eyeling 1.6.13 → 1.6.15

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (77) hide show
  1. package/README.md +8 -19
  2. package/examples/output/age.n3 +0 -17
  3. package/examples/output/alignment-demo.n3 +0 -572
  4. package/examples/output/backward.n3 +0 -15
  5. package/examples/output/basic-monadic.n3 +0 -105
  6. package/examples/output/brussels-brew-club.n3 +0 -476
  7. package/examples/output/cat-koko.n3 +0 -108
  8. package/examples/output/cobalt-kepler-kitchen.n3 +0 -7064
  9. package/examples/output/complex.n3 +0 -46
  10. package/examples/output/control-system.n3 +0 -75
  11. package/examples/output/cranberry-calculus.n3 +0 -1313
  12. package/examples/output/crypto-builtins-tests.n3 +0 -60
  13. package/examples/output/deep-taxonomy-10.n3 +0 -602
  14. package/examples/output/deep-taxonomy-100.n3 +1 -5733
  15. package/examples/output/deep-taxonomy-1000.n3 +1 -57033
  16. package/examples/output/deep-taxonomy-10000.n3 +1 -570033
  17. package/examples/output/derived-backward-rule-2.n3 +0 -58
  18. package/examples/output/derived-backward-rule.n3 +0 -44
  19. package/examples/output/derived-rule.n3 +0 -42
  20. package/examples/output/dijkstra.n3 +0 -297
  21. package/examples/output/dog.n3 +0 -30
  22. package/examples/output/drone-corridor-planner.n3 +0 -799
  23. package/examples/output/easter.n3 +0 -3570
  24. package/examples/output/equals.n3 +0 -15
  25. package/examples/output/ev-roundtrip-planner.n3 +0 -392
  26. package/examples/output/existential-rule.n3 +0 -34
  27. package/examples/output/expression-eval.n3 +0 -20
  28. package/examples/output/family-cousins.n3 +0 -636
  29. package/examples/output/fibonacci.n3 +0 -36
  30. package/examples/output/french-cities.n3 +0 -484
  31. package/examples/output/good-cobbler.n3 +0 -22
  32. package/examples/output/gps.n3 +0 -62
  33. package/examples/output/gray-code-counter.n3 +0 -17
  34. package/examples/output/hanoi.n3 +0 -17
  35. package/examples/output/jade-eigen-loom.n3 +0 -4690
  36. package/examples/output/json-pointer.n3 +0 -529
  37. package/examples/output/json-reconcile-vat.n3 +0 -12882
  38. package/examples/output/light-eaters.n3 +0 -311
  39. package/examples/output/list-builtins-tests.n3 +0 -167
  40. package/examples/output/list-iterate.n3 +0 -124
  41. package/examples/output/lldm.n3 +0 -960
  42. package/examples/output/log-collect-all-in.n3 +0 -117
  43. package/examples/output/log-for-all-in.n3 +0 -27
  44. package/examples/output/log-not-includes.n3 +0 -59
  45. package/examples/output/log-skolem.n3 +0 -17
  46. package/examples/output/log-uri.n3 +0 -42
  47. package/examples/output/math-builtins-tests.n3 +0 -4434
  48. package/examples/output/minimal-skos-alignment.n3 +0 -39
  49. package/examples/output/monkey.n3 +0 -36
  50. package/examples/output/odrl-trust.n3 +0 -46
  51. package/examples/output/oslo-steps-library-scholarly.n3 +0 -1260
  52. package/examples/output/oslo-steps-workflow-composition.n3 +0 -180
  53. package/examples/output/peano.n3 +0 -23
  54. package/examples/output/pi.n3 +0 -17
  55. package/examples/output/pillar.n3 +0 -32
  56. package/examples/output/polygon.n3 +0 -17
  57. package/examples/output/rdf-list.n3 +0 -28
  58. package/examples/output/reordering.n3 +0 -26
  59. package/examples/output/ruby-runge-workshop.n3 +0 -613
  60. package/examples/output/rule-matching.n3 +0 -26
  61. package/examples/output/saffron-slopeworks.n3 +0 -1447
  62. package/examples/output/self-referential.n3 +0 -81
  63. package/examples/output/similar.n3 +0 -15
  64. package/examples/output/snaf.n3 +0 -23
  65. package/examples/output/socrates.n3 +0 -21
  66. package/examples/output/spectral-week.n3 +0 -350
  67. package/examples/output/string-builtins-tests.n3 +0 -240
  68. package/examples/output/topaz-markov-mill.n3 +0 -4178
  69. package/examples/output/traffic-skos-aggregate.n3 +0 -3151
  70. package/examples/output/turing.n3 +0 -36
  71. package/examples/output/ultramarine-simpson-forge.n3 +0 -3873
  72. package/examples/output/witch.n3 +0 -107
  73. package/examples/output/zebra.n3 +0 -111
  74. package/eyeling.js +129 -25
  75. package/index.js +13 -6
  76. package/package.json +1 -1
  77. package/test/examples.test.js +1 -1
@@ -1,663 +1,27 @@
1
1
  @prefix : <http://example.org/family#> .
2
2
 
3
- # ----------------------------------------------------------------------
4
- # Proof for derived triple:
5
- # :Adam :generation 0 .
6
- # This triple is the head of a forward rule with an empty premise,
7
- # so it holds unconditionally whenever the program is loaded.
8
- # Therefore the derived triple above is entailed by the rules and facts.
9
- # ----------------------------------------------------------------------
10
-
11
3
  :Adam :generation 0 .
12
-
13
- # ----------------------------------------------------------------------
14
- # Proof for derived triple:
15
- # :Carol :generation 1 .
16
- # It holds because the following instance of the rule body is provable:
17
- # :Adam :parentOf :Carol .
18
- # :Adam :generation 0 .
19
- # (0 1) math:sum 1 .
20
- # via the schematic forward rule:
21
- # {
22
- # ?P :parentOf ?C .
23
- # ?P :generation ?G .
24
- # (?G 1) math:sum ?G1 .
25
- # } => {
26
- # ?C :generation ?G1 .
27
- # } .
28
- # with substitution (on rule variables):
29
- # ?C = :Carol
30
- # ?G = 0
31
- # ?G1 = 1
32
- # ?P = :Adam
33
- # Therefore the derived triple above is entailed by the rules and facts.
34
- # ----------------------------------------------------------------------
35
-
36
4
  :Carol :generation 1 .
37
-
38
- # ----------------------------------------------------------------------
39
- # Proof for derived triple:
40
- # :Bob :generation 1 .
41
- # It holds because the following instance of the rule body is provable:
42
- # :Adam :parentOf :Bob .
43
- # :Adam :generation 0 .
44
- # (0 1) math:sum 1 .
45
- # via the schematic forward rule:
46
- # {
47
- # ?P :parentOf ?C .
48
- # ?P :generation ?G .
49
- # (?G 1) math:sum ?G1 .
50
- # } => {
51
- # ?C :generation ?G1 .
52
- # } .
53
- # with substitution (on rule variables):
54
- # ?C = :Bob
55
- # ?G = 0
56
- # ?G1 = 1
57
- # ?P = :Adam
58
- # Therefore the derived triple above is entailed by the rules and facts.
59
- # ----------------------------------------------------------------------
60
-
61
5
  :Bob :generation 1 .
62
-
63
- # ----------------------------------------------------------------------
64
- # Proof for derived triple:
65
- # :Judy :branch :c .
66
- # It holds because the following instance of the rule body is provable:
67
- # :Frank :parentOf :Judy .
68
- # :Frank :branch :c .
69
- # via the schematic forward rule:
70
- # {
71
- # ?P :parentOf ?C .
72
- # ?P :branch ?B .
73
- # } => {
74
- # ?C :branch ?B .
75
- # } .
76
- # with substitution (on rule variables):
77
- # ?B = :c
78
- # ?C = :Judy
79
- # ?P = :Frank
80
- # Therefore the derived triple above is entailed by the rules and facts.
81
- # ----------------------------------------------------------------------
82
-
83
6
  :Judy :branch :c .
84
-
85
- # ----------------------------------------------------------------------
86
- # Proof for derived triple:
87
- # :Ivan :branch :b .
88
- # It holds because the following instance of the rule body is provable:
89
- # :Eve :parentOf :Ivan .
90
- # :Eve :branch :b .
91
- # via the schematic forward rule:
92
- # {
93
- # ?P :parentOf ?C .
94
- # ?P :branch ?B .
95
- # } => {
96
- # ?C :branch ?B .
97
- # } .
98
- # with substitution (on rule variables):
99
- # ?B = :b
100
- # ?C = :Ivan
101
- # ?P = :Eve
102
- # Therefore the derived triple above is entailed by the rules and facts.
103
- # ----------------------------------------------------------------------
104
-
105
7
  :Ivan :branch :b .
106
-
107
- # ----------------------------------------------------------------------
108
- # Proof for derived triple:
109
- # :Heidi :branch :b .
110
- # It holds because the following instance of the rule body is provable:
111
- # :Dave :parentOf :Heidi .
112
- # :Dave :branch :b .
113
- # via the schematic forward rule:
114
- # {
115
- # ?P :parentOf ?C .
116
- # ?P :branch ?B .
117
- # } => {
118
- # ?C :branch ?B .
119
- # } .
120
- # with substitution (on rule variables):
121
- # ?B = :b
122
- # ?C = :Heidi
123
- # ?P = :Dave
124
- # Therefore the derived triple above is entailed by the rules and facts.
125
- # ----------------------------------------------------------------------
126
-
127
8
  :Heidi :branch :b .
128
-
129
- # ----------------------------------------------------------------------
130
- # Proof for derived triple:
131
- # :Grace :generation 2 .
132
- # It holds because the following instance of the rule body is provable:
133
- # :Carol :parentOf :Grace .
134
- # :Carol :generation 1 .
135
- # (1 1) math:sum 2 .
136
- # via the schematic forward rule:
137
- # {
138
- # ?P :parentOf ?C .
139
- # ?P :generation ?G .
140
- # (?G 1) math:sum ?G1 .
141
- # } => {
142
- # ?C :generation ?G1 .
143
- # } .
144
- # with substitution (on rule variables):
145
- # ?C = :Grace
146
- # ?G = 1
147
- # ?G1 = 2
148
- # ?P = :Carol
149
- # Therefore the derived triple above is entailed by the rules and facts.
150
- # ----------------------------------------------------------------------
151
-
152
9
  :Grace :generation 2 .
153
-
154
- # ----------------------------------------------------------------------
155
- # Proof for derived triple:
156
- # :Frank :generation 2 .
157
- # It holds because the following instance of the rule body is provable:
158
- # :Carol :parentOf :Frank .
159
- # :Carol :generation 1 .
160
- # (1 1) math:sum 2 .
161
- # via the schematic forward rule:
162
- # {
163
- # ?P :parentOf ?C .
164
- # ?P :generation ?G .
165
- # (?G 1) math:sum ?G1 .
166
- # } => {
167
- # ?C :generation ?G1 .
168
- # } .
169
- # with substitution (on rule variables):
170
- # ?C = :Frank
171
- # ?G = 1
172
- # ?G1 = 2
173
- # ?P = :Carol
174
- # Therefore the derived triple above is entailed by the rules and facts.
175
- # ----------------------------------------------------------------------
176
-
177
10
  :Frank :generation 2 .
178
-
179
- # ----------------------------------------------------------------------
180
- # Proof for derived triple:
181
- # :Eve :generation 2 .
182
- # It holds because the following instance of the rule body is provable:
183
- # :Bob :parentOf :Eve .
184
- # :Bob :generation 1 .
185
- # (1 1) math:sum 2 .
186
- # via the schematic forward rule:
187
- # {
188
- # ?P :parentOf ?C .
189
- # ?P :generation ?G .
190
- # (?G 1) math:sum ?G1 .
191
- # } => {
192
- # ?C :generation ?G1 .
193
- # } .
194
- # with substitution (on rule variables):
195
- # ?C = :Eve
196
- # ?G = 1
197
- # ?G1 = 2
198
- # ?P = :Bob
199
- # Therefore the derived triple above is entailed by the rules and facts.
200
- # ----------------------------------------------------------------------
201
-
202
11
  :Eve :generation 2 .
203
-
204
- # ----------------------------------------------------------------------
205
- # Proof for derived triple:
206
- # :Dave :generation 2 .
207
- # It holds because the following instance of the rule body is provable:
208
- # :Bob :parentOf :Dave .
209
- # :Bob :generation 1 .
210
- # (1 1) math:sum 2 .
211
- # via the schematic forward rule:
212
- # {
213
- # ?P :parentOf ?C .
214
- # ?P :generation ?G .
215
- # (?G 1) math:sum ?G1 .
216
- # } => {
217
- # ?C :generation ?G1 .
218
- # } .
219
- # with substitution (on rule variables):
220
- # ?C = :Dave
221
- # ?G = 1
222
- # ?G1 = 2
223
- # ?P = :Bob
224
- # Therefore the derived triple above is entailed by the rules and facts.
225
- # ----------------------------------------------------------------------
226
-
227
12
  :Dave :generation 2 .
228
-
229
- # ----------------------------------------------------------------------
230
- # Proof for derived triple:
231
- # :Dave :cousin :Frank .
232
- # It holds because the following instance of the rule body is provable:
233
- # :Dave :generation 2 .
234
- # :Frank :generation 2 .
235
- # :Dave :branch :b .
236
- # :Frank :branch :c .
237
- # :b :differentFrom :c .
238
- # via the schematic forward rule:
239
- # {
240
- # ?X :generation ?G .
241
- # ?Y :generation ?G .
242
- # ?X :branch ?BX .
243
- # ?Y :branch ?BY .
244
- # ?BX :differentFrom ?BY .
245
- # } => {
246
- # ?X :cousin ?Y .
247
- # } .
248
- # with substitution (on rule variables):
249
- # ?BX = :b
250
- # ?BY = :c
251
- # ?G = 2
252
- # ?X = :Dave
253
- # ?Y = :Frank
254
- # Therefore the derived triple above is entailed by the rules and facts.
255
- # ----------------------------------------------------------------------
256
-
257
13
  :Dave :cousin :Frank .
258
-
259
- # ----------------------------------------------------------------------
260
- # Proof for derived triple:
261
- # :Dave :cousin :Grace .
262
- # It holds because the following instance of the rule body is provable:
263
- # :Dave :generation 2 .
264
- # :Grace :generation 2 .
265
- # :Dave :branch :b .
266
- # :Grace :branch :c .
267
- # :b :differentFrom :c .
268
- # via the schematic forward rule:
269
- # {
270
- # ?X :generation ?G .
271
- # ?Y :generation ?G .
272
- # ?X :branch ?BX .
273
- # ?Y :branch ?BY .
274
- # ?BX :differentFrom ?BY .
275
- # } => {
276
- # ?X :cousin ?Y .
277
- # } .
278
- # with substitution (on rule variables):
279
- # ?BX = :b
280
- # ?BY = :c
281
- # ?G = 2
282
- # ?X = :Dave
283
- # ?Y = :Grace
284
- # Therefore the derived triple above is entailed by the rules and facts.
285
- # ----------------------------------------------------------------------
286
-
287
14
  :Dave :cousin :Grace .
288
-
289
- # ----------------------------------------------------------------------
290
- # Proof for derived triple:
291
- # :Eve :cousin :Frank .
292
- # It holds because the following instance of the rule body is provable:
293
- # :Eve :generation 2 .
294
- # :Frank :generation 2 .
295
- # :Eve :branch :b .
296
- # :Frank :branch :c .
297
- # :b :differentFrom :c .
298
- # via the schematic forward rule:
299
- # {
300
- # ?X :generation ?G .
301
- # ?Y :generation ?G .
302
- # ?X :branch ?BX .
303
- # ?Y :branch ?BY .
304
- # ?BX :differentFrom ?BY .
305
- # } => {
306
- # ?X :cousin ?Y .
307
- # } .
308
- # with substitution (on rule variables):
309
- # ?BX = :b
310
- # ?BY = :c
311
- # ?G = 2
312
- # ?X = :Eve
313
- # ?Y = :Frank
314
- # Therefore the derived triple above is entailed by the rules and facts.
315
- # ----------------------------------------------------------------------
316
-
317
15
  :Eve :cousin :Frank .
318
-
319
- # ----------------------------------------------------------------------
320
- # Proof for derived triple:
321
- # :Eve :cousin :Grace .
322
- # It holds because the following instance of the rule body is provable:
323
- # :Eve :generation 2 .
324
- # :Grace :generation 2 .
325
- # :Eve :branch :b .
326
- # :Grace :branch :c .
327
- # :b :differentFrom :c .
328
- # via the schematic forward rule:
329
- # {
330
- # ?X :generation ?G .
331
- # ?Y :generation ?G .
332
- # ?X :branch ?BX .
333
- # ?Y :branch ?BY .
334
- # ?BX :differentFrom ?BY .
335
- # } => {
336
- # ?X :cousin ?Y .
337
- # } .
338
- # with substitution (on rule variables):
339
- # ?BX = :b
340
- # ?BY = :c
341
- # ?G = 2
342
- # ?X = :Eve
343
- # ?Y = :Grace
344
- # Therefore the derived triple above is entailed by the rules and facts.
345
- # ----------------------------------------------------------------------
346
-
347
16
  :Eve :cousin :Grace .
348
-
349
- # ----------------------------------------------------------------------
350
- # Proof for derived triple:
351
- # :Frank :cousin :Dave .
352
- # It holds because the following instance of the rule body is provable:
353
- # :Frank :generation 2 .
354
- # :Dave :generation 2 .
355
- # :Frank :branch :c .
356
- # :Dave :branch :b .
357
- # :c :differentFrom :b .
358
- # via the schematic forward rule:
359
- # {
360
- # ?X :generation ?G .
361
- # ?Y :generation ?G .
362
- # ?X :branch ?BX .
363
- # ?Y :branch ?BY .
364
- # ?BX :differentFrom ?BY .
365
- # } => {
366
- # ?X :cousin ?Y .
367
- # } .
368
- # with substitution (on rule variables):
369
- # ?BX = :c
370
- # ?BY = :b
371
- # ?G = 2
372
- # ?X = :Frank
373
- # ?Y = :Dave
374
- # Therefore the derived triple above is entailed by the rules and facts.
375
- # ----------------------------------------------------------------------
376
-
377
17
  :Frank :cousin :Dave .
378
-
379
- # ----------------------------------------------------------------------
380
- # Proof for derived triple:
381
- # :Frank :cousin :Eve .
382
- # It holds because the following instance of the rule body is provable:
383
- # :Frank :generation 2 .
384
- # :Eve :generation 2 .
385
- # :Frank :branch :c .
386
- # :Eve :branch :b .
387
- # :c :differentFrom :b .
388
- # via the schematic forward rule:
389
- # {
390
- # ?X :generation ?G .
391
- # ?Y :generation ?G .
392
- # ?X :branch ?BX .
393
- # ?Y :branch ?BY .
394
- # ?BX :differentFrom ?BY .
395
- # } => {
396
- # ?X :cousin ?Y .
397
- # } .
398
- # with substitution (on rule variables):
399
- # ?BX = :c
400
- # ?BY = :b
401
- # ?G = 2
402
- # ?X = :Frank
403
- # ?Y = :Eve
404
- # Therefore the derived triple above is entailed by the rules and facts.
405
- # ----------------------------------------------------------------------
406
-
407
18
  :Frank :cousin :Eve .
408
-
409
- # ----------------------------------------------------------------------
410
- # Proof for derived triple:
411
- # :Grace :cousin :Dave .
412
- # It holds because the following instance of the rule body is provable:
413
- # :Grace :generation 2 .
414
- # :Dave :generation 2 .
415
- # :Grace :branch :c .
416
- # :Dave :branch :b .
417
- # :c :differentFrom :b .
418
- # via the schematic forward rule:
419
- # {
420
- # ?X :generation ?G .
421
- # ?Y :generation ?G .
422
- # ?X :branch ?BX .
423
- # ?Y :branch ?BY .
424
- # ?BX :differentFrom ?BY .
425
- # } => {
426
- # ?X :cousin ?Y .
427
- # } .
428
- # with substitution (on rule variables):
429
- # ?BX = :c
430
- # ?BY = :b
431
- # ?G = 2
432
- # ?X = :Grace
433
- # ?Y = :Dave
434
- # Therefore the derived triple above is entailed by the rules and facts.
435
- # ----------------------------------------------------------------------
436
-
437
19
  :Grace :cousin :Dave .
438
-
439
- # ----------------------------------------------------------------------
440
- # Proof for derived triple:
441
- # :Grace :cousin :Eve .
442
- # It holds because the following instance of the rule body is provable:
443
- # :Grace :generation 2 .
444
- # :Eve :generation 2 .
445
- # :Grace :branch :c .
446
- # :Eve :branch :b .
447
- # :c :differentFrom :b .
448
- # via the schematic forward rule:
449
- # {
450
- # ?X :generation ?G .
451
- # ?Y :generation ?G .
452
- # ?X :branch ?BX .
453
- # ?Y :branch ?BY .
454
- # ?BX :differentFrom ?BY .
455
- # } => {
456
- # ?X :cousin ?Y .
457
- # } .
458
- # with substitution (on rule variables):
459
- # ?BX = :c
460
- # ?BY = :b
461
- # ?G = 2
462
- # ?X = :Grace
463
- # ?Y = :Eve
464
- # Therefore the derived triple above is entailed by the rules and facts.
465
- # ----------------------------------------------------------------------
466
-
467
20
  :Grace :cousin :Eve .
468
-
469
- # ----------------------------------------------------------------------
470
- # Proof for derived triple:
471
- # :Judy :generation 3 .
472
- # It holds because the following instance of the rule body is provable:
473
- # :Frank :parentOf :Judy .
474
- # :Frank :generation 2 .
475
- # (2 1) math:sum 3 .
476
- # via the schematic forward rule:
477
- # {
478
- # ?P :parentOf ?C .
479
- # ?P :generation ?G .
480
- # (?G 1) math:sum ?G1 .
481
- # } => {
482
- # ?C :generation ?G1 .
483
- # } .
484
- # with substitution (on rule variables):
485
- # ?C = :Judy
486
- # ?G = 2
487
- # ?G1 = 3
488
- # ?P = :Frank
489
- # Therefore the derived triple above is entailed by the rules and facts.
490
- # ----------------------------------------------------------------------
491
-
492
21
  :Judy :generation 3 .
493
-
494
- # ----------------------------------------------------------------------
495
- # Proof for derived triple:
496
- # :Ivan :generation 3 .
497
- # It holds because the following instance of the rule body is provable:
498
- # :Eve :parentOf :Ivan .
499
- # :Eve :generation 2 .
500
- # (2 1) math:sum 3 .
501
- # via the schematic forward rule:
502
- # {
503
- # ?P :parentOf ?C .
504
- # ?P :generation ?G .
505
- # (?G 1) math:sum ?G1 .
506
- # } => {
507
- # ?C :generation ?G1 .
508
- # } .
509
- # with substitution (on rule variables):
510
- # ?C = :Ivan
511
- # ?G = 2
512
- # ?G1 = 3
513
- # ?P = :Eve
514
- # Therefore the derived triple above is entailed by the rules and facts.
515
- # ----------------------------------------------------------------------
516
-
517
22
  :Ivan :generation 3 .
518
-
519
- # ----------------------------------------------------------------------
520
- # Proof for derived triple:
521
- # :Heidi :generation 3 .
522
- # It holds because the following instance of the rule body is provable:
523
- # :Dave :parentOf :Heidi .
524
- # :Dave :generation 2 .
525
- # (2 1) math:sum 3 .
526
- # via the schematic forward rule:
527
- # {
528
- # ?P :parentOf ?C .
529
- # ?P :generation ?G .
530
- # (?G 1) math:sum ?G1 .
531
- # } => {
532
- # ?C :generation ?G1 .
533
- # } .
534
- # with substitution (on rule variables):
535
- # ?C = :Heidi
536
- # ?G = 2
537
- # ?G1 = 3
538
- # ?P = :Dave
539
- # Therefore the derived triple above is entailed by the rules and facts.
540
- # ----------------------------------------------------------------------
541
-
542
23
  :Heidi :generation 3 .
543
-
544
- # ----------------------------------------------------------------------
545
- # Proof for derived triple:
546
- # :Heidi :cousin :Judy .
547
- # It holds because the following instance of the rule body is provable:
548
- # :Heidi :generation 3 .
549
- # :Judy :generation 3 .
550
- # :Heidi :branch :b .
551
- # :Judy :branch :c .
552
- # :b :differentFrom :c .
553
- # via the schematic forward rule:
554
- # {
555
- # ?X :generation ?G .
556
- # ?Y :generation ?G .
557
- # ?X :branch ?BX .
558
- # ?Y :branch ?BY .
559
- # ?BX :differentFrom ?BY .
560
- # } => {
561
- # ?X :cousin ?Y .
562
- # } .
563
- # with substitution (on rule variables):
564
- # ?BX = :b
565
- # ?BY = :c
566
- # ?G = 3
567
- # ?X = :Heidi
568
- # ?Y = :Judy
569
- # Therefore the derived triple above is entailed by the rules and facts.
570
- # ----------------------------------------------------------------------
571
-
572
24
  :Heidi :cousin :Judy .
573
-
574
- # ----------------------------------------------------------------------
575
- # Proof for derived triple:
576
- # :Ivan :cousin :Judy .
577
- # It holds because the following instance of the rule body is provable:
578
- # :Ivan :generation 3 .
579
- # :Judy :generation 3 .
580
- # :Ivan :branch :b .
581
- # :Judy :branch :c .
582
- # :b :differentFrom :c .
583
- # via the schematic forward rule:
584
- # {
585
- # ?X :generation ?G .
586
- # ?Y :generation ?G .
587
- # ?X :branch ?BX .
588
- # ?Y :branch ?BY .
589
- # ?BX :differentFrom ?BY .
590
- # } => {
591
- # ?X :cousin ?Y .
592
- # } .
593
- # with substitution (on rule variables):
594
- # ?BX = :b
595
- # ?BY = :c
596
- # ?G = 3
597
- # ?X = :Ivan
598
- # ?Y = :Judy
599
- # Therefore the derived triple above is entailed by the rules and facts.
600
- # ----------------------------------------------------------------------
601
-
602
25
  :Ivan :cousin :Judy .
603
-
604
- # ----------------------------------------------------------------------
605
- # Proof for derived triple:
606
- # :Judy :cousin :Heidi .
607
- # It holds because the following instance of the rule body is provable:
608
- # :Judy :generation 3 .
609
- # :Heidi :generation 3 .
610
- # :Judy :branch :c .
611
- # :Heidi :branch :b .
612
- # :c :differentFrom :b .
613
- # via the schematic forward rule:
614
- # {
615
- # ?X :generation ?G .
616
- # ?Y :generation ?G .
617
- # ?X :branch ?BX .
618
- # ?Y :branch ?BY .
619
- # ?BX :differentFrom ?BY .
620
- # } => {
621
- # ?X :cousin ?Y .
622
- # } .
623
- # with substitution (on rule variables):
624
- # ?BX = :c
625
- # ?BY = :b
626
- # ?G = 3
627
- # ?X = :Judy
628
- # ?Y = :Heidi
629
- # Therefore the derived triple above is entailed by the rules and facts.
630
- # ----------------------------------------------------------------------
631
-
632
26
  :Judy :cousin :Heidi .
633
-
634
- # ----------------------------------------------------------------------
635
- # Proof for derived triple:
636
- # :Judy :cousin :Ivan .
637
- # It holds because the following instance of the rule body is provable:
638
- # :Judy :generation 3 .
639
- # :Ivan :generation 3 .
640
- # :Judy :branch :c .
641
- # :Ivan :branch :b .
642
- # :c :differentFrom :b .
643
- # via the schematic forward rule:
644
- # {
645
- # ?X :generation ?G .
646
- # ?Y :generation ?G .
647
- # ?X :branch ?BX .
648
- # ?Y :branch ?BY .
649
- # ?BX :differentFrom ?BY .
650
- # } => {
651
- # ?X :cousin ?Y .
652
- # } .
653
- # with substitution (on rule variables):
654
- # ?BX = :c
655
- # ?BY = :b
656
- # ?G = 3
657
- # ?X = :Judy
658
- # ?Y = :Ivan
659
- # Therefore the derived triple above is entailed by the rules and facts.
660
- # ----------------------------------------------------------------------
661
-
662
27
  :Judy :cousin :Ivan .
663
-
@@ -1,44 +1,8 @@
1
1
  @prefix : <https://eyereasoner.github.io/eye/reasoning#> .
2
2
 
3
- # ----------------------------------------------------------------------
4
- # Proof for derived triple:
5
- # :test :is {
6
- # 0 :fibonacci 0 .
7
- # 1 :fibonacci 1 .
8
- # 10 :fibonacci 55 .
9
- # 100 :fibonacci 354224848179261915075 .
10
- # } .
11
- # It holds because the following instance of the rule body is provable:
12
- # 0 :fibonacci 0 .
13
- # 1 :fibonacci 1 .
14
- # 10 :fibonacci 55 .
15
- # 100 :fibonacci 354224848179261915075 .
16
- # via the schematic forward rule:
17
- # {
18
- # 0 :fibonacci ?F0 .
19
- # 1 :fibonacci ?F1 .
20
- # 10 :fibonacci ?F10 .
21
- # 100 :fibonacci ?F100 .
22
- # } => {
23
- # :test :is {
24
- # 0 :fibonacci ?F0 .
25
- # 1 :fibonacci ?F1 .
26
- # 10 :fibonacci ?F10 .
27
- # 100 :fibonacci ?F100 .
28
- # } .
29
- # } .
30
- # with substitution (on rule variables):
31
- # ?F0 = 0
32
- # ?F1 = 1
33
- # ?F10 = 55
34
- # ?F100 = 354224848179261915075
35
- # Therefore the derived triple above is entailed by the rules and facts.
36
- # ----------------------------------------------------------------------
37
-
38
3
  :test :is {
39
4
  0 :fibonacci 0 .
40
5
  1 :fibonacci 1 .
41
6
  10 :fibonacci 55 .
42
7
  100 :fibonacci 354224848179261915075 .
43
8
  } .
44
-