic forward rule:
|
|
121
|
-
# {
|
|
122
|
-
# ?M a :Measurement .
|
|
123
|
-
# ?M :dy12Cm ?Y .
|
|
124
|
-
# ?M :dx12Cm ?X .
|
|
125
|
-
# (?Y ?X) math:quotient ?Z .
|
|
126
|
-
# } => {
|
|
127
|
-
# ?M :cL1 ?Z .
|
|
128
|
-
# } .
|
|
129
|
-
# with substitution (on rule variables):
|
|
130
|
-
# ?M = :meas47
|
|
131
|
-
# ?X = "-35"^^xsd:decimal
|
|
132
|
-
# ?Y = "2.2"^^xsd:decimal
|
|
133
|
-
# ?Z = "-0.06285714285714286"^^xsd:decimal
|
|
134
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
135
|
-
# ----------------------------------------------------------------------
|
|
136
|
-
|
|
137
8
|
:meas47 :cL1 "-0.06285714285714286"^^xsd:decimal .
|
|
138
|
-
|
|
139
|
-
# ----------------------------------------------------------------------
|
|
140
|
-
# Proof for derived triple:
|
|
141
|
-
# :meas47 :dL3m "-15.909090909090908"^^xsd:decimal .
|
|
142
|
-
# It holds because the following instance of the rule body is provable:
|
|
143
|
-
# :meas47 a :Measurement .
|
|
144
|
-
# :meas47 :cL1 "-0.06285714285714286"^^xsd:decimal .
|
|
145
|
-
# (1 "-0.06285714285714286"^^xsd:decimal) math:quotient "-15.909090909090908"^^xsd:decimal .
|
|
146
|
-
# via the schematic forward rule:
|
|
147
|
-
# {
|
|
148
|
-
# ?M a :Measurement .
|
|
149
|
-
# ?M :cL1 ?X .
|
|
150
|
-
# (1 ?X) math:quotient ?Z .
|
|
151
|
-
# } => {
|
|
152
|
-
# ?M :dL3m ?Z .
|
|
153
|
-
# } .
|
|
154
|
-
# with substitution (on rule variables):
|
|
155
|
-
# ?M = :meas47
|
|
156
|
-
# ?X = "-0.06285714285714286"^^xsd:decimal
|
|
157
|
-
# ?Z = "-15.909090909090908"^^xsd:decimal
|
|
158
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
159
|
-
# ----------------------------------------------------------------------
|
|
160
|
-
|
|
161
9
|
:meas47 :dL3m "-15.909090909090908"^^xsd:decimal .
|
|
162
|
-
|
|
163
|
-
# ----------------------------------------------------------------------
|
|
164
|
-
# Proof for derived triple:
|
|
165
|
-
# :meas47 :cL3 "15.909090909090908"^^xsd:decimal .
|
|
166
|
-
# It holds because the following instance of the rule body is provable:
|
|
167
|
-
# :meas47 a :Measurement .
|
|
168
|
-
# :meas47 :dL3m "-15.909090909090908"^^xsd:decimal .
|
|
169
|
-
# (0 "-15.909090909090908"^^xsd:decimal) math:difference "15.909090909090908"^^xsd:decimal .
|
|
170
|
-
# via the schematic forward rule:
|
|
171
|
-
# {
|
|
172
|
-
# ?M a :Measurement .
|
|
173
|
-
# ?M :dL3m ?X .
|
|
174
|
-
# (0 ?X) math:difference ?Z .
|
|
175
|
-
# } => {
|
|
176
|
-
# ?M :cL3 ?Z .
|
|
177
|
-
# } .
|
|
178
|
-
# with substitution (on rule variables):
|
|
179
|
-
# ?M = :meas47
|
|
180
|
-
# ?X = "-15.909090909090908"^^xsd:decimal
|
|
181
|
-
# ?Z = "15.909090909090908"^^xsd:decimal
|
|
182
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
183
|
-
# ----------------------------------------------------------------------
|
|
184
|
-
|
|
185
10
|
:meas47 :cL3 "15.909090909090908"^^xsd:decimal .
|
|
186
|
-
|
|
187
|
-
# ----------------------------------------------------------------------
|
|
188
|
-
# Proof for derived triple:
|
|
189
|
-
# :meas47 :pL1x1Cm "-0.6348571428571429"^^xsd:decimal .
|
|
190
|
-
# It holds because the following instance of the rule body is provable:
|
|
191
|
-
# :meas47 a :Measurement .
|
|
192
|
-
# :meas47 :cL1 "-0.06285714285714286"^^xsd:decimal .
|
|
193
|
-
# :meas47 :p1xCm 10.1 .
|
|
194
|
-
# ("-0.06285714285714286"^^xsd:decimal 10.1) math:product "-0.6348571428571429"^^xsd:decimal .
|
|
195
|
-
# via the schematic forward rule:
|
|
196
|
-
# {
|
|
197
|
-
# ?M a :Measurement .
|
|
198
|
-
# ?M :cL1 ?X .
|
|
199
|
-
# ?M :p1xCm ?Y .
|
|
200
|
-
# (?X ?Y) math:product ?Z .
|
|
201
|
-
# } => {
|
|
202
|
-
# ?M :pL1x1Cm ?Z .
|
|
203
|
-
# } .
|
|
204
|
-
# with substitution (on rule variables):
|
|
205
|
-
# ?M = :meas47
|
|
206
|
-
# ?X = "-0.06285714285714286"^^xsd:decimal
|
|
207
|
-
# ?Y = 10.1
|
|
208
|
-
# ?Z = "-0.6348571428571429"^^xsd:decimal
|
|
209
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
210
|
-
# ----------------------------------------------------------------------
|
|
211
|
-
|
|
212
11
|
:meas47 :pL1x1Cm "-0.6348571428571429"^^xsd:decimal .
|
|
213
|
-
|
|
214
|
-
# ----------------------------------------------------------------------
|
|
215
|
-
# Proof for derived triple:
|
|
216
|
-
# :meas47 :pL1x2Cm "-2.834857142857143"^^xsd:decimal .
|
|
217
|
-
# It holds because the following instance of the rule body is provable:
|
|
218
|
-
# :meas47 a :Measurement .
|
|
219
|
-
# :meas47 :cL1 "-0.06285714285714286"^^xsd:decimal .
|
|
220
|
-
# :meas47 :p2xCm 45.1 .
|
|
221
|
-
# ("-0.06285714285714286"^^xsd:decimal 45.1) math:product "-2.834857142857143"^^xsd:decimal .
|
|
222
|
-
# via the schematic forward rule:
|
|
223
|
-
# {
|
|
224
|
-
# ?M a :Measurement .
|
|
225
|
-
# ?M :cL1 ?X .
|
|
226
|
-
# ?M :p2xCm ?Y .
|
|
227
|
-
# (?X ?Y) math:product ?Z .
|
|
228
|
-
# } => {
|
|
229
|
-
# ?M :pL1x2Cm ?Z .
|
|
230
|
-
# } .
|
|
231
|
-
# with substitution (on rule variables):
|
|
232
|
-
# ?M = :meas47
|
|
233
|
-
# ?X = "-0.06285714285714286"^^xsd:decimal
|
|
234
|
-
# ?Y = 45.1
|
|
235
|
-
# ?Z = "-2.834857142857143"^^xsd:decimal
|
|
236
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
237
|
-
# ----------------------------------------------------------------------
|
|
238
|
-
|
|
239
12
|
:meas47 :pL1x2Cm "-2.834857142857143"^^xsd:decimal .
|
|
240
|
-
|
|
241
|
-
# ----------------------------------------------------------------------
|
|
242
|
-
# Proof for derived triple:
|
|
243
|
-
# :meas47 :pL3x3Cm "57.27272727272727"^^xsd:decimal .
|
|
244
|
-
# It holds because the following instance of the rule body is provable:
|
|
245
|
-
# :meas47 a :Measurement .
|
|
246
|
-
# :meas47 :cL3 "15.909090909090908"^^xsd:decimal .
|
|
247
|
-
# :meas47 :p3xCm 3.6 .
|
|
248
|
-
# ("15.909090909090908"^^xsd:decimal 3.6) math:product "57.27272727272727"^^xsd:decimal .
|
|
249
|
-
# via the schematic forward rule:
|
|
250
|
-
# {
|
|
251
|
-
# ?M a :Measurement .
|
|
252
|
-
# ?M :cL3 ?X .
|
|
253
|
-
# ?M :p3xCm ?Y .
|
|
254
|
-
# (?X ?Y) math:product ?Z .
|
|
255
|
-
# } => {
|
|
256
|
-
# ?M :pL3x3Cm ?Z .
|
|
257
|
-
# } .
|
|
258
|
-
# with substitution (on rule variables):
|
|
259
|
-
# ?M = :meas47
|
|
260
|
-
# ?X = "15.909090909090908"^^xsd:decimal
|
|
261
|
-
# ?Y = 3.6
|
|
262
|
-
# ?Z = "57.27272727272727"^^xsd:decimal
|
|
263
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
264
|
-
# ----------------------------------------------------------------------
|
|
265
|
-
|
|
266
13
|
:meas47 :pL3x3Cm "57.27272727272727"^^xsd:decimal .
|
|
267
|
-
|
|
268
|
-
# ----------------------------------------------------------------------
|
|
269
|
-
# Proof for derived triple:
|
|
270
|
-
# :meas47 :pL3x4Cm "870.2272727272727"^^xsd:decimal .
|
|
271
|
-
# It holds because the following instance of the rule body is provable:
|
|
272
|
-
# :meas47 a :Measurement .
|
|
273
|
-
# :meas47 :cL3 "15.909090909090908"^^xsd:decimal .
|
|
274
|
-
# :meas47 :p4xCm 54.7 .
|
|
275
|
-
# ("15.909090909090908"^^xsd:decimal 54.7) math:product "870.2272727272727"^^xsd:decimal .
|
|
276
|
-
# via the schematic forward rule:
|
|
277
|
-
# {
|
|
278
|
-
# ?M a :Measurement .
|
|
279
|
-
# ?M :cL3 ?X .
|
|
280
|
-
# ?M :p4xCm ?Y .
|
|
281
|
-
# (?X ?Y) math:product ?Z .
|
|
282
|
-
# } => {
|
|
283
|
-
# ?M :pL3x4Cm ?Z .
|
|
284
|
-
# } .
|
|
285
|
-
# with substitution (on rule variables):
|
|
286
|
-
# ?M = :meas47
|
|
287
|
-
# ?X = "15.909090909090908"^^xsd:decimal
|
|
288
|
-
# ?Y = 54.7
|
|
289
|
-
# ?Z = "870.2272727272727"^^xsd:decimal
|
|
290
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
291
|
-
# ----------------------------------------------------------------------
|
|
292
|
-
|
|
293
14
|
:meas47 :pL3x4Cm "870.2272727272727"^^xsd:decimal .
|
|
294
|
-
|
|
295
|
-
# ----------------------------------------------------------------------
|
|
296
|
-
# Proof for derived triple:
|
|
297
|
-
# :meas47 :dd13Cm "-57.90758441558442"^^xsd:decimal .
|
|
298
|
-
# It holds because the following instance of the rule body is provable:
|
|
299
|
-
# :meas47 a :Measurement .
|
|
300
|
-
# :meas47 :pL1x1Cm "-0.6348571428571429"^^xsd:decimal .
|
|
301
|
-
# :meas47 :pL3x3Cm "57.27272727272727"^^xsd:decimal .
|
|
302
|
-
# ("-0.6348571428571429"^^xsd:decimal "57.27272727272727"^^xsd:decimal) math:difference "-57.90758441558442"^^xsd:decimal .
|
|
303
|
-
# via the schematic forward rule:
|
|
304
|
-
# {
|
|
305
|
-
# ?M a :Measurement .
|
|
306
|
-
# ?M :pL1x1Cm ?X .
|
|
307
|
-
# ?M :pL3x3Cm ?Y .
|
|
308
|
-
# (?X ?Y) math:difference ?Z .
|
|
309
|
-
# } => {
|
|
310
|
-
# ?M :dd13Cm ?Z .
|
|
311
|
-
# } .
|
|
312
|
-
# with substitution (on rule variables):
|
|
313
|
-
# ?M = :meas47
|
|
314
|
-
# ?X = "-0.6348571428571429"^^xsd:decimal
|
|
315
|
-
# ?Y = "57.27272727272727"^^xsd:decimal
|
|
316
|
-
# ?Z = "-57.90758441558442"^^xsd:decimal
|
|
317
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
318
|
-
# ----------------------------------------------------------------------
|
|
319
|
-
|
|
320
15
|
:meas47 :dd13Cm "-57.90758441558442"^^xsd:decimal .
|
|
321
|
-
|
|
322
|
-
# ----------------------------------------------------------------------
|
|
323
|
-
# Proof for derived triple:
|
|
324
|
-
# :meas47 :ddy13Cm "-35.90758441558442"^^xsd:decimal .
|
|
325
|
-
# It holds because the following instance of the rule body is provable:
|
|
326
|
-
# :meas47 a :Measurement .
|
|
327
|
-
# :meas47 :dd13Cm "-57.90758441558442"^^xsd:decimal .
|
|
328
|
-
# :meas47 :dy13Cm "-22"^^xsd:decimal .
|
|
329
|
-
# ("-57.90758441558442"^^xsd:decimal "-22"^^xsd:decimal) math:difference "-35.90758441558442"^^xsd:decimal .
|
|
330
|
-
# via the schematic forward rule:
|
|
331
|
-
# {
|
|
332
|
-
# ?M a :Measurement .
|
|
333
|
-
# ?M :dd13Cm ?X .
|
|
334
|
-
# ?M :dy13Cm ?Y .
|
|
335
|
-
# (?X ?Y) math:difference ?Z .
|
|
336
|
-
# } => {
|
|
337
|
-
# ?M :ddy13Cm ?Z .
|
|
338
|
-
# } .
|
|
339
|
-
# with substitution (on rule variables):
|
|
340
|
-
# ?M = :meas47
|
|
341
|
-
# ?X = "-57.90758441558442"^^xsd:decimal
|
|
342
|
-
# ?Y = "-22"^^xsd:decimal
|
|
343
|
-
# ?Z = "-35.90758441558442"^^xsd:decimal
|
|
344
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
345
|
-
# ----------------------------------------------------------------------
|
|
346
|
-
|
|
347
16
|
:meas47 :ddy13Cm "-35.90758441558442"^^xsd:decimal .
|
|
348
|
-
|
|
349
|
-
# ----------------------------------------------------------------------
|
|
350
|
-
# Proof for derived triple:
|
|
351
|
-
# :meas47 :dd24Cm "-873.0621298701299"^^xsd:decimal .
|
|
352
|
-
# It holds because the following instance of the rule body is provable:
|
|
353
|
-
# :meas47 a :Measurement .
|
|
354
|
-
# :meas47 :pL1x2Cm "-2.834857142857143"^^xsd:decimal .
|
|
355
|
-
# :meas47 :pL3x4Cm "870.2272727272727"^^xsd:decimal .
|
|
356
|
-
# ("-2.834857142857143"^^xsd:decimal "870.2272727272727"^^xsd:decimal) math:difference "-873.0621298701299"^^xsd:decimal .
|
|
357
|
-
# via the schematic forward rule:
|
|
358
|
-
# {
|
|
359
|
-
# ?M a :Measurement .
|
|
360
|
-
# ?M :pL1x2Cm ?X .
|
|
361
|
-
# ?M :pL3x4Cm ?Y .
|
|
362
|
-
# (?X ?Y) math:difference ?Z .
|
|
363
|
-
# } => {
|
|
364
|
-
# ?M :dd24Cm ?Z .
|
|
365
|
-
# } .
|
|
366
|
-
# with substitution (on rule variables):
|
|
367
|
-
# ?M = :meas47
|
|
368
|
-
# ?X = "-2.834857142857143"^^xsd:decimal
|
|
369
|
-
# ?Y = "870.2272727272727"^^xsd:decimal
|
|
370
|
-
# ?Z = "-873.0621298701299"^^xsd:decimal
|
|
371
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
372
|
-
# ----------------------------------------------------------------------
|
|
373
|
-
|
|
374
17
|
:meas47 :dd24Cm "-873.0621298701299"^^xsd:decimal .
|
|
375
|
-
|
|
376
|
-
# ----------------------------------------------------------------------
|
|
377
|
-
# Proof for derived triple:
|
|
378
|
-
# :meas47 :ddy24Cm "-850.1621298701299"^^xsd:decimal .
|
|
379
|
-
# It holds because the following instance of the rule body is provable:
|
|
380
|
-
# :meas47 a :Measurement .
|
|
381
|
-
# :meas47 :dd24Cm "-873.0621298701299"^^xsd:decimal .
|
|
382
|
-
# :meas47 :dy24Cm "-22.9"^^xsd:decimal .
|
|
383
|
-
# ("-873.0621298701299"^^xsd:decimal "-22.9"^^xsd:decimal) math:difference "-850.1621298701299"^^xsd:decimal .
|
|
384
|
-
# via the schematic forward rule:
|
|
385
|
-
# {
|
|
386
|
-
# ?M a :Measurement .
|
|
387
|
-
# ?M :dd24Cm ?X .
|
|
388
|
-
# ?M :dy24Cm ?Y .
|
|
389
|
-
# (?X ?Y) math:difference ?Z .
|
|
390
|
-
# } => {
|
|
391
|
-
# ?M :ddy24Cm ?Z .
|
|
392
|
-
# } .
|
|
393
|
-
# with substitution (on rule variables):
|
|
394
|
-
# ?M = :meas47
|
|
395
|
-
# ?X = "-873.0621298701299"^^xsd:decimal
|
|
396
|
-
# ?Y = "-22.9"^^xsd:decimal
|
|
397
|
-
# ?Z = "-850.1621298701299"^^xsd:decimal
|
|
398
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
399
|
-
# ----------------------------------------------------------------------
|
|
400
|
-
|
|
401
18
|
:meas47 :ddy24Cm "-850.1621298701299"^^xsd:decimal .
|
|
402
|
-
|
|
403
|
-
# ----------------------------------------------------------------------
|
|
404
|
-
# Proof for derived triple:
|
|
405
|
-
# :meas47 :ddL13 "-15.97194805194805"^^xsd:decimal .
|
|
406
|
-
# It holds because the following instance of the rule body is provable:
|
|
407
|
-
# :meas47 a :Measurement .
|
|
408
|
-
# :meas47 :cL1 "-0.06285714285714286"^^xsd:decimal .
|
|
409
|
-
# :meas47 :cL3 "15.909090909090908"^^xsd:decimal .
|
|
410
|
-
# ("-0.06285714285714286"^^xsd:decimal "15.909090909090908"^^xsd:decimal) math:difference "-15.97194805194805"^^xsd:decimal .
|
|
411
|
-
# via the schematic forward rule:
|
|
412
|
-
# {
|
|
413
|
-
# ?M a :Measurement .
|
|
414
|
-
# ?M :cL1 ?X .
|
|
415
|
-
# ?M :cL3 ?Y .
|
|
416
|
-
# (?X ?Y) math:difference ?Z .
|
|
417
|
-
# } => {
|
|
418
|
-
# ?M :ddL13 ?Z .
|
|
419
|
-
# } .
|
|
420
|
-
# with substitution (on rule variables):
|
|
421
|
-
# ?M = :meas47
|
|
422
|
-
# ?X = "-0.06285714285714286"^^xsd:decimal
|
|
423
|
-
# ?Y = "15.909090909090908"^^xsd:decimal
|
|
424
|
-
# ?Z = "-15.97194805194805"^^xsd:decimal
|
|
425
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
426
|
-
# ----------------------------------------------------------------------
|
|
427
|
-
|
|
428
19
|
:meas47 :ddL13 "-15.97194805194805"^^xsd:decimal .
|
|
429
|
-
|
|
430
|
-
# ----------------------------------------------------------------------
|
|
431
|
-
# Proof for derived triple:
|
|
432
|
-
# :meas47 :p5xCm "2.248165615039355"^^xsd:decimal .
|
|
433
|
-
# It holds because the following instance of the rule body is provable:
|
|
434
|
-
# :meas47 a :Measurement .
|
|
435
|
-
# :meas47 :ddy13Cm "-35.90758441558442"^^xsd:decimal .
|
|
436
|
-
# :meas47 :ddL13 "-15.97194805194805"^^xsd:decimal .
|
|
437
|
-
# ("-35.90758441558442"^^xsd:decimal "-15.97194805194805"^^xsd:decimal) math:quotient "2.248165615039355"^^xsd:decimal .
|
|
438
|
-
# via the schematic forward rule:
|
|
439
|
-
# {
|
|
440
|
-
# ?M a :Measurement .
|
|
441
|
-
# ?M :ddy13Cm ?X .
|
|
442
|
-
# ?M :ddL13 ?Y .
|
|
443
|
-
# (?X ?Y) math:quotient ?Z .
|
|
444
|
-
# } => {
|
|
445
|
-
# ?M :p5xCm ?Z .
|
|
446
|
-
# } .
|
|
447
|
-
# with substitution (on rule variables):
|
|
448
|
-
# ?M = :meas47
|
|
449
|
-
# ?X = "-35.90758441558442"^^xsd:decimal
|
|
450
|
-
# ?Y = "-15.97194805194805"^^xsd:decimal
|
|
451
|
-
# ?Z = "2.248165615039355"^^xsd:decimal
|
|
452
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
453
|
-
# ----------------------------------------------------------------------
|
|
454
|
-
|
|
455
20
|
:meas47 :p5xCm "2.248165615039355"^^xsd:decimal .
|
|
456
|
-
|
|
457
|
-
# ----------------------------------------------------------------------
|
|
458
|
-
# Proof for derived triple:
|
|
459
|
-
# :meas47 :p6xCm "53.22845573407923"^^xsd:decimal .
|
|
460
|
-
# It holds because the following instance of the rule body is provable:
|
|
461
|
-
# :meas47 a :Measurement .
|
|
462
|
-
# :meas47 :ddy24Cm "-850.1621298701299"^^xsd:decimal .
|
|
463
|
-
# :meas47 :ddL13 "-15.97194805194805"^^xsd:decimal .
|
|
464
|
-
# ("-850.1621298701299"^^xsd:decimal "-15.97194805194805"^^xsd:decimal) math:quotient "53.22845573407923"^^xsd:decimal .
|
|
465
|
-
# via the schematic forward rule:
|
|
466
|
-
# {
|
|
467
|
-
# ?M a :Measurement .
|
|
468
|
-
# ?M :ddy24Cm ?X .
|
|
469
|
-
# ?M :ddL13 ?Y .
|
|
470
|
-
# (?X ?Y) math:quotient ?Z .
|
|
471
|
-
# } => {
|
|
472
|
-
# ?M :p6xCm ?Z .
|
|
473
|
-
# } .
|
|
474
|
-
# with substitution (on rule variables):
|
|
475
|
-
# ?M = :meas47
|
|
476
|
-
# ?X = "-850.1621298701299"^^xsd:decimal
|
|
477
|
-
# ?Y = "-15.97194805194805"^^xsd:decimal
|
|
478
|
-
# ?Z = "53.22845573407923"^^xsd:decimal
|
|
479
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
480
|
-
# ----------------------------------------------------------------------
|
|
481
|
-
|
|
482
21
|
:meas47 :p6xCm "53.22845573407923"^^xsd:decimal .
|
|
483
|
-
|
|
484
|
-
# ----------------------------------------------------------------------
|
|
485
|
-
# Proof for derived triple:
|
|
486
|
-
# :meas47 :dx51Cm "-7.851834384960645"^^xsd:decimal .
|
|
487
|
-
# It holds because the following instance of the rule body is provable:
|
|
488
|
-
# :meas47 a :Measurement .
|
|
489
|
-
# :meas47 :p5xCm "2.248165615039355"^^xsd:decimal .
|
|
490
|
-
# :meas47 :p1xCm 10.1 .
|
|
491
|
-
# ("2.248165615039355"^^xsd:decimal 10.1) math:difference "-7.851834384960645"^^xsd:decimal .
|
|
492
|
-
# via the schematic forward rule:
|
|
493
|
-
# {
|
|
494
|
-
# ?M a :Measurement .
|
|
495
|
-
# ?M :p5xCm ?X .
|
|
496
|
-
# ?M :p1xCm ?Y .
|
|
497
|
-
# (?X ?Y) math:difference ?Z .
|
|
498
|
-
# } => {
|
|
499
|
-
# ?M :dx51Cm ?Z .
|
|
500
|
-
# } .
|
|
501
|
-
# with substitution (on rule variables):
|
|
502
|
-
# ?M = :meas47
|
|
503
|
-
# ?X = "2.248165615039355"^^xsd:decimal
|
|
504
|
-
# ?Y = 10.1
|
|
505
|
-
# ?Z = "-7.851834384960645"^^xsd:decimal
|
|
506
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
507
|
-
# ----------------------------------------------------------------------
|
|
508
|
-
|
|
509
22
|
:meas47 :dx51Cm "-7.851834384960645"^^xsd:decimal .
|
|
510
|
-
|
|
511
|
-
# ----------------------------------------------------------------------
|
|
512
|
-
# Proof for derived triple:
|
|
513
|
-
# :meas47 :dx53Cm "-1.351834384960645"^^xsd:decimal .
|
|
514
|
-
# It holds because the following instance of the rule body is provable:
|
|
515
|
-
# :meas47 a :Measurement .
|
|
516
|
-
# :meas47 :p5xCm "2.248165615039355"^^xsd:decimal .
|
|
517
|
-
# :meas47 :p3xCm 3.6 .
|
|
518
|
-
# ("2.248165615039355"^^xsd:decimal 3.6) math:difference "-1.351834384960645"^^xsd:decimal .
|
|
519
|
-
# via the schematic forward rule:
|
|
520
|
-
# {
|
|
521
|
-
# ?M a :Measurement .
|
|
522
|
-
# ?M :p5xCm ?X .
|
|
523
|
-
# ?M :p3xCm ?Y .
|
|
524
|
-
# (?X ?Y) math:difference ?Z .
|
|
525
|
-
# } => {
|
|
526
|
-
# ?M :dx53Cm ?Z .
|
|
527
|
-
# } .
|
|
528
|
-
# with substitution (on rule variables):
|
|
529
|
-
# ?M = :meas47
|
|
530
|
-
# ?X = "2.248165615039355"^^xsd:decimal
|
|
531
|
-
# ?Y = 3.6
|
|
532
|
-
# ?Z = "-1.351834384960645"^^xsd:decimal
|
|
533
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
534
|
-
# ----------------------------------------------------------------------
|
|
535
|
-
|
|
536
23
|
:meas47 :dx53Cm "-1.351834384960645"^^xsd:decimal .
|
|
537
|
-
|
|
538
|
-
# ----------------------------------------------------------------------
|
|
539
|
-
# Proof for derived triple:
|
|
540
|
-
# :meas47 :dx62Cm "8.128455734079232"^^xsd:decimal .
|
|
541
|
-
# It holds because the following instance of the rule body is provable:
|
|
542
|
-
# :meas47 a :Measurement .
|
|
543
|
-
# :meas47 :p6xCm "53.22845573407923"^^xsd:decimal .
|
|
544
|
-
# :meas47 :p2xCm 45.1 .
|
|
545
|
-
# ("53.22845573407923"^^xsd:decimal 45.1) math:difference "8.128455734079232"^^xsd:decimal .
|
|
546
|
-
# via the schematic forward rule:
|
|
547
|
-
# {
|
|
548
|
-
# ?M a :Measurement .
|
|
549
|
-
# ?M :p6xCm ?X .
|
|
550
|
-
# ?M :p2xCm ?Y .
|
|
551
|
-
# (?X ?Y) math:difference ?Z .
|
|
552
|
-
# } => {
|
|
553
|
-
# ?M :dx62Cm ?Z .
|
|
554
|
-
# } .
|
|
555
|
-
# with substitution (on rule variables):
|
|
556
|
-
# ?M = :meas47
|
|
557
|
-
# ?X = "53.22845573407923"^^xsd:decimal
|
|
558
|
-
# ?Y = 45.1
|
|
559
|
-
# ?Z = "8.128455734079232"^^xsd:decimal
|
|
560
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
561
|
-
# ----------------------------------------------------------------------
|
|
562
|
-
|
|
563
24
|
:meas47 :dx62Cm "8.128455734079232"^^xsd:decimal .
|
|
564
|
-
|
|
565
|
-
# ----------------------------------------------------------------------
|
|
566
|
-
# Proof for derived triple:
|
|
567
|
-
# :meas47 :dx64Cm "-1.4715442659207696"^^xsd:decimal .
|
|
568
|
-
# It holds because the following instance of the rule body is provable:
|
|
569
|
-
# :meas47 a :Measurement .
|
|
570
|
-
# :meas47 :p6xCm "53.22845573407923"^^xsd:decimal .
|
|
571
|
-
# :meas47 :p4xCm 54.7 .
|
|
572
|
-
# ("53.22845573407923"^^xsd:decimal 54.7) math:difference "-1.4715442659207696"^^xsd:decimal .
|
|
573
|
-
# via the schematic forward rule:
|
|
574
|
-
# {
|
|
575
|
-
# ?M a :Measurement .
|
|
576
|
-
# ?M :p6xCm ?X .
|
|
577
|
-
# ?M :p4xCm ?Y .
|
|
578
|
-
# (?X ?Y) math:difference ?Z .
|
|
579
|
-
# } => {
|
|
580
|
-
# ?M :dx64Cm ?Z .
|
|
581
|
-
# } .
|
|
582
|
-
# with substitution (on rule variables):
|
|
583
|
-
# ?M = :meas47
|
|
584
|
-
# ?X = "53.22845573407923"^^xsd:decimal
|
|
585
|
-
# ?Y = 54.7
|
|
586
|
-
# ?Z = "-1.4715442659207696"^^xsd:decimal
|
|
587
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
588
|
-
# ----------------------------------------------------------------------
|
|
589
|
-
|
|
590
25
|
:meas47 :dx64Cm "-1.4715442659207696"^^xsd:decimal .
|
|
591
|
-
|
|
592
|
-
# ----------------------------------------------------------------------
|
|
593
|
-
# Proof for derived triple:
|
|
594
|
-
# :meas47 :pL1dx51Cm "0.4935438756260977"^^xsd:decimal .
|
|
595
|
-
# It holds because the following instance of the rule body is provable:
|
|
596
|
-
# :meas47 a :Measurement .
|
|
597
|
-
# :meas47 :cL1 "-0.06285714285714286"^^xsd:decimal .
|
|
598
|
-
# :meas47 :dx51Cm "-7.851834384960645"^^xsd:decimal .
|
|
599
|
-
# ("-0.06285714285714286"^^xsd:decimal "-7.851834384960645"^^xsd:decimal) math:product "0.4935438756260977"^^xsd:decimal .
|
|
600
|
-
# via the schematic forward rule:
|
|
601
|
-
# {
|
|
602
|
-
# ?M a :Measurement .
|
|
603
|
-
# ?M :cL1 ?X .
|
|
604
|
-
# ?M :dx51Cm ?Y .
|
|
605
|
-
# (?X ?Y) math:product ?Z .
|
|
606
|
-
# } => {
|
|
607
|
-
# ?M :pL1dx51Cm ?Z .
|
|
608
|
-
# } .
|
|
609
|
-
# with substitution (on rule variables):
|
|
610
|
-
# ?M = :meas47
|
|
611
|
-
# ?X = "-0.06285714285714286"^^xsd:decimal
|
|
612
|
-
# ?Y = "-7.851834384960645"^^xsd:decimal
|
|
613
|
-
# ?Z = "0.4935438756260977"^^xsd:decimal
|
|
614
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
615
|
-
# ----------------------------------------------------------------------
|
|
616
|
-
|
|
617
26
|
:meas47 :pL1dx51Cm "0.4935438756260977"^^xsd:decimal .
|
|
618
|
-
|
|
619
|
-
# ----------------------------------------------------------------------
|
|
620
|
-
# Proof for derived triple:
|
|
621
|
-
# :meas47 :pL1dx62Cm "-0.5109315032849803"^^xsd:decimal .
|
|
622
|
-
# It holds because the following instance of the rule body is provable:
|
|
623
|
-
# :meas47 a :Measurement .
|
|
624
|
-
# :meas47 :cL1 "-0.06285714285714286"^^xsd:decimal .
|
|
625
|
-
# :meas47 :dx62Cm "8.128455734079232"^^xsd:decimal .
|
|
626
|
-
# ("-0.06285714285714286"^^xsd:decimal "8.128455734079232"^^xsd:decimal) math:product "-0.5109315032849803"^^xsd:decimal .
|
|
627
|
-
# via the schematic forward rule:
|
|
628
|
-
# {
|
|
629
|
-
# ?M a :Measurement .
|
|
630
|
-
# ?M :cL1 ?X .
|
|
631
|
-
# ?M :dx62Cm ?Y .
|
|
632
|
-
# (?X ?Y) math:product ?Z .
|
|
633
|
-
# } => {
|
|
634
|
-
# ?M :pL1dx62Cm ?Z .
|
|
635
|
-
# } .
|
|
636
|
-
# with substitution (on rule variables):
|
|
637
|
-
# ?M = :meas47
|
|
638
|
-
# ?X = "-0.06285714285714286"^^xsd:decimal
|
|
639
|
-
# ?Y = "8.128455734079232"^^xsd:decimal
|
|
640
|
-
# ?Z = "-0.5109315032849803"^^xsd:decimal
|
|
641
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
642
|
-
# ----------------------------------------------------------------------
|
|
643
|
-
|
|
644
27
|
:meas47 :pL1dx62Cm "-0.5109315032849803"^^xsd:decimal .
|
|
645
|
-
|
|
646
|
-
# ----------------------------------------------------------------------
|
|
647
|
-
# Proof for derived triple:
|
|
648
|
-
# :meas47 :p5yCm "8.293543875626098"^^xsd:decimal .
|
|
649
|
-
# It holds because the following instance of the rule body is provable:
|
|
650
|
-
# :meas47 a :Measurement .
|
|
651
|
-
# :meas47 :pL1dx51Cm "0.4935438756260977"^^xsd:decimal .
|
|
652
|
-
# :meas47 :p1yCm 7.8 .
|
|
653
|
-
# ("0.4935438756260977"^^xsd:decimal 7.8) math:sum "8.293543875626098"^^xsd:decimal .
|
|
654
|
-
# via the schematic forward rule:
|
|
655
|
-
# {
|
|
656
|
-
# ?M a :Measurement .
|
|
657
|
-
# ?M :pL1dx51Cm ?X .
|
|
658
|
-
# ?M :p1yCm ?Y .
|
|
659
|
-
# (?X ?Y) math:sum ?Z .
|
|
660
|
-
# } => {
|
|
661
|
-
# ?M :p5yCm ?Z .
|
|
662
|
-
# } .
|
|
663
|
-
# with substitution (on rule variables):
|
|
664
|
-
# ?M = :meas47
|
|
665
|
-
# ?X = "0.4935438756260977"^^xsd:decimal
|
|
666
|
-
# ?Y = 7.8
|
|
667
|
-
# ?Z = "8.293543875626098"^^xsd:decimal
|
|
668
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
669
|
-
# ----------------------------------------------------------------------
|
|
670
|
-
|
|
671
28
|
:meas47 :p5yCm "8.293543875626098"^^xsd:decimal .
|
|
672
|
-
|
|
673
|
-
# ----------------------------------------------------------------------
|
|
674
|
-
# Proof for derived triple:
|
|
675
|
-
# :meas47 :p6yCm "5.0890684967150195"^^xsd:decimal .
|
|
676
|
-
# It holds because the following instance of the rule body is provable:
|
|
677
|
-
# :meas47 a :Measurement .
|
|
678
|
-
# :meas47 :pL1dx62Cm "-0.5109315032849803"^^xsd:decimal .
|
|
679
|
-
# :meas47 :p2yCm 5.6 .
|
|
680
|
-
# ("-0.5109315032849803"^^xsd:decimal 5.6) math:sum "5.0890684967150195"^^xsd:decimal .
|
|
681
|
-
# via the schematic forward rule:
|
|
682
|
-
# {
|
|
683
|
-
# ?M a :Measurement .
|
|
684
|
-
# ?M :pL1dx62Cm ?X .
|
|
685
|
-
# ?M :p2yCm ?Y .
|
|
686
|
-
# (?X ?Y) math:sum ?Z .
|
|
687
|
-
# } => {
|
|
688
|
-
# ?M :p6yCm ?Z .
|
|
689
|
-
# } .
|
|
690
|
-
# with substitution (on rule variables):
|
|
691
|
-
# ?M = :meas47
|
|
692
|
-
# ?X = "-0.5109315032849803"^^xsd:decimal
|
|
693
|
-
# ?Y = 5.6
|
|
694
|
-
# ?Z = "5.0890684967150195"^^xsd:decimal
|
|
695
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
696
|
-
# ----------------------------------------------------------------------
|
|
697
|
-
|
|
698
29
|
:meas47 :p6yCm "5.0890684967150195"^^xsd:decimal .
|
|
699
|
-
|
|
700
|
-
# ----------------------------------------------------------------------
|
|
701
|
-
# Proof for derived triple:
|
|
702
|
-
# :meas47 :sdx53Cm2 "1.8274562043619251"^^xsd:decimal .
|
|
703
|
-
# It holds because the following instance of the rule body is provable:
|
|
704
|
-
# :meas47 a :Measurement .
|
|
705
|
-
# :meas47 :dx53Cm "-1.351834384960645"^^xsd:decimal .
|
|
706
|
-
# ("-1.351834384960645"^^xsd:decimal 2) math:exponentiation "1.8274562043619251"^^xsd:decimal .
|
|
707
|
-
# via the schematic forward rule:
|
|
708
|
-
# {
|
|
709
|
-
# ?M a :Measurement .
|
|
710
|
-
# ?M :dx53Cm ?X .
|
|
711
|
-
# (?X 2) math:exponentiation ?Z .
|
|
712
|
-
# } => {
|
|
713
|
-
# ?M :sdx53Cm2 ?Z .
|
|
714
|
-
# } .
|
|
715
|
-
# with substitution (on rule variables):
|
|
716
|
-
# ?M = :meas47
|
|
717
|
-
# ?X = "-1.351834384960645"^^xsd:decimal
|
|
718
|
-
# ?Z = "1.8274562043619251"^^xsd:decimal
|
|
719
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
720
|
-
# ----------------------------------------------------------------------
|
|
721
|
-
|
|
722
30
|
:meas47 :sdx53Cm2 "1.8274562043619251"^^xsd:decimal .
|
|
723
|
-
|
|
724
|
-
# ----------------------------------------------------------------------
|
|
725
|
-
# Proof for derived triple:
|
|
726
|
-
# :meas47 :sdx64Cm2 "2.1654425265642967"^^xsd:decimal .
|
|
727
|
-
# It holds because the following instance of the rule body is provable:
|
|
728
|
-
# :meas47 a :Measurement .
|
|
729
|
-
# :meas47 :dx64Cm "-1.4715442659207696"^^xsd:decimal .
|
|
730
|
-
# ("-1.4715442659207696"^^xsd:decimal 2) math:exponentiation "2.1654425265642967"^^xsd:decimal .
|
|
731
|
-
# via the schematic forward rule:
|
|
732
|
-
# {
|
|
733
|
-
# ?M a :Measurement .
|
|
734
|
-
# ?M :dx64Cm ?X .
|
|
735
|
-
# (?X 2) math:exponentiation ?Z .
|
|
736
|
-
# } => {
|
|
737
|
-
# ?M :sdx64Cm2 ?Z .
|
|
738
|
-
# } .
|
|
739
|
-
# with substitution (on rule variables):
|
|
740
|
-
# ?M = :meas47
|
|
741
|
-
# ?X = "-1.4715442659207696"^^xsd:decimal
|
|
742
|
-
# ?Z = "2.1654425265642967"^^xsd:decimal
|
|
743
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
744
|
-
# ----------------------------------------------------------------------
|
|
745
|
-
|
|
746
31
|
:meas47 :sdx64Cm2 "2.1654425265642967"^^xsd:decimal .
|
|
747
|
-
|
|
748
|
-
# ----------------------------------------------------------------------
|
|
749
|
-
# Proof for derived triple:
|
|
750
|
-
# :meas47 :dy53Cm "-21.506456124373905"^^xsd:decimal .
|
|
751
|
-
# It holds because the following instance of the rule body is provable:
|
|
752
|
-
# :meas47 a :Measurement .
|
|
753
|
-
# :meas47 :p5yCm "8.293543875626098"^^xsd:decimal .
|
|
754
|
-
# :meas47 :p3yCm 29.8 .
|
|
755
|
-
# ("8.293543875626098"^^xsd:decimal 29.8) math:difference "-21.506456124373905"^^xsd:decimal .
|
|
756
|
-
# via the schematic forward rule:
|
|
757
|
-
# {
|
|
758
|
-
# ?M a :Measurement .
|
|
759
|
-
# ?M :p5yCm ?X .
|
|
760
|
-
# ?M :p3yCm ?Y .
|
|
761
|
-
# (?X ?Y) math:difference ?Z .
|
|
762
|
-
# } => {
|
|
763
|
-
# ?M :dy53Cm ?Z .
|
|
764
|
-
# } .
|
|
765
|
-
# with substitution (on rule variables):
|
|
766
|
-
# ?M = :meas47
|
|
767
|
-
# ?X = "8.293543875626098"^^xsd:decimal
|
|
768
|
-
# ?Y = 29.8
|
|
769
|
-
# ?Z = "-21.506456124373905"^^xsd:decimal
|
|
770
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
771
|
-
# ----------------------------------------------------------------------
|
|
772
|
-
|
|
773
32
|
:meas47 :dy53Cm "-21.506456124373905"^^xsd:decimal .
|
|
774
|
-
|
|
775
|
-
# ----------------------------------------------------------------------
|
|
776
|
-
# Proof for derived triple:
|
|
777
|
-
# :meas47 :dy64Cm "-23.41093150328498"^^xsd:decimal .
|
|
778
|
-
# It holds because the following instance of the rule body is provable:
|
|
779
|
-
# :meas47 a :Measurement .
|
|
780
|
-
# :meas47 :p6yCm "5.0890684967150195"^^xsd:decimal .
|
|
781
|
-
# :meas47 :p4yCm 28.5 .
|
|
782
|
-
# ("5.0890684967150195"^^xsd:decimal 28.5) math:difference "-23.41093150328498"^^xsd:decimal .
|
|
783
|
-
# via the schematic forward rule:
|
|
784
|
-
# {
|
|
785
|
-
# ?M a :Measurement .
|
|
786
|
-
# ?M :p6yCm ?X .
|
|
787
|
-
# ?M :p4yCm ?Y .
|
|
788
|
-
# (?X ?Y) math:difference ?Z .
|
|
789
|
-
# } => {
|
|
790
|
-
# ?M :dy64Cm ?Z .
|
|
791
|
-
# } .
|
|
792
|
-
# with substitution (on rule variables):
|
|
793
|
-
# ?M = :meas47
|
|
794
|
-
# ?X = "5.0890684967150195"^^xsd:decimal
|
|
795
|
-
# ?Y = 28.5
|
|
796
|
-
# ?Z = "-23.41093150328498"^^xsd:decimal
|
|
797
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
798
|
-
# ----------------------------------------------------------------------
|
|
799
|
-
|
|
800
33
|
:meas47 :dy64Cm "-23.41093150328498"^^xsd:decimal .
|
|
801
|
-
|
|
802
|
-
# ----------------------------------------------------------------------
|
|
803
|
-
# Proof for derived triple:
|
|
804
|
-
# :meas47 :sdy53Cm2 "462.52765502961984"^^xsd:decimal .
|
|
805
|
-
# It holds because the following instance of the rule body is provable:
|
|
806
|
-
# :meas47 a :Measurement .
|
|
807
|
-
# :meas47 :dy53Cm "-21.506456124373905"^^xsd:decimal .
|
|
808
|
-
# ("-21.506456124373905"^^xsd:decimal 2) math:exponentiation "462.52765502961984"^^xsd:decimal .
|
|
809
|
-
# via the schematic forward rule:
|
|
810
|
-
# {
|
|
811
|
-
# ?M a :Measurement .
|
|
812
|
-
# ?M :dy53Cm ?X .
|
|
813
|
-
# (?X 2) math:exponentiation ?Z .
|
|
814
|
-
# } => {
|
|
815
|
-
# ?M :sdy53Cm2 ?Z .
|
|
816
|
-
# } .
|
|
817
|
-
# with substitution (on rule variables):
|
|
818
|
-
# ?M = :meas47
|
|
819
|
-
# ?X = "-21.506456124373905"^^xsd:decimal
|
|
820
|
-
# ?Z = "462.52765502961984"^^xsd:decimal
|
|
821
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
822
|
-
# ----------------------------------------------------------------------
|
|
823
|
-
|
|
824
34
|
:meas47 :sdy53Cm2 "462.52765502961984"^^xsd:decimal .
|
|
825
|
-
|
|
826
|
-
# ----------------------------------------------------------------------
|
|
827
|
-
# Proof for derived triple:
|
|
828
|
-
# :meas47 :sdy64Cm2 "548.0717138515012"^^xsd:decimal .
|
|
829
|
-
# It holds because the following instance of the rule body is provable:
|
|
830
|
-
# :meas47 a :Measurement .
|
|
831
|
-
# :meas47 :dy64Cm "-23.41093150328498"^^xsd:decimal .
|
|
832
|
-
# ("-23.41093150328498"^^xsd:decimal 2) math:exponentiation "548.0717138515012"^^xsd:decimal .
|
|
833
|
-
# via the schematic forward rule:
|
|
834
|
-
# {
|
|
835
|
-
# ?M a :Measurement .
|
|
836
|
-
# ?M :dy64Cm ?X .
|
|
837
|
-
# (?X 2) math:exponentiation ?Z .
|
|
838
|
-
# } => {
|
|
839
|
-
# ?M :sdy64Cm2 ?Z .
|
|
840
|
-
# } .
|
|
841
|
-
# with substitution (on rule variables):
|
|
842
|
-
# ?M = :meas47
|
|
843
|
-
# ?X = "-23.41093150328498"^^xsd:decimal
|
|
844
|
-
# ?Z = "548.0717138515012"^^xsd:decimal
|
|
845
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
846
|
-
# ----------------------------------------------------------------------
|
|
847
|
-
|
|
848
35
|
:meas47 :sdy64Cm2 "548.0717138515012"^^xsd:decimal .
|
|
849
|
-
|
|
850
|
-
# ----------------------------------------------------------------------
|
|
851
|
-
# Proof for derived triple:
|
|
852
|
-
# :meas47 :ssd53Cm2 "464.35511123398175"^^xsd:decimal .
|
|
853
|
-
# It holds because the following instance of the rule body is provable:
|
|
854
|
-
# :meas47 a :Measurement .
|
|
855
|
-
# :meas47 :sdx53Cm2 "1.8274562043619251"^^xsd:decimal .
|
|
856
|
-
# :meas47 :sdy53Cm2 "462.52765502961984"^^xsd:decimal .
|
|
857
|
-
# ("1.8274562043619251"^^xsd:decimal "462.52765502961984"^^xsd:decimal) math:sum "464.35511123398175"^^xsd:decimal .
|
|
858
|
-
# via the schematic forward rule:
|
|
859
|
-
# {
|
|
860
|
-
# ?M a :Measurement .
|
|
861
|
-
# ?M :sdx53Cm2 ?X .
|
|
862
|
-
# ?M :sdy53Cm2 ?Y .
|
|
863
|
-
# (?X ?Y) math:sum ?Z .
|
|
864
|
-
# } => {
|
|
865
|
-
# ?M :ssd53Cm2 ?Z .
|
|
866
|
-
# } .
|
|
867
|
-
# with substitution (on rule variables):
|
|
868
|
-
# ?M = :meas47
|
|
869
|
-
# ?X = "1.8274562043619251"^^xsd:decimal
|
|
870
|
-
# ?Y = "462.52765502961984"^^xsd:decimal
|
|
871
|
-
# ?Z = "464.35511123398175"^^xsd:decimal
|
|
872
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
873
|
-
# ----------------------------------------------------------------------
|
|
874
|
-
|
|
875
36
|
:meas47 :ssd53Cm2 "464.35511123398175"^^xsd:decimal .
|
|
876
|
-
|
|
877
|
-
# ----------------------------------------------------------------------
|
|
878
|
-
# Proof for derived triple:
|
|
879
|
-
# :meas47 :ssd64Cm2 "550.2371563780655"^^xsd:decimal .
|
|
880
|
-
# It holds because the following instance of the rule body is provable:
|
|
881
|
-
# :meas47 a :Measurement .
|
|
882
|
-
# :meas47 :sdx64Cm2 "2.1654425265642967"^^xsd:decimal .
|
|
883
|
-
# :meas47 :sdy64Cm2 "548.0717138515012"^^xsd:decimal .
|
|
884
|
-
# ("2.1654425265642967"^^xsd:decimal "548.0717138515012"^^xsd:decimal) math:sum "550.2371563780655"^^xsd:decimal .
|
|
885
|
-
# via the schematic forward rule:
|
|
886
|
-
# {
|
|
887
|
-
# ?M a :Measurement .
|
|
888
|
-
# ?M :sdx64Cm2 ?X .
|
|
889
|
-
# ?M :sdy64Cm2 ?Y .
|
|
890
|
-
# (?X ?Y) math:sum ?Z .
|
|
891
|
-
# } => {
|
|
892
|
-
# ?M :ssd64Cm2 ?Z .
|
|
893
|
-
# } .
|
|
894
|
-
# with substitution (on rule variables):
|
|
895
|
-
# ?M = :meas47
|
|
896
|
-
# ?X = "2.1654425265642967"^^xsd:decimal
|
|
897
|
-
# ?Y = "548.0717138515012"^^xsd:decimal
|
|
898
|
-
# ?Z = "550.2371563780655"^^xsd:decimal
|
|
899
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
900
|
-
# ----------------------------------------------------------------------
|
|
901
|
-
|
|
902
37
|
:meas47 :ssd64Cm2 "550.2371563780655"^^xsd:decimal .
|
|
903
|
-
|
|
904
|
-
# ----------------------------------------------------------------------
|
|
905
|
-
# Proof for derived triple:
|
|
906
|
-
# :meas47 :d53Cm "21.548900464617255"^^xsd:decimal .
|
|
907
|
-
# It holds because the following instance of the rule body is provable:
|
|
908
|
-
# :meas47 a :Measurement .
|
|
909
|
-
# :meas47 :ssd53Cm2 "464.35511123398175"^^xsd:decimal .
|
|
910
|
-
# ("464.35511123398175"^^xsd:decimal 0.5) math:exponentiation "21.548900464617255"^^xsd:decimal .
|
|
911
|
-
# via the schematic forward rule:
|
|
912
|
-
# {
|
|
913
|
-
# ?M a :Measurement .
|
|
914
|
-
# ?M :ssd53Cm2 ?X .
|
|
915
|
-
# (?X 0.5) math:exponentiation ?Z .
|
|
916
|
-
# } => {
|
|
917
|
-
# ?M :d53Cm ?Z .
|
|
918
|
-
# } .
|
|
919
|
-
# with substitution (on rule variables):
|
|
920
|
-
# ?M = :meas47
|
|
921
|
-
# ?X = "464.35511123398175"^^xsd:decimal
|
|
922
|
-
# ?Z = "21.548900464617255"^^xsd:decimal
|
|
923
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
924
|
-
# ----------------------------------------------------------------------
|
|
925
|
-
|
|
926
38
|
:meas47 :d53Cm "21.548900464617255"^^xsd:decimal .
|
|
927
|
-
|
|
928
|
-
# ----------------------------------------------------------------------
|
|
929
|
-
# Proof for derived triple:
|
|
930
|
-
# :meas47 :d64Cm "23.45713444515475"^^xsd:decimal .
|
|
931
|
-
# It holds because the following instance of the rule body is provable:
|
|
932
|
-
# :meas47 a :Measurement .
|
|
933
|
-
# :meas47 :ssd64Cm2 "550.2371563780655"^^xsd:decimal .
|
|
934
|
-
# ("550.2371563780655"^^xsd:decimal 0.5) math:exponentiation "23.45713444515475"^^xsd:decimal .
|
|
935
|
-
# via the schematic forward rule:
|
|
936
|
-
# {
|
|
937
|
-
# ?M a :Measurement .
|
|
938
|
-
# ?M :ssd64Cm2 ?X .
|
|
939
|
-
# (?X 0.5) math:exponentiation ?Z .
|
|
940
|
-
# } => {
|
|
941
|
-
# ?M :d64Cm ?Z .
|
|
942
|
-
# } .
|
|
943
|
-
# with substitution (on rule variables):
|
|
944
|
-
# ?M = :meas47
|
|
945
|
-
# ?X = "550.2371563780655"^^xsd:decimal
|
|
946
|
-
# ?Z = "23.45713444515475"^^xsd:decimal
|
|
947
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
948
|
-
# ----------------------------------------------------------------------
|
|
949
|
-
|
|
950
39
|
:meas47 :d64Cm "23.45713444515475"^^xsd:decimal .
|
|
951
|
-
|
|
952
|
-
# ----------------------------------------------------------------------
|
|
953
|
-
# Proof for derived triple:
|
|
954
|
-
# :meas47 :dCm "-1.9082339805374957"^^xsd:decimal .
|
|
955
|
-
# It holds because the following instance of the rule body is provable:
|
|
956
|
-
# :meas47 a :Measurement .
|
|
957
|
-
# :meas47 :d53Cm "21.548900464617255"^^xsd:decimal .
|
|
958
|
-
# :meas47 :d64Cm "23.45713444515475"^^xsd:decimal .
|
|
959
|
-
# ("21.548900464617255"^^xsd:decimal "23.45713444515475"^^xsd:decimal) math:difference "-1.9082339805374957"^^xsd:decimal .
|
|
960
|
-
# via the schematic forward rule:
|
|
961
|
-
# {
|
|
962
|
-
# ?M a :Measurement .
|
|
963
|
-
# ?M :d53Cm ?X .
|
|
964
|
-
# ?M :d64Cm ?Y .
|
|
965
|
-
# (?X ?Y) math:difference ?Z .
|
|
966
|
-
# } => {
|
|
967
|
-
# ?M :dCm ?Z .
|
|
968
|
-
# } .
|
|
969
|
-
# with substitution (on rule variables):
|
|
970
|
-
# ?M = :meas47
|
|
971
|
-
# ?X = "21.548900464617255"^^xsd:decimal
|
|
972
|
-
# ?Y = "23.45713444515475"^^xsd:decimal
|
|
973
|
-
# ?Z = "-1.9082339805374957"^^xsd:decimal
|
|
974
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
975
|
-
# ----------------------------------------------------------------------
|
|
976
|
-
|
|
977
40
|
:meas47 :dCm "-1.9082339805374957"^^xsd:decimal .
|
|
978
|
-
|
|
979
|
-
# ----------------------------------------------------------------------
|
|
980
|
-
# Proof for derived triple:
|
|
981
|
-
# :meas47 a :LLDAlarm .
|
|
982
|
-
# It holds because the following instance of the rule body is provable:
|
|
983
|
-
# :meas47 a :Measurement .
|
|
984
|
-
# :meas47 :dCm "-1.9082339805374957"^^xsd:decimal .
|
|
985
|
-
# "-1.9082339805374957"^^xsd:decimal math:lessThan -1.25 .
|
|
986
|
-
# via the schematic forward rule:
|
|
987
|
-
# {
|
|
988
|
-
# ?M a :Measurement .
|
|
989
|
-
# ?M :dCm ?X .
|
|
990
|
-
# ?X math:lessThan -1.25 .
|
|
991
|
-
# } => {
|
|
992
|
-
# ?M a :LLDAlarm .
|
|
993
|
-
# } .
|
|
994
|
-
# with substitution (on rule variables):
|
|
995
|
-
# ?M = :meas47
|
|
996
|
-
# ?X = "-1.9082339805374957"^^xsd:decimal
|
|
997
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
998
|
-
# ----------------------------------------------------------------------
|
|
999
|
-
|
|
1000
41
|
:meas47 a :LLDAlarm .
|
|
1001
|
-
|