eyeling 1.6.13 → 1.6.14

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (75) hide show
  1. package/examples/output/age.n3 +0 -17
  2. package/examples/output/alignment-demo.n3 +0 -572
  3. package/examples/output/backward.n3 +0 -15
  4. package/examples/output/basic-monadic.n3 +0 -105
  5. package/examples/output/brussels-brew-club.n3 +0 -476
  6. package/examples/output/cat-koko.n3 +0 -108
  7. package/examples/output/cobalt-kepler-kitchen.n3 +0 -7064
  8. package/examples/output/complex.n3 +0 -46
  9. package/examples/output/control-system.n3 +0 -75
  10. package/examples/output/cranberry-calculus.n3 +0 -1313
  11. package/examples/output/crypto-builtins-tests.n3 +0 -60
  12. package/examples/output/deep-taxonomy-10.n3 +0 -602
  13. package/examples/output/deep-taxonomy-100.n3 +1 -5733
  14. package/examples/output/deep-taxonomy-1000.n3 +1 -57033
  15. package/examples/output/deep-taxonomy-10000.n3 +1 -570033
  16. package/examples/output/derived-backward-rule-2.n3 +0 -58
  17. package/examples/output/derived-backward-rule.n3 +0 -44
  18. package/examples/output/derived-rule.n3 +0 -42
  19. package/examples/output/dijkstra.n3 +0 -297
  20. package/examples/output/dog.n3 +0 -30
  21. package/examples/output/drone-corridor-planner.n3 +0 -799
  22. package/examples/output/easter.n3 +0 -3570
  23. package/examples/output/equals.n3 +0 -15
  24. package/examples/output/ev-roundtrip-planner.n3 +0 -392
  25. package/examples/output/existential-rule.n3 +0 -34
  26. package/examples/output/expression-eval.n3 +0 -20
  27. package/examples/output/family-cousins.n3 +0 -636
  28. package/examples/output/fibonacci.n3 +0 -36
  29. package/examples/output/french-cities.n3 +0 -484
  30. package/examples/output/good-cobbler.n3 +0 -22
  31. package/examples/output/gps.n3 +0 -62
  32. package/examples/output/gray-code-counter.n3 +0 -17
  33. package/examples/output/hanoi.n3 +0 -17
  34. package/examples/output/jade-eigen-loom.n3 +0 -4690
  35. package/examples/output/json-pointer.n3 +0 -529
  36. package/examples/output/json-reconcile-vat.n3 +0 -12882
  37. package/examples/output/light-eaters.n3 +0 -311
  38. package/examples/output/list-builtins-tests.n3 +0 -167
  39. package/examples/output/list-iterate.n3 +0 -124
  40. package/examples/output/lldm.n3 +0 -960
  41. package/examples/output/log-collect-all-in.n3 +0 -117
  42. package/examples/output/log-for-all-in.n3 +0 -27
  43. package/examples/output/log-not-includes.n3 +0 -59
  44. package/examples/output/log-skolem.n3 +0 -17
  45. package/examples/output/log-uri.n3 +0 -42
  46. package/examples/output/math-builtins-tests.n3 +0 -4434
  47. package/examples/output/minimal-skos-alignment.n3 +0 -39
  48. package/examples/output/monkey.n3 +0 -36
  49. package/examples/output/odrl-trust.n3 +0 -46
  50. package/examples/output/oslo-steps-library-scholarly.n3 +0 -1260
  51. package/examples/output/oslo-steps-workflow-composition.n3 +0 -180
  52. package/examples/output/peano.n3 +0 -23
  53. package/examples/output/pi.n3 +0 -17
  54. package/examples/output/pillar.n3 +0 -32
  55. package/examples/output/polygon.n3 +0 -17
  56. package/examples/output/rdf-list.n3 +0 -28
  57. package/examples/output/reordering.n3 +0 -26
  58. package/examples/output/ruby-runge-workshop.n3 +0 -613
  59. package/examples/output/rule-matching.n3 +0 -26
  60. package/examples/output/saffron-slopeworks.n3 +0 -1447
  61. package/examples/output/self-referential.n3 +0 -81
  62. package/examples/output/similar.n3 +0 -15
  63. package/examples/output/snaf.n3 +0 -23
  64. package/examples/output/socrates.n3 +0 -21
  65. package/examples/output/spectral-week.n3 +0 -350
  66. package/examples/output/string-builtins-tests.n3 +0 -240
  67. package/examples/output/topaz-markov-mill.n3 +0 -4178
  68. package/examples/output/traffic-skos-aggregate.n3 +0 -3151
  69. package/examples/output/turing.n3 +0 -36
  70. package/examples/output/ultramarine-simpson-forge.n3 +0 -3873
  71. package/examples/output/witch.n3 +0 -107
  72. package/examples/output/zebra.n3 +0 -111
  73. package/eyeling.js +97 -18
  74. package/package.json +1 -1
  75. package/test/examples.test.js +1 -1
@@ -1,4232 +1,54 @@
1
1
  @prefix : <http://example.org/topaz-markov#> .
2
2
  @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
3
3
 
4
- # ----------------------------------------------------------------------
5
- # Proof for derived triple:
6
- # :MC1 :rowOk _:b3 .
7
- # It holds because the following instance of the rule body is provable:
8
- # :MC1 :row _:b3 .
9
- # _:b3 :pA 0.25 .
10
- # _:b3 :pB 0.25 .
11
- # _:b3 :pC 0.50 .
12
- # (0.25 0.25) math:sum "0.5"^^xsd:decimal .
13
- # ("0.5"^^xsd:decimal 0.50) math:sum "1"^^xsd:decimal .
14
- # "1"^^xsd:decimal math:equalTo 1.0 .
15
- # via the schematic forward rule:
16
- # {
17
- # :MC1 :row ?r .
18
- # ?r :pA ?a .
19
- # ?r :pB ?b .
20
- # ?r :pC ?c .
21
- # (?a ?b) math:sum ?ab .
22
- # (?ab ?c) math:sum ?sum .
23
- # ?sum math:equalTo 1.0 .
24
- # } => {
25
- # :MC1 :rowOk ?r .
26
- # } .
27
- # with substitution (on rule variables):
28
- # ?a = 0.25
29
- # ?ab = "0.5"^^xsd:decimal
30
- # ?b = 0.25
31
- # ?c = 0.50
32
- # ?r = _:b3
33
- # ?sum = "1"^^xsd:decimal
34
- # Therefore the derived triple above is entailed by the rules and facts.
35
- # ----------------------------------------------------------------------
36
-
37
4
  :MC1 :rowOk _:b3 .
38
-
39
- # ----------------------------------------------------------------------
40
- # Proof for derived triple:
41
- # :MC1 :rowOk _:b2 .
42
- # It holds because the following instance of the rule body is provable:
43
- # :MC1 :row _:b2 .
44
- # _:b2 :pA 0.10 .
45
- # _:b2 :pB 0.70 .
46
- # _:b2 :pC 0.20 .
47
- # (0.10 0.70) math:sum "0.7999999999999999"^^xsd:decimal .
48
- # ("0.7999999999999999"^^xsd:decimal 0.20) math:sum "1"^^xsd:decimal .
49
- # "1"^^xsd:decimal math:equalTo 1.0 .
50
- # via the schematic forward rule:
51
- # {
52
- # :MC1 :row ?r .
53
- # ?r :pA ?a .
54
- # ?r :pB ?b .
55
- # ?r :pC ?c .
56
- # (?a ?b) math:sum ?ab .
57
- # (?ab ?c) math:sum ?sum .
58
- # ?sum math:equalTo 1.0 .
59
- # } => {
60
- # :MC1 :rowOk ?r .
61
- # } .
62
- # with substitution (on rule variables):
63
- # ?a = 0.10
64
- # ?ab = "0.7999999999999999"^^xsd:decimal
65
- # ?b = 0.70
66
- # ?c = 0.20
67
- # ?r = _:b2
68
- # ?sum = "1"^^xsd:decimal
69
- # Therefore the derived triple above is entailed by the rules and facts.
70
- # ----------------------------------------------------------------------
71
-
72
5
  :MC1 :rowOk _:b2 .
73
-
74
- # ----------------------------------------------------------------------
75
- # Proof for derived triple:
76
- # :MC1 :rowOk _:b1 .
77
- # It holds because the following instance of the rule body is provable:
78
- # :MC1 :row _:b1 .
79
- # _:b1 :pA 0.80 .
80
- # _:b1 :pB 0.15 .
81
- # _:b1 :pC 0.05 .
82
- # (0.80 0.15) math:sum "0.9500000000000001"^^xsd:decimal .
83
- # ("0.9500000000000001"^^xsd:decimal 0.05) math:sum "1"^^xsd:decimal .
84
- # "1"^^xsd:decimal math:equalTo 1.0 .
85
- # via the schematic forward rule:
86
- # {
87
- # :MC1 :row ?r .
88
- # ?r :pA ?a .
89
- # ?r :pB ?b .
90
- # ?r :pC ?c .
91
- # (?a ?b) math:sum ?ab .
92
- # (?ab ?c) math:sum ?sum .
93
- # ?sum math:equalTo 1.0 .
94
- # } => {
95
- # :MC1 :rowOk ?r .
96
- # } .
97
- # with substitution (on rule variables):
98
- # ?a = 0.80
99
- # ?ab = "0.9500000000000001"^^xsd:decimal
100
- # ?b = 0.15
101
- # ?c = 0.05
102
- # ?r = _:b1
103
- # ?sum = "1"^^xsd:decimal
104
- # Therefore the derived triple above is entailed by the rules and facts.
105
- # ----------------------------------------------------------------------
106
-
107
6
  :MC1 :rowOk _:b1 .
108
-
109
- # ----------------------------------------------------------------------
110
- # Proof for derived triple:
111
- # _:sk_0 :pA "0.535"^^xsd:decimal .
112
- # It holds because the following instance of the rule body is provable:
113
- # :MC1 :pi0 _:b4 .
114
- # :MC1 :row _:b1 .
115
- # _:b1 :from :A .
116
- # _:b1 :pA 0.80 .
117
- # _:b1 :pB 0.15 .
118
- # _:b1 :pC 0.05 .
119
- # :MC1 :row _:b2 .
120
- # _:b2 :from :B .
121
- # _:b2 :pA 0.10 .
122
- # _:b2 :pB 0.70 .
123
- # _:b2 :pC 0.20 .
124
- # :MC1 :row _:b3 .
125
- # _:b3 :from :C .
126
- # _:b3 :pA 0.25 .
127
- # _:b3 :pB 0.25 .
128
- # _:b3 :pC 0.50 .
129
- # _:b4 :pA 0.60 .
130
- # _:b4 :pB 0.30 .
131
- # _:b4 :pC 0.10 .
132
- # (0.60 0.80) math:product "0.48"^^xsd:decimal .
133
- # (0.30 0.10) math:product "0.03"^^xsd:decimal .
134
- # (0.10 0.25) math:product "0.025"^^xsd:decimal .
135
- # ("0.48"^^xsd:decimal "0.03"^^xsd:decimal) math:sum "0.51"^^xsd:decimal .
136
- # ("0.51"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.535"^^xsd:decimal .
137
- # (0.60 0.15) math:product "0.09"^^xsd:decimal .
138
- # (0.30 0.70) math:product "0.21"^^xsd:decimal .
139
- # (0.10 0.25) math:product "0.025"^^xsd:decimal .
140
- # ("0.09"^^xsd:decimal "0.21"^^xsd:decimal) math:sum "0.3"^^xsd:decimal .
141
- # ("0.3"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.325"^^xsd:decimal .
142
- # (0.60 0.05) math:product "0.03"^^xsd:decimal .
143
- # (0.30 0.20) math:product "0.06"^^xsd:decimal .
144
- # (0.10 0.50) math:product "0.05"^^xsd:decimal .
145
- # ("0.03"^^xsd:decimal "0.06"^^xsd:decimal) math:sum "0.09"^^xsd:decimal .
146
- # ("0.09"^^xsd:decimal "0.05"^^xsd:decimal) math:sum "0.14"^^xsd:decimal .
147
- # via the schematic forward rule:
148
- # {
149
- # :MC1 :pi0 ?pi .
150
- # :MC1 :row ?rA .
151
- # ?rA :from :A .
152
- # ?rA :pA ?AA .
153
- # ?rA :pB ?AB .
154
- # ?rA :pC ?AC .
155
- # :MC1 :row ?rB .
156
- # ?rB :from :B .
157
- # ?rB :pA ?BA .
158
- # ?rB :pB ?BB .
159
- # ?rB :pC ?BC .
160
- # :MC1 :row ?rC .
161
- # ?rC :from :C .
162
- # ?rC :pA ?CA .
163
- # ?rC :pB ?CB .
164
- # ?rC :pC ?CC .
165
- # ?pi :pA ?pA .
166
- # ?pi :pB ?pB .
167
- # ?pi :pC ?pC .
168
- # (?pA ?AA) math:product ?tAA .
169
- # (?pB ?BA) math:product ?tBA .
170
- # (?pC ?CA) math:product ?tCA .
171
- # (?tAA ?tBA) math:sum ?s1 .
172
- # (?s1 ?tCA) math:sum ?pi1A .
173
- # (?pA ?AB) math:product ?tAB .
174
- # (?pB ?BB) math:product ?tBB .
175
- # (?pC ?CB) math:product ?tCB .
176
- # (?tAB ?tBB) math:sum ?s2 .
177
- # (?s2 ?tCB) math:sum ?pi1B .
178
- # (?pA ?AC) math:product ?tAC .
179
- # (?pB ?BC) math:product ?tBC .
180
- # (?pC ?CC) math:product ?tCC .
181
- # (?tAC ?tBC) math:sum ?s3 .
182
- # (?s3 ?tCC) math:sum ?pi1C .
183
- # } => {
184
- # _:b5 :pA ?pi1A .
185
- # _:b5 :pB ?pi1B .
186
- # _:b5 :pC ?pi1C .
187
- # :MC1 :pi1 _:b5 .
188
- # } .
189
- # with substitution (on rule variables):
190
- # ?AA = 0.80
191
- # ?AB = 0.15
192
- # ?AC = 0.05
193
- # ?BA = 0.10
194
- # ?BB = 0.70
195
- # ?BC = 0.20
196
- # ?CA = 0.25
197
- # ?CB = 0.25
198
- # ?CC = 0.50
199
- # ?pA = 0.60
200
- # ?pB = 0.30
201
- # ?pC = 0.10
202
- # ?pi = _:b4
203
- # ?pi1A = "0.535"^^xsd:decimal
204
- # ?pi1B = "0.325"^^xsd:decimal
205
- # ?pi1C = "0.14"^^xsd:decimal
206
- # ?rA = _:b1
207
- # ?rB = _:b2
208
- # ?rC = _:b3
209
- # ?s1 = "0.51"^^xsd:decimal
210
- # ?s2 = "0.3"^^xsd:decimal
211
- # ?s3 = "0.09"^^xsd:decimal
212
- # ?tAA = "0.48"^^xsd:decimal
213
- # ?tAB = "0.09"^^xsd:decimal
214
- # ?tAC = "0.03"^^xsd:decimal
215
- # ?tBA = "0.03"^^xsd:decimal
216
- # ?tBB = "0.21"^^xsd:decimal
217
- # ?tBC = "0.06"^^xsd:decimal
218
- # ?tCA = "0.025"^^xsd:decimal
219
- # ?tCB = "0.025"^^xsd:decimal
220
- # ?tCC = "0.05"^^xsd:decimal
221
- # Therefore the derived triple above is entailed by the rules and facts.
222
- # ----------------------------------------------------------------------
223
-
224
7
  _:sk_0 :pA "0.535"^^xsd:decimal .
225
-
226
- # ----------------------------------------------------------------------
227
- # Proof for derived triple:
228
- # _:sk_0 :pB "0.325"^^xsd:decimal .
229
- # It holds because the following instance of the rule body is provable:
230
- # :MC1 :pi0 _:b4 .
231
- # :MC1 :row _:b1 .
232
- # _:b1 :from :A .
233
- # _:b1 :pA 0.80 .
234
- # _:b1 :pB 0.15 .
235
- # _:b1 :pC 0.05 .
236
- # :MC1 :row _:b2 .
237
- # _:b2 :from :B .
238
- # _:b2 :pA 0.10 .
239
- # _:b2 :pB 0.70 .
240
- # _:b2 :pC 0.20 .
241
- # :MC1 :row _:b3 .
242
- # _:b3 :from :C .
243
- # _:b3 :pA 0.25 .
244
- # _:b3 :pB 0.25 .
245
- # _:b3 :pC 0.50 .
246
- # _:b4 :pA 0.60 .
247
- # _:b4 :pB 0.30 .
248
- # _:b4 :pC 0.10 .
249
- # (0.60 0.80) math:product "0.48"^^xsd:decimal .
250
- # (0.30 0.10) math:product "0.03"^^xsd:decimal .
251
- # (0.10 0.25) math:product "0.025"^^xsd:decimal .
252
- # ("0.48"^^xsd:decimal "0.03"^^xsd:decimal) math:sum "0.51"^^xsd:decimal .
253
- # ("0.51"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.535"^^xsd:decimal .
254
- # (0.60 0.15) math:product "0.09"^^xsd:decimal .
255
- # (0.30 0.70) math:product "0.21"^^xsd:decimal .
256
- # (0.10 0.25) math:product "0.025"^^xsd:decimal .
257
- # ("0.09"^^xsd:decimal "0.21"^^xsd:decimal) math:sum "0.3"^^xsd:decimal .
258
- # ("0.3"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.325"^^xsd:decimal .
259
- # (0.60 0.05) math:product "0.03"^^xsd:decimal .
260
- # (0.30 0.20) math:product "0.06"^^xsd:decimal .
261
- # (0.10 0.50) math:product "0.05"^^xsd:decimal .
262
- # ("0.03"^^xsd:decimal "0.06"^^xsd:decimal) math:sum "0.09"^^xsd:decimal .
263
- # ("0.09"^^xsd:decimal "0.05"^^xsd:decimal) math:sum "0.14"^^xsd:decimal .
264
- # via the schematic forward rule:
265
- # {
266
- # :MC1 :pi0 ?pi .
267
- # :MC1 :row ?rA .
268
- # ?rA :from :A .
269
- # ?rA :pA ?AA .
270
- # ?rA :pB ?AB .
271
- # ?rA :pC ?AC .
272
- # :MC1 :row ?rB .
273
- # ?rB :from :B .
274
- # ?rB :pA ?BA .
275
- # ?rB :pB ?BB .
276
- # ?rB :pC ?BC .
277
- # :MC1 :row ?rC .
278
- # ?rC :from :C .
279
- # ?rC :pA ?CA .
280
- # ?rC :pB ?CB .
281
- # ?rC :pC ?CC .
282
- # ?pi :pA ?pA .
283
- # ?pi :pB ?pB .
284
- # ?pi :pC ?pC .
285
- # (?pA ?AA) math:product ?tAA .
286
- # (?pB ?BA) math:product ?tBA .
287
- # (?pC ?CA) math:product ?tCA .
288
- # (?tAA ?tBA) math:sum ?s1 .
289
- # (?s1 ?tCA) math:sum ?pi1A .
290
- # (?pA ?AB) math:product ?tAB .
291
- # (?pB ?BB) math:product ?tBB .
292
- # (?pC ?CB) math:product ?tCB .
293
- # (?tAB ?tBB) math:sum ?s2 .
294
- # (?s2 ?tCB) math:sum ?pi1B .
295
- # (?pA ?AC) math:product ?tAC .
296
- # (?pB ?BC) math:product ?tBC .
297
- # (?pC ?CC) math:product ?tCC .
298
- # (?tAC ?tBC) math:sum ?s3 .
299
- # (?s3 ?tCC) math:sum ?pi1C .
300
- # } => {
301
- # _:b5 :pA ?pi1A .
302
- # _:b5 :pB ?pi1B .
303
- # _:b5 :pC ?pi1C .
304
- # :MC1 :pi1 _:b5 .
305
- # } .
306
- # with substitution (on rule variables):
307
- # ?AA = 0.80
308
- # ?AB = 0.15
309
- # ?AC = 0.05
310
- # ?BA = 0.10
311
- # ?BB = 0.70
312
- # ?BC = 0.20
313
- # ?CA = 0.25
314
- # ?CB = 0.25
315
- # ?CC = 0.50
316
- # ?pA = 0.60
317
- # ?pB = 0.30
318
- # ?pC = 0.10
319
- # ?pi = _:b4
320
- # ?pi1A = "0.535"^^xsd:decimal
321
- # ?pi1B = "0.325"^^xsd:decimal
322
- # ?pi1C = "0.14"^^xsd:decimal
323
- # ?rA = _:b1
324
- # ?rB = _:b2
325
- # ?rC = _:b3
326
- # ?s1 = "0.51"^^xsd:decimal
327
- # ?s2 = "0.3"^^xsd:decimal
328
- # ?s3 = "0.09"^^xsd:decimal
329
- # ?tAA = "0.48"^^xsd:decimal
330
- # ?tAB = "0.09"^^xsd:decimal
331
- # ?tAC = "0.03"^^xsd:decimal
332
- # ?tBA = "0.03"^^xsd:decimal
333
- # ?tBB = "0.21"^^xsd:decimal
334
- # ?tBC = "0.06"^^xsd:decimal
335
- # ?tCA = "0.025"^^xsd:decimal
336
- # ?tCB = "0.025"^^xsd:decimal
337
- # ?tCC = "0.05"^^xsd:decimal
338
- # Therefore the derived triple above is entailed by the rules and facts.
339
- # ----------------------------------------------------------------------
340
-
341
8
  _:sk_0 :pB "0.325"^^xsd:decimal .
342
-
343
- # ----------------------------------------------------------------------
344
- # Proof for derived triple:
345
- # _:sk_0 :pC "0.14"^^xsd:decimal .
346
- # It holds because the following instance of the rule body is provable:
347
- # :MC1 :pi0 _:b4 .
348
- # :MC1 :row _:b1 .
349
- # _:b1 :from :A .
350
- # _:b1 :pA 0.80 .
351
- # _:b1 :pB 0.15 .
352
- # _:b1 :pC 0.05 .
353
- # :MC1 :row _:b2 .
354
- # _:b2 :from :B .
355
- # _:b2 :pA 0.10 .
356
- # _:b2 :pB 0.70 .
357
- # _:b2 :pC 0.20 .
358
- # :MC1 :row _:b3 .
359
- # _:b3 :from :C .
360
- # _:b3 :pA 0.25 .
361
- # _:b3 :pB 0.25 .
362
- # _:b3 :pC 0.50 .
363
- # _:b4 :pA 0.60 .
364
- # _:b4 :pB 0.30 .
365
- # _:b4 :pC 0.10 .
366
- # (0.60 0.80) math:product "0.48"^^xsd:decimal .
367
- # (0.30 0.10) math:product "0.03"^^xsd:decimal .
368
- # (0.10 0.25) math:product "0.025"^^xsd:decimal .
369
- # ("0.48"^^xsd:decimal "0.03"^^xsd:decimal) math:sum "0.51"^^xsd:decimal .
370
- # ("0.51"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.535"^^xsd:decimal .
371
- # (0.60 0.15) math:product "0.09"^^xsd:decimal .
372
- # (0.30 0.70) math:product "0.21"^^xsd:decimal .
373
- # (0.10 0.25) math:product "0.025"^^xsd:decimal .
374
- # ("0.09"^^xsd:decimal "0.21"^^xsd:decimal) math:sum "0.3"^^xsd:decimal .
375
- # ("0.3"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.325"^^xsd:decimal .
376
- # (0.60 0.05) math:product "0.03"^^xsd:decimal .
377
- # (0.30 0.20) math:product "0.06"^^xsd:decimal .
378
- # (0.10 0.50) math:product "0.05"^^xsd:decimal .
379
- # ("0.03"^^xsd:decimal "0.06"^^xsd:decimal) math:sum "0.09"^^xsd:decimal .
380
- # ("0.09"^^xsd:decimal "0.05"^^xsd:decimal) math:sum "0.14"^^xsd:decimal .
381
- # via the schematic forward rule:
382
- # {
383
- # :MC1 :pi0 ?pi .
384
- # :MC1 :row ?rA .
385
- # ?rA :from :A .
386
- # ?rA :pA ?AA .
387
- # ?rA :pB ?AB .
388
- # ?rA :pC ?AC .
389
- # :MC1 :row ?rB .
390
- # ?rB :from :B .
391
- # ?rB :pA ?BA .
392
- # ?rB :pB ?BB .
393
- # ?rB :pC ?BC .
394
- # :MC1 :row ?rC .
395
- # ?rC :from :C .
396
- # ?rC :pA ?CA .
397
- # ?rC :pB ?CB .
398
- # ?rC :pC ?CC .
399
- # ?pi :pA ?pA .
400
- # ?pi :pB ?pB .
401
- # ?pi :pC ?pC .
402
- # (?pA ?AA) math:product ?tAA .
403
- # (?pB ?BA) math:product ?tBA .
404
- # (?pC ?CA) math:product ?tCA .
405
- # (?tAA ?tBA) math:sum ?s1 .
406
- # (?s1 ?tCA) math:sum ?pi1A .
407
- # (?pA ?AB) math:product ?tAB .
408
- # (?pB ?BB) math:product ?tBB .
409
- # (?pC ?CB) math:product ?tCB .
410
- # (?tAB ?tBB) math:sum ?s2 .
411
- # (?s2 ?tCB) math:sum ?pi1B .
412
- # (?pA ?AC) math:product ?tAC .
413
- # (?pB ?BC) math:product ?tBC .
414
- # (?pC ?CC) math:product ?tCC .
415
- # (?tAC ?tBC) math:sum ?s3 .
416
- # (?s3 ?tCC) math:sum ?pi1C .
417
- # } => {
418
- # _:b5 :pA ?pi1A .
419
- # _:b5 :pB ?pi1B .
420
- # _:b5 :pC ?pi1C .
421
- # :MC1 :pi1 _:b5 .
422
- # } .
423
- # with substitution (on rule variables):
424
- # ?AA = 0.80
425
- # ?AB = 0.15
426
- # ?AC = 0.05
427
- # ?BA = 0.10
428
- # ?BB = 0.70
429
- # ?BC = 0.20
430
- # ?CA = 0.25
431
- # ?CB = 0.25
432
- # ?CC = 0.50
433
- # ?pA = 0.60
434
- # ?pB = 0.30
435
- # ?pC = 0.10
436
- # ?pi = _:b4
437
- # ?pi1A = "0.535"^^xsd:decimal
438
- # ?pi1B = "0.325"^^xsd:decimal
439
- # ?pi1C = "0.14"^^xsd:decimal
440
- # ?rA = _:b1
441
- # ?rB = _:b2
442
- # ?rC = _:b3
443
- # ?s1 = "0.51"^^xsd:decimal
444
- # ?s2 = "0.3"^^xsd:decimal
445
- # ?s3 = "0.09"^^xsd:decimal
446
- # ?tAA = "0.48"^^xsd:decimal
447
- # ?tAB = "0.09"^^xsd:decimal
448
- # ?tAC = "0.03"^^xsd:decimal
449
- # ?tBA = "0.03"^^xsd:decimal
450
- # ?tBB = "0.21"^^xsd:decimal
451
- # ?tBC = "0.06"^^xsd:decimal
452
- # ?tCA = "0.025"^^xsd:decimal
453
- # ?tCB = "0.025"^^xsd:decimal
454
- # ?tCC = "0.05"^^xsd:decimal
455
- # Therefore the derived triple above is entailed by the rules and facts.
456
- # ----------------------------------------------------------------------
457
-
458
9
  _:sk_0 :pC "0.14"^^xsd:decimal .
459
-
460
- # ----------------------------------------------------------------------
461
- # Proof for derived triple:
462
- # :MC1 :pi1 _:sk_0 .
463
- # It holds because the following instance of the rule body is provable:
464
- # :MC1 :pi0 _:b4 .
465
- # :MC1 :row _:b1 .
466
- # _:b1 :from :A .
467
- # _:b1 :pA 0.80 .
468
- # _:b1 :pB 0.15 .
469
- # _:b1 :pC 0.05 .
470
- # :MC1 :row _:b2 .
471
- # _:b2 :from :B .
472
- # _:b2 :pA 0.10 .
473
- # _:b2 :pB 0.70 .
474
- # _:b2 :pC 0.20 .
475
- # :MC1 :row _:b3 .
476
- # _:b3 :from :C .
477
- # _:b3 :pA 0.25 .
478
- # _:b3 :pB 0.25 .
479
- # _:b3 :pC 0.50 .
480
- # _:b4 :pA 0.60 .
481
- # _:b4 :pB 0.30 .
482
- # _:b4 :pC 0.10 .
483
- # (0.60 0.80) math:product "0.48"^^xsd:decimal .
484
- # (0.30 0.10) math:product "0.03"^^xsd:decimal .
485
- # (0.10 0.25) math:product "0.025"^^xsd:decimal .
486
- # ("0.48"^^xsd:decimal "0.03"^^xsd:decimal) math:sum "0.51"^^xsd:decimal .
487
- # ("0.51"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.535"^^xsd:decimal .
488
- # (0.60 0.15) math:product "0.09"^^xsd:decimal .
489
- # (0.30 0.70) math:product "0.21"^^xsd:decimal .
490
- # (0.10 0.25) math:product "0.025"^^xsd:decimal .
491
- # ("0.09"^^xsd:decimal "0.21"^^xsd:decimal) math:sum "0.3"^^xsd:decimal .
492
- # ("0.3"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.325"^^xsd:decimal .
493
- # (0.60 0.05) math:product "0.03"^^xsd:decimal .
494
- # (0.30 0.20) math:product "0.06"^^xsd:decimal .
495
- # (0.10 0.50) math:product "0.05"^^xsd:decimal .
496
- # ("0.03"^^xsd:decimal "0.06"^^xsd:decimal) math:sum "0.09"^^xsd:decimal .
497
- # ("0.09"^^xsd:decimal "0.05"^^xsd:decimal) math:sum "0.14"^^xsd:decimal .
498
- # via the schematic forward rule:
499
- # {
500
- # :MC1 :pi0 ?pi .
501
- # :MC1 :row ?rA .
502
- # ?rA :from :A .
503
- # ?rA :pA ?AA .
504
- # ?rA :pB ?AB .
505
- # ?rA :pC ?AC .
506
- # :MC1 :row ?rB .
507
- # ?rB :from :B .
508
- # ?rB :pA ?BA .
509
- # ?rB :pB ?BB .
510
- # ?rB :pC ?BC .
511
- # :MC1 :row ?rC .
512
- # ?rC :from :C .
513
- # ?rC :pA ?CA .
514
- # ?rC :pB ?CB .
515
- # ?rC :pC ?CC .
516
- # ?pi :pA ?pA .
517
- # ?pi :pB ?pB .
518
- # ?pi :pC ?pC .
519
- # (?pA ?AA) math:product ?tAA .
520
- # (?pB ?BA) math:product ?tBA .
521
- # (?pC ?CA) math:product ?tCA .
522
- # (?tAA ?tBA) math:sum ?s1 .
523
- # (?s1 ?tCA) math:sum ?pi1A .
524
- # (?pA ?AB) math:product ?tAB .
525
- # (?pB ?BB) math:product ?tBB .
526
- # (?pC ?CB) math:product ?tCB .
527
- # (?tAB ?tBB) math:sum ?s2 .
528
- # (?s2 ?tCB) math:sum ?pi1B .
529
- # (?pA ?AC) math:product ?tAC .
530
- # (?pB ?BC) math:product ?tBC .
531
- # (?pC ?CC) math:product ?tCC .
532
- # (?tAC ?tBC) math:sum ?s3 .
533
- # (?s3 ?tCC) math:sum ?pi1C .
534
- # } => {
535
- # _:b5 :pA ?pi1A .
536
- # _:b5 :pB ?pi1B .
537
- # _:b5 :pC ?pi1C .
538
- # :MC1 :pi1 _:b5 .
539
- # } .
540
- # with substitution (on rule variables):
541
- # ?AA = 0.80
542
- # ?AB = 0.15
543
- # ?AC = 0.05
544
- # ?BA = 0.10
545
- # ?BB = 0.70
546
- # ?BC = 0.20
547
- # ?CA = 0.25
548
- # ?CB = 0.25
549
- # ?CC = 0.50
550
- # ?pA = 0.60
551
- # ?pB = 0.30
552
- # ?pC = 0.10
553
- # ?pi = _:b4
554
- # ?pi1A = "0.535"^^xsd:decimal
555
- # ?pi1B = "0.325"^^xsd:decimal
556
- # ?pi1C = "0.14"^^xsd:decimal
557
- # ?rA = _:b1
558
- # ?rB = _:b2
559
- # ?rC = _:b3
560
- # ?s1 = "0.51"^^xsd:decimal
561
- # ?s2 = "0.3"^^xsd:decimal
562
- # ?s3 = "0.09"^^xsd:decimal
563
- # ?tAA = "0.48"^^xsd:decimal
564
- # ?tAB = "0.09"^^xsd:decimal
565
- # ?tAC = "0.03"^^xsd:decimal
566
- # ?tBA = "0.03"^^xsd:decimal
567
- # ?tBB = "0.21"^^xsd:decimal
568
- # ?tBC = "0.06"^^xsd:decimal
569
- # ?tCA = "0.025"^^xsd:decimal
570
- # ?tCB = "0.025"^^xsd:decimal
571
- # ?tCC = "0.05"^^xsd:decimal
572
- # Therefore the derived triple above is entailed by the rules and facts.
573
- # ----------------------------------------------------------------------
574
-
575
10
  :MC1 :pi1 _:sk_0 .
576
-
577
- # ----------------------------------------------------------------------
578
- # Proof for derived triple:
579
- # _:sk_1 :pA "0.49550000000000005"^^xsd:decimal .
580
- # It holds because the following instance of the rule body is provable:
581
- # :MC1 :pi1 _:sk_0 .
582
- # :MC1 :row _:b1 .
583
- # _:b1 :from :A .
584
- # _:b1 :pA 0.80 .
585
- # _:b1 :pB 0.15 .
586
- # _:b1 :pC 0.05 .
587
- # :MC1 :row _:b2 .
588
- # _:b2 :from :B .
589
- # _:b2 :pA 0.10 .
590
- # _:b2 :pB 0.70 .
591
- # _:b2 :pC 0.20 .
592
- # :MC1 :row _:b3 .
593
- # _:b3 :from :C .
594
- # _:b3 :pA 0.25 .
595
- # _:b3 :pB 0.25 .
596
- # _:b3 :pC 0.50 .
597
- # _:sk_0 :pA "0.535"^^xsd:decimal .
598
- # _:sk_0 :pB "0.325"^^xsd:decimal .
599
- # _:sk_0 :pC "0.14"^^xsd:decimal .
600
- # ("0.535"^^xsd:decimal 0.80) math:product "0.42800000000000005"^^xsd:decimal .
601
- # ("0.325"^^xsd:decimal 0.10) math:product "0.0325"^^xsd:decimal .
602
- # ("0.14"^^xsd:decimal 0.25) math:product "0.035"^^xsd:decimal .
603
- # ("0.42800000000000005"^^xsd:decimal "0.0325"^^xsd:decimal) math:sum "0.4605"^^xsd:decimal .
604
- # ("0.4605"^^xsd:decimal "0.035"^^xsd:decimal) math:sum "0.49550000000000005"^^xsd:decimal .
605
- # ("0.535"^^xsd:decimal 0.15) math:product "0.08025"^^xsd:decimal .
606
- # ("0.325"^^xsd:decimal 0.70) math:product "0.22749999999999998"^^xsd:decimal .
607
- # ("0.14"^^xsd:decimal 0.25) math:product "0.035"^^xsd:decimal .
608
- # ("0.08025"^^xsd:decimal "0.22749999999999998"^^xsd:decimal) math:sum "0.30774999999999997"^^xsd:decimal .
609
- # ("0.30774999999999997"^^xsd:decimal "0.035"^^xsd:decimal) math:sum "0.34275"^^xsd:decimal .
610
- # ("0.535"^^xsd:decimal 0.05) math:product "0.026750000000000003"^^xsd:decimal .
611
- # ("0.325"^^xsd:decimal 0.20) math:product "0.065"^^xsd:decimal .
612
- # ("0.14"^^xsd:decimal 0.50) math:product "0.07"^^xsd:decimal .
613
- # ("0.026750000000000003"^^xsd:decimal "0.065"^^xsd:decimal) math:sum "0.09175"^^xsd:decimal .
614
- # ("0.09175"^^xsd:decimal "0.07"^^xsd:decimal) math:sum "0.16175"^^xsd:decimal .
615
- # via the schematic forward rule:
616
- # {
617
- # :MC1 :pi1 ?pi .
618
- # :MC1 :row ?rA .
619
- # ?rA :from :A .
620
- # ?rA :pA ?AA .
621
- # ?rA :pB ?AB .
622
- # ?rA :pC ?AC .
623
- # :MC1 :row ?rB .
624
- # ?rB :from :B .
625
- # ?rB :pA ?BA .
626
- # ?rB :pB ?BB .
627
- # ?rB :pC ?BC .
628
- # :MC1 :row ?rC .
629
- # ?rC :from :C .
630
- # ?rC :pA ?CA .
631
- # ?rC :pB ?CB .
632
- # ?rC :pC ?CC .
633
- # ?pi :pA ?pA .
634
- # ?pi :pB ?pB .
635
- # ?pi :pC ?pC .
636
- # (?pA ?AA) math:product ?tAA .
637
- # (?pB ?BA) math:product ?tBA .
638
- # (?pC ?CA) math:product ?tCA .
639
- # (?tAA ?tBA) math:sum ?s1 .
640
- # (?s1 ?tCA) math:sum ?pi2A .
641
- # (?pA ?AB) math:product ?tAB .
642
- # (?pB ?BB) math:product ?tBB .
643
- # (?pC ?CB) math:product ?tCB .
644
- # (?tAB ?tBB) math:sum ?s2 .
645
- # (?s2 ?tCB) math:sum ?pi2B .
646
- # (?pA ?AC) math:product ?tAC .
647
- # (?pB ?BC) math:product ?tBC .
648
- # (?pC ?CC) math:product ?tCC .
649
- # (?tAC ?tBC) math:sum ?s3 .
650
- # (?s3 ?tCC) math:sum ?pi2C .
651
- # } => {
652
- # _:b6 :pA ?pi2A .
653
- # _:b6 :pB ?pi2B .
654
- # _:b6 :pC ?pi2C .
655
- # :MC1 :pi2 _:b6 .
656
- # } .
657
- # with substitution (on rule variables):
658
- # ?AA = 0.80
659
- # ?AB = 0.15
660
- # ?AC = 0.05
661
- # ?BA = 0.10
662
- # ?BB = 0.70
663
- # ?BC = 0.20
664
- # ?CA = 0.25
665
- # ?CB = 0.25
666
- # ?CC = 0.50
667
- # ?pA = "0.535"^^xsd:decimal
668
- # ?pB = "0.325"^^xsd:decimal
669
- # ?pC = "0.14"^^xsd:decimal
670
- # ?pi = _:sk_0
671
- # ?pi2A = "0.49550000000000005"^^xsd:decimal
672
- # ?pi2B = "0.34275"^^xsd:decimal
673
- # ?pi2C = "0.16175"^^xsd:decimal
674
- # ?rA = _:b1
675
- # ?rB = _:b2
676
- # ?rC = _:b3
677
- # ?s1 = "0.4605"^^xsd:decimal
678
- # ?s2 = "0.30774999999999997"^^xsd:decimal
679
- # ?s3 = "0.09175"^^xsd:decimal
680
- # ?tAA = "0.42800000000000005"^^xsd:decimal
681
- # ?tAB = "0.08025"^^xsd:decimal
682
- # ?tAC = "0.026750000000000003"^^xsd:decimal
683
- # ?tBA = "0.0325"^^xsd:decimal
684
- # ?tBB = "0.22749999999999998"^^xsd:decimal
685
- # ?tBC = "0.065"^^xsd:decimal
686
- # ?tCA = "0.035"^^xsd:decimal
687
- # ?tCB = "0.035"^^xsd:decimal
688
- # ?tCC = "0.07"^^xsd:decimal
689
- # Therefore the derived triple above is entailed by the rules and facts.
690
- # ----------------------------------------------------------------------
691
-
692
11
  _:sk_1 :pA "0.49550000000000005"^^xsd:decimal .
693
-
694
- # ----------------------------------------------------------------------
695
- # Proof for derived triple:
696
- # _:sk_1 :pB "0.34275"^^xsd:decimal .
697
- # It holds because the following instance of the rule body is provable:
698
- # :MC1 :pi1 _:sk_0 .
699
- # :MC1 :row _:b1 .
700
- # _:b1 :from :A .
701
- # _:b1 :pA 0.80 .
702
- # _:b1 :pB 0.15 .
703
- # _:b1 :pC 0.05 .
704
- # :MC1 :row _:b2 .
705
- # _:b2 :from :B .
706
- # _:b2 :pA 0.10 .
707
- # _:b2 :pB 0.70 .
708
- # _:b2 :pC 0.20 .
709
- # :MC1 :row _:b3 .
710
- # _:b3 :from :C .
711
- # _:b3 :pA 0.25 .
712
- # _:b3 :pB 0.25 .
713
- # _:b3 :pC 0.50 .
714
- # _:sk_0 :pA "0.535"^^xsd:decimal .
715
- # _:sk_0 :pB "0.325"^^xsd:decimal .
716
- # _:sk_0 :pC "0.14"^^xsd:decimal .
717
- # ("0.535"^^xsd:decimal 0.80) math:product "0.42800000000000005"^^xsd:decimal .
718
- # ("0.325"^^xsd:decimal 0.10) math:product "0.0325"^^xsd:decimal .
719
- # ("0.14"^^xsd:decimal 0.25) math:product "0.035"^^xsd:decimal .
720
- # ("0.42800000000000005"^^xsd:decimal "0.0325"^^xsd:decimal) math:sum "0.4605"^^xsd:decimal .
721
- # ("0.4605"^^xsd:decimal "0.035"^^xsd:decimal) math:sum "0.49550000000000005"^^xsd:decimal .
722
- # ("0.535"^^xsd:decimal 0.15) math:product "0.08025"^^xsd:decimal .
723
- # ("0.325"^^xsd:decimal 0.70) math:product "0.22749999999999998"^^xsd:decimal .
724
- # ("0.14"^^xsd:decimal 0.25) math:product "0.035"^^xsd:decimal .
725
- # ("0.08025"^^xsd:decimal "0.22749999999999998"^^xsd:decimal) math:sum "0.30774999999999997"^^xsd:decimal .
726
- # ("0.30774999999999997"^^xsd:decimal "0.035"^^xsd:decimal) math:sum "0.34275"^^xsd:decimal .
727
- # ("0.535"^^xsd:decimal 0.05) math:product "0.026750000000000003"^^xsd:decimal .
728
- # ("0.325"^^xsd:decimal 0.20) math:product "0.065"^^xsd:decimal .
729
- # ("0.14"^^xsd:decimal 0.50) math:product "0.07"^^xsd:decimal .
730
- # ("0.026750000000000003"^^xsd:decimal "0.065"^^xsd:decimal) math:sum "0.09175"^^xsd:decimal .
731
- # ("0.09175"^^xsd:decimal "0.07"^^xsd:decimal) math:sum "0.16175"^^xsd:decimal .
732
- # via the schematic forward rule:
733
- # {
734
- # :MC1 :pi1 ?pi .
735
- # :MC1 :row ?rA .
736
- # ?rA :from :A .
737
- # ?rA :pA ?AA .
738
- # ?rA :pB ?AB .
739
- # ?rA :pC ?AC .
740
- # :MC1 :row ?rB .
741
- # ?rB :from :B .
742
- # ?rB :pA ?BA .
743
- # ?rB :pB ?BB .
744
- # ?rB :pC ?BC .
745
- # :MC1 :row ?rC .
746
- # ?rC :from :C .
747
- # ?rC :pA ?CA .
748
- # ?rC :pB ?CB .
749
- # ?rC :pC ?CC .
750
- # ?pi :pA ?pA .
751
- # ?pi :pB ?pB .
752
- # ?pi :pC ?pC .
753
- # (?pA ?AA) math:product ?tAA .
754
- # (?pB ?BA) math:product ?tBA .
755
- # (?pC ?CA) math:product ?tCA .
756
- # (?tAA ?tBA) math:sum ?s1 .
757
- # (?s1 ?tCA) math:sum ?pi2A .
758
- # (?pA ?AB) math:product ?tAB .
759
- # (?pB ?BB) math:product ?tBB .
760
- # (?pC ?CB) math:product ?tCB .
761
- # (?tAB ?tBB) math:sum ?s2 .
762
- # (?s2 ?tCB) math:sum ?pi2B .
763
- # (?pA ?AC) math:product ?tAC .
764
- # (?pB ?BC) math:product ?tBC .
765
- # (?pC ?CC) math:product ?tCC .
766
- # (?tAC ?tBC) math:sum ?s3 .
767
- # (?s3 ?tCC) math:sum ?pi2C .
768
- # } => {
769
- # _:b6 :pA ?pi2A .
770
- # _:b6 :pB ?pi2B .
771
- # _:b6 :pC ?pi2C .
772
- # :MC1 :pi2 _:b6 .
773
- # } .
774
- # with substitution (on rule variables):
775
- # ?AA = 0.80
776
- # ?AB = 0.15
777
- # ?AC = 0.05
778
- # ?BA = 0.10
779
- # ?BB = 0.70
780
- # ?BC = 0.20
781
- # ?CA = 0.25
782
- # ?CB = 0.25
783
- # ?CC = 0.50
784
- # ?pA = "0.535"^^xsd:decimal
785
- # ?pB = "0.325"^^xsd:decimal
786
- # ?pC = "0.14"^^xsd:decimal
787
- # ?pi = _:sk_0
788
- # ?pi2A = "0.49550000000000005"^^xsd:decimal
789
- # ?pi2B = "0.34275"^^xsd:decimal
790
- # ?pi2C = "0.16175"^^xsd:decimal
791
- # ?rA = _:b1
792
- # ?rB = _:b2
793
- # ?rC = _:b3
794
- # ?s1 = "0.4605"^^xsd:decimal
795
- # ?s2 = "0.30774999999999997"^^xsd:decimal
796
- # ?s3 = "0.09175"^^xsd:decimal
797
- # ?tAA = "0.42800000000000005"^^xsd:decimal
798
- # ?tAB = "0.08025"^^xsd:decimal
799
- # ?tAC = "0.026750000000000003"^^xsd:decimal
800
- # ?tBA = "0.0325"^^xsd:decimal
801
- # ?tBB = "0.22749999999999998"^^xsd:decimal
802
- # ?tBC = "0.065"^^xsd:decimal
803
- # ?tCA = "0.035"^^xsd:decimal
804
- # ?tCB = "0.035"^^xsd:decimal
805
- # ?tCC = "0.07"^^xsd:decimal
806
- # Therefore the derived triple above is entailed by the rules and facts.
807
- # ----------------------------------------------------------------------
808
-
809
12
  _:sk_1 :pB "0.34275"^^xsd:decimal .
810
-
811
- # ----------------------------------------------------------------------
812
- # Proof for derived triple:
813
- # _:sk_1 :pC "0.16175"^^xsd:decimal .
814
- # It holds because the following instance of the rule body is provable:
815
- # :MC1 :pi1 _:sk_0 .
816
- # :MC1 :row _:b1 .
817
- # _:b1 :from :A .
818
- # _:b1 :pA 0.80 .
819
- # _:b1 :pB 0.15 .
820
- # _:b1 :pC 0.05 .
821
- # :MC1 :row _:b2 .
822
- # _:b2 :from :B .
823
- # _:b2 :pA 0.10 .
824
- # _:b2 :pB 0.70 .
825
- # _:b2 :pC 0.20 .
826
- # :MC1 :row _:b3 .
827
- # _:b3 :from :C .
828
- # _:b3 :pA 0.25 .
829
- # _:b3 :pB 0.25 .
830
- # _:b3 :pC 0.50 .
831
- # _:sk_0 :pA "0.535"^^xsd:decimal .
832
- # _:sk_0 :pB "0.325"^^xsd:decimal .
833
- # _:sk_0 :pC "0.14"^^xsd:decimal .
834
- # ("0.535"^^xsd:decimal 0.80) math:product "0.42800000000000005"^^xsd:decimal .
835
- # ("0.325"^^xsd:decimal 0.10) math:product "0.0325"^^xsd:decimal .
836
- # ("0.14"^^xsd:decimal 0.25) math:product "0.035"^^xsd:decimal .
837
- # ("0.42800000000000005"^^xsd:decimal "0.0325"^^xsd:decimal) math:sum "0.4605"^^xsd:decimal .
838
- # ("0.4605"^^xsd:decimal "0.035"^^xsd:decimal) math:sum "0.49550000000000005"^^xsd:decimal .
839
- # ("0.535"^^xsd:decimal 0.15) math:product "0.08025"^^xsd:decimal .
840
- # ("0.325"^^xsd:decimal 0.70) math:product "0.22749999999999998"^^xsd:decimal .
841
- # ("0.14"^^xsd:decimal 0.25) math:product "0.035"^^xsd:decimal .
842
- # ("0.08025"^^xsd:decimal "0.22749999999999998"^^xsd:decimal) math:sum "0.30774999999999997"^^xsd:decimal .
843
- # ("0.30774999999999997"^^xsd:decimal "0.035"^^xsd:decimal) math:sum "0.34275"^^xsd:decimal .
844
- # ("0.535"^^xsd:decimal 0.05) math:product "0.026750000000000003"^^xsd:decimal .
845
- # ("0.325"^^xsd:decimal 0.20) math:product "0.065"^^xsd:decimal .
846
- # ("0.14"^^xsd:decimal 0.50) math:product "0.07"^^xsd:decimal .
847
- # ("0.026750000000000003"^^xsd:decimal "0.065"^^xsd:decimal) math:sum "0.09175"^^xsd:decimal .
848
- # ("0.09175"^^xsd:decimal "0.07"^^xsd:decimal) math:sum "0.16175"^^xsd:decimal .
849
- # via the schematic forward rule:
850
- # {
851
- # :MC1 :pi1 ?pi .
852
- # :MC1 :row ?rA .
853
- # ?rA :from :A .
854
- # ?rA :pA ?AA .
855
- # ?rA :pB ?AB .
856
- # ?rA :pC ?AC .
857
- # :MC1 :row ?rB .
858
- # ?rB :from :B .
859
- # ?rB :pA ?BA .
860
- # ?rB :pB ?BB .
861
- # ?rB :pC ?BC .
862
- # :MC1 :row ?rC .
863
- # ?rC :from :C .
864
- # ?rC :pA ?CA .
865
- # ?rC :pB ?CB .
866
- # ?rC :pC ?CC .
867
- # ?pi :pA ?pA .
868
- # ?pi :pB ?pB .
869
- # ?pi :pC ?pC .
870
- # (?pA ?AA) math:product ?tAA .
871
- # (?pB ?BA) math:product ?tBA .
872
- # (?pC ?CA) math:product ?tCA .
873
- # (?tAA ?tBA) math:sum ?s1 .
874
- # (?s1 ?tCA) math:sum ?pi2A .
875
- # (?pA ?AB) math:product ?tAB .
876
- # (?pB ?BB) math:product ?tBB .
877
- # (?pC ?CB) math:product ?tCB .
878
- # (?tAB ?tBB) math:sum ?s2 .
879
- # (?s2 ?tCB) math:sum ?pi2B .
880
- # (?pA ?AC) math:product ?tAC .
881
- # (?pB ?BC) math:product ?tBC .
882
- # (?pC ?CC) math:product ?tCC .
883
- # (?tAC ?tBC) math:sum ?s3 .
884
- # (?s3 ?tCC) math:sum ?pi2C .
885
- # } => {
886
- # _:b6 :pA ?pi2A .
887
- # _:b6 :pB ?pi2B .
888
- # _:b6 :pC ?pi2C .
889
- # :MC1 :pi2 _:b6 .
890
- # } .
891
- # with substitution (on rule variables):
892
- # ?AA = 0.80
893
- # ?AB = 0.15
894
- # ?AC = 0.05
895
- # ?BA = 0.10
896
- # ?BB = 0.70
897
- # ?BC = 0.20
898
- # ?CA = 0.25
899
- # ?CB = 0.25
900
- # ?CC = 0.50
901
- # ?pA = "0.535"^^xsd:decimal
902
- # ?pB = "0.325"^^xsd:decimal
903
- # ?pC = "0.14"^^xsd:decimal
904
- # ?pi = _:sk_0
905
- # ?pi2A = "0.49550000000000005"^^xsd:decimal
906
- # ?pi2B = "0.34275"^^xsd:decimal
907
- # ?pi2C = "0.16175"^^xsd:decimal
908
- # ?rA = _:b1
909
- # ?rB = _:b2
910
- # ?rC = _:b3
911
- # ?s1 = "0.4605"^^xsd:decimal
912
- # ?s2 = "0.30774999999999997"^^xsd:decimal
913
- # ?s3 = "0.09175"^^xsd:decimal
914
- # ?tAA = "0.42800000000000005"^^xsd:decimal
915
- # ?tAB = "0.08025"^^xsd:decimal
916
- # ?tAC = "0.026750000000000003"^^xsd:decimal
917
- # ?tBA = "0.0325"^^xsd:decimal
918
- # ?tBB = "0.22749999999999998"^^xsd:decimal
919
- # ?tBC = "0.065"^^xsd:decimal
920
- # ?tCA = "0.035"^^xsd:decimal
921
- # ?tCB = "0.035"^^xsd:decimal
922
- # ?tCC = "0.07"^^xsd:decimal
923
- # Therefore the derived triple above is entailed by the rules and facts.
924
- # ----------------------------------------------------------------------
925
-
926
13
  _:sk_1 :pC "0.16175"^^xsd:decimal .
927
-
928
- # ----------------------------------------------------------------------
929
- # Proof for derived triple:
930
- # :MC1 :pi2 _:sk_1 .
931
- # It holds because the following instance of the rule body is provable:
932
- # :MC1 :pi1 _:sk_0 .
933
- # :MC1 :row _:b1 .
934
- # _:b1 :from :A .
935
- # _:b1 :pA 0.80 .
936
- # _:b1 :pB 0.15 .
937
- # _:b1 :pC 0.05 .
938
- # :MC1 :row _:b2 .
939
- # _:b2 :from :B .
940
- # _:b2 :pA 0.10 .
941
- # _:b2 :pB 0.70 .
942
- # _:b2 :pC 0.20 .
943
- # :MC1 :row _:b3 .
944
- # _:b3 :from :C .
945
- # _:b3 :pA 0.25 .
946
- # _:b3 :pB 0.25 .
947
- # _:b3 :pC 0.50 .
948
- # _:sk_0 :pA "0.535"^^xsd:decimal .
949
- # _:sk_0 :pB "0.325"^^xsd:decimal .
950
- # _:sk_0 :pC "0.14"^^xsd:decimal .
951
- # ("0.535"^^xsd:decimal 0.80) math:product "0.42800000000000005"^^xsd:decimal .
952
- # ("0.325"^^xsd:decimal 0.10) math:product "0.0325"^^xsd:decimal .
953
- # ("0.14"^^xsd:decimal 0.25) math:product "0.035"^^xsd:decimal .
954
- # ("0.42800000000000005"^^xsd:decimal "0.0325"^^xsd:decimal) math:sum "0.4605"^^xsd:decimal .
955
- # ("0.4605"^^xsd:decimal "0.035"^^xsd:decimal) math:sum "0.49550000000000005"^^xsd:decimal .
956
- # ("0.535"^^xsd:decimal 0.15) math:product "0.08025"^^xsd:decimal .
957
- # ("0.325"^^xsd:decimal 0.70) math:product "0.22749999999999998"^^xsd:decimal .
958
- # ("0.14"^^xsd:decimal 0.25) math:product "0.035"^^xsd:decimal .
959
- # ("0.08025"^^xsd:decimal "0.22749999999999998"^^xsd:decimal) math:sum "0.30774999999999997"^^xsd:decimal .
960
- # ("0.30774999999999997"^^xsd:decimal "0.035"^^xsd:decimal) math:sum "0.34275"^^xsd:decimal .
961
- # ("0.535"^^xsd:decimal 0.05) math:product "0.026750000000000003"^^xsd:decimal .
962
- # ("0.325"^^xsd:decimal 0.20) math:product "0.065"^^xsd:decimal .
963
- # ("0.14"^^xsd:decimal 0.50) math:product "0.07"^^xsd:decimal .
964
- # ("0.026750000000000003"^^xsd:decimal "0.065"^^xsd:decimal) math:sum "0.09175"^^xsd:decimal .
965
- # ("0.09175"^^xsd:decimal "0.07"^^xsd:decimal) math:sum "0.16175"^^xsd:decimal .
966
- # via the schematic forward rule:
967
- # {
968
- # :MC1 :pi1 ?pi .
969
- # :MC1 :row ?rA .
970
- # ?rA :from :A .
971
- # ?rA :pA ?AA .
972
- # ?rA :pB ?AB .
973
- # ?rA :pC ?AC .
974
- # :MC1 :row ?rB .
975
- # ?rB :from :B .
976
- # ?rB :pA ?BA .
977
- # ?rB :pB ?BB .
978
- # ?rB :pC ?BC .
979
- # :MC1 :row ?rC .
980
- # ?rC :from :C .
981
- # ?rC :pA ?CA .
982
- # ?rC :pB ?CB .
983
- # ?rC :pC ?CC .
984
- # ?pi :pA ?pA .
985
- # ?pi :pB ?pB .
986
- # ?pi :pC ?pC .
987
- # (?pA ?AA) math:product ?tAA .
988
- # (?pB ?BA) math:product ?tBA .
989
- # (?pC ?CA) math:product ?tCA .
990
- # (?tAA ?tBA) math:sum ?s1 .
991
- # (?s1 ?tCA) math:sum ?pi2A .
992
- # (?pA ?AB) math:product ?tAB .
993
- # (?pB ?BB) math:product ?tBB .
994
- # (?pC ?CB) math:product ?tCB .
995
- # (?tAB ?tBB) math:sum ?s2 .
996
- # (?s2 ?tCB) math:sum ?pi2B .
997
- # (?pA ?AC) math:product ?tAC .
998
- # (?pB ?BC) math:product ?tBC .
999
- # (?pC ?CC) math:product ?tCC .
1000
- # (?tAC ?tBC) math:sum ?s3 .
1001
- # (?s3 ?tCC) math:sum ?pi2C .
1002
- # } => {
1003
- # _:b6 :pA ?pi2A .
1004
- # _:b6 :pB ?pi2B .
1005
- # _:b6 :pC ?pi2C .
1006
- # :MC1 :pi2 _:b6 .
1007
- # } .
1008
- # with substitution (on rule variables):
1009
- # ?AA = 0.80
1010
- # ?AB = 0.15
1011
- # ?AC = 0.05
1012
- # ?BA = 0.10
1013
- # ?BB = 0.70
1014
- # ?BC = 0.20
1015
- # ?CA = 0.25
1016
- # ?CB = 0.25
1017
- # ?CC = 0.50
1018
- # ?pA = "0.535"^^xsd:decimal
1019
- # ?pB = "0.325"^^xsd:decimal
1020
- # ?pC = "0.14"^^xsd:decimal
1021
- # ?pi = _:sk_0
1022
- # ?pi2A = "0.49550000000000005"^^xsd:decimal
1023
- # ?pi2B = "0.34275"^^xsd:decimal
1024
- # ?pi2C = "0.16175"^^xsd:decimal
1025
- # ?rA = _:b1
1026
- # ?rB = _:b2
1027
- # ?rC = _:b3
1028
- # ?s1 = "0.4605"^^xsd:decimal
1029
- # ?s2 = "0.30774999999999997"^^xsd:decimal
1030
- # ?s3 = "0.09175"^^xsd:decimal
1031
- # ?tAA = "0.42800000000000005"^^xsd:decimal
1032
- # ?tAB = "0.08025"^^xsd:decimal
1033
- # ?tAC = "0.026750000000000003"^^xsd:decimal
1034
- # ?tBA = "0.0325"^^xsd:decimal
1035
- # ?tBB = "0.22749999999999998"^^xsd:decimal
1036
- # ?tBC = "0.065"^^xsd:decimal
1037
- # ?tCA = "0.035"^^xsd:decimal
1038
- # ?tCB = "0.035"^^xsd:decimal
1039
- # ?tCC = "0.07"^^xsd:decimal
1040
- # Therefore the derived triple above is entailed by the rules and facts.
1041
- # ----------------------------------------------------------------------
1042
-
1043
14
  :MC1 :pi2 _:sk_1 .
1044
-
1045
- # ----------------------------------------------------------------------
1046
- # Proof for derived triple:
1047
- # _:sk_2 :pA "0.4711125000000001"^^xsd:decimal .
1048
- # It holds because the following instance of the rule body is provable:
1049
- # :MC1 :pi2 _:sk_1 .
1050
- # :MC1 :row _:b1 .
1051
- # _:b1 :from :A .
1052
- # _:b1 :pA 0.80 .
1053
- # _:b1 :pB 0.15 .
1054
- # _:b1 :pC 0.05 .
1055
- # :MC1 :row _:b2 .
1056
- # _:b2 :from :B .
1057
- # _:b2 :pA 0.10 .
1058
- # _:b2 :pB 0.70 .
1059
- # _:b2 :pC 0.20 .
1060
- # :MC1 :row _:b3 .
1061
- # _:b3 :from :C .
1062
- # _:b3 :pA 0.25 .
1063
- # _:b3 :pB 0.25 .
1064
- # _:b3 :pC 0.50 .
1065
- # _:sk_1 :pA "0.49550000000000005"^^xsd:decimal .
1066
- # _:sk_1 :pB "0.34275"^^xsd:decimal .
1067
- # _:sk_1 :pC "0.16175"^^xsd:decimal .
1068
- # ("0.49550000000000005"^^xsd:decimal 0.80) math:product "0.3964000000000001"^^xsd:decimal .
1069
- # ("0.34275"^^xsd:decimal 0.10) math:product "0.034275"^^xsd:decimal .
1070
- # ("0.16175"^^xsd:decimal 0.25) math:product "0.0404375"^^xsd:decimal .
1071
- # ("0.3964000000000001"^^xsd:decimal "0.034275"^^xsd:decimal) math:sum "0.4306750000000001"^^xsd:decimal .
1072
- # ("0.4306750000000001"^^xsd:decimal "0.0404375"^^xsd:decimal) math:sum "0.4711125000000001"^^xsd:decimal .
1073
- # ("0.49550000000000005"^^xsd:decimal 0.15) math:product "0.074325"^^xsd:decimal .
1074
- # ("0.34275"^^xsd:decimal 0.70) math:product "0.23992499999999997"^^xsd:decimal .
1075
- # ("0.16175"^^xsd:decimal 0.25) math:product "0.0404375"^^xsd:decimal .
1076
- # ("0.074325"^^xsd:decimal "0.23992499999999997"^^xsd:decimal) math:sum "0.31425"^^xsd:decimal .
1077
- # ("0.31425"^^xsd:decimal "0.0404375"^^xsd:decimal) math:sum "0.3546875"^^xsd:decimal .
1078
- # ("0.49550000000000005"^^xsd:decimal 0.05) math:product "0.024775000000000005"^^xsd:decimal .
1079
- # ("0.34275"^^xsd:decimal 0.20) math:product "0.06855"^^xsd:decimal .
1080
- # ("0.16175"^^xsd:decimal 0.50) math:product "0.080875"^^xsd:decimal .
1081
- # ("0.024775000000000005"^^xsd:decimal "0.06855"^^xsd:decimal) math:sum "0.093325"^^xsd:decimal .
1082
- # ("0.093325"^^xsd:decimal "0.080875"^^xsd:decimal) math:sum "0.17420000000000002"^^xsd:decimal .
1083
- # via the schematic forward rule:
1084
- # {
1085
- # :MC1 :pi2 ?pi .
1086
- # :MC1 :row ?rA .
1087
- # ?rA :from :A .
1088
- # ?rA :pA ?AA .
1089
- # ?rA :pB ?AB .
1090
- # ?rA :pC ?AC .
1091
- # :MC1 :row ?rB .
1092
- # ?rB :from :B .
1093
- # ?rB :pA ?BA .
1094
- # ?rB :pB ?BB .
1095
- # ?rB :pC ?BC .
1096
- # :MC1 :row ?rC .
1097
- # ?rC :from :C .
1098
- # ?rC :pA ?CA .
1099
- # ?rC :pB ?CB .
1100
- # ?rC :pC ?CC .
1101
- # ?pi :pA ?pA .
1102
- # ?pi :pB ?pB .
1103
- # ?pi :pC ?pC .
1104
- # (?pA ?AA) math:product ?tAA .
1105
- # (?pB ?BA) math:product ?tBA .
1106
- # (?pC ?CA) math:product ?tCA .
1107
- # (?tAA ?tBA) math:sum ?s1 .
1108
- # (?s1 ?tCA) math:sum ?pi3A .
1109
- # (?pA ?AB) math:product ?tAB .
1110
- # (?pB ?BB) math:product ?tBB .
1111
- # (?pC ?CB) math:product ?tCB .
1112
- # (?tAB ?tBB) math:sum ?s2 .
1113
- # (?s2 ?tCB) math:sum ?pi3B .
1114
- # (?pA ?AC) math:product ?tAC .
1115
- # (?pB ?BC) math:product ?tBC .
1116
- # (?pC ?CC) math:product ?tCC .
1117
- # (?tAC ?tBC) math:sum ?s3 .
1118
- # (?s3 ?tCC) math:sum ?pi3C .
1119
- # } => {
1120
- # _:b7 :pA ?pi3A .
1121
- # _:b7 :pB ?pi3B .
1122
- # _:b7 :pC ?pi3C .
1123
- # :MC1 :pi3 _:b7 .
1124
- # } .
1125
- # with substitution (on rule variables):
1126
- # ?AA = 0.80
1127
- # ?AB = 0.15
1128
- # ?AC = 0.05
1129
- # ?BA = 0.10
1130
- # ?BB = 0.70
1131
- # ?BC = 0.20
1132
- # ?CA = 0.25
1133
- # ?CB = 0.25
1134
- # ?CC = 0.50
1135
- # ?pA = "0.49550000000000005"^^xsd:decimal
1136
- # ?pB = "0.34275"^^xsd:decimal
1137
- # ?pC = "0.16175"^^xsd:decimal
1138
- # ?pi = _:sk_1
1139
- # ?pi3A = "0.4711125000000001"^^xsd:decimal
1140
- # ?pi3B = "0.3546875"^^xsd:decimal
1141
- # ?pi3C = "0.17420000000000002"^^xsd:decimal
1142
- # ?rA = _:b1
1143
- # ?rB = _:b2
1144
- # ?rC = _:b3
1145
- # ?s1 = "0.4306750000000001"^^xsd:decimal
1146
- # ?s2 = "0.31425"^^xsd:decimal
1147
- # ?s3 = "0.093325"^^xsd:decimal
1148
- # ?tAA = "0.3964000000000001"^^xsd:decimal
1149
- # ?tAB = "0.074325"^^xsd:decimal
1150
- # ?tAC = "0.024775000000000005"^^xsd:decimal
1151
- # ?tBA = "0.034275"^^xsd:decimal
1152
- # ?tBB = "0.23992499999999997"^^xsd:decimal
1153
- # ?tBC = "0.06855"^^xsd:decimal
1154
- # ?tCA = "0.0404375"^^xsd:decimal
1155
- # ?tCB = "0.0404375"^^xsd:decimal
1156
- # ?tCC = "0.080875"^^xsd:decimal
1157
- # Therefore the derived triple above is entailed by the rules and facts.
1158
- # ----------------------------------------------------------------------
1159
-
1160
15
  _:sk_2 :pA "0.4711125000000001"^^xsd:decimal .
1161
-
1162
- # ----------------------------------------------------------------------
1163
- # Proof for derived triple:
1164
- # _:sk_2 :pB "0.3546875"^^xsd:decimal .
1165
- # It holds because the following instance of the rule body is provable:
1166
- # :MC1 :pi2 _:sk_1 .
1167
- # :MC1 :row _:b1 .
1168
- # _:b1 :from :A .
1169
- # _:b1 :pA 0.80 .
1170
- # _:b1 :pB 0.15 .
1171
- # _:b1 :pC 0.05 .
1172
- # :MC1 :row _:b2 .
1173
- # _:b2 :from :B .
1174
- # _:b2 :pA 0.10 .
1175
- # _:b2 :pB 0.70 .
1176
- # _:b2 :pC 0.20 .
1177
- # :MC1 :row _:b3 .
1178
- # _:b3 :from :C .
1179
- # _:b3 :pA 0.25 .
1180
- # _:b3 :pB 0.25 .
1181
- # _:b3 :pC 0.50 .
1182
- # _:sk_1 :pA "0.49550000000000005"^^xsd:decimal .
1183
- # _:sk_1 :pB "0.34275"^^xsd:decimal .
1184
- # _:sk_1 :pC "0.16175"^^xsd:decimal .
1185
- # ("0.49550000000000005"^^xsd:decimal 0.80) math:product "0.3964000000000001"^^xsd:decimal .
1186
- # ("0.34275"^^xsd:decimal 0.10) math:product "0.034275"^^xsd:decimal .
1187
- # ("0.16175"^^xsd:decimal 0.25) math:product "0.0404375"^^xsd:decimal .
1188
- # ("0.3964000000000001"^^xsd:decimal "0.034275"^^xsd:decimal) math:sum "0.4306750000000001"^^xsd:decimal .
1189
- # ("0.4306750000000001"^^xsd:decimal "0.0404375"^^xsd:decimal) math:sum "0.4711125000000001"^^xsd:decimal .
1190
- # ("0.49550000000000005"^^xsd:decimal 0.15) math:product "0.074325"^^xsd:decimal .
1191
- # ("0.34275"^^xsd:decimal 0.70) math:product "0.23992499999999997"^^xsd:decimal .
1192
- # ("0.16175"^^xsd:decimal 0.25) math:product "0.0404375"^^xsd:decimal .
1193
- # ("0.074325"^^xsd:decimal "0.23992499999999997"^^xsd:decimal) math:sum "0.31425"^^xsd:decimal .
1194
- # ("0.31425"^^xsd:decimal "0.0404375"^^xsd:decimal) math:sum "0.3546875"^^xsd:decimal .
1195
- # ("0.49550000000000005"^^xsd:decimal 0.05) math:product "0.024775000000000005"^^xsd:decimal .
1196
- # ("0.34275"^^xsd:decimal 0.20) math:product "0.06855"^^xsd:decimal .
1197
- # ("0.16175"^^xsd:decimal 0.50) math:product "0.080875"^^xsd:decimal .
1198
- # ("0.024775000000000005"^^xsd:decimal "0.06855"^^xsd:decimal) math:sum "0.093325"^^xsd:decimal .
1199
- # ("0.093325"^^xsd:decimal "0.080875"^^xsd:decimal) math:sum "0.17420000000000002"^^xsd:decimal .
1200
- # via the schematic forward rule:
1201
- # {
1202
- # :MC1 :pi2 ?pi .
1203
- # :MC1 :row ?rA .
1204
- # ?rA :from :A .
1205
- # ?rA :pA ?AA .
1206
- # ?rA :pB ?AB .
1207
- # ?rA :pC ?AC .
1208
- # :MC1 :row ?rB .
1209
- # ?rB :from :B .
1210
- # ?rB :pA ?BA .
1211
- # ?rB :pB ?BB .
1212
- # ?rB :pC ?BC .
1213
- # :MC1 :row ?rC .
1214
- # ?rC :from :C .
1215
- # ?rC :pA ?CA .
1216
- # ?rC :pB ?CB .
1217
- # ?rC :pC ?CC .
1218
- # ?pi :pA ?pA .
1219
- # ?pi :pB ?pB .
1220
- # ?pi :pC ?pC .
1221
- # (?pA ?AA) math:product ?tAA .
1222
- # (?pB ?BA) math:product ?tBA .
1223
- # (?pC ?CA) math:product ?tCA .
1224
- # (?tAA ?tBA) math:sum ?s1 .
1225
- # (?s1 ?tCA) math:sum ?pi3A .
1226
- # (?pA ?AB) math:product ?tAB .
1227
- # (?pB ?BB) math:product ?tBB .
1228
- # (?pC ?CB) math:product ?tCB .
1229
- # (?tAB ?tBB) math:sum ?s2 .
1230
- # (?s2 ?tCB) math:sum ?pi3B .
1231
- # (?pA ?AC) math:product ?tAC .
1232
- # (?pB ?BC) math:product ?tBC .
1233
- # (?pC ?CC) math:product ?tCC .
1234
- # (?tAC ?tBC) math:sum ?s3 .
1235
- # (?s3 ?tCC) math:sum ?pi3C .
1236
- # } => {
1237
- # _:b7 :pA ?pi3A .
1238
- # _:b7 :pB ?pi3B .
1239
- # _:b7 :pC ?pi3C .
1240
- # :MC1 :pi3 _:b7 .
1241
- # } .
1242
- # with substitution (on rule variables):
1243
- # ?AA = 0.80
1244
- # ?AB = 0.15
1245
- # ?AC = 0.05
1246
- # ?BA = 0.10
1247
- # ?BB = 0.70
1248
- # ?BC = 0.20
1249
- # ?CA = 0.25
1250
- # ?CB = 0.25
1251
- # ?CC = 0.50
1252
- # ?pA = "0.49550000000000005"^^xsd:decimal
1253
- # ?pB = "0.34275"^^xsd:decimal
1254
- # ?pC = "0.16175"^^xsd:decimal
1255
- # ?pi = _:sk_1
1256
- # ?pi3A = "0.4711125000000001"^^xsd:decimal
1257
- # ?pi3B = "0.3546875"^^xsd:decimal
1258
- # ?pi3C = "0.17420000000000002"^^xsd:decimal
1259
- # ?rA = _:b1
1260
- # ?rB = _:b2
1261
- # ?rC = _:b3
1262
- # ?s1 = "0.4306750000000001"^^xsd:decimal
1263
- # ?s2 = "0.31425"^^xsd:decimal
1264
- # ?s3 = "0.093325"^^xsd:decimal
1265
- # ?tAA = "0.3964000000000001"^^xsd:decimal
1266
- # ?tAB = "0.074325"^^xsd:decimal
1267
- # ?tAC = "0.024775000000000005"^^xsd:decimal
1268
- # ?tBA = "0.034275"^^xsd:decimal
1269
- # ?tBB = "0.23992499999999997"^^xsd:decimal
1270
- # ?tBC = "0.06855"^^xsd:decimal
1271
- # ?tCA = "0.0404375"^^xsd:decimal
1272
- # ?tCB = "0.0404375"^^xsd:decimal
1273
- # ?tCC = "0.080875"^^xsd:decimal
1274
- # Therefore the derived triple above is entailed by the rules and facts.
1275
- # ----------------------------------------------------------------------
1276
-
1277
16
  _:sk_2 :pB "0.3546875"^^xsd:decimal .
1278
-
1279
- # ----------------------------------------------------------------------
1280
- # Proof for derived triple:
1281
- # _:sk_2 :pC "0.17420000000000002"^^xsd:decimal .
1282
- # It holds because the following instance of the rule body is provable:
1283
- # :MC1 :pi2 _:sk_1 .
1284
- # :MC1 :row _:b1 .
1285
- # _:b1 :from :A .
1286
- # _:b1 :pA 0.80 .
1287
- # _:b1 :pB 0.15 .
1288
- # _:b1 :pC 0.05 .
1289
- # :MC1 :row _:b2 .
1290
- # _:b2 :from :B .
1291
- # _:b2 :pA 0.10 .
1292
- # _:b2 :pB 0.70 .
1293
- # _:b2 :pC 0.20 .
1294
- # :MC1 :row _:b3 .
1295
- # _:b3 :from :C .
1296
- # _:b3 :pA 0.25 .
1297
- # _:b3 :pB 0.25 .
1298
- # _:b3 :pC 0.50 .
1299
- # _:sk_1 :pA "0.49550000000000005"^^xsd:decimal .
1300
- # _:sk_1 :pB "0.34275"^^xsd:decimal .
1301
- # _:sk_1 :pC "0.16175"^^xsd:decimal .
1302
- # ("0.49550000000000005"^^xsd:decimal 0.80) math:product "0.3964000000000001"^^xsd:decimal .
1303
- # ("0.34275"^^xsd:decimal 0.10) math:product "0.034275"^^xsd:decimal .
1304
- # ("0.16175"^^xsd:decimal 0.25) math:product "0.0404375"^^xsd:decimal .
1305
- # ("0.3964000000000001"^^xsd:decimal "0.034275"^^xsd:decimal) math:sum "0.4306750000000001"^^xsd:decimal .
1306
- # ("0.4306750000000001"^^xsd:decimal "0.0404375"^^xsd:decimal) math:sum "0.4711125000000001"^^xsd:decimal .
1307
- # ("0.49550000000000005"^^xsd:decimal 0.15) math:product "0.074325"^^xsd:decimal .
1308
- # ("0.34275"^^xsd:decimal 0.70) math:product "0.23992499999999997"^^xsd:decimal .
1309
- # ("0.16175"^^xsd:decimal 0.25) math:product "0.0404375"^^xsd:decimal .
1310
- # ("0.074325"^^xsd:decimal "0.23992499999999997"^^xsd:decimal) math:sum "0.31425"^^xsd:decimal .
1311
- # ("0.31425"^^xsd:decimal "0.0404375"^^xsd:decimal) math:sum "0.3546875"^^xsd:decimal .
1312
- # ("0.49550000000000005"^^xsd:decimal 0.05) math:product "0.024775000000000005"^^xsd:decimal .
1313
- # ("0.34275"^^xsd:decimal 0.20) math:product "0.06855"^^xsd:decimal .
1314
- # ("0.16175"^^xsd:decimal 0.50) math:product "0.080875"^^xsd:decimal .
1315
- # ("0.024775000000000005"^^xsd:decimal "0.06855"^^xsd:decimal) math:sum "0.093325"^^xsd:decimal .
1316
- # ("0.093325"^^xsd:decimal "0.080875"^^xsd:decimal) math:sum "0.17420000000000002"^^xsd:decimal .
1317
- # via the schematic forward rule:
1318
- # {
1319
- # :MC1 :pi2 ?pi .
1320
- # :MC1 :row ?rA .
1321
- # ?rA :from :A .
1322
- # ?rA :pA ?AA .
1323
- # ?rA :pB ?AB .
1324
- # ?rA :pC ?AC .
1325
- # :MC1 :row ?rB .
1326
- # ?rB :from :B .
1327
- # ?rB :pA ?BA .
1328
- # ?rB :pB ?BB .
1329
- # ?rB :pC ?BC .
1330
- # :MC1 :row ?rC .
1331
- # ?rC :from :C .
1332
- # ?rC :pA ?CA .
1333
- # ?rC :pB ?CB .
1334
- # ?rC :pC ?CC .
1335
- # ?pi :pA ?pA .
1336
- # ?pi :pB ?pB .
1337
- # ?pi :pC ?pC .
1338
- # (?pA ?AA) math:product ?tAA .
1339
- # (?pB ?BA) math:product ?tBA .
1340
- # (?pC ?CA) math:product ?tCA .
1341
- # (?tAA ?tBA) math:sum ?s1 .
1342
- # (?s1 ?tCA) math:sum ?pi3A .
1343
- # (?pA ?AB) math:product ?tAB .
1344
- # (?pB ?BB) math:product ?tBB .
1345
- # (?pC ?CB) math:product ?tCB .
1346
- # (?tAB ?tBB) math:sum ?s2 .
1347
- # (?s2 ?tCB) math:sum ?pi3B .
1348
- # (?pA ?AC) math:product ?tAC .
1349
- # (?pB ?BC) math:product ?tBC .
1350
- # (?pC ?CC) math:product ?tCC .
1351
- # (?tAC ?tBC) math:sum ?s3 .
1352
- # (?s3 ?tCC) math:sum ?pi3C .
1353
- # } => {
1354
- # _:b7 :pA ?pi3A .
1355
- # _:b7 :pB ?pi3B .
1356
- # _:b7 :pC ?pi3C .
1357
- # :MC1 :pi3 _:b7 .
1358
- # } .
1359
- # with substitution (on rule variables):
1360
- # ?AA = 0.80
1361
- # ?AB = 0.15
1362
- # ?AC = 0.05
1363
- # ?BA = 0.10
1364
- # ?BB = 0.70
1365
- # ?BC = 0.20
1366
- # ?CA = 0.25
1367
- # ?CB = 0.25
1368
- # ?CC = 0.50
1369
- # ?pA = "0.49550000000000005"^^xsd:decimal
1370
- # ?pB = "0.34275"^^xsd:decimal
1371
- # ?pC = "0.16175"^^xsd:decimal
1372
- # ?pi = _:sk_1
1373
- # ?pi3A = "0.4711125000000001"^^xsd:decimal
1374
- # ?pi3B = "0.3546875"^^xsd:decimal
1375
- # ?pi3C = "0.17420000000000002"^^xsd:decimal
1376
- # ?rA = _:b1
1377
- # ?rB = _:b2
1378
- # ?rC = _:b3
1379
- # ?s1 = "0.4306750000000001"^^xsd:decimal
1380
- # ?s2 = "0.31425"^^xsd:decimal
1381
- # ?s3 = "0.093325"^^xsd:decimal
1382
- # ?tAA = "0.3964000000000001"^^xsd:decimal
1383
- # ?tAB = "0.074325"^^xsd:decimal
1384
- # ?tAC = "0.024775000000000005"^^xsd:decimal
1385
- # ?tBA = "0.034275"^^xsd:decimal
1386
- # ?tBB = "0.23992499999999997"^^xsd:decimal
1387
- # ?tBC = "0.06855"^^xsd:decimal
1388
- # ?tCA = "0.0404375"^^xsd:decimal
1389
- # ?tCB = "0.0404375"^^xsd:decimal
1390
- # ?tCC = "0.080875"^^xsd:decimal
1391
- # Therefore the derived triple above is entailed by the rules and facts.
1392
- # ----------------------------------------------------------------------
1393
-
1394
17
  _:sk_2 :pC "0.17420000000000002"^^xsd:decimal .
1395
-
1396
- # ----------------------------------------------------------------------
1397
- # Proof for derived triple:
1398
- # :MC1 :pi3 _:sk_2 .
1399
- # It holds because the following instance of the rule body is provable:
1400
- # :MC1 :pi2 _:sk_1 .
1401
- # :MC1 :row _:b1 .
1402
- # _:b1 :from :A .
1403
- # _:b1 :pA 0.80 .
1404
- # _:b1 :pB 0.15 .
1405
- # _:b1 :pC 0.05 .
1406
- # :MC1 :row _:b2 .
1407
- # _:b2 :from :B .
1408
- # _:b2 :pA 0.10 .
1409
- # _:b2 :pB 0.70 .
1410
- # _:b2 :pC 0.20 .
1411
- # :MC1 :row _:b3 .
1412
- # _:b3 :from :C .
1413
- # _:b3 :pA 0.25 .
1414
- # _:b3 :pB 0.25 .
1415
- # _:b3 :pC 0.50 .
1416
- # _:sk_1 :pA "0.49550000000000005"^^xsd:decimal .
1417
- # _:sk_1 :pB "0.34275"^^xsd:decimal .
1418
- # _:sk_1 :pC "0.16175"^^xsd:decimal .
1419
- # ("0.49550000000000005"^^xsd:decimal 0.80) math:product "0.3964000000000001"^^xsd:decimal .
1420
- # ("0.34275"^^xsd:decimal 0.10) math:product "0.034275"^^xsd:decimal .
1421
- # ("0.16175"^^xsd:decimal 0.25) math:product "0.0404375"^^xsd:decimal .
1422
- # ("0.3964000000000001"^^xsd:decimal "0.034275"^^xsd:decimal) math:sum "0.4306750000000001"^^xsd:decimal .
1423
- # ("0.4306750000000001"^^xsd:decimal "0.0404375"^^xsd:decimal) math:sum "0.4711125000000001"^^xsd:decimal .
1424
- # ("0.49550000000000005"^^xsd:decimal 0.15) math:product "0.074325"^^xsd:decimal .
1425
- # ("0.34275"^^xsd:decimal 0.70) math:product "0.23992499999999997"^^xsd:decimal .
1426
- # ("0.16175"^^xsd:decimal 0.25) math:product "0.0404375"^^xsd:decimal .
1427
- # ("0.074325"^^xsd:decimal "0.23992499999999997"^^xsd:decimal) math:sum "0.31425"^^xsd:decimal .
1428
- # ("0.31425"^^xsd:decimal "0.0404375"^^xsd:decimal) math:sum "0.3546875"^^xsd:decimal .
1429
- # ("0.49550000000000005"^^xsd:decimal 0.05) math:product "0.024775000000000005"^^xsd:decimal .
1430
- # ("0.34275"^^xsd:decimal 0.20) math:product "0.06855"^^xsd:decimal .
1431
- # ("0.16175"^^xsd:decimal 0.50) math:product "0.080875"^^xsd:decimal .
1432
- # ("0.024775000000000005"^^xsd:decimal "0.06855"^^xsd:decimal) math:sum "0.093325"^^xsd:decimal .
1433
- # ("0.093325"^^xsd:decimal "0.080875"^^xsd:decimal) math:sum "0.17420000000000002"^^xsd:decimal .
1434
- # via the schematic forward rule:
1435
- # {
1436
- # :MC1 :pi2 ?pi .
1437
- # :MC1 :row ?rA .
1438
- # ?rA :from :A .
1439
- # ?rA :pA ?AA .
1440
- # ?rA :pB ?AB .
1441
- # ?rA :pC ?AC .
1442
- # :MC1 :row ?rB .
1443
- # ?rB :from :B .
1444
- # ?rB :pA ?BA .
1445
- # ?rB :pB ?BB .
1446
- # ?rB :pC ?BC .
1447
- # :MC1 :row ?rC .
1448
- # ?rC :from :C .
1449
- # ?rC :pA ?CA .
1450
- # ?rC :pB ?CB .
1451
- # ?rC :pC ?CC .
1452
- # ?pi :pA ?pA .
1453
- # ?pi :pB ?pB .
1454
- # ?pi :pC ?pC .
1455
- # (?pA ?AA) math:product ?tAA .
1456
- # (?pB ?BA) math:product ?tBA .
1457
- # (?pC ?CA) math:product ?tCA .
1458
- # (?tAA ?tBA) math:sum ?s1 .
1459
- # (?s1 ?tCA) math:sum ?pi3A .
1460
- # (?pA ?AB) math:product ?tAB .
1461
- # (?pB ?BB) math:product ?tBB .
1462
- # (?pC ?CB) math:product ?tCB .
1463
- # (?tAB ?tBB) math:sum ?s2 .
1464
- # (?s2 ?tCB) math:sum ?pi3B .
1465
- # (?pA ?AC) math:product ?tAC .
1466
- # (?pB ?BC) math:product ?tBC .
1467
- # (?pC ?CC) math:product ?tCC .
1468
- # (?tAC ?tBC) math:sum ?s3 .
1469
- # (?s3 ?tCC) math:sum ?pi3C .
1470
- # } => {
1471
- # _:b7 :pA ?pi3A .
1472
- # _:b7 :pB ?pi3B .
1473
- # _:b7 :pC ?pi3C .
1474
- # :MC1 :pi3 _:b7 .
1475
- # } .
1476
- # with substitution (on rule variables):
1477
- # ?AA = 0.80
1478
- # ?AB = 0.15
1479
- # ?AC = 0.05
1480
- # ?BA = 0.10
1481
- # ?BB = 0.70
1482
- # ?BC = 0.20
1483
- # ?CA = 0.25
1484
- # ?CB = 0.25
1485
- # ?CC = 0.50
1486
- # ?pA = "0.49550000000000005"^^xsd:decimal
1487
- # ?pB = "0.34275"^^xsd:decimal
1488
- # ?pC = "0.16175"^^xsd:decimal
1489
- # ?pi = _:sk_1
1490
- # ?pi3A = "0.4711125000000001"^^xsd:decimal
1491
- # ?pi3B = "0.3546875"^^xsd:decimal
1492
- # ?pi3C = "0.17420000000000002"^^xsd:decimal
1493
- # ?rA = _:b1
1494
- # ?rB = _:b2
1495
- # ?rC = _:b3
1496
- # ?s1 = "0.4306750000000001"^^xsd:decimal
1497
- # ?s2 = "0.31425"^^xsd:decimal
1498
- # ?s3 = "0.093325"^^xsd:decimal
1499
- # ?tAA = "0.3964000000000001"^^xsd:decimal
1500
- # ?tAB = "0.074325"^^xsd:decimal
1501
- # ?tAC = "0.024775000000000005"^^xsd:decimal
1502
- # ?tBA = "0.034275"^^xsd:decimal
1503
- # ?tBB = "0.23992499999999997"^^xsd:decimal
1504
- # ?tBC = "0.06855"^^xsd:decimal
1505
- # ?tCA = "0.0404375"^^xsd:decimal
1506
- # ?tCB = "0.0404375"^^xsd:decimal
1507
- # ?tCC = "0.080875"^^xsd:decimal
1508
- # Therefore the derived triple above is entailed by the rules and facts.
1509
- # ----------------------------------------------------------------------
1510
-
1511
18
  :MC1 :pi3 _:sk_2 .
1512
-
1513
- # ----------------------------------------------------------------------
1514
- # Proof for derived triple:
1515
- # _:sk_3 :pA "0.6675000000000001"^^xsd:decimal .
1516
- # It holds because the following instance of the rule body is provable:
1517
- # :MC1 :row _:b1 .
1518
- # _:b1 :from :A .
1519
- # _:b1 :pA 0.80 .
1520
- # _:b1 :pB 0.15 .
1521
- # _:b1 :pC 0.05 .
1522
- # :MC1 :row _:b2 .
1523
- # _:b2 :from :B .
1524
- # _:b2 :pA 0.10 .
1525
- # _:b2 :pB 0.70 .
1526
- # _:b2 :pC 0.20 .
1527
- # :MC1 :row _:b3 .
1528
- # _:b3 :from :C .
1529
- # _:b3 :pA 0.25 .
1530
- # _:b3 :pB 0.25 .
1531
- # _:b3 :pC 0.50 .
1532
- # (0.80 0.80) math:product "0.6400000000000001"^^xsd:decimal .
1533
- # (0.15 0.10) math:product "0.015"^^xsd:decimal .
1534
- # (0.05 0.25) math:product "0.0125"^^xsd:decimal .
1535
- # ("0.6400000000000001"^^xsd:decimal "0.015"^^xsd:decimal) math:sum "0.6550000000000001"^^xsd:decimal .
1536
- # ("0.6550000000000001"^^xsd:decimal "0.0125"^^xsd:decimal) math:sum "0.6675000000000001"^^xsd:decimal .
1537
- # (0.80 0.15) math:product "0.12"^^xsd:decimal .
1538
- # (0.15 0.70) math:product "0.105"^^xsd:decimal .
1539
- # (0.05 0.25) math:product "0.0125"^^xsd:decimal .
1540
- # ("0.12"^^xsd:decimal "0.105"^^xsd:decimal) math:sum "0.22499999999999998"^^xsd:decimal .
1541
- # ("0.22499999999999998"^^xsd:decimal "0.0125"^^xsd:decimal) math:sum "0.2375"^^xsd:decimal .
1542
- # (0.80 0.05) math:product "0.04000000000000001"^^xsd:decimal .
1543
- # (0.15 0.20) math:product "0.03"^^xsd:decimal .
1544
- # (0.05 0.50) math:product "0.025"^^xsd:decimal .
1545
- # ("0.04000000000000001"^^xsd:decimal "0.03"^^xsd:decimal) math:sum "0.07"^^xsd:decimal .
1546
- # ("0.07"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.095"^^xsd:decimal .
1547
- # via the schematic forward rule:
1548
- # {
1549
- # :MC1 :row ?rA .
1550
- # ?rA :from :A .
1551
- # ?rA :pA ?AA .
1552
- # ?rA :pB ?AB .
1553
- # ?rA :pC ?AC .
1554
- # :MC1 :row ?rB .
1555
- # ?rB :from :B .
1556
- # ?rB :pA ?BA .
1557
- # ?rB :pB ?BB .
1558
- # ?rB :pC ?BC .
1559
- # :MC1 :row ?rC .
1560
- # ?rC :from :C .
1561
- # ?rC :pA ?CA .
1562
- # ?rC :pB ?CB .
1563
- # ?rC :pC ?CC .
1564
- # (?AA ?AA) math:product ?AA_AA .
1565
- # (?AB ?BA) math:product ?AB_BA .
1566
- # (?AC ?CA) math:product ?AC_CA .
1567
- # (?AA_AA ?AB_BA) math:sum ?sAA .
1568
- # (?sAA ?AC_CA) math:sum ?P2AA .
1569
- # (?AA ?AB) math:product ?AA_AB .
1570
- # (?AB ?BB) math:product ?AB_BB .
1571
- # (?AC ?CB) math:product ?AC_CB .
1572
- # (?AA_AB ?AB_BB) math:sum ?sAB .
1573
- # (?sAB ?AC_CB) math:sum ?P2AB .
1574
- # (?AA ?AC) math:product ?AA_AC .
1575
- # (?AB ?BC) math:product ?AB_BC .
1576
- # (?AC ?CC) math:product ?AC_CC .
1577
- # (?AA_AC ?AB_BC) math:sum ?sAC .
1578
- # (?sAC ?AC_CC) math:sum ?P2AC .
1579
- # } => {
1580
- # _:b8 :pA ?P2AA .
1581
- # _:b8 :pB ?P2AB .
1582
- # _:b8 :pC ?P2AC .
1583
- # :MC1 :P2rowA _:b8 .
1584
- # } .
1585
- # with substitution (on rule variables):
1586
- # ?AA = 0.80
1587
- # ?AA_AA = "0.6400000000000001"^^xsd:decimal
1588
- # ?AA_AB = "0.12"^^xsd:decimal
1589
- # ?AA_AC = "0.04000000000000001"^^xsd:decimal
1590
- # ?AB = 0.15
1591
- # ?AB_BA = "0.015"^^xsd:decimal
1592
- # ?AB_BB = "0.105"^^xsd:decimal
1593
- # ?AB_BC = "0.03"^^xsd:decimal
1594
- # ?AC = 0.05
1595
- # ?AC_CA = "0.0125"^^xsd:decimal
1596
- # ?AC_CB = "0.0125"^^xsd:decimal
1597
- # ?AC_CC = "0.025"^^xsd:decimal
1598
- # ?BA = 0.10
1599
- # ?BB = 0.70
1600
- # ?BC = 0.20
1601
- # ?CA = 0.25
1602
- # ?CB = 0.25
1603
- # ?CC = 0.50
1604
- # ?P2AA = "0.6675000000000001"^^xsd:decimal
1605
- # ?P2AB = "0.2375"^^xsd:decimal
1606
- # ?P2AC = "0.095"^^xsd:decimal
1607
- # ?rA = _:b1
1608
- # ?rB = _:b2
1609
- # ?rC = _:b3
1610
- # ?sAA = "0.6550000000000001"^^xsd:decimal
1611
- # ?sAB = "0.22499999999999998"^^xsd:decimal
1612
- # ?sAC = "0.07"^^xsd:decimal
1613
- # Therefore the derived triple above is entailed by the rules and facts.
1614
- # ----------------------------------------------------------------------
1615
-
1616
19
  _:sk_3 :pA "0.6675000000000001"^^xsd:decimal .
1617
-
1618
- # ----------------------------------------------------------------------
1619
- # Proof for derived triple:
1620
- # _:sk_3 :pB "0.2375"^^xsd:decimal .
1621
- # It holds because the following instance of the rule body is provable:
1622
- # :MC1 :row _:b1 .
1623
- # _:b1 :from :A .
1624
- # _:b1 :pA 0.80 .
1625
- # _:b1 :pB 0.15 .
1626
- # _:b1 :pC 0.05 .
1627
- # :MC1 :row _:b2 .
1628
- # _:b2 :from :B .
1629
- # _:b2 :pA 0.10 .
1630
- # _:b2 :pB 0.70 .
1631
- # _:b2 :pC 0.20 .
1632
- # :MC1 :row _:b3 .
1633
- # _:b3 :from :C .
1634
- # _:b3 :pA 0.25 .
1635
- # _:b3 :pB 0.25 .
1636
- # _:b3 :pC 0.50 .
1637
- # (0.80 0.80) math:product "0.6400000000000001"^^xsd:decimal .
1638
- # (0.15 0.10) math:product "0.015"^^xsd:decimal .
1639
- # (0.05 0.25) math:product "0.0125"^^xsd:decimal .
1640
- # ("0.6400000000000001"^^xsd:decimal "0.015"^^xsd:decimal) math:sum "0.6550000000000001"^^xsd:decimal .
1641
- # ("0.6550000000000001"^^xsd:decimal "0.0125"^^xsd:decimal) math:sum "0.6675000000000001"^^xsd:decimal .
1642
- # (0.80 0.15) math:product "0.12"^^xsd:decimal .
1643
- # (0.15 0.70) math:product "0.105"^^xsd:decimal .
1644
- # (0.05 0.25) math:product "0.0125"^^xsd:decimal .
1645
- # ("0.12"^^xsd:decimal "0.105"^^xsd:decimal) math:sum "0.22499999999999998"^^xsd:decimal .
1646
- # ("0.22499999999999998"^^xsd:decimal "0.0125"^^xsd:decimal) math:sum "0.2375"^^xsd:decimal .
1647
- # (0.80 0.05) math:product "0.04000000000000001"^^xsd:decimal .
1648
- # (0.15 0.20) math:product "0.03"^^xsd:decimal .
1649
- # (0.05 0.50) math:product "0.025"^^xsd:decimal .
1650
- # ("0.04000000000000001"^^xsd:decimal "0.03"^^xsd:decimal) math:sum "0.07"^^xsd:decimal .
1651
- # ("0.07"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.095"^^xsd:decimal .
1652
- # via the schematic forward rule:
1653
- # {
1654
- # :MC1 :row ?rA .
1655
- # ?rA :from :A .
1656
- # ?rA :pA ?AA .
1657
- # ?rA :pB ?AB .
1658
- # ?rA :pC ?AC .
1659
- # :MC1 :row ?rB .
1660
- # ?rB :from :B .
1661
- # ?rB :pA ?BA .
1662
- # ?rB :pB ?BB .
1663
- # ?rB :pC ?BC .
1664
- # :MC1 :row ?rC .
1665
- # ?rC :from :C .
1666
- # ?rC :pA ?CA .
1667
- # ?rC :pB ?CB .
1668
- # ?rC :pC ?CC .
1669
- # (?AA ?AA) math:product ?AA_AA .
1670
- # (?AB ?BA) math:product ?AB_BA .
1671
- # (?AC ?CA) math:product ?AC_CA .
1672
- # (?AA_AA ?AB_BA) math:sum ?sAA .
1673
- # (?sAA ?AC_CA) math:sum ?P2AA .
1674
- # (?AA ?AB) math:product ?AA_AB .
1675
- # (?AB ?BB) math:product ?AB_BB .
1676
- # (?AC ?CB) math:product ?AC_CB .
1677
- # (?AA_AB ?AB_BB) math:sum ?sAB .
1678
- # (?sAB ?AC_CB) math:sum ?P2AB .
1679
- # (?AA ?AC) math:product ?AA_AC .
1680
- # (?AB ?BC) math:product ?AB_BC .
1681
- # (?AC ?CC) math:product ?AC_CC .
1682
- # (?AA_AC ?AB_BC) math:sum ?sAC .
1683
- # (?sAC ?AC_CC) math:sum ?P2AC .
1684
- # } => {
1685
- # _:b8 :pA ?P2AA .
1686
- # _:b8 :pB ?P2AB .
1687
- # _:b8 :pC ?P2AC .
1688
- # :MC1 :P2rowA _:b8 .
1689
- # } .
1690
- # with substitution (on rule variables):
1691
- # ?AA = 0.80
1692
- # ?AA_AA = "0.6400000000000001"^^xsd:decimal
1693
- # ?AA_AB = "0.12"^^xsd:decimal
1694
- # ?AA_AC = "0.04000000000000001"^^xsd:decimal
1695
- # ?AB = 0.15
1696
- # ?AB_BA = "0.015"^^xsd:decimal
1697
- # ?AB_BB = "0.105"^^xsd:decimal
1698
- # ?AB_BC = "0.03"^^xsd:decimal
1699
- # ?AC = 0.05
1700
- # ?AC_CA = "0.0125"^^xsd:decimal
1701
- # ?AC_CB = "0.0125"^^xsd:decimal
1702
- # ?AC_CC = "0.025"^^xsd:decimal
1703
- # ?BA = 0.10
1704
- # ?BB = 0.70
1705
- # ?BC = 0.20
1706
- # ?CA = 0.25
1707
- # ?CB = 0.25
1708
- # ?CC = 0.50
1709
- # ?P2AA = "0.6675000000000001"^^xsd:decimal
1710
- # ?P2AB = "0.2375"^^xsd:decimal
1711
- # ?P2AC = "0.095"^^xsd:decimal
1712
- # ?rA = _:b1
1713
- # ?rB = _:b2
1714
- # ?rC = _:b3
1715
- # ?sAA = "0.6550000000000001"^^xsd:decimal
1716
- # ?sAB = "0.22499999999999998"^^xsd:decimal
1717
- # ?sAC = "0.07"^^xsd:decimal
1718
- # Therefore the derived triple above is entailed by the rules and facts.
1719
- # ----------------------------------------------------------------------
1720
-
1721
20
  _:sk_3 :pB "0.2375"^^xsd:decimal .
1722
-
1723
- # ----------------------------------------------------------------------
1724
- # Proof for derived triple:
1725
- # _:sk_3 :pC "0.095"^^xsd:decimal .
1726
- # It holds because the following instance of the rule body is provable:
1727
- # :MC1 :row _:b1 .
1728
- # _:b1 :from :A .
1729
- # _:b1 :pA 0.80 .
1730
- # _:b1 :pB 0.15 .
1731
- # _:b1 :pC 0.05 .
1732
- # :MC1 :row _:b2 .
1733
- # _:b2 :from :B .
1734
- # _:b2 :pA 0.10 .
1735
- # _:b2 :pB 0.70 .
1736
- # _:b2 :pC 0.20 .
1737
- # :MC1 :row _:b3 .
1738
- # _:b3 :from :C .
1739
- # _:b3 :pA 0.25 .
1740
- # _:b3 :pB 0.25 .
1741
- # _:b3 :pC 0.50 .
1742
- # (0.80 0.80) math:product "0.6400000000000001"^^xsd:decimal .
1743
- # (0.15 0.10) math:product "0.015"^^xsd:decimal .
1744
- # (0.05 0.25) math:product "0.0125"^^xsd:decimal .
1745
- # ("0.6400000000000001"^^xsd:decimal "0.015"^^xsd:decimal) math:sum "0.6550000000000001"^^xsd:decimal .
1746
- # ("0.6550000000000001"^^xsd:decimal "0.0125"^^xsd:decimal) math:sum "0.6675000000000001"^^xsd:decimal .
1747
- # (0.80 0.15) math:product "0.12"^^xsd:decimal .
1748
- # (0.15 0.70) math:product "0.105"^^xsd:decimal .
1749
- # (0.05 0.25) math:product "0.0125"^^xsd:decimal .
1750
- # ("0.12"^^xsd:decimal "0.105"^^xsd:decimal) math:sum "0.22499999999999998"^^xsd:decimal .
1751
- # ("0.22499999999999998"^^xsd:decimal "0.0125"^^xsd:decimal) math:sum "0.2375"^^xsd:decimal .
1752
- # (0.80 0.05) math:product "0.04000000000000001"^^xsd:decimal .
1753
- # (0.15 0.20) math:product "0.03"^^xsd:decimal .
1754
- # (0.05 0.50) math:product "0.025"^^xsd:decimal .
1755
- # ("0.04000000000000001"^^xsd:decimal "0.03"^^xsd:decimal) math:sum "0.07"^^xsd:decimal .
1756
- # ("0.07"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.095"^^xsd:decimal .
1757
- # via the schematic forward rule:
1758
- # {
1759
- # :MC1 :row ?rA .
1760
- # ?rA :from :A .
1761
- # ?rA :pA ?AA .
1762
- # ?rA :pB ?AB .
1763
- # ?rA :pC ?AC .
1764
- # :MC1 :row ?rB .
1765
- # ?rB :from :B .
1766
- # ?rB :pA ?BA .
1767
- # ?rB :pB ?BB .
1768
- # ?rB :pC ?BC .
1769
- # :MC1 :row ?rC .
1770
- # ?rC :from :C .
1771
- # ?rC :pA ?CA .
1772
- # ?rC :pB ?CB .
1773
- # ?rC :pC ?CC .
1774
- # (?AA ?AA) math:product ?AA_AA .
1775
- # (?AB ?BA) math:product ?AB_BA .
1776
- # (?AC ?CA) math:product ?AC_CA .
1777
- # (?AA_AA ?AB_BA) math:sum ?sAA .
1778
- # (?sAA ?AC_CA) math:sum ?P2AA .
1779
- # (?AA ?AB) math:product ?AA_AB .
1780
- # (?AB ?BB) math:product ?AB_BB .
1781
- # (?AC ?CB) math:product ?AC_CB .
1782
- # (?AA_AB ?AB_BB) math:sum ?sAB .
1783
- # (?sAB ?AC_CB) math:sum ?P2AB .
1784
- # (?AA ?AC) math:product ?AA_AC .
1785
- # (?AB ?BC) math:product ?AB_BC .
1786
- # (?AC ?CC) math:product ?AC_CC .
1787
- # (?AA_AC ?AB_BC) math:sum ?sAC .
1788
- # (?sAC ?AC_CC) math:sum ?P2AC .
1789
- # } => {
1790
- # _:b8 :pA ?P2AA .
1791
- # _:b8 :pB ?P2AB .
1792
- # _:b8 :pC ?P2AC .
1793
- # :MC1 :P2rowA _:b8 .
1794
- # } .
1795
- # with substitution (on rule variables):
1796
- # ?AA = 0.80
1797
- # ?AA_AA = "0.6400000000000001"^^xsd:decimal
1798
- # ?AA_AB = "0.12"^^xsd:decimal
1799
- # ?AA_AC = "0.04000000000000001"^^xsd:decimal
1800
- # ?AB = 0.15
1801
- # ?AB_BA = "0.015"^^xsd:decimal
1802
- # ?AB_BB = "0.105"^^xsd:decimal
1803
- # ?AB_BC = "0.03"^^xsd:decimal
1804
- # ?AC = 0.05
1805
- # ?AC_CA = "0.0125"^^xsd:decimal
1806
- # ?AC_CB = "0.0125"^^xsd:decimal
1807
- # ?AC_CC = "0.025"^^xsd:decimal
1808
- # ?BA = 0.10
1809
- # ?BB = 0.70
1810
- # ?BC = 0.20
1811
- # ?CA = 0.25
1812
- # ?CB = 0.25
1813
- # ?CC = 0.50
1814
- # ?P2AA = "0.6675000000000001"^^xsd:decimal
1815
- # ?P2AB = "0.2375"^^xsd:decimal
1816
- # ?P2AC = "0.095"^^xsd:decimal
1817
- # ?rA = _:b1
1818
- # ?rB = _:b2
1819
- # ?rC = _:b3
1820
- # ?sAA = "0.6550000000000001"^^xsd:decimal
1821
- # ?sAB = "0.22499999999999998"^^xsd:decimal
1822
- # ?sAC = "0.07"^^xsd:decimal
1823
- # Therefore the derived triple above is entailed by the rules and facts.
1824
- # ----------------------------------------------------------------------
1825
-
1826
21
  _:sk_3 :pC "0.095"^^xsd:decimal .
1827
-
1828
- # ----------------------------------------------------------------------
1829
- # Proof for derived triple:
1830
- # :MC1 :P2rowA _:sk_3 .
1831
- # It holds because the following instance of the rule body is provable:
1832
- # :MC1 :row _:b1 .
1833
- # _:b1 :from :A .
1834
- # _:b1 :pA 0.80 .
1835
- # _:b1 :pB 0.15 .
1836
- # _:b1 :pC 0.05 .
1837
- # :MC1 :row _:b2 .
1838
- # _:b2 :from :B .
1839
- # _:b2 :pA 0.10 .
1840
- # _:b2 :pB 0.70 .
1841
- # _:b2 :pC 0.20 .
1842
- # :MC1 :row _:b3 .
1843
- # _:b3 :from :C .
1844
- # _:b3 :pA 0.25 .
1845
- # _:b3 :pB 0.25 .
1846
- # _:b3 :pC 0.50 .
1847
- # (0.80 0.80) math:product "0.6400000000000001"^^xsd:decimal .
1848
- # (0.15 0.10) math:product "0.015"^^xsd:decimal .
1849
- # (0.05 0.25) math:product "0.0125"^^xsd:decimal .
1850
- # ("0.6400000000000001"^^xsd:decimal "0.015"^^xsd:decimal) math:sum "0.6550000000000001"^^xsd:decimal .
1851
- # ("0.6550000000000001"^^xsd:decimal "0.0125"^^xsd:decimal) math:sum "0.6675000000000001"^^xsd:decimal .
1852
- # (0.80 0.15) math:product "0.12"^^xsd:decimal .
1853
- # (0.15 0.70) math:product "0.105"^^xsd:decimal .
1854
- # (0.05 0.25) math:product "0.0125"^^xsd:decimal .
1855
- # ("0.12"^^xsd:decimal "0.105"^^xsd:decimal) math:sum "0.22499999999999998"^^xsd:decimal .
1856
- # ("0.22499999999999998"^^xsd:decimal "0.0125"^^xsd:decimal) math:sum "0.2375"^^xsd:decimal .
1857
- # (0.80 0.05) math:product "0.04000000000000001"^^xsd:decimal .
1858
- # (0.15 0.20) math:product "0.03"^^xsd:decimal .
1859
- # (0.05 0.50) math:product "0.025"^^xsd:decimal .
1860
- # ("0.04000000000000001"^^xsd:decimal "0.03"^^xsd:decimal) math:sum "0.07"^^xsd:decimal .
1861
- # ("0.07"^^xsd:decimal "0.025"^^xsd:decimal) math:sum "0.095"^^xsd:decimal .
1862
- # via the schematic forward rule:
1863
- # {
1864
- # :MC1 :row ?rA .
1865
- # ?rA :from :A .
1866
- # ?rA :pA ?AA .
1867
- # ?rA :pB ?AB .
1868
- # ?rA :pC ?AC .
1869
- # :MC1 :row ?rB .
1870
- # ?rB :from :B .
1871
- # ?rB :pA ?BA .
1872
- # ?rB :pB ?BB .
1873
- # ?rB :pC ?BC .
1874
- # :MC1 :row ?rC .
1875
- # ?rC :from :C .
1876
- # ?rC :pA ?CA .
1877
- # ?rC :pB ?CB .
1878
- # ?rC :pC ?CC .
1879
- # (?AA ?AA) math:product ?AA_AA .
1880
- # (?AB ?BA) math:product ?AB_BA .
1881
- # (?AC ?CA) math:product ?AC_CA .
1882
- # (?AA_AA ?AB_BA) math:sum ?sAA .
1883
- # (?sAA ?AC_CA) math:sum ?P2AA .
1884
- # (?AA ?AB) math:product ?AA_AB .
1885
- # (?AB ?BB) math:product ?AB_BB .
1886
- # (?AC ?CB) math:product ?AC_CB .
1887
- # (?AA_AB ?AB_BB) math:sum ?sAB .
1888
- # (?sAB ?AC_CB) math:sum ?P2AB .
1889
- # (?AA ?AC) math:product ?AA_AC .
1890
- # (?AB ?BC) math:product ?AB_BC .
1891
- # (?AC ?CC) math:product ?AC_CC .
1892
- # (?AA_AC ?AB_BC) math:sum ?sAC .
1893
- # (?sAC ?AC_CC) math:sum ?P2AC .
1894
- # } => {
1895
- # _:b8 :pA ?P2AA .
1896
- # _:b8 :pB ?P2AB .
1897
- # _:b8 :pC ?P2AC .
1898
- # :MC1 :P2rowA _:b8 .
1899
- # } .
1900
- # with substitution (on rule variables):
1901
- # ?AA = 0.80
1902
- # ?AA_AA = "0.6400000000000001"^^xsd:decimal
1903
- # ?AA_AB = "0.12"^^xsd:decimal
1904
- # ?AA_AC = "0.04000000000000001"^^xsd:decimal
1905
- # ?AB = 0.15
1906
- # ?AB_BA = "0.015"^^xsd:decimal
1907
- # ?AB_BB = "0.105"^^xsd:decimal
1908
- # ?AB_BC = "0.03"^^xsd:decimal
1909
- # ?AC = 0.05
1910
- # ?AC_CA = "0.0125"^^xsd:decimal
1911
- # ?AC_CB = "0.0125"^^xsd:decimal
1912
- # ?AC_CC = "0.025"^^xsd:decimal
1913
- # ?BA = 0.10
1914
- # ?BB = 0.70
1915
- # ?BC = 0.20
1916
- # ?CA = 0.25
1917
- # ?CB = 0.25
1918
- # ?CC = 0.50
1919
- # ?P2AA = "0.6675000000000001"^^xsd:decimal
1920
- # ?P2AB = "0.2375"^^xsd:decimal
1921
- # ?P2AC = "0.095"^^xsd:decimal
1922
- # ?rA = _:b1
1923
- # ?rB = _:b2
1924
- # ?rC = _:b3
1925
- # ?sAA = "0.6550000000000001"^^xsd:decimal
1926
- # ?sAB = "0.22499999999999998"^^xsd:decimal
1927
- # ?sAC = "0.07"^^xsd:decimal
1928
- # Therefore the derived triple above is entailed by the rules and facts.
1929
- # ----------------------------------------------------------------------
1930
-
1931
22
  :MC1 :P2rowA _:sk_3 .
1932
-
1933
- # ----------------------------------------------------------------------
1934
- # Proof for derived triple:
1935
- # _:sk_4 :t 0 .
1936
- # It holds because the following instance of the rule body is provable:
1937
- # :MC1 :pi0 _:b4 .
1938
- # via the schematic forward rule:
1939
- # {
1940
- # :MC1 :pi0 ?pi .
1941
- # } => {
1942
- # _:b9 :t 0 .
1943
- # _:b9 :pi ?pi .
1944
- # :MC1 :metrics _:b9 .
1945
- # } .
1946
- # with substitution (on rule variables):
1947
- # ?pi = _:b4
1948
- # Therefore the derived triple above is entailed by the rules and facts.
1949
- # ----------------------------------------------------------------------
1950
-
1951
23
  _:sk_4 :t 0 .
1952
-
1953
- # ----------------------------------------------------------------------
1954
- # Proof for derived triple:
1955
- # _:sk_4 :pi _:b4 .
1956
- # It holds because the following instance of the rule body is provable:
1957
- # :MC1 :pi0 _:b4 .
1958
- # via the schematic forward rule:
1959
- # {
1960
- # :MC1 :pi0 ?pi .
1961
- # } => {
1962
- # _:b9 :t 0 .
1963
- # _:b9 :pi ?pi .
1964
- # :MC1 :metrics _:b9 .
1965
- # } .
1966
- # with substitution (on rule variables):
1967
- # ?pi = _:b4
1968
- # Therefore the derived triple above is entailed by the rules and facts.
1969
- # ----------------------------------------------------------------------
1970
-
1971
24
  _:sk_4 :pi _:b4 .
1972
-
1973
- # ----------------------------------------------------------------------
1974
- # Proof for derived triple:
1975
- # :MC1 :metrics _:sk_4 .
1976
- # It holds because the following instance of the rule body is provable:
1977
- # :MC1 :pi0 _:b4 .
1978
- # via the schematic forward rule:
1979
- # {
1980
- # :MC1 :pi0 ?pi .
1981
- # } => {
1982
- # _:b9 :t 0 .
1983
- # _:b9 :pi ?pi .
1984
- # :MC1 :metrics _:b9 .
1985
- # } .
1986
- # with substitution (on rule variables):
1987
- # ?pi = _:b4
1988
- # Therefore the derived triple above is entailed by the rules and facts.
1989
- # ----------------------------------------------------------------------
1990
-
1991
25
  :MC1 :metrics _:sk_4 .
1992
-
1993
- # ----------------------------------------------------------------------
1994
- # Proof for derived triple:
1995
- # _:sk_5 :t 1 .
1996
- # It holds because the following instance of the rule body is provable:
1997
- # :MC1 :pi1 _:sk_0 .
1998
- # via the schematic forward rule:
1999
- # {
2000
- # :MC1 :pi1 ?pi .
2001
- # } => {
2002
- # _:b10 :t 1 .
2003
- # _:b10 :pi ?pi .
2004
- # :MC1 :metrics _:b10 .
2005
- # } .
2006
- # with substitution (on rule variables):
2007
- # ?pi = _:sk_0
2008
- # Therefore the derived triple above is entailed by the rules and facts.
2009
- # ----------------------------------------------------------------------
2010
-
2011
26
  _:sk_5 :t 1 .
2012
-
2013
- # ----------------------------------------------------------------------
2014
- # Proof for derived triple:
2015
- # _:sk_5 :pi _:sk_0 .
2016
- # It holds because the following instance of the rule body is provable:
2017
- # :MC1 :pi1 _:sk_0 .
2018
- # via the schematic forward rule:
2019
- # {
2020
- # :MC1 :pi1 ?pi .
2021
- # } => {
2022
- # _:b10 :t 1 .
2023
- # _:b10 :pi ?pi .
2024
- # :MC1 :metrics _:b10 .
2025
- # } .
2026
- # with substitution (on rule variables):
2027
- # ?pi = _:sk_0
2028
- # Therefore the derived triple above is entailed by the rules and facts.
2029
- # ----------------------------------------------------------------------
2030
-
2031
27
  _:sk_5 :pi _:sk_0 .
2032
-
2033
- # ----------------------------------------------------------------------
2034
- # Proof for derived triple:
2035
- # :MC1 :metrics _:sk_5 .
2036
- # It holds because the following instance of the rule body is provable:
2037
- # :MC1 :pi1 _:sk_0 .
2038
- # via the schematic forward rule:
2039
- # {
2040
- # :MC1 :pi1 ?pi .
2041
- # } => {
2042
- # _:b10 :t 1 .
2043
- # _:b10 :pi ?pi .
2044
- # :MC1 :metrics _:b10 .
2045
- # } .
2046
- # with substitution (on rule variables):
2047
- # ?pi = _:sk_0
2048
- # Therefore the derived triple above is entailed by the rules and facts.
2049
- # ----------------------------------------------------------------------
2050
-
2051
28
  :MC1 :metrics _:sk_5 .
2052
-
2053
- # ----------------------------------------------------------------------
2054
- # Proof for derived triple:
2055
- # _:sk_6 :t 2 .
2056
- # It holds because the following instance of the rule body is provable:
2057
- # :MC1 :pi2 _:sk_1 .
2058
- # via the schematic forward rule:
2059
- # {
2060
- # :MC1 :pi2 ?pi .
2061
- # } => {
2062
- # _:b11 :t 2 .
2063
- # _:b11 :pi ?pi .
2064
- # :MC1 :metrics _:b11 .
2065
- # } .
2066
- # with substitution (on rule variables):
2067
- # ?pi = _:sk_1
2068
- # Therefore the derived triple above is entailed by the rules and facts.
2069
- # ----------------------------------------------------------------------
2070
-
2071
29
  _:sk_6 :t 2 .
2072
-
2073
- # ----------------------------------------------------------------------
2074
- # Proof for derived triple:
2075
- # _:sk_6 :pi _:sk_1 .
2076
- # It holds because the following instance of the rule body is provable:
2077
- # :MC1 :pi2 _:sk_1 .
2078
- # via the schematic forward rule:
2079
- # {
2080
- # :MC1 :pi2 ?pi .
2081
- # } => {
2082
- # _:b11 :t 2 .
2083
- # _:b11 :pi ?pi .
2084
- # :MC1 :metrics _:b11 .
2085
- # } .
2086
- # with substitution (on rule variables):
2087
- # ?pi = _:sk_1
2088
- # Therefore the derived triple above is entailed by the rules and facts.
2089
- # ----------------------------------------------------------------------
2090
-
2091
30
  _:sk_6 :pi _:sk_1 .
2092
-
2093
- # ----------------------------------------------------------------------
2094
- # Proof for derived triple:
2095
- # :MC1 :metrics _:sk_6 .
2096
- # It holds because the following instance of the rule body is provable:
2097
- # :MC1 :pi2 _:sk_1 .
2098
- # via the schematic forward rule:
2099
- # {
2100
- # :MC1 :pi2 ?pi .
2101
- # } => {
2102
- # _:b11 :t 2 .
2103
- # _:b11 :pi ?pi .
2104
- # :MC1 :metrics _:b11 .
2105
- # } .
2106
- # with substitution (on rule variables):
2107
- # ?pi = _:sk_1
2108
- # Therefore the derived triple above is entailed by the rules and facts.
2109
- # ----------------------------------------------------------------------
2110
-
2111
31
  :MC1 :metrics _:sk_6 .
2112
-
2113
- # ----------------------------------------------------------------------
2114
- # Proof for derived triple:
2115
- # _:sk_7 :t 3 .
2116
- # It holds because the following instance of the rule body is provable:
2117
- # :MC1 :pi3 _:sk_2 .
2118
- # via the schematic forward rule:
2119
- # {
2120
- # :MC1 :pi3 ?pi .
2121
- # } => {
2122
- # _:b12 :t 3 .
2123
- # _:b12 :pi ?pi .
2124
- # :MC1 :metrics _:b12 .
2125
- # } .
2126
- # with substitution (on rule variables):
2127
- # ?pi = _:sk_2
2128
- # Therefore the derived triple above is entailed by the rules and facts.
2129
- # ----------------------------------------------------------------------
2130
-
2131
32
  _:sk_7 :t 3 .
2132
-
2133
- # ----------------------------------------------------------------------
2134
- # Proof for derived triple:
2135
- # _:sk_7 :pi _:sk_2 .
2136
- # It holds because the following instance of the rule body is provable:
2137
- # :MC1 :pi3 _:sk_2 .
2138
- # via the schematic forward rule:
2139
- # {
2140
- # :MC1 :pi3 ?pi .
2141
- # } => {
2142
- # _:b12 :t 3 .
2143
- # _:b12 :pi ?pi .
2144
- # :MC1 :metrics _:b12 .
2145
- # } .
2146
- # with substitution (on rule variables):
2147
- # ?pi = _:sk_2
2148
- # Therefore the derived triple above is entailed by the rules and facts.
2149
- # ----------------------------------------------------------------------
2150
-
2151
33
  _:sk_7 :pi _:sk_2 .
2152
-
2153
- # ----------------------------------------------------------------------
2154
- # Proof for derived triple:
2155
- # :MC1 :metrics _:sk_7 .
2156
- # It holds because the following instance of the rule body is provable:
2157
- # :MC1 :pi3 _:sk_2 .
2158
- # via the schematic forward rule:
2159
- # {
2160
- # :MC1 :pi3 ?pi .
2161
- # } => {
2162
- # _:b12 :t 3 .
2163
- # _:b12 :pi ?pi .
2164
- # :MC1 :metrics _:b12 .
2165
- # } .
2166
- # with substitution (on rule variables):
2167
- # ?pi = _:sk_2
2168
- # Therefore the derived triple above is entailed by the rules and facts.
2169
- # ----------------------------------------------------------------------
2170
-
2171
34
  :MC1 :metrics _:sk_7 .
2172
-
2173
- # ----------------------------------------------------------------------
2174
- # Proof for derived triple:
2175
- # _:sk_7 :sumSq "0.3780958503125001"^^xsd:decimal .
2176
- # It holds because the following instance of the rule body is provable:
2177
- # :MC1 :metrics _:sk_7 .
2178
- # _:sk_7 :pi _:sk_2 .
2179
- # _:sk_2 :pA "0.4711125000000001"^^xsd:decimal .
2180
- # _:sk_2 :pB "0.3546875"^^xsd:decimal .
2181
- # _:sk_2 :pC "0.17420000000000002"^^xsd:decimal .
2182
- # (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
2183
- # ("0.4711125000000001"^^xsd:decimal 2.0) math:exponentiation "0.2219469876562501"^^xsd:decimal .
2184
- # ("0.3546875"^^xsd:decimal 2.0) math:exponentiation "0.12580322265625"^^xsd:decimal .
2185
- # ("0.17420000000000002"^^xsd:decimal 2.0) math:exponentiation "0.030345640000000007"^^xsd:decimal .
2186
- # ("0.2219469876562501"^^xsd:decimal "0.12580322265625"^^xsd:decimal) math:sum "0.3477502103125001"^^xsd:decimal .
2187
- # ("0.3477502103125001"^^xsd:decimal "0.030345640000000007"^^xsd:decimal) math:sum "0.3780958503125001"^^xsd:decimal .
2188
- # (1.0 "0.3780958503125001"^^xsd:decimal) math:difference "0.6219041496875"^^xsd:decimal .
2189
- # (1.0 "0.3780958503125001"^^xsd:decimal) math:quotient "2.644831989490204"^^xsd:decimal .
2190
- # ("0.4711125000000001"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.13777916666666679"^^xsd:decimal .
2191
- # "0.13777916666666679"^^xsd:decimal math:absoluteValue "0.13777916666666679"^^xsd:decimal .
2192
- # ("0.3546875"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.021354166666666674"^^xsd:decimal .
2193
- # "0.021354166666666674"^^xsd:decimal math:absoluteValue "0.021354166666666674"^^xsd:decimal .
2194
- # ("0.17420000000000002"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1591333333333333"^^xsd:decimal .
2195
- # "-0.1591333333333333"^^xsd:decimal math:absoluteValue "0.1591333333333333"^^xsd:decimal .
2196
- # ("0.13777916666666679"^^xsd:decimal "0.021354166666666674"^^xsd:decimal) math:sum "0.15913333333333346"^^xsd:decimal .
2197
- # ("0.15913333333333346"^^xsd:decimal "0.1591333333333333"^^xsd:decimal) math:sum "0.31826666666666675"^^xsd:decimal .
2198
- # (0.5 "0.31826666666666675"^^xsd:decimal) math:product "0.15913333333333338"^^xsd:decimal .
2199
- # ("0.13777916666666679"^^xsd:decimal 2.0) math:exponentiation "0.018983098767361144"^^xsd:decimal .
2200
- # ("0.021354166666666674"^^xsd:decimal 2.0) math:exponentiation "0.0004560004340277781"^^xsd:decimal .
2201
- # ("-0.1591333333333333"^^xsd:decimal 2.0) math:exponentiation "0.025323417777777767"^^xsd:decimal .
2202
- # ("0.018983098767361144"^^xsd:decimal "0.0004560004340277781"^^xsd:decimal) math:sum "0.01943909920138892"^^xsd:decimal .
2203
- # ("0.01943909920138892"^^xsd:decimal "0.025323417777777767"^^xsd:decimal) math:sum "0.04476251697916669"^^xsd:decimal .
2204
- # ("0.04476251697916669"^^xsd:decimal 0.5) math:exponentiation "0.2115715410426617"^^xsd:decimal .
2205
- # via the schematic forward rule:
2206
- # {
2207
- # :MC1 :metrics ?m .
2208
- # ?m :pi ?pi .
2209
- # ?pi :pA ?a .
2210
- # ?pi :pB ?b .
2211
- # ?pi :pC ?c .
2212
- # (1.0 3.0) math:quotient ?u .
2213
- # (?a 2.0) math:exponentiation ?a2 .
2214
- # (?b 2.0) math:exponentiation ?b2 .
2215
- # (?c 2.0) math:exponentiation ?c2 .
2216
- # (?a2 ?b2) math:sum ?ab2 .
2217
- # (?ab2 ?c2) math:sum ?sumSq .
2218
- # (1.0 ?sumSq) math:difference ?gini .
2219
- # (1.0 ?sumSq) math:quotient ?effN .
2220
- # (?a ?u) math:difference ?da .
2221
- # ?da math:absoluteValue ?ada .
2222
- # (?b ?u) math:difference ?db .
2223
- # ?db math:absoluteValue ?adb .
2224
- # (?c ?u) math:difference ?dc .
2225
- # ?dc math:absoluteValue ?adc .
2226
- # (?ada ?adb) math:sum ?s1 .
2227
- # (?s1 ?adc) math:sum ?sAbs .
2228
- # (0.5 ?sAbs) math:product ?tv .
2229
- # (?da 2.0) math:exponentiation ?da2 .
2230
- # (?db 2.0) math:exponentiation ?db2 .
2231
- # (?dc 2.0) math:exponentiation ?dc2 .
2232
- # (?da2 ?db2) math:sum ?s2 .
2233
- # (?s2 ?dc2) math:sum ?s3 .
2234
- # (?s3 0.5) math:exponentiation ?l2 .
2235
- # } => {
2236
- # ?m :sumSq ?sumSq .
2237
- # ?m :gini ?gini .
2238
- # ?m :effectiveStates ?effN .
2239
- # ?m :tvToUniform ?tv .
2240
- # ?m :l2ToUniform ?l2 .
2241
- # } .
2242
- # with substitution (on rule variables):
2243
- # ?a = "0.4711125000000001"^^xsd:decimal
2244
- # ?a2 = "0.2219469876562501"^^xsd:decimal
2245
- # ?ab2 = "0.3477502103125001"^^xsd:decimal
2246
- # ?ada = "0.13777916666666679"^^xsd:decimal
2247
- # ?adb = "0.021354166666666674"^^xsd:decimal
2248
- # ?adc = "0.1591333333333333"^^xsd:decimal
2249
- # ?b = "0.3546875"^^xsd:decimal
2250
- # ?b2 = "0.12580322265625"^^xsd:decimal
2251
- # ?c = "0.17420000000000002"^^xsd:decimal
2252
- # ?c2 = "0.030345640000000007"^^xsd:decimal
2253
- # ?da = "0.13777916666666679"^^xsd:decimal
2254
- # ?da2 = "0.018983098767361144"^^xsd:decimal
2255
- # ?db = "0.021354166666666674"^^xsd:decimal
2256
- # ?db2 = "0.0004560004340277781"^^xsd:decimal
2257
- # ?dc = "-0.1591333333333333"^^xsd:decimal
2258
- # ?dc2 = "0.025323417777777767"^^xsd:decimal
2259
- # ?effN = "2.644831989490204"^^xsd:decimal
2260
- # ?gini = "0.6219041496875"^^xsd:decimal
2261
- # ?l2 = "0.2115715410426617"^^xsd:decimal
2262
- # ?m = _:sk_7
2263
- # ?pi = _:sk_2
2264
- # ?s1 = "0.15913333333333346"^^xsd:decimal
2265
- # ?s2 = "0.01943909920138892"^^xsd:decimal
2266
- # ?s3 = "0.04476251697916669"^^xsd:decimal
2267
- # ?sAbs = "0.31826666666666675"^^xsd:decimal
2268
- # ?sumSq = "0.3780958503125001"^^xsd:decimal
2269
- # ?tv = "0.15913333333333338"^^xsd:decimal
2270
- # ?u = "0.3333333333333333"^^xsd:decimal
2271
- # Therefore the derived triple above is entailed by the rules and facts.
2272
- # ----------------------------------------------------------------------
2273
-
2274
35
  _:sk_7 :sumSq "0.3780958503125001"^^xsd:decimal .
2275
-
2276
- # ----------------------------------------------------------------------
2277
- # Proof for derived triple:
2278
- # _:sk_7 :gini "0.6219041496875"^^xsd:decimal .
2279
- # It holds because the following instance of the rule body is provable:
2280
- # :MC1 :metrics _:sk_7 .
2281
- # _:sk_7 :pi _:sk_2 .
2282
- # _:sk_2 :pA "0.4711125000000001"^^xsd:decimal .
2283
- # _:sk_2 :pB "0.3546875"^^xsd:decimal .
2284
- # _:sk_2 :pC "0.17420000000000002"^^xsd:decimal .
2285
- # (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
2286
- # ("0.4711125000000001"^^xsd:decimal 2.0) math:exponentiation "0.2219469876562501"^^xsd:decimal .
2287
- # ("0.3546875"^^xsd:decimal 2.0) math:exponentiation "0.12580322265625"^^xsd:decimal .
2288
- # ("0.17420000000000002"^^xsd:decimal 2.0) math:exponentiation "0.030345640000000007"^^xsd:decimal .
2289
- # ("0.2219469876562501"^^xsd:decimal "0.12580322265625"^^xsd:decimal) math:sum "0.3477502103125001"^^xsd:decimal .
2290
- # ("0.3477502103125001"^^xsd:decimal "0.030345640000000007"^^xsd:decimal) math:sum "0.3780958503125001"^^xsd:decimal .
2291
- # (1.0 "0.3780958503125001"^^xsd:decimal) math:difference "0.6219041496875"^^xsd:decimal .
2292
- # (1.0 "0.3780958503125001"^^xsd:decimal) math:quotient "2.644831989490204"^^xsd:decimal .
2293
- # ("0.4711125000000001"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.13777916666666679"^^xsd:decimal .
2294
- # "0.13777916666666679"^^xsd:decimal math:absoluteValue "0.13777916666666679"^^xsd:decimal .
2295
- # ("0.3546875"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.021354166666666674"^^xsd:decimal .
2296
- # "0.021354166666666674"^^xsd:decimal math:absoluteValue "0.021354166666666674"^^xsd:decimal .
2297
- # ("0.17420000000000002"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1591333333333333"^^xsd:decimal .
2298
- # "-0.1591333333333333"^^xsd:decimal math:absoluteValue "0.1591333333333333"^^xsd:decimal .
2299
- # ("0.13777916666666679"^^xsd:decimal "0.021354166666666674"^^xsd:decimal) math:sum "0.15913333333333346"^^xsd:decimal .
2300
- # ("0.15913333333333346"^^xsd:decimal "0.1591333333333333"^^xsd:decimal) math:sum "0.31826666666666675"^^xsd:decimal .
2301
- # (0.5 "0.31826666666666675"^^xsd:decimal) math:product "0.15913333333333338"^^xsd:decimal .
2302
- # ("0.13777916666666679"^^xsd:decimal 2.0) math:exponentiation "0.018983098767361144"^^xsd:decimal .
2303
- # ("0.021354166666666674"^^xsd:decimal 2.0) math:exponentiation "0.0004560004340277781"^^xsd:decimal .
2304
- # ("-0.1591333333333333"^^xsd:decimal 2.0) math:exponentiation "0.025323417777777767"^^xsd:decimal .
2305
- # ("0.018983098767361144"^^xsd:decimal "0.0004560004340277781"^^xsd:decimal) math:sum "0.01943909920138892"^^xsd:decimal .
2306
- # ("0.01943909920138892"^^xsd:decimal "0.025323417777777767"^^xsd:decimal) math:sum "0.04476251697916669"^^xsd:decimal .
2307
- # ("0.04476251697916669"^^xsd:decimal 0.5) math:exponentiation "0.2115715410426617"^^xsd:decimal .
2308
- # via the schematic forward rule:
2309
- # {
2310
- # :MC1 :metrics ?m .
2311
- # ?m :pi ?pi .
2312
- # ?pi :pA ?a .
2313
- # ?pi :pB ?b .
2314
- # ?pi :pC ?c .
2315
- # (1.0 3.0) math:quotient ?u .
2316
- # (?a 2.0) math:exponentiation ?a2 .
2317
- # (?b 2.0) math:exponentiation ?b2 .
2318
- # (?c 2.0) math:exponentiation ?c2 .
2319
- # (?a2 ?b2) math:sum ?ab2 .
2320
- # (?ab2 ?c2) math:sum ?sumSq .
2321
- # (1.0 ?sumSq) math:difference ?gini .
2322
- # (1.0 ?sumSq) math:quotient ?effN .
2323
- # (?a ?u) math:difference ?da .
2324
- # ?da math:absoluteValue ?ada .
2325
- # (?b ?u) math:difference ?db .
2326
- # ?db math:absoluteValue ?adb .
2327
- # (?c ?u) math:difference ?dc .
2328
- # ?dc math:absoluteValue ?adc .
2329
- # (?ada ?adb) math:sum ?s1 .
2330
- # (?s1 ?adc) math:sum ?sAbs .
2331
- # (0.5 ?sAbs) math:product ?tv .
2332
- # (?da 2.0) math:exponentiation ?da2 .
2333
- # (?db 2.0) math:exponentiation ?db2 .
2334
- # (?dc 2.0) math:exponentiation ?dc2 .
2335
- # (?da2 ?db2) math:sum ?s2 .
2336
- # (?s2 ?dc2) math:sum ?s3 .
2337
- # (?s3 0.5) math:exponentiation ?l2 .
2338
- # } => {
2339
- # ?m :sumSq ?sumSq .
2340
- # ?m :gini ?gini .
2341
- # ?m :effectiveStates ?effN .
2342
- # ?m :tvToUniform ?tv .
2343
- # ?m :l2ToUniform ?l2 .
2344
- # } .
2345
- # with substitution (on rule variables):
2346
- # ?a = "0.4711125000000001"^^xsd:decimal
2347
- # ?a2 = "0.2219469876562501"^^xsd:decimal
2348
- # ?ab2 = "0.3477502103125001"^^xsd:decimal
2349
- # ?ada = "0.13777916666666679"^^xsd:decimal
2350
- # ?adb = "0.021354166666666674"^^xsd:decimal
2351
- # ?adc = "0.1591333333333333"^^xsd:decimal
2352
- # ?b = "0.3546875"^^xsd:decimal
2353
- # ?b2 = "0.12580322265625"^^xsd:decimal
2354
- # ?c = "0.17420000000000002"^^xsd:decimal
2355
- # ?c2 = "0.030345640000000007"^^xsd:decimal
2356
- # ?da = "0.13777916666666679"^^xsd:decimal
2357
- # ?da2 = "0.018983098767361144"^^xsd:decimal
2358
- # ?db = "0.021354166666666674"^^xsd:decimal
2359
- # ?db2 = "0.0004560004340277781"^^xsd:decimal
2360
- # ?dc = "-0.1591333333333333"^^xsd:decimal
2361
- # ?dc2 = "0.025323417777777767"^^xsd:decimal
2362
- # ?effN = "2.644831989490204"^^xsd:decimal
2363
- # ?gini = "0.6219041496875"^^xsd:decimal
2364
- # ?l2 = "0.2115715410426617"^^xsd:decimal
2365
- # ?m = _:sk_7
2366
- # ?pi = _:sk_2
2367
- # ?s1 = "0.15913333333333346"^^xsd:decimal
2368
- # ?s2 = "0.01943909920138892"^^xsd:decimal
2369
- # ?s3 = "0.04476251697916669"^^xsd:decimal
2370
- # ?sAbs = "0.31826666666666675"^^xsd:decimal
2371
- # ?sumSq = "0.3780958503125001"^^xsd:decimal
2372
- # ?tv = "0.15913333333333338"^^xsd:decimal
2373
- # ?u = "0.3333333333333333"^^xsd:decimal
2374
- # Therefore the derived triple above is entailed by the rules and facts.
2375
- # ----------------------------------------------------------------------
2376
-
2377
36
  _:sk_7 :gini "0.6219041496875"^^xsd:decimal .
2378
-
2379
- # ----------------------------------------------------------------------
2380
- # Proof for derived triple:
2381
- # _:sk_7 :effectiveStates "2.644831989490204"^^xsd:decimal .
2382
- # It holds because the following instance of the rule body is provable:
2383
- # :MC1 :metrics _:sk_7 .
2384
- # _:sk_7 :pi _:sk_2 .
2385
- # _:sk_2 :pA "0.4711125000000001"^^xsd:decimal .
2386
- # _:sk_2 :pB "0.3546875"^^xsd:decimal .
2387
- # _:sk_2 :pC "0.17420000000000002"^^xsd:decimal .
2388
- # (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
2389
- # ("0.4711125000000001"^^xsd:decimal 2.0) math:exponentiation "0.2219469876562501"^^xsd:decimal .
2390
- # ("0.3546875"^^xsd:decimal 2.0) math:exponentiation "0.12580322265625"^^xsd:decimal .
2391
- # ("0.17420000000000002"^^xsd:decimal 2.0) math:exponentiation "0.030345640000000007"^^xsd:decimal .
2392
- # ("0.2219469876562501"^^xsd:decimal "0.12580322265625"^^xsd:decimal) math:sum "0.3477502103125001"^^xsd:decimal .
2393
- # ("0.3477502103125001"^^xsd:decimal "0.030345640000000007"^^xsd:decimal) math:sum "0.3780958503125001"^^xsd:decimal .
2394
- # (1.0 "0.3780958503125001"^^xsd:decimal) math:difference "0.6219041496875"^^xsd:decimal .
2395
- # (1.0 "0.3780958503125001"^^xsd:decimal) math:quotient "2.644831989490204"^^xsd:decimal .
2396
- # ("0.4711125000000001"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.13777916666666679"^^xsd:decimal .
2397
- # "0.13777916666666679"^^xsd:decimal math:absoluteValue "0.13777916666666679"^^xsd:decimal .
2398
- # ("0.3546875"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.021354166666666674"^^xsd:decimal .
2399
- # "0.021354166666666674"^^xsd:decimal math:absoluteValue "0.021354166666666674"^^xsd:decimal .
2400
- # ("0.17420000000000002"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1591333333333333"^^xsd:decimal .
2401
- # "-0.1591333333333333"^^xsd:decimal math:absoluteValue "0.1591333333333333"^^xsd:decimal .
2402
- # ("0.13777916666666679"^^xsd:decimal "0.021354166666666674"^^xsd:decimal) math:sum "0.15913333333333346"^^xsd:decimal .
2403
- # ("0.15913333333333346"^^xsd:decimal "0.1591333333333333"^^xsd:decimal) math:sum "0.31826666666666675"^^xsd:decimal .
2404
- # (0.5 "0.31826666666666675"^^xsd:decimal) math:product "0.15913333333333338"^^xsd:decimal .
2405
- # ("0.13777916666666679"^^xsd:decimal 2.0) math:exponentiation "0.018983098767361144"^^xsd:decimal .
2406
- # ("0.021354166666666674"^^xsd:decimal 2.0) math:exponentiation "0.0004560004340277781"^^xsd:decimal .
2407
- # ("-0.1591333333333333"^^xsd:decimal 2.0) math:exponentiation "0.025323417777777767"^^xsd:decimal .
2408
- # ("0.018983098767361144"^^xsd:decimal "0.0004560004340277781"^^xsd:decimal) math:sum "0.01943909920138892"^^xsd:decimal .
2409
- # ("0.01943909920138892"^^xsd:decimal "0.025323417777777767"^^xsd:decimal) math:sum "0.04476251697916669"^^xsd:decimal .
2410
- # ("0.04476251697916669"^^xsd:decimal 0.5) math:exponentiation "0.2115715410426617"^^xsd:decimal .
2411
- # via the schematic forward rule:
2412
- # {
2413
- # :MC1 :metrics ?m .
2414
- # ?m :pi ?pi .
2415
- # ?pi :pA ?a .
2416
- # ?pi :pB ?b .
2417
- # ?pi :pC ?c .
2418
- # (1.0 3.0) math:quotient ?u .
2419
- # (?a 2.0) math:exponentiation ?a2 .
2420
- # (?b 2.0) math:exponentiation ?b2 .
2421
- # (?c 2.0) math:exponentiation ?c2 .
2422
- # (?a2 ?b2) math:sum ?ab2 .
2423
- # (?ab2 ?c2) math:sum ?sumSq .
2424
- # (1.0 ?sumSq) math:difference ?gini .
2425
- # (1.0 ?sumSq) math:quotient ?effN .
2426
- # (?a ?u) math:difference ?da .
2427
- # ?da math:absoluteValue ?ada .
2428
- # (?b ?u) math:difference ?db .
2429
- # ?db math:absoluteValue ?adb .
2430
- # (?c ?u) math:difference ?dc .
2431
- # ?dc math:absoluteValue ?adc .
2432
- # (?ada ?adb) math:sum ?s1 .
2433
- # (?s1 ?adc) math:sum ?sAbs .
2434
- # (0.5 ?sAbs) math:product ?tv .
2435
- # (?da 2.0) math:exponentiation ?da2 .
2436
- # (?db 2.0) math:exponentiation ?db2 .
2437
- # (?dc 2.0) math:exponentiation ?dc2 .
2438
- # (?da2 ?db2) math:sum ?s2 .
2439
- # (?s2 ?dc2) math:sum ?s3 .
2440
- # (?s3 0.5) math:exponentiation ?l2 .
2441
- # } => {
2442
- # ?m :sumSq ?sumSq .
2443
- # ?m :gini ?gini .
2444
- # ?m :effectiveStates ?effN .
2445
- # ?m :tvToUniform ?tv .
2446
- # ?m :l2ToUniform ?l2 .
2447
- # } .
2448
- # with substitution (on rule variables):
2449
- # ?a = "0.4711125000000001"^^xsd:decimal
2450
- # ?a2 = "0.2219469876562501"^^xsd:decimal
2451
- # ?ab2 = "0.3477502103125001"^^xsd:decimal
2452
- # ?ada = "0.13777916666666679"^^xsd:decimal
2453
- # ?adb = "0.021354166666666674"^^xsd:decimal
2454
- # ?adc = "0.1591333333333333"^^xsd:decimal
2455
- # ?b = "0.3546875"^^xsd:decimal
2456
- # ?b2 = "0.12580322265625"^^xsd:decimal
2457
- # ?c = "0.17420000000000002"^^xsd:decimal
2458
- # ?c2 = "0.030345640000000007"^^xsd:decimal
2459
- # ?da = "0.13777916666666679"^^xsd:decimal
2460
- # ?da2 = "0.018983098767361144"^^xsd:decimal
2461
- # ?db = "0.021354166666666674"^^xsd:decimal
2462
- # ?db2 = "0.0004560004340277781"^^xsd:decimal
2463
- # ?dc = "-0.1591333333333333"^^xsd:decimal
2464
- # ?dc2 = "0.025323417777777767"^^xsd:decimal
2465
- # ?effN = "2.644831989490204"^^xsd:decimal
2466
- # ?gini = "0.6219041496875"^^xsd:decimal
2467
- # ?l2 = "0.2115715410426617"^^xsd:decimal
2468
- # ?m = _:sk_7
2469
- # ?pi = _:sk_2
2470
- # ?s1 = "0.15913333333333346"^^xsd:decimal
2471
- # ?s2 = "0.01943909920138892"^^xsd:decimal
2472
- # ?s3 = "0.04476251697916669"^^xsd:decimal
2473
- # ?sAbs = "0.31826666666666675"^^xsd:decimal
2474
- # ?sumSq = "0.3780958503125001"^^xsd:decimal
2475
- # ?tv = "0.15913333333333338"^^xsd:decimal
2476
- # ?u = "0.3333333333333333"^^xsd:decimal
2477
- # Therefore the derived triple above is entailed by the rules and facts.
2478
- # ----------------------------------------------------------------------
2479
-
2480
37
  _:sk_7 :effectiveStates "2.644831989490204"^^xsd:decimal .
2481
-
2482
- # ----------------------------------------------------------------------
2483
- # Proof for derived triple:
2484
- # _:sk_7 :tvToUniform "0.15913333333333338"^^xsd:decimal .
2485
- # It holds because the following instance of the rule body is provable:
2486
- # :MC1 :metrics _:sk_7 .
2487
- # _:sk_7 :pi _:sk_2 .
2488
- # _:sk_2 :pA "0.4711125000000001"^^xsd:decimal .
2489
- # _:sk_2 :pB "0.3546875"^^xsd:decimal .
2490
- # _:sk_2 :pC "0.17420000000000002"^^xsd:decimal .
2491
- # (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
2492
- # ("0.4711125000000001"^^xsd:decimal 2.0) math:exponentiation "0.2219469876562501"^^xsd:decimal .
2493
- # ("0.3546875"^^xsd:decimal 2.0) math:exponentiation "0.12580322265625"^^xsd:decimal .
2494
- # ("0.17420000000000002"^^xsd:decimal 2.0) math:exponentiation "0.030345640000000007"^^xsd:decimal .
2495
- # ("0.2219469876562501"^^xsd:decimal "0.12580322265625"^^xsd:decimal) math:sum "0.3477502103125001"^^xsd:decimal .
2496
- # ("0.3477502103125001"^^xsd:decimal "0.030345640000000007"^^xsd:decimal) math:sum "0.3780958503125001"^^xsd:decimal .
2497
- # (1.0 "0.3780958503125001"^^xsd:decimal) math:difference "0.6219041496875"^^xsd:decimal .
2498
- # (1.0 "0.3780958503125001"^^xsd:decimal) math:quotient "2.644831989490204"^^xsd:decimal .
2499
- # ("0.4711125000000001"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.13777916666666679"^^xsd:decimal .
2500
- # "0.13777916666666679"^^xsd:decimal math:absoluteValue "0.13777916666666679"^^xsd:decimal .
2501
- # ("0.3546875"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.021354166666666674"^^xsd:decimal .
2502
- # "0.021354166666666674"^^xsd:decimal math:absoluteValue "0.021354166666666674"^^xsd:decimal .
2503
- # ("0.17420000000000002"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1591333333333333"^^xsd:decimal .
2504
- # "-0.1591333333333333"^^xsd:decimal math:absoluteValue "0.1591333333333333"^^xsd:decimal .
2505
- # ("0.13777916666666679"^^xsd:decimal "0.021354166666666674"^^xsd:decimal) math:sum "0.15913333333333346"^^xsd:decimal .
2506
- # ("0.15913333333333346"^^xsd:decimal "0.1591333333333333"^^xsd:decimal) math:sum "0.31826666666666675"^^xsd:decimal .
2507
- # (0.5 "0.31826666666666675"^^xsd:decimal) math:product "0.15913333333333338"^^xsd:decimal .
2508
- # ("0.13777916666666679"^^xsd:decimal 2.0) math:exponentiation "0.018983098767361144"^^xsd:decimal .
2509
- # ("0.021354166666666674"^^xsd:decimal 2.0) math:exponentiation "0.0004560004340277781"^^xsd:decimal .
2510
- # ("-0.1591333333333333"^^xsd:decimal 2.0) math:exponentiation "0.025323417777777767"^^xsd:decimal .
2511
- # ("0.018983098767361144"^^xsd:decimal "0.0004560004340277781"^^xsd:decimal) math:sum "0.01943909920138892"^^xsd:decimal .
2512
- # ("0.01943909920138892"^^xsd:decimal "0.025323417777777767"^^xsd:decimal) math:sum "0.04476251697916669"^^xsd:decimal .
2513
- # ("0.04476251697916669"^^xsd:decimal 0.5) math:exponentiation "0.2115715410426617"^^xsd:decimal .
2514
- # via the schematic forward rule:
2515
- # {
2516
- # :MC1 :metrics ?m .
2517
- # ?m :pi ?pi .
2518
- # ?pi :pA ?a .
2519
- # ?pi :pB ?b .
2520
- # ?pi :pC ?c .
2521
- # (1.0 3.0) math:quotient ?u .
2522
- # (?a 2.0) math:exponentiation ?a2 .
2523
- # (?b 2.0) math:exponentiation ?b2 .
2524
- # (?c 2.0) math:exponentiation ?c2 .
2525
- # (?a2 ?b2) math:sum ?ab2 .
2526
- # (?ab2 ?c2) math:sum ?sumSq .
2527
- # (1.0 ?sumSq) math:difference ?gini .
2528
- # (1.0 ?sumSq) math:quotient ?effN .
2529
- # (?a ?u) math:difference ?da .
2530
- # ?da math:absoluteValue ?ada .
2531
- # (?b ?u) math:difference ?db .
2532
- # ?db math:absoluteValue ?adb .
2533
- # (?c ?u) math:difference ?dc .
2534
- # ?dc math:absoluteValue ?adc .
2535
- # (?ada ?adb) math:sum ?s1 .
2536
- # (?s1 ?adc) math:sum ?sAbs .
2537
- # (0.5 ?sAbs) math:product ?tv .
2538
- # (?da 2.0) math:exponentiation ?da2 .
2539
- # (?db 2.0) math:exponentiation ?db2 .
2540
- # (?dc 2.0) math:exponentiation ?dc2 .
2541
- # (?da2 ?db2) math:sum ?s2 .
2542
- # (?s2 ?dc2) math:sum ?s3 .
2543
- # (?s3 0.5) math:exponentiation ?l2 .
2544
- # } => {
2545
- # ?m :sumSq ?sumSq .
2546
- # ?m :gini ?gini .
2547
- # ?m :effectiveStates ?effN .
2548
- # ?m :tvToUniform ?tv .
2549
- # ?m :l2ToUniform ?l2 .
2550
- # } .
2551
- # with substitution (on rule variables):
2552
- # ?a = "0.4711125000000001"^^xsd:decimal
2553
- # ?a2 = "0.2219469876562501"^^xsd:decimal
2554
- # ?ab2 = "0.3477502103125001"^^xsd:decimal
2555
- # ?ada = "0.13777916666666679"^^xsd:decimal
2556
- # ?adb = "0.021354166666666674"^^xsd:decimal
2557
- # ?adc = "0.1591333333333333"^^xsd:decimal
2558
- # ?b = "0.3546875"^^xsd:decimal
2559
- # ?b2 = "0.12580322265625"^^xsd:decimal
2560
- # ?c = "0.17420000000000002"^^xsd:decimal
2561
- # ?c2 = "0.030345640000000007"^^xsd:decimal
2562
- # ?da = "0.13777916666666679"^^xsd:decimal
2563
- # ?da2 = "0.018983098767361144"^^xsd:decimal
2564
- # ?db = "0.021354166666666674"^^xsd:decimal
2565
- # ?db2 = "0.0004560004340277781"^^xsd:decimal
2566
- # ?dc = "-0.1591333333333333"^^xsd:decimal
2567
- # ?dc2 = "0.025323417777777767"^^xsd:decimal
2568
- # ?effN = "2.644831989490204"^^xsd:decimal
2569
- # ?gini = "0.6219041496875"^^xsd:decimal
2570
- # ?l2 = "0.2115715410426617"^^xsd:decimal
2571
- # ?m = _:sk_7
2572
- # ?pi = _:sk_2
2573
- # ?s1 = "0.15913333333333346"^^xsd:decimal
2574
- # ?s2 = "0.01943909920138892"^^xsd:decimal
2575
- # ?s3 = "0.04476251697916669"^^xsd:decimal
2576
- # ?sAbs = "0.31826666666666675"^^xsd:decimal
2577
- # ?sumSq = "0.3780958503125001"^^xsd:decimal
2578
- # ?tv = "0.15913333333333338"^^xsd:decimal
2579
- # ?u = "0.3333333333333333"^^xsd:decimal
2580
- # Therefore the derived triple above is entailed by the rules and facts.
2581
- # ----------------------------------------------------------------------
2582
-
2583
38
  _:sk_7 :tvToUniform "0.15913333333333338"^^xsd:decimal .
2584
-
2585
- # ----------------------------------------------------------------------
2586
- # Proof for derived triple:
2587
- # _:sk_7 :l2ToUniform "0.2115715410426617"^^xsd:decimal .
2588
- # It holds because the following instance of the rule body is provable:
2589
- # :MC1 :metrics _:sk_7 .
2590
- # _:sk_7 :pi _:sk_2 .
2591
- # _:sk_2 :pA "0.4711125000000001"^^xsd:decimal .
2592
- # _:sk_2 :pB "0.3546875"^^xsd:decimal .
2593
- # _:sk_2 :pC "0.17420000000000002"^^xsd:decimal .
2594
- # (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
2595
- # ("0.4711125000000001"^^xsd:decimal 2.0) math:exponentiation "0.2219469876562501"^^xsd:decimal .
2596
- # ("0.3546875"^^xsd:decimal 2.0) math:exponentiation "0.12580322265625"^^xsd:decimal .
2597
- # ("0.17420000000000002"^^xsd:decimal 2.0) math:exponentiation "0.030345640000000007"^^xsd:decimal .
2598
- # ("0.2219469876562501"^^xsd:decimal "0.12580322265625"^^xsd:decimal) math:sum "0.3477502103125001"^^xsd:decimal .
2599
- # ("0.3477502103125001"^^xsd:decimal "0.030345640000000007"^^xsd:decimal) math:sum "0.3780958503125001"^^xsd:decimal .
2600
- # (1.0 "0.3780958503125001"^^xsd:decimal) math:difference "0.6219041496875"^^xsd:decimal .
2601
- # (1.0 "0.3780958503125001"^^xsd:decimal) math:quotient "2.644831989490204"^^xsd:decimal .
2602
- # ("0.4711125000000001"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.13777916666666679"^^xsd:decimal .
2603
- # "0.13777916666666679"^^xsd:decimal math:absoluteValue "0.13777916666666679"^^xsd:decimal .
2604
- # ("0.3546875"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.021354166666666674"^^xsd:decimal .
2605
- # "0.021354166666666674"^^xsd:decimal math:absoluteValue "0.021354166666666674"^^xsd:decimal .
2606
- # ("0.17420000000000002"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1591333333333333"^^xsd:decimal .
2607
- # "-0.1591333333333333"^^xsd:decimal math:absoluteValue "0.1591333333333333"^^xsd:decimal .
2608
- # ("0.13777916666666679"^^xsd:decimal "0.021354166666666674"^^xsd:decimal) math:sum "0.15913333333333346"^^xsd:decimal .
2609
- # ("0.15913333333333346"^^xsd:decimal "0.1591333333333333"^^xsd:decimal) math:sum "0.31826666666666675"^^xsd:decimal .
2610
- # (0.5 "0.31826666666666675"^^xsd:decimal) math:product "0.15913333333333338"^^xsd:decimal .
2611
- # ("0.13777916666666679"^^xsd:decimal 2.0) math:exponentiation "0.018983098767361144"^^xsd:decimal .
2612
- # ("0.021354166666666674"^^xsd:decimal 2.0) math:exponentiation "0.0004560004340277781"^^xsd:decimal .
2613
- # ("-0.1591333333333333"^^xsd:decimal 2.0) math:exponentiation "0.025323417777777767"^^xsd:decimal .
2614
- # ("0.018983098767361144"^^xsd:decimal "0.0004560004340277781"^^xsd:decimal) math:sum "0.01943909920138892"^^xsd:decimal .
2615
- # ("0.01943909920138892"^^xsd:decimal "0.025323417777777767"^^xsd:decimal) math:sum "0.04476251697916669"^^xsd:decimal .
2616
- # ("0.04476251697916669"^^xsd:decimal 0.5) math:exponentiation "0.2115715410426617"^^xsd:decimal .
2617
- # via the schematic forward rule:
2618
- # {
2619
- # :MC1 :metrics ?m .
2620
- # ?m :pi ?pi .
2621
- # ?pi :pA ?a .
2622
- # ?pi :pB ?b .
2623
- # ?pi :pC ?c .
2624
- # (1.0 3.0) math:quotient ?u .
2625
- # (?a 2.0) math:exponentiation ?a2 .
2626
- # (?b 2.0) math:exponentiation ?b2 .
2627
- # (?c 2.0) math:exponentiation ?c2 .
2628
- # (?a2 ?b2) math:sum ?ab2 .
2629
- # (?ab2 ?c2) math:sum ?sumSq .
2630
- # (1.0 ?sumSq) math:difference ?gini .
2631
- # (1.0 ?sumSq) math:quotient ?effN .
2632
- # (?a ?u) math:difference ?da .
2633
- # ?da math:absoluteValue ?ada .
2634
- # (?b ?u) math:difference ?db .
2635
- # ?db math:absoluteValue ?adb .
2636
- # (?c ?u) math:difference ?dc .
2637
- # ?dc math:absoluteValue ?adc .
2638
- # (?ada ?adb) math:sum ?s1 .
2639
- # (?s1 ?adc) math:sum ?sAbs .
2640
- # (0.5 ?sAbs) math:product ?tv .
2641
- # (?da 2.0) math:exponentiation ?da2 .
2642
- # (?db 2.0) math:exponentiation ?db2 .
2643
- # (?dc 2.0) math:exponentiation ?dc2 .
2644
- # (?da2 ?db2) math:sum ?s2 .
2645
- # (?s2 ?dc2) math:sum ?s3 .
2646
- # (?s3 0.5) math:exponentiation ?l2 .
2647
- # } => {
2648
- # ?m :sumSq ?sumSq .
2649
- # ?m :gini ?gini .
2650
- # ?m :effectiveStates ?effN .
2651
- # ?m :tvToUniform ?tv .
2652
- # ?m :l2ToUniform ?l2 .
2653
- # } .
2654
- # with substitution (on rule variables):
2655
- # ?a = "0.4711125000000001"^^xsd:decimal
2656
- # ?a2 = "0.2219469876562501"^^xsd:decimal
2657
- # ?ab2 = "0.3477502103125001"^^xsd:decimal
2658
- # ?ada = "0.13777916666666679"^^xsd:decimal
2659
- # ?adb = "0.021354166666666674"^^xsd:decimal
2660
- # ?adc = "0.1591333333333333"^^xsd:decimal
2661
- # ?b = "0.3546875"^^xsd:decimal
2662
- # ?b2 = "0.12580322265625"^^xsd:decimal
2663
- # ?c = "0.17420000000000002"^^xsd:decimal
2664
- # ?c2 = "0.030345640000000007"^^xsd:decimal
2665
- # ?da = "0.13777916666666679"^^xsd:decimal
2666
- # ?da2 = "0.018983098767361144"^^xsd:decimal
2667
- # ?db = "0.021354166666666674"^^xsd:decimal
2668
- # ?db2 = "0.0004560004340277781"^^xsd:decimal
2669
- # ?dc = "-0.1591333333333333"^^xsd:decimal
2670
- # ?dc2 = "0.025323417777777767"^^xsd:decimal
2671
- # ?effN = "2.644831989490204"^^xsd:decimal
2672
- # ?gini = "0.6219041496875"^^xsd:decimal
2673
- # ?l2 = "0.2115715410426617"^^xsd:decimal
2674
- # ?m = _:sk_7
2675
- # ?pi = _:sk_2
2676
- # ?s1 = "0.15913333333333346"^^xsd:decimal
2677
- # ?s2 = "0.01943909920138892"^^xsd:decimal
2678
- # ?s3 = "0.04476251697916669"^^xsd:decimal
2679
- # ?sAbs = "0.31826666666666675"^^xsd:decimal
2680
- # ?sumSq = "0.3780958503125001"^^xsd:decimal
2681
- # ?tv = "0.15913333333333338"^^xsd:decimal
2682
- # ?u = "0.3333333333333333"^^xsd:decimal
2683
- # Therefore the derived triple above is entailed by the rules and facts.
2684
- # ----------------------------------------------------------------------
2685
-
2686
39
  _:sk_7 :l2ToUniform "0.2115715410426617"^^xsd:decimal .
2687
-
2688
- # ----------------------------------------------------------------------
2689
- # Proof for derived triple:
2690
- # _:sk_6 :sumSq "0.3891608750000001"^^xsd:decimal .
2691
- # It holds because the following instance of the rule body is provable:
2692
- # :MC1 :metrics _:sk_6 .
2693
- # _:sk_6 :pi _:sk_1 .
2694
- # _:sk_1 :pA "0.49550000000000005"^^xsd:decimal .
2695
- # _:sk_1 :pB "0.34275"^^xsd:decimal .
2696
- # _:sk_1 :pC "0.16175"^^xsd:decimal .
2697
- # (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
2698
- # ("0.49550000000000005"^^xsd:decimal 2.0) math:exponentiation "0.24552025000000005"^^xsd:decimal .
2699
- # ("0.34275"^^xsd:decimal 2.0) math:exponentiation "0.1174775625"^^xsd:decimal .
2700
- # ("0.16175"^^xsd:decimal 2.0) math:exponentiation "0.0261630625"^^xsd:decimal .
2701
- # ("0.24552025000000005"^^xsd:decimal "0.1174775625"^^xsd:decimal) math:sum "0.36299781250000007"^^xsd:decimal .
2702
- # ("0.36299781250000007"^^xsd:decimal "0.0261630625"^^xsd:decimal) math:sum "0.3891608750000001"^^xsd:decimal .
2703
- # (1.0 "0.3891608750000001"^^xsd:decimal) math:difference "0.6108391249999999"^^xsd:decimal .
2704
- # (1.0 "0.3891608750000001"^^xsd:decimal) math:quotient "2.569631389589202"^^xsd:decimal .
2705
- # ("0.49550000000000005"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.16216666666666674"^^xsd:decimal .
2706
- # "0.16216666666666674"^^xsd:decimal math:absoluteValue "0.16216666666666674"^^xsd:decimal .
2707
- # ("0.34275"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.009416666666666684"^^xsd:decimal .
2708
- # "0.009416666666666684"^^xsd:decimal math:absoluteValue "0.009416666666666684"^^xsd:decimal .
2709
- # ("0.16175"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1715833333333333"^^xsd:decimal .
2710
- # "-0.1715833333333333"^^xsd:decimal math:absoluteValue "0.1715833333333333"^^xsd:decimal .
2711
- # ("0.16216666666666674"^^xsd:decimal "0.009416666666666684"^^xsd:decimal) math:sum "0.17158333333333342"^^xsd:decimal .
2712
- # ("0.17158333333333342"^^xsd:decimal "0.1715833333333333"^^xsd:decimal) math:sum "0.34316666666666673"^^xsd:decimal .
2713
- # (0.5 "0.34316666666666673"^^xsd:decimal) math:product "0.17158333333333337"^^xsd:decimal .
2714
- # ("0.16216666666666674"^^xsd:decimal 2.0) math:exponentiation "0.026298027777777802"^^xsd:decimal .
2715
- # ("0.009416666666666684"^^xsd:decimal 2.0) math:exponentiation "0.00008867361111111145"^^xsd:decimal .
2716
- # ("-0.1715833333333333"^^xsd:decimal 2.0) math:exponentiation "0.02944084027777777"^^xsd:decimal .
2717
- # ("0.026298027777777802"^^xsd:decimal "0.00008867361111111145"^^xsd:decimal) math:sum "0.026386701388888913"^^xsd:decimal .
2718
- # ("0.026386701388888913"^^xsd:decimal "0.02944084027777777"^^xsd:decimal) math:sum "0.05582754166666668"^^xsd:decimal .
2719
- # ("0.05582754166666668"^^xsd:decimal 0.5) math:exponentiation "0.23627852561472165"^^xsd:decimal .
2720
- # via the schematic forward rule:
2721
- # {
2722
- # :MC1 :metrics ?m .
2723
- # ?m :pi ?pi .
2724
- # ?pi :pA ?a .
2725
- # ?pi :pB ?b .
2726
- # ?pi :pC ?c .
2727
- # (1.0 3.0) math:quotient ?u .
2728
- # (?a 2.0) math:exponentiation ?a2 .
2729
- # (?b 2.0) math:exponentiation ?b2 .
2730
- # (?c 2.0) math:exponentiation ?c2 .
2731
- # (?a2 ?b2) math:sum ?ab2 .
2732
- # (?ab2 ?c2) math:sum ?sumSq .
2733
- # (1.0 ?sumSq) math:difference ?gini .
2734
- # (1.0 ?sumSq) math:quotient ?effN .
2735
- # (?a ?u) math:difference ?da .
2736
- # ?da math:absoluteValue ?ada .
2737
- # (?b ?u) math:difference ?db .
2738
- # ?db math:absoluteValue ?adb .
2739
- # (?c ?u) math:difference ?dc .
2740
- # ?dc math:absoluteValue ?adc .
2741
- # (?ada ?adb) math:sum ?s1 .
2742
- # (?s1 ?adc) math:sum ?sAbs .
2743
- # (0.5 ?sAbs) math:product ?tv .
2744
- # (?da 2.0) math:exponentiation ?da2 .
2745
- # (?db 2.0) math:exponentiation ?db2 .
2746
- # (?dc 2.0) math:exponentiation ?dc2 .
2747
- # (?da2 ?db2) math:sum ?s2 .
2748
- # (?s2 ?dc2) math:sum ?s3 .
2749
- # (?s3 0.5) math:exponentiation ?l2 .
2750
- # } => {
2751
- # ?m :sumSq ?sumSq .
2752
- # ?m :gini ?gini .
2753
- # ?m :effectiveStates ?effN .
2754
- # ?m :tvToUniform ?tv .
2755
- # ?m :l2ToUniform ?l2 .
2756
- # } .
2757
- # with substitution (on rule variables):
2758
- # ?a = "0.49550000000000005"^^xsd:decimal
2759
- # ?a2 = "0.24552025000000005"^^xsd:decimal
2760
- # ?ab2 = "0.36299781250000007"^^xsd:decimal
2761
- # ?ada = "0.16216666666666674"^^xsd:decimal
2762
- # ?adb = "0.009416666666666684"^^xsd:decimal
2763
- # ?adc = "0.1715833333333333"^^xsd:decimal
2764
- # ?b = "0.34275"^^xsd:decimal
2765
- # ?b2 = "0.1174775625"^^xsd:decimal
2766
- # ?c = "0.16175"^^xsd:decimal
2767
- # ?c2 = "0.0261630625"^^xsd:decimal
2768
- # ?da = "0.16216666666666674"^^xsd:decimal
2769
- # ?da2 = "0.026298027777777802"^^xsd:decimal
2770
- # ?db = "0.009416666666666684"^^xsd:decimal
2771
- # ?db2 = "0.00008867361111111145"^^xsd:decimal
2772
- # ?dc = "-0.1715833333333333"^^xsd:decimal
2773
- # ?dc2 = "0.02944084027777777"^^xsd:decimal
2774
- # ?effN = "2.569631389589202"^^xsd:decimal
2775
- # ?gini = "0.6108391249999999"^^xsd:decimal
2776
- # ?l2 = "0.23627852561472165"^^xsd:decimal
2777
- # ?m = _:sk_6
2778
- # ?pi = _:sk_1
2779
- # ?s1 = "0.17158333333333342"^^xsd:decimal
2780
- # ?s2 = "0.026386701388888913"^^xsd:decimal
2781
- # ?s3 = "0.05582754166666668"^^xsd:decimal
2782
- # ?sAbs = "0.34316666666666673"^^xsd:decimal
2783
- # ?sumSq = "0.3891608750000001"^^xsd:decimal
2784
- # ?tv = "0.17158333333333337"^^xsd:decimal
2785
- # ?u = "0.3333333333333333"^^xsd:decimal
2786
- # Therefore the derived triple above is entailed by the rules and facts.
2787
- # ----------------------------------------------------------------------
2788
-
2789
40
  _:sk_6 :sumSq "0.3891608750000001"^^xsd:decimal .
2790
-
2791
- # ----------------------------------------------------------------------
2792
- # Proof for derived triple:
2793
- # _:sk_6 :gini "0.6108391249999999"^^xsd:decimal .
2794
- # It holds because the following instance of the rule body is provable:
2795
- # :MC1 :metrics _:sk_6 .
2796
- # _:sk_6 :pi _:sk_1 .
2797
- # _:sk_1 :pA "0.49550000000000005"^^xsd:decimal .
2798
- # _:sk_1 :pB "0.34275"^^xsd:decimal .
2799
- # _:sk_1 :pC "0.16175"^^xsd:decimal .
2800
- # (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
2801
- # ("0.49550000000000005"^^xsd:decimal 2.0) math:exponentiation "0.24552025000000005"^^xsd:decimal .
2802
- # ("0.34275"^^xsd:decimal 2.0) math:exponentiation "0.1174775625"^^xsd:decimal .
2803
- # ("0.16175"^^xsd:decimal 2.0) math:exponentiation "0.0261630625"^^xsd:decimal .
2804
- # ("0.24552025000000005"^^xsd:decimal "0.1174775625"^^xsd:decimal) math:sum "0.36299781250000007"^^xsd:decimal .
2805
- # ("0.36299781250000007"^^xsd:decimal "0.0261630625"^^xsd:decimal) math:sum "0.3891608750000001"^^xsd:decimal .
2806
- # (1.0 "0.3891608750000001"^^xsd:decimal) math:difference "0.6108391249999999"^^xsd:decimal .
2807
- # (1.0 "0.3891608750000001"^^xsd:decimal) math:quotient "2.569631389589202"^^xsd:decimal .
2808
- # ("0.49550000000000005"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.16216666666666674"^^xsd:decimal .
2809
- # "0.16216666666666674"^^xsd:decimal math:absoluteValue "0.16216666666666674"^^xsd:decimal .
2810
- # ("0.34275"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.009416666666666684"^^xsd:decimal .
2811
- # "0.009416666666666684"^^xsd:decimal math:absoluteValue "0.009416666666666684"^^xsd:decimal .
2812
- # ("0.16175"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1715833333333333"^^xsd:decimal .
2813
- # "-0.1715833333333333"^^xsd:decimal math:absoluteValue "0.1715833333333333"^^xsd:decimal .
2814
- # ("0.16216666666666674"^^xsd:decimal "0.009416666666666684"^^xsd:decimal) math:sum "0.17158333333333342"^^xsd:decimal .
2815
- # ("0.17158333333333342"^^xsd:decimal "0.1715833333333333"^^xsd:decimal) math:sum "0.34316666666666673"^^xsd:decimal .
2816
- # (0.5 "0.34316666666666673"^^xsd:decimal) math:product "0.17158333333333337"^^xsd:decimal .
2817
- # ("0.16216666666666674"^^xsd:decimal 2.0) math:exponentiation "0.026298027777777802"^^xsd:decimal .
2818
- # ("0.009416666666666684"^^xsd:decimal 2.0) math:exponentiation "0.00008867361111111145"^^xsd:decimal .
2819
- # ("-0.1715833333333333"^^xsd:decimal 2.0) math:exponentiation "0.02944084027777777"^^xsd:decimal .
2820
- # ("0.026298027777777802"^^xsd:decimal "0.00008867361111111145"^^xsd:decimal) math:sum "0.026386701388888913"^^xsd:decimal .
2821
- # ("0.026386701388888913"^^xsd:decimal "0.02944084027777777"^^xsd:decimal) math:sum "0.05582754166666668"^^xsd:decimal .
2822
- # ("0.05582754166666668"^^xsd:decimal 0.5) math:exponentiation "0.23627852561472165"^^xsd:decimal .
2823
- # via the schematic forward rule:
2824
- # {
2825
- # :MC1 :metrics ?m .
2826
- # ?m :pi ?pi .
2827
- # ?pi :pA ?a .
2828
- # ?pi :pB ?b .
2829
- # ?pi :pC ?c .
2830
- # (1.0 3.0) math:quotient ?u .
2831
- # (?a 2.0) math:exponentiation ?a2 .
2832
- # (?b 2.0) math:exponentiation ?b2 .
2833
- # (?c 2.0) math:exponentiation ?c2 .
2834
- # (?a2 ?b2) math:sum ?ab2 .
2835
- # (?ab2 ?c2) math:sum ?sumSq .
2836
- # (1.0 ?sumSq) math:difference ?gini .
2837
- # (1.0 ?sumSq) math:quotient ?effN .
2838
- # (?a ?u) math:difference ?da .
2839
- # ?da math:absoluteValue ?ada .
2840
- # (?b ?u) math:difference ?db .
2841
- # ?db math:absoluteValue ?adb .
2842
- # (?c ?u) math:difference ?dc .
2843
- # ?dc math:absoluteValue ?adc .
2844
- # (?ada ?adb) math:sum ?s1 .
2845
- # (?s1 ?adc) math:sum ?sAbs .
2846
- # (0.5 ?sAbs) math:product ?tv .
2847
- # (?da 2.0) math:exponentiation ?da2 .
2848
- # (?db 2.0) math:exponentiation ?db2 .
2849
- # (?dc 2.0) math:exponentiation ?dc2 .
2850
- # (?da2 ?db2) math:sum ?s2 .
2851
- # (?s2 ?dc2) math:sum ?s3 .
2852
- # (?s3 0.5) math:exponentiation ?l2 .
2853
- # } => {
2854
- # ?m :sumSq ?sumSq .
2855
- # ?m :gini ?gini .
2856
- # ?m :effectiveStates ?effN .
2857
- # ?m :tvToUniform ?tv .
2858
- # ?m :l2ToUniform ?l2 .
2859
- # } .
2860
- # with substitution (on rule variables):
2861
- # ?a = "0.49550000000000005"^^xsd:decimal
2862
- # ?a2 = "0.24552025000000005"^^xsd:decimal
2863
- # ?ab2 = "0.36299781250000007"^^xsd:decimal
2864
- # ?ada = "0.16216666666666674"^^xsd:decimal
2865
- # ?adb = "0.009416666666666684"^^xsd:decimal
2866
- # ?adc = "0.1715833333333333"^^xsd:decimal
2867
- # ?b = "0.34275"^^xsd:decimal
2868
- # ?b2 = "0.1174775625"^^xsd:decimal
2869
- # ?c = "0.16175"^^xsd:decimal
2870
- # ?c2 = "0.0261630625"^^xsd:decimal
2871
- # ?da = "0.16216666666666674"^^xsd:decimal
2872
- # ?da2 = "0.026298027777777802"^^xsd:decimal
2873
- # ?db = "0.009416666666666684"^^xsd:decimal
2874
- # ?db2 = "0.00008867361111111145"^^xsd:decimal
2875
- # ?dc = "-0.1715833333333333"^^xsd:decimal
2876
- # ?dc2 = "0.02944084027777777"^^xsd:decimal
2877
- # ?effN = "2.569631389589202"^^xsd:decimal
2878
- # ?gini = "0.6108391249999999"^^xsd:decimal
2879
- # ?l2 = "0.23627852561472165"^^xsd:decimal
2880
- # ?m = _:sk_6
2881
- # ?pi = _:sk_1
2882
- # ?s1 = "0.17158333333333342"^^xsd:decimal
2883
- # ?s2 = "0.026386701388888913"^^xsd:decimal
2884
- # ?s3 = "0.05582754166666668"^^xsd:decimal
2885
- # ?sAbs = "0.34316666666666673"^^xsd:decimal
2886
- # ?sumSq = "0.3891608750000001"^^xsd:decimal
2887
- # ?tv = "0.17158333333333337"^^xsd:decimal
2888
- # ?u = "0.3333333333333333"^^xsd:decimal
2889
- # Therefore the derived triple above is entailed by the rules and facts.
2890
- # ----------------------------------------------------------------------
2891
-
2892
41
  _:sk_6 :gini "0.6108391249999999"^^xsd:decimal .
2893
-
2894
- # ----------------------------------------------------------------------
2895
- # Proof for derived triple:
2896
- # _:sk_6 :effectiveStates "2.569631389589202"^^xsd:decimal .
2897
- # It holds because the following instance of the rule body is provable:
2898
- # :MC1 :metrics _:sk_6 .
2899
- # _:sk_6 :pi _:sk_1 .
2900
- # _:sk_1 :pA "0.49550000000000005"^^xsd:decimal .
2901
- # _:sk_1 :pB "0.34275"^^xsd:decimal .
2902
- # _:sk_1 :pC "0.16175"^^xsd:decimal .
2903
- # (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
2904
- # ("0.49550000000000005"^^xsd:decimal 2.0) math:exponentiation "0.24552025000000005"^^xsd:decimal .
2905
- # ("0.34275"^^xsd:decimal 2.0) math:exponentiation "0.1174775625"^^xsd:decimal .
2906
- # ("0.16175"^^xsd:decimal 2.0) math:exponentiation "0.0261630625"^^xsd:decimal .
2907
- # ("0.24552025000000005"^^xsd:decimal "0.1174775625"^^xsd:decimal) math:sum "0.36299781250000007"^^xsd:decimal .
2908
- # ("0.36299781250000007"^^xsd:decimal "0.0261630625"^^xsd:decimal) math:sum "0.3891608750000001"^^xsd:decimal .
2909
- # (1.0 "0.3891608750000001"^^xsd:decimal) math:difference "0.6108391249999999"^^xsd:decimal .
2910
- # (1.0 "0.3891608750000001"^^xsd:decimal) math:quotient "2.569631389589202"^^xsd:decimal .
2911
- # ("0.49550000000000005"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.16216666666666674"^^xsd:decimal .
2912
- # "0.16216666666666674"^^xsd:decimal math:absoluteValue "0.16216666666666674"^^xsd:decimal .
2913
- # ("0.34275"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.009416666666666684"^^xsd:decimal .
2914
- # "0.009416666666666684"^^xsd:decimal math:absoluteValue "0.009416666666666684"^^xsd:decimal .
2915
- # ("0.16175"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1715833333333333"^^xsd:decimal .
2916
- # "-0.1715833333333333"^^xsd:decimal math:absoluteValue "0.1715833333333333"^^xsd:decimal .
2917
- # ("0.16216666666666674"^^xsd:decimal "0.009416666666666684"^^xsd:decimal) math:sum "0.17158333333333342"^^xsd:decimal .
2918
- # ("0.17158333333333342"^^xsd:decimal "0.1715833333333333"^^xsd:decimal) math:sum "0.34316666666666673"^^xsd:decimal .
2919
- # (0.5 "0.34316666666666673"^^xsd:decimal) math:product "0.17158333333333337"^^xsd:decimal .
2920
- # ("0.16216666666666674"^^xsd:decimal 2.0) math:exponentiation "0.026298027777777802"^^xsd:decimal .
2921
- # ("0.009416666666666684"^^xsd:decimal 2.0) math:exponentiation "0.00008867361111111145"^^xsd:decimal .
2922
- # ("-0.1715833333333333"^^xsd:decimal 2.0) math:exponentiation "0.02944084027777777"^^xsd:decimal .
2923
- # ("0.026298027777777802"^^xsd:decimal "0.00008867361111111145"^^xsd:decimal) math:sum "0.026386701388888913"^^xsd:decimal .
2924
- # ("0.026386701388888913"^^xsd:decimal "0.02944084027777777"^^xsd:decimal) math:sum "0.05582754166666668"^^xsd:decimal .
2925
- # ("0.05582754166666668"^^xsd:decimal 0.5) math:exponentiation "0.23627852561472165"^^xsd:decimal .
2926
- # via the schematic forward rule:
2927
- # {
2928
- # :MC1 :metrics ?m .
2929
- # ?m :pi ?pi .
2930
- # ?pi :pA ?a .
2931
- # ?pi :pB ?b .
2932
- # ?pi :pC ?c .
2933
- # (1.0 3.0) math:quotient ?u .
2934
- # (?a 2.0) math:exponentiation ?a2 .
2935
- # (?b 2.0) math:exponentiation ?b2 .
2936
- # (?c 2.0) math:exponentiation ?c2 .
2937
- # (?a2 ?b2) math:sum ?ab2 .
2938
- # (?ab2 ?c2) math:sum ?sumSq .
2939
- # (1.0 ?sumSq) math:difference ?gini .
2940
- # (1.0 ?sumSq) math:quotient ?effN .
2941
- # (?a ?u) math:difference ?da .
2942
- # ?da math:absoluteValue ?ada .
2943
- # (?b ?u) math:difference ?db .
2944
- # ?db math:absoluteValue ?adb .
2945
- # (?c ?u) math:difference ?dc .
2946
- # ?dc math:absoluteValue ?adc .
2947
- # (?ada ?adb) math:sum ?s1 .
2948
- # (?s1 ?adc) math:sum ?sAbs .
2949
- # (0.5 ?sAbs) math:product ?tv .
2950
- # (?da 2.0) math:exponentiation ?da2 .
2951
- # (?db 2.0) math:exponentiation ?db2 .
2952
- # (?dc 2.0) math:exponentiation ?dc2 .
2953
- # (?da2 ?db2) math:sum ?s2 .
2954
- # (?s2 ?dc2) math:sum ?s3 .
2955
- # (?s3 0.5) math:exponentiation ?l2 .
2956
- # } => {
2957
- # ?m :sumSq ?sumSq .
2958
- # ?m :gini ?gini .
2959
- # ?m :effectiveStates ?effN .
2960
- # ?m :tvToUniform ?tv .
2961
- # ?m :l2ToUniform ?l2 .
2962
- # } .
2963
- # with substitution (on rule variables):
2964
- # ?a = "0.49550000000000005"^^xsd:decimal
2965
- # ?a2 = "0.24552025000000005"^^xsd:decimal
2966
- # ?ab2 = "0.36299781250000007"^^xsd:decimal
2967
- # ?ada = "0.16216666666666674"^^xsd:decimal
2968
- # ?adb = "0.009416666666666684"^^xsd:decimal
2969
- # ?adc = "0.1715833333333333"^^xsd:decimal
2970
- # ?b = "0.34275"^^xsd:decimal
2971
- # ?b2 = "0.1174775625"^^xsd:decimal
2972
- # ?c = "0.16175"^^xsd:decimal
2973
- # ?c2 = "0.0261630625"^^xsd:decimal
2974
- # ?da = "0.16216666666666674"^^xsd:decimal
2975
- # ?da2 = "0.026298027777777802"^^xsd:decimal
2976
- # ?db = "0.009416666666666684"^^xsd:decimal
2977
- # ?db2 = "0.00008867361111111145"^^xsd:decimal
2978
- # ?dc = "-0.1715833333333333"^^xsd:decimal
2979
- # ?dc2 = "0.02944084027777777"^^xsd:decimal
2980
- # ?effN = "2.569631389589202"^^xsd:decimal
2981
- # ?gini = "0.6108391249999999"^^xsd:decimal
2982
- # ?l2 = "0.23627852561472165"^^xsd:decimal
2983
- # ?m = _:sk_6
2984
- # ?pi = _:sk_1
2985
- # ?s1 = "0.17158333333333342"^^xsd:decimal
2986
- # ?s2 = "0.026386701388888913"^^xsd:decimal
2987
- # ?s3 = "0.05582754166666668"^^xsd:decimal
2988
- # ?sAbs = "0.34316666666666673"^^xsd:decimal
2989
- # ?sumSq = "0.3891608750000001"^^xsd:decimal
2990
- # ?tv = "0.17158333333333337"^^xsd:decimal
2991
- # ?u = "0.3333333333333333"^^xsd:decimal
2992
- # Therefore the derived triple above is entailed by the rules and facts.
2993
- # ----------------------------------------------------------------------
2994
-
2995
42
  _:sk_6 :effectiveStates "2.569631389589202"^^xsd:decimal .
2996
-
2997
- # ----------------------------------------------------------------------
2998
- # Proof for derived triple:
2999
- # _:sk_6 :tvToUniform "0.17158333333333337"^^xsd:decimal .
3000
- # It holds because the following instance of the rule body is provable:
3001
- # :MC1 :metrics _:sk_6 .
3002
- # _:sk_6 :pi _:sk_1 .
3003
- # _:sk_1 :pA "0.49550000000000005"^^xsd:decimal .
3004
- # _:sk_1 :pB "0.34275"^^xsd:decimal .
3005
- # _:sk_1 :pC "0.16175"^^xsd:decimal .
3006
- # (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
3007
- # ("0.49550000000000005"^^xsd:decimal 2.0) math:exponentiation "0.24552025000000005"^^xsd:decimal .
3008
- # ("0.34275"^^xsd:decimal 2.0) math:exponentiation "0.1174775625"^^xsd:decimal .
3009
- # ("0.16175"^^xsd:decimal 2.0) math:exponentiation "0.0261630625"^^xsd:decimal .
3010
- # ("0.24552025000000005"^^xsd:decimal "0.1174775625"^^xsd:decimal) math:sum "0.36299781250000007"^^xsd:decimal .
3011
- # ("0.36299781250000007"^^xsd:decimal "0.0261630625"^^xsd:decimal) math:sum "0.3891608750000001"^^xsd:decimal .
3012
- # (1.0 "0.3891608750000001"^^xsd:decimal) math:difference "0.6108391249999999"^^xsd:decimal .
3013
- # (1.0 "0.3891608750000001"^^xsd:decimal) math:quotient "2.569631389589202"^^xsd:decimal .
3014
- # ("0.49550000000000005"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.16216666666666674"^^xsd:decimal .
3015
- # "0.16216666666666674"^^xsd:decimal math:absoluteValue "0.16216666666666674"^^xsd:decimal .
3016
- # ("0.34275"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.009416666666666684"^^xsd:decimal .
3017
- # "0.009416666666666684"^^xsd:decimal math:absoluteValue "0.009416666666666684"^^xsd:decimal .
3018
- # ("0.16175"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1715833333333333"^^xsd:decimal .
3019
- # "-0.1715833333333333"^^xsd:decimal math:absoluteValue "0.1715833333333333"^^xsd:decimal .
3020
- # ("0.16216666666666674"^^xsd:decimal "0.009416666666666684"^^xsd:decimal) math:sum "0.17158333333333342"^^xsd:decimal .
3021
- # ("0.17158333333333342"^^xsd:decimal "0.1715833333333333"^^xsd:decimal) math:sum "0.34316666666666673"^^xsd:decimal .
3022
- # (0.5 "0.34316666666666673"^^xsd:decimal) math:product "0.17158333333333337"^^xsd:decimal .
3023
- # ("0.16216666666666674"^^xsd:decimal 2.0) math:exponentiation "0.026298027777777802"^^xsd:decimal .
3024
- # ("0.009416666666666684"^^xsd:decimal 2.0) math:exponentiation "0.00008867361111111145"^^xsd:decimal .
3025
- # ("-0.1715833333333333"^^xsd:decimal 2.0) math:exponentiation "0.02944084027777777"^^xsd:decimal .
3026
- # ("0.026298027777777802"^^xsd:decimal "0.00008867361111111145"^^xsd:decimal) math:sum "0.026386701388888913"^^xsd:decimal .
3027
- # ("0.026386701388888913"^^xsd:decimal "0.02944084027777777"^^xsd:decimal) math:sum "0.05582754166666668"^^xsd:decimal .
3028
- # ("0.05582754166666668"^^xsd:decimal 0.5) math:exponentiation "0.23627852561472165"^^xsd:decimal .
3029
- # via the schematic forward rule:
3030
- # {
3031
- # :MC1 :metrics ?m .
3032
- # ?m :pi ?pi .
3033
- # ?pi :pA ?a .
3034
- # ?pi :pB ?b .
3035
- # ?pi :pC ?c .
3036
- # (1.0 3.0) math:quotient ?u .
3037
- # (?a 2.0) math:exponentiation ?a2 .
3038
- # (?b 2.0) math:exponentiation ?b2 .
3039
- # (?c 2.0) math:exponentiation ?c2 .
3040
- # (?a2 ?b2) math:sum ?ab2 .
3041
- # (?ab2 ?c2) math:sum ?sumSq .
3042
- # (1.0 ?sumSq) math:difference ?gini .
3043
- # (1.0 ?sumSq) math:quotient ?effN .
3044
- # (?a ?u) math:difference ?da .
3045
- # ?da math:absoluteValue ?ada .
3046
- # (?b ?u) math:difference ?db .
3047
- # ?db math:absoluteValue ?adb .
3048
- # (?c ?u) math:difference ?dc .
3049
- # ?dc math:absoluteValue ?adc .
3050
- # (?ada ?adb) math:sum ?s1 .
3051
- # (?s1 ?adc) math:sum ?sAbs .
3052
- # (0.5 ?sAbs) math:product ?tv .
3053
- # (?da 2.0) math:exponentiation ?da2 .
3054
- # (?db 2.0) math:exponentiation ?db2 .
3055
- # (?dc 2.0) math:exponentiation ?dc2 .
3056
- # (?da2 ?db2) math:sum ?s2 .
3057
- # (?s2 ?dc2) math:sum ?s3 .
3058
- # (?s3 0.5) math:exponentiation ?l2 .
3059
- # } => {
3060
- # ?m :sumSq ?sumSq .
3061
- # ?m :gini ?gini .
3062
- # ?m :effectiveStates ?effN .
3063
- # ?m :tvToUniform ?tv .
3064
- # ?m :l2ToUniform ?l2 .
3065
- # } .
3066
- # with substitution (on rule variables):
3067
- # ?a = "0.49550000000000005"^^xsd:decimal
3068
- # ?a2 = "0.24552025000000005"^^xsd:decimal
3069
- # ?ab2 = "0.36299781250000007"^^xsd:decimal
3070
- # ?ada = "0.16216666666666674"^^xsd:decimal
3071
- # ?adb = "0.009416666666666684"^^xsd:decimal
3072
- # ?adc = "0.1715833333333333"^^xsd:decimal
3073
- # ?b = "0.34275"^^xsd:decimal
3074
- # ?b2 = "0.1174775625"^^xsd:decimal
3075
- # ?c = "0.16175"^^xsd:decimal
3076
- # ?c2 = "0.0261630625"^^xsd:decimal
3077
- # ?da = "0.16216666666666674"^^xsd:decimal
3078
- # ?da2 = "0.026298027777777802"^^xsd:decimal
3079
- # ?db = "0.009416666666666684"^^xsd:decimal
3080
- # ?db2 = "0.00008867361111111145"^^xsd:decimal
3081
- # ?dc = "-0.1715833333333333"^^xsd:decimal
3082
- # ?dc2 = "0.02944084027777777"^^xsd:decimal
3083
- # ?effN = "2.569631389589202"^^xsd:decimal
3084
- # ?gini = "0.6108391249999999"^^xsd:decimal
3085
- # ?l2 = "0.23627852561472165"^^xsd:decimal
3086
- # ?m = _:sk_6
3087
- # ?pi = _:sk_1
3088
- # ?s1 = "0.17158333333333342"^^xsd:decimal
3089
- # ?s2 = "0.026386701388888913"^^xsd:decimal
3090
- # ?s3 = "0.05582754166666668"^^xsd:decimal
3091
- # ?sAbs = "0.34316666666666673"^^xsd:decimal
3092
- # ?sumSq = "0.3891608750000001"^^xsd:decimal
3093
- # ?tv = "0.17158333333333337"^^xsd:decimal
3094
- # ?u = "0.3333333333333333"^^xsd:decimal
3095
- # Therefore the derived triple above is entailed by the rules and facts.
3096
- # ----------------------------------------------------------------------
3097
-
3098
43
  _:sk_6 :tvToUniform "0.17158333333333337"^^xsd:decimal .
3099
-
3100
- # ----------------------------------------------------------------------
3101
- # Proof for derived triple:
3102
- # _:sk_6 :l2ToUniform "0.23627852561472165"^^xsd:decimal .
3103
- # It holds because the following instance of the rule body is provable:
3104
- # :MC1 :metrics _:sk_6 .
3105
- # _:sk_6 :pi _:sk_1 .
3106
- # _:sk_1 :pA "0.49550000000000005"^^xsd:decimal .
3107
- # _:sk_1 :pB "0.34275"^^xsd:decimal .
3108
- # _:sk_1 :pC "0.16175"^^xsd:decimal .
3109
- # (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
3110
- # ("0.49550000000000005"^^xsd:decimal 2.0) math:exponentiation "0.24552025000000005"^^xsd:decimal .
3111
- # ("0.34275"^^xsd:decimal 2.0) math:exponentiation "0.1174775625"^^xsd:decimal .
3112
- # ("0.16175"^^xsd:decimal 2.0) math:exponentiation "0.0261630625"^^xsd:decimal .
3113
- # ("0.24552025000000005"^^xsd:decimal "0.1174775625"^^xsd:decimal) math:sum "0.36299781250000007"^^xsd:decimal .
3114
- # ("0.36299781250000007"^^xsd:decimal "0.0261630625"^^xsd:decimal) math:sum "0.3891608750000001"^^xsd:decimal .
3115
- # (1.0 "0.3891608750000001"^^xsd:decimal) math:difference "0.6108391249999999"^^xsd:decimal .
3116
- # (1.0 "0.3891608750000001"^^xsd:decimal) math:quotient "2.569631389589202"^^xsd:decimal .
3117
- # ("0.49550000000000005"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.16216666666666674"^^xsd:decimal .
3118
- # "0.16216666666666674"^^xsd:decimal math:absoluteValue "0.16216666666666674"^^xsd:decimal .
3119
- # ("0.34275"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.009416666666666684"^^xsd:decimal .
3120
- # "0.009416666666666684"^^xsd:decimal math:absoluteValue "0.009416666666666684"^^xsd:decimal .
3121
- # ("0.16175"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1715833333333333"^^xsd:decimal .
3122
- # "-0.1715833333333333"^^xsd:decimal math:absoluteValue "0.1715833333333333"^^xsd:decimal .
3123
- # ("0.16216666666666674"^^xsd:decimal "0.009416666666666684"^^xsd:decimal) math:sum "0.17158333333333342"^^xsd:decimal .
3124
- # ("0.17158333333333342"^^xsd:decimal "0.1715833333333333"^^xsd:decimal) math:sum "0.34316666666666673"^^xsd:decimal .
3125
- # (0.5 "0.34316666666666673"^^xsd:decimal) math:product "0.17158333333333337"^^xsd:decimal .
3126
- # ("0.16216666666666674"^^xsd:decimal 2.0) math:exponentiation "0.026298027777777802"^^xsd:decimal .
3127
- # ("0.009416666666666684"^^xsd:decimal 2.0) math:exponentiation "0.00008867361111111145"^^xsd:decimal .
3128
- # ("-0.1715833333333333"^^xsd:decimal 2.0) math:exponentiation "0.02944084027777777"^^xsd:decimal .
3129
- # ("0.026298027777777802"^^xsd:decimal "0.00008867361111111145"^^xsd:decimal) math:sum "0.026386701388888913"^^xsd:decimal .
3130
- # ("0.026386701388888913"^^xsd:decimal "0.02944084027777777"^^xsd:decimal) math:sum "0.05582754166666668"^^xsd:decimal .
3131
- # ("0.05582754166666668"^^xsd:decimal 0.5) math:exponentiation "0.23627852561472165"^^xsd:decimal .
3132
- # via the schematic forward rule:
3133
- # {
3134
- # :MC1 :metrics ?m .
3135
- # ?m :pi ?pi .
3136
- # ?pi :pA ?a .
3137
- # ?pi :pB ?b .
3138
- # ?pi :pC ?c .
3139
- # (1.0 3.0) math:quotient ?u .
3140
- # (?a 2.0) math:exponentiation ?a2 .
3141
- # (?b 2.0) math:exponentiation ?b2 .
3142
- # (?c 2.0) math:exponentiation ?c2 .
3143
- # (?a2 ?b2) math:sum ?ab2 .
3144
- # (?ab2 ?c2) math:sum ?sumSq .
3145
- # (1.0 ?sumSq) math:difference ?gini .
3146
- # (1.0 ?sumSq) math:quotient ?effN .
3147
- # (?a ?u) math:difference ?da .
3148
- # ?da math:absoluteValue ?ada .
3149
- # (?b ?u) math:difference ?db .
3150
- # ?db math:absoluteValue ?adb .
3151
- # (?c ?u) math:difference ?dc .
3152
- # ?dc math:absoluteValue ?adc .
3153
- # (?ada ?adb) math:sum ?s1 .
3154
- # (?s1 ?adc) math:sum ?sAbs .
3155
- # (0.5 ?sAbs) math:product ?tv .
3156
- # (?da 2.0) math:exponentiation ?da2 .
3157
- # (?db 2.0) math:exponentiation ?db2 .
3158
- # (?dc 2.0) math:exponentiation ?dc2 .
3159
- # (?da2 ?db2) math:sum ?s2 .
3160
- # (?s2 ?dc2) math:sum ?s3 .
3161
- # (?s3 0.5) math:exponentiation ?l2 .
3162
- # } => {
3163
- # ?m :sumSq ?sumSq .
3164
- # ?m :gini ?gini .
3165
- # ?m :effectiveStates ?effN .
3166
- # ?m :tvToUniform ?tv .
3167
- # ?m :l2ToUniform ?l2 .
3168
- # } .
3169
- # with substitution (on rule variables):
3170
- # ?a = "0.49550000000000005"^^xsd:decimal
3171
- # ?a2 = "0.24552025000000005"^^xsd:decimal
3172
- # ?ab2 = "0.36299781250000007"^^xsd:decimal
3173
- # ?ada = "0.16216666666666674"^^xsd:decimal
3174
- # ?adb = "0.009416666666666684"^^xsd:decimal
3175
- # ?adc = "0.1715833333333333"^^xsd:decimal
3176
- # ?b = "0.34275"^^xsd:decimal
3177
- # ?b2 = "0.1174775625"^^xsd:decimal
3178
- # ?c = "0.16175"^^xsd:decimal
3179
- # ?c2 = "0.0261630625"^^xsd:decimal
3180
- # ?da = "0.16216666666666674"^^xsd:decimal
3181
- # ?da2 = "0.026298027777777802"^^xsd:decimal
3182
- # ?db = "0.009416666666666684"^^xsd:decimal
3183
- # ?db2 = "0.00008867361111111145"^^xsd:decimal
3184
- # ?dc = "-0.1715833333333333"^^xsd:decimal
3185
- # ?dc2 = "0.02944084027777777"^^xsd:decimal
3186
- # ?effN = "2.569631389589202"^^xsd:decimal
3187
- # ?gini = "0.6108391249999999"^^xsd:decimal
3188
- # ?l2 = "0.23627852561472165"^^xsd:decimal
3189
- # ?m = _:sk_6
3190
- # ?pi = _:sk_1
3191
- # ?s1 = "0.17158333333333342"^^xsd:decimal
3192
- # ?s2 = "0.026386701388888913"^^xsd:decimal
3193
- # ?s3 = "0.05582754166666668"^^xsd:decimal
3194
- # ?sAbs = "0.34316666666666673"^^xsd:decimal
3195
- # ?sumSq = "0.3891608750000001"^^xsd:decimal
3196
- # ?tv = "0.17158333333333337"^^xsd:decimal
3197
- # ?u = "0.3333333333333333"^^xsd:decimal
3198
- # Therefore the derived triple above is entailed by the rules and facts.
3199
- # ----------------------------------------------------------------------
3200
-
3201
44
  _:sk_6 :l2ToUniform "0.23627852561472165"^^xsd:decimal .
3202
-
3203
- # ----------------------------------------------------------------------
3204
- # Proof for derived triple:
3205
- # _:sk_5 :sumSq "0.41145000000000004"^^xsd:decimal .
3206
- # It holds because the following instance of the rule body is provable:
3207
- # :MC1 :metrics _:sk_5 .
3208
- # _:sk_5 :pi _:sk_0 .
3209
- # _:sk_0 :pA "0.535"^^xsd:decimal .
3210
- # _:sk_0 :pB "0.325"^^xsd:decimal .
3211
- # _:sk_0 :pC "0.14"^^xsd:decimal .
3212
- # (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
3213
- # ("0.535"^^xsd:decimal 2.0) math:exponentiation "0.286225"^^xsd:decimal .
3214
- # ("0.325"^^xsd:decimal 2.0) math:exponentiation "0.10562500000000001"^^xsd:decimal .
3215
- # ("0.14"^^xsd:decimal 2.0) math:exponentiation "0.019600000000000003"^^xsd:decimal .
3216
- # ("0.286225"^^xsd:decimal "0.10562500000000001"^^xsd:decimal) math:sum "0.39185000000000003"^^xsd:decimal .
3217
- # ("0.39185000000000003"^^xsd:decimal "0.019600000000000003"^^xsd:decimal) math:sum "0.41145000000000004"^^xsd:decimal .
3218
- # (1.0 "0.41145000000000004"^^xsd:decimal) math:difference "0.5885499999999999"^^xsd:decimal .
3219
- # (1.0 "0.41145000000000004"^^xsd:decimal) math:quotient "2.4304289707133306"^^xsd:decimal .
3220
- # ("0.535"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.20166666666666672"^^xsd:decimal .
3221
- # "0.20166666666666672"^^xsd:decimal math:absoluteValue "0.20166666666666672"^^xsd:decimal .
3222
- # ("0.325"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.008333333333333304"^^xsd:decimal .
3223
- # "-0.008333333333333304"^^xsd:decimal math:absoluteValue "0.008333333333333304"^^xsd:decimal .
3224
- # ("0.14"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1933333333333333"^^xsd:decimal .
3225
- # "-0.1933333333333333"^^xsd:decimal math:absoluteValue "0.1933333333333333"^^xsd:decimal .
3226
- # ("0.20166666666666672"^^xsd:decimal "0.008333333333333304"^^xsd:decimal) math:sum "0.21000000000000002"^^xsd:decimal .
3227
- # ("0.21000000000000002"^^xsd:decimal "0.1933333333333333"^^xsd:decimal) math:sum "0.4033333333333333"^^xsd:decimal .
3228
- # (0.5 "0.4033333333333333"^^xsd:decimal) math:product "0.20166666666666666"^^xsd:decimal .
3229
- # ("0.20166666666666672"^^xsd:decimal 2.0) math:exponentiation "0.040669444444444466"^^xsd:decimal .
3230
- # ("-0.008333333333333304"^^xsd:decimal 2.0) math:exponentiation "0.00006944444444444396"^^xsd:decimal .
3231
- # ("-0.1933333333333333"^^xsd:decimal 2.0) math:exponentiation "0.03737777777777777"^^xsd:decimal .
3232
- # ("0.040669444444444466"^^xsd:decimal "0.00006944444444444396"^^xsd:decimal) math:sum "0.04073888888888891"^^xsd:decimal .
3233
- # ("0.04073888888888891"^^xsd:decimal "0.03737777777777777"^^xsd:decimal) math:sum "0.07811666666666667"^^xsd:decimal .
3234
- # ("0.07811666666666667"^^xsd:decimal 0.5) math:exponentiation "0.2794935896700793"^^xsd:decimal .
3235
- # via the schematic forward rule:
3236
- # {
3237
- # :MC1 :metrics ?m .
3238
- # ?m :pi ?pi .
3239
- # ?pi :pA ?a .
3240
- # ?pi :pB ?b .
3241
- # ?pi :pC ?c .
3242
- # (1.0 3.0) math:quotient ?u .
3243
- # (?a 2.0) math:exponentiation ?a2 .
3244
- # (?b 2.0) math:exponentiation ?b2 .
3245
- # (?c 2.0) math:exponentiation ?c2 .
3246
- # (?a2 ?b2) math:sum ?ab2 .
3247
- # (?ab2 ?c2) math:sum ?sumSq .
3248
- # (1.0 ?sumSq) math:difference ?gini .
3249
- # (1.0 ?sumSq) math:quotient ?effN .
3250
- # (?a ?u) math:difference ?da .
3251
- # ?da math:absoluteValue ?ada .
3252
- # (?b ?u) math:difference ?db .
3253
- # ?db math:absoluteValue ?adb .
3254
- # (?c ?u) math:difference ?dc .
3255
- # ?dc math:absoluteValue ?adc .
3256
- # (?ada ?adb) math:sum ?s1 .
3257
- # (?s1 ?adc) math:sum ?sAbs .
3258
- # (0.5 ?sAbs) math:product ?tv .
3259
- # (?da 2.0) math:exponentiation ?da2 .
3260
- # (?db 2.0) math:exponentiation ?db2 .
3261
- # (?dc 2.0) math:exponentiation ?dc2 .
3262
- # (?da2 ?db2) math:sum ?s2 .
3263
- # (?s2 ?dc2) math:sum ?s3 .
3264
- # (?s3 0.5) math:exponentiation ?l2 .
3265
- # } => {
3266
- # ?m :sumSq ?sumSq .
3267
- # ?m :gini ?gini .
3268
- # ?m :effectiveStates ?effN .
3269
- # ?m :tvToUniform ?tv .
3270
- # ?m :l2ToUniform ?l2 .
3271
- # } .
3272
- # with substitution (on rule variables):
3273
- # ?a = "0.535"^^xsd:decimal
3274
- # ?a2 = "0.286225"^^xsd:decimal
3275
- # ?ab2 = "0.39185000000000003"^^xsd:decimal
3276
- # ?ada = "0.20166666666666672"^^xsd:decimal
3277
- # ?adb = "0.008333333333333304"^^xsd:decimal
3278
- # ?adc = "0.1933333333333333"^^xsd:decimal
3279
- # ?b = "0.325"^^xsd:decimal
3280
- # ?b2 = "0.10562500000000001"^^xsd:decimal
3281
- # ?c = "0.14"^^xsd:decimal
3282
- # ?c2 = "0.019600000000000003"^^xsd:decimal
3283
- # ?da = "0.20166666666666672"^^xsd:decimal
3284
- # ?da2 = "0.040669444444444466"^^xsd:decimal
3285
- # ?db = "-0.008333333333333304"^^xsd:decimal
3286
- # ?db2 = "0.00006944444444444396"^^xsd:decimal
3287
- # ?dc = "-0.1933333333333333"^^xsd:decimal
3288
- # ?dc2 = "0.03737777777777777"^^xsd:decimal
3289
- # ?effN = "2.4304289707133306"^^xsd:decimal
3290
- # ?gini = "0.5885499999999999"^^xsd:decimal
3291
- # ?l2 = "0.2794935896700793"^^xsd:decimal
3292
- # ?m = _:sk_5
3293
- # ?pi = _:sk_0
3294
- # ?s1 = "0.21000000000000002"^^xsd:decimal
3295
- # ?s2 = "0.04073888888888891"^^xsd:decimal
3296
- # ?s3 = "0.07811666666666667"^^xsd:decimal
3297
- # ?sAbs = "0.4033333333333333"^^xsd:decimal
3298
- # ?sumSq = "0.41145000000000004"^^xsd:decimal
3299
- # ?tv = "0.20166666666666666"^^xsd:decimal
3300
- # ?u = "0.3333333333333333"^^xsd:decimal
3301
- # Therefore the derived triple above is entailed by the rules and facts.
3302
- # ----------------------------------------------------------------------
3303
-
3304
45
  _:sk_5 :sumSq "0.41145000000000004"^^xsd:decimal .
3305
-
3306
- # ----------------------------------------------------------------------
3307
- # Proof for derived triple:
3308
- # _:sk_5 :gini "0.5885499999999999"^^xsd:decimal .
3309
- # It holds because the following instance of the rule body is provable:
3310
- # :MC1 :metrics _:sk_5 .
3311
- # _:sk_5 :pi _:sk_0 .
3312
- # _:sk_0 :pA "0.535"^^xsd:decimal .
3313
- # _:sk_0 :pB "0.325"^^xsd:decimal .
3314
- # _:sk_0 :pC "0.14"^^xsd:decimal .
3315
- # (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
3316
- # ("0.535"^^xsd:decimal 2.0) math:exponentiation "0.286225"^^xsd:decimal .
3317
- # ("0.325"^^xsd:decimal 2.0) math:exponentiation "0.10562500000000001"^^xsd:decimal .
3318
- # ("0.14"^^xsd:decimal 2.0) math:exponentiation "0.019600000000000003"^^xsd:decimal .
3319
- # ("0.286225"^^xsd:decimal "0.10562500000000001"^^xsd:decimal) math:sum "0.39185000000000003"^^xsd:decimal .
3320
- # ("0.39185000000000003"^^xsd:decimal "0.019600000000000003"^^xsd:decimal) math:sum "0.41145000000000004"^^xsd:decimal .
3321
- # (1.0 "0.41145000000000004"^^xsd:decimal) math:difference "0.5885499999999999"^^xsd:decimal .
3322
- # (1.0 "0.41145000000000004"^^xsd:decimal) math:quotient "2.4304289707133306"^^xsd:decimal .
3323
- # ("0.535"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.20166666666666672"^^xsd:decimal .
3324
- # "0.20166666666666672"^^xsd:decimal math:absoluteValue "0.20166666666666672"^^xsd:decimal .
3325
- # ("0.325"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.008333333333333304"^^xsd:decimal .
3326
- # "-0.008333333333333304"^^xsd:decimal math:absoluteValue "0.008333333333333304"^^xsd:decimal .
3327
- # ("0.14"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1933333333333333"^^xsd:decimal .
3328
- # "-0.1933333333333333"^^xsd:decimal math:absoluteValue "0.1933333333333333"^^xsd:decimal .
3329
- # ("0.20166666666666672"^^xsd:decimal "0.008333333333333304"^^xsd:decimal) math:sum "0.21000000000000002"^^xsd:decimal .
3330
- # ("0.21000000000000002"^^xsd:decimal "0.1933333333333333"^^xsd:decimal) math:sum "0.4033333333333333"^^xsd:decimal .
3331
- # (0.5 "0.4033333333333333"^^xsd:decimal) math:product "0.20166666666666666"^^xsd:decimal .
3332
- # ("0.20166666666666672"^^xsd:decimal 2.0) math:exponentiation "0.040669444444444466"^^xsd:decimal .
3333
- # ("-0.008333333333333304"^^xsd:decimal 2.0) math:exponentiation "0.00006944444444444396"^^xsd:decimal .
3334
- # ("-0.1933333333333333"^^xsd:decimal 2.0) math:exponentiation "0.03737777777777777"^^xsd:decimal .
3335
- # ("0.040669444444444466"^^xsd:decimal "0.00006944444444444396"^^xsd:decimal) math:sum "0.04073888888888891"^^xsd:decimal .
3336
- # ("0.04073888888888891"^^xsd:decimal "0.03737777777777777"^^xsd:decimal) math:sum "0.07811666666666667"^^xsd:decimal .
3337
- # ("0.07811666666666667"^^xsd:decimal 0.5) math:exponentiation "0.2794935896700793"^^xsd:decimal .
3338
- # via the schematic forward rule:
3339
- # {
3340
- # :MC1 :metrics ?m .
3341
- # ?m :pi ?pi .
3342
- # ?pi :pA ?a .
3343
- # ?pi :pB ?b .
3344
- # ?pi :pC ?c .
3345
- # (1.0 3.0) math:quotient ?u .
3346
- # (?a 2.0) math:exponentiation ?a2 .
3347
- # (?b 2.0) math:exponentiation ?b2 .
3348
- # (?c 2.0) math:exponentiation ?c2 .
3349
- # (?a2 ?b2) math:sum ?ab2 .
3350
- # (?ab2 ?c2) math:sum ?sumSq .
3351
- # (1.0 ?sumSq) math:difference ?gini .
3352
- # (1.0 ?sumSq) math:quotient ?effN .
3353
- # (?a ?u) math:difference ?da .
3354
- # ?da math:absoluteValue ?ada .
3355
- # (?b ?u) math:difference ?db .
3356
- # ?db math:absoluteValue ?adb .
3357
- # (?c ?u) math:difference ?dc .
3358
- # ?dc math:absoluteValue ?adc .
3359
- # (?ada ?adb) math:sum ?s1 .
3360
- # (?s1 ?adc) math:sum ?sAbs .
3361
- # (0.5 ?sAbs) math:product ?tv .
3362
- # (?da 2.0) math:exponentiation ?da2 .
3363
- # (?db 2.0) math:exponentiation ?db2 .
3364
- # (?dc 2.0) math:exponentiation ?dc2 .
3365
- # (?da2 ?db2) math:sum ?s2 .
3366
- # (?s2 ?dc2) math:sum ?s3 .
3367
- # (?s3 0.5) math:exponentiation ?l2 .
3368
- # } => {
3369
- # ?m :sumSq ?sumSq .
3370
- # ?m :gini ?gini .
3371
- # ?m :effectiveStates ?effN .
3372
- # ?m :tvToUniform ?tv .
3373
- # ?m :l2ToUniform ?l2 .
3374
- # } .
3375
- # with substitution (on rule variables):
3376
- # ?a = "0.535"^^xsd:decimal
3377
- # ?a2 = "0.286225"^^xsd:decimal
3378
- # ?ab2 = "0.39185000000000003"^^xsd:decimal
3379
- # ?ada = "0.20166666666666672"^^xsd:decimal
3380
- # ?adb = "0.008333333333333304"^^xsd:decimal
3381
- # ?adc = "0.1933333333333333"^^xsd:decimal
3382
- # ?b = "0.325"^^xsd:decimal
3383
- # ?b2 = "0.10562500000000001"^^xsd:decimal
3384
- # ?c = "0.14"^^xsd:decimal
3385
- # ?c2 = "0.019600000000000003"^^xsd:decimal
3386
- # ?da = "0.20166666666666672"^^xsd:decimal
3387
- # ?da2 = "0.040669444444444466"^^xsd:decimal
3388
- # ?db = "-0.008333333333333304"^^xsd:decimal
3389
- # ?db2 = "0.00006944444444444396"^^xsd:decimal
3390
- # ?dc = "-0.1933333333333333"^^xsd:decimal
3391
- # ?dc2 = "0.03737777777777777"^^xsd:decimal
3392
- # ?effN = "2.4304289707133306"^^xsd:decimal
3393
- # ?gini = "0.5885499999999999"^^xsd:decimal
3394
- # ?l2 = "0.2794935896700793"^^xsd:decimal
3395
- # ?m = _:sk_5
3396
- # ?pi = _:sk_0
3397
- # ?s1 = "0.21000000000000002"^^xsd:decimal
3398
- # ?s2 = "0.04073888888888891"^^xsd:decimal
3399
- # ?s3 = "0.07811666666666667"^^xsd:decimal
3400
- # ?sAbs = "0.4033333333333333"^^xsd:decimal
3401
- # ?sumSq = "0.41145000000000004"^^xsd:decimal
3402
- # ?tv = "0.20166666666666666"^^xsd:decimal
3403
- # ?u = "0.3333333333333333"^^xsd:decimal
3404
- # Therefore the derived triple above is entailed by the rules and facts.
3405
- # ----------------------------------------------------------------------
3406
-
3407
46
  _:sk_5 :gini "0.5885499999999999"^^xsd:decimal .
3408
-
3409
- # ----------------------------------------------------------------------
3410
- # Proof for derived triple:
3411
- # _:sk_5 :effectiveStates "2.4304289707133306"^^xsd:decimal .
3412
- # It holds because the following instance of the rule body is provable:
3413
- # :MC1 :metrics _:sk_5 .
3414
- # _:sk_5 :pi _:sk_0 .
3415
- # _:sk_0 :pA "0.535"^^xsd:decimal .
3416
- # _:sk_0 :pB "0.325"^^xsd:decimal .
3417
- # _:sk_0 :pC "0.14"^^xsd:decimal .
3418
- # (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
3419
- # ("0.535"^^xsd:decimal 2.0) math:exponentiation "0.286225"^^xsd:decimal .
3420
- # ("0.325"^^xsd:decimal 2.0) math:exponentiation "0.10562500000000001"^^xsd:decimal .
3421
- # ("0.14"^^xsd:decimal 2.0) math:exponentiation "0.019600000000000003"^^xsd:decimal .
3422
- # ("0.286225"^^xsd:decimal "0.10562500000000001"^^xsd:decimal) math:sum "0.39185000000000003"^^xsd:decimal .
3423
- # ("0.39185000000000003"^^xsd:decimal "0.019600000000000003"^^xsd:decimal) math:sum "0.41145000000000004"^^xsd:decimal .
3424
- # (1.0 "0.41145000000000004"^^xsd:decimal) math:difference "0.5885499999999999"^^xsd:decimal .
3425
- # (1.0 "0.41145000000000004"^^xsd:decimal) math:quotient "2.4304289707133306"^^xsd:decimal .
3426
- # ("0.535"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.20166666666666672"^^xsd:decimal .
3427
- # "0.20166666666666672"^^xsd:decimal math:absoluteValue "0.20166666666666672"^^xsd:decimal .
3428
- # ("0.325"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.008333333333333304"^^xsd:decimal .
3429
- # "-0.008333333333333304"^^xsd:decimal math:absoluteValue "0.008333333333333304"^^xsd:decimal .
3430
- # ("0.14"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1933333333333333"^^xsd:decimal .
3431
- # "-0.1933333333333333"^^xsd:decimal math:absoluteValue "0.1933333333333333"^^xsd:decimal .
3432
- # ("0.20166666666666672"^^xsd:decimal "0.008333333333333304"^^xsd:decimal) math:sum "0.21000000000000002"^^xsd:decimal .
3433
- # ("0.21000000000000002"^^xsd:decimal "0.1933333333333333"^^xsd:decimal) math:sum "0.4033333333333333"^^xsd:decimal .
3434
- # (0.5 "0.4033333333333333"^^xsd:decimal) math:product "0.20166666666666666"^^xsd:decimal .
3435
- # ("0.20166666666666672"^^xsd:decimal 2.0) math:exponentiation "0.040669444444444466"^^xsd:decimal .
3436
- # ("-0.008333333333333304"^^xsd:decimal 2.0) math:exponentiation "0.00006944444444444396"^^xsd:decimal .
3437
- # ("-0.1933333333333333"^^xsd:decimal 2.0) math:exponentiation "0.03737777777777777"^^xsd:decimal .
3438
- # ("0.040669444444444466"^^xsd:decimal "0.00006944444444444396"^^xsd:decimal) math:sum "0.04073888888888891"^^xsd:decimal .
3439
- # ("0.04073888888888891"^^xsd:decimal "0.03737777777777777"^^xsd:decimal) math:sum "0.07811666666666667"^^xsd:decimal .
3440
- # ("0.07811666666666667"^^xsd:decimal 0.5) math:exponentiation "0.2794935896700793"^^xsd:decimal .
3441
- # via the schematic forward rule:
3442
- # {
3443
- # :MC1 :metrics ?m .
3444
- # ?m :pi ?pi .
3445
- # ?pi :pA ?a .
3446
- # ?pi :pB ?b .
3447
- # ?pi :pC ?c .
3448
- # (1.0 3.0) math:quotient ?u .
3449
- # (?a 2.0) math:exponentiation ?a2 .
3450
- # (?b 2.0) math:exponentiation ?b2 .
3451
- # (?c 2.0) math:exponentiation ?c2 .
3452
- # (?a2 ?b2) math:sum ?ab2 .
3453
- # (?ab2 ?c2) math:sum ?sumSq .
3454
- # (1.0 ?sumSq) math:difference ?gini .
3455
- # (1.0 ?sumSq) math:quotient ?effN .
3456
- # (?a ?u) math:difference ?da .
3457
- # ?da math:absoluteValue ?ada .
3458
- # (?b ?u) math:difference ?db .
3459
- # ?db math:absoluteValue ?adb .
3460
- # (?c ?u) math:difference ?dc .
3461
- # ?dc math:absoluteValue ?adc .
3462
- # (?ada ?adb) math:sum ?s1 .
3463
- # (?s1 ?adc) math:sum ?sAbs .
3464
- # (0.5 ?sAbs) math:product ?tv .
3465
- # (?da 2.0) math:exponentiation ?da2 .
3466
- # (?db 2.0) math:exponentiation ?db2 .
3467
- # (?dc 2.0) math:exponentiation ?dc2 .
3468
- # (?da2 ?db2) math:sum ?s2 .
3469
- # (?s2 ?dc2) math:sum ?s3 .
3470
- # (?s3 0.5) math:exponentiation ?l2 .
3471
- # } => {
3472
- # ?m :sumSq ?sumSq .
3473
- # ?m :gini ?gini .
3474
- # ?m :effectiveStates ?effN .
3475
- # ?m :tvToUniform ?tv .
3476
- # ?m :l2ToUniform ?l2 .
3477
- # } .
3478
- # with substitution (on rule variables):
3479
- # ?a = "0.535"^^xsd:decimal
3480
- # ?a2 = "0.286225"^^xsd:decimal
3481
- # ?ab2 = "0.39185000000000003"^^xsd:decimal
3482
- # ?ada = "0.20166666666666672"^^xsd:decimal
3483
- # ?adb = "0.008333333333333304"^^xsd:decimal
3484
- # ?adc = "0.1933333333333333"^^xsd:decimal
3485
- # ?b = "0.325"^^xsd:decimal
3486
- # ?b2 = "0.10562500000000001"^^xsd:decimal
3487
- # ?c = "0.14"^^xsd:decimal
3488
- # ?c2 = "0.019600000000000003"^^xsd:decimal
3489
- # ?da = "0.20166666666666672"^^xsd:decimal
3490
- # ?da2 = "0.040669444444444466"^^xsd:decimal
3491
- # ?db = "-0.008333333333333304"^^xsd:decimal
3492
- # ?db2 = "0.00006944444444444396"^^xsd:decimal
3493
- # ?dc = "-0.1933333333333333"^^xsd:decimal
3494
- # ?dc2 = "0.03737777777777777"^^xsd:decimal
3495
- # ?effN = "2.4304289707133306"^^xsd:decimal
3496
- # ?gini = "0.5885499999999999"^^xsd:decimal
3497
- # ?l2 = "0.2794935896700793"^^xsd:decimal
3498
- # ?m = _:sk_5
3499
- # ?pi = _:sk_0
3500
- # ?s1 = "0.21000000000000002"^^xsd:decimal
3501
- # ?s2 = "0.04073888888888891"^^xsd:decimal
3502
- # ?s3 = "0.07811666666666667"^^xsd:decimal
3503
- # ?sAbs = "0.4033333333333333"^^xsd:decimal
3504
- # ?sumSq = "0.41145000000000004"^^xsd:decimal
3505
- # ?tv = "0.20166666666666666"^^xsd:decimal
3506
- # ?u = "0.3333333333333333"^^xsd:decimal
3507
- # Therefore the derived triple above is entailed by the rules and facts.
3508
- # ----------------------------------------------------------------------
3509
-
3510
47
  _:sk_5 :effectiveStates "2.4304289707133306"^^xsd:decimal .
3511
-
3512
- # ----------------------------------------------------------------------
3513
- # Proof for derived triple:
3514
- # _:sk_5 :tvToUniform "0.20166666666666666"^^xsd:decimal .
3515
- # It holds because the following instance of the rule body is provable:
3516
- # :MC1 :metrics _:sk_5 .
3517
- # _:sk_5 :pi _:sk_0 .
3518
- # _:sk_0 :pA "0.535"^^xsd:decimal .
3519
- # _:sk_0 :pB "0.325"^^xsd:decimal .
3520
- # _:sk_0 :pC "0.14"^^xsd:decimal .
3521
- # (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
3522
- # ("0.535"^^xsd:decimal 2.0) math:exponentiation "0.286225"^^xsd:decimal .
3523
- # ("0.325"^^xsd:decimal 2.0) math:exponentiation "0.10562500000000001"^^xsd:decimal .
3524
- # ("0.14"^^xsd:decimal 2.0) math:exponentiation "0.019600000000000003"^^xsd:decimal .
3525
- # ("0.286225"^^xsd:decimal "0.10562500000000001"^^xsd:decimal) math:sum "0.39185000000000003"^^xsd:decimal .
3526
- # ("0.39185000000000003"^^xsd:decimal "0.019600000000000003"^^xsd:decimal) math:sum "0.41145000000000004"^^xsd:decimal .
3527
- # (1.0 "0.41145000000000004"^^xsd:decimal) math:difference "0.5885499999999999"^^xsd:decimal .
3528
- # (1.0 "0.41145000000000004"^^xsd:decimal) math:quotient "2.4304289707133306"^^xsd:decimal .
3529
- # ("0.535"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.20166666666666672"^^xsd:decimal .
3530
- # "0.20166666666666672"^^xsd:decimal math:absoluteValue "0.20166666666666672"^^xsd:decimal .
3531
- # ("0.325"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.008333333333333304"^^xsd:decimal .
3532
- # "-0.008333333333333304"^^xsd:decimal math:absoluteValue "0.008333333333333304"^^xsd:decimal .
3533
- # ("0.14"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1933333333333333"^^xsd:decimal .
3534
- # "-0.1933333333333333"^^xsd:decimal math:absoluteValue "0.1933333333333333"^^xsd:decimal .
3535
- # ("0.20166666666666672"^^xsd:decimal "0.008333333333333304"^^xsd:decimal) math:sum "0.21000000000000002"^^xsd:decimal .
3536
- # ("0.21000000000000002"^^xsd:decimal "0.1933333333333333"^^xsd:decimal) math:sum "0.4033333333333333"^^xsd:decimal .
3537
- # (0.5 "0.4033333333333333"^^xsd:decimal) math:product "0.20166666666666666"^^xsd:decimal .
3538
- # ("0.20166666666666672"^^xsd:decimal 2.0) math:exponentiation "0.040669444444444466"^^xsd:decimal .
3539
- # ("-0.008333333333333304"^^xsd:decimal 2.0) math:exponentiation "0.00006944444444444396"^^xsd:decimal .
3540
- # ("-0.1933333333333333"^^xsd:decimal 2.0) math:exponentiation "0.03737777777777777"^^xsd:decimal .
3541
- # ("0.040669444444444466"^^xsd:decimal "0.00006944444444444396"^^xsd:decimal) math:sum "0.04073888888888891"^^xsd:decimal .
3542
- # ("0.04073888888888891"^^xsd:decimal "0.03737777777777777"^^xsd:decimal) math:sum "0.07811666666666667"^^xsd:decimal .
3543
- # ("0.07811666666666667"^^xsd:decimal 0.5) math:exponentiation "0.2794935896700793"^^xsd:decimal .
3544
- # via the schematic forward rule:
3545
- # {
3546
- # :MC1 :metrics ?m .
3547
- # ?m :pi ?pi .
3548
- # ?pi :pA ?a .
3549
- # ?pi :pB ?b .
3550
- # ?pi :pC ?c .
3551
- # (1.0 3.0) math:quotient ?u .
3552
- # (?a 2.0) math:exponentiation ?a2 .
3553
- # (?b 2.0) math:exponentiation ?b2 .
3554
- # (?c 2.0) math:exponentiation ?c2 .
3555
- # (?a2 ?b2) math:sum ?ab2 .
3556
- # (?ab2 ?c2) math:sum ?sumSq .
3557
- # (1.0 ?sumSq) math:difference ?gini .
3558
- # (1.0 ?sumSq) math:quotient ?effN .
3559
- # (?a ?u) math:difference ?da .
3560
- # ?da math:absoluteValue ?ada .
3561
- # (?b ?u) math:difference ?db .
3562
- # ?db math:absoluteValue ?adb .
3563
- # (?c ?u) math:difference ?dc .
3564
- # ?dc math:absoluteValue ?adc .
3565
- # (?ada ?adb) math:sum ?s1 .
3566
- # (?s1 ?adc) math:sum ?sAbs .
3567
- # (0.5 ?sAbs) math:product ?tv .
3568
- # (?da 2.0) math:exponentiation ?da2 .
3569
- # (?db 2.0) math:exponentiation ?db2 .
3570
- # (?dc 2.0) math:exponentiation ?dc2 .
3571
- # (?da2 ?db2) math:sum ?s2 .
3572
- # (?s2 ?dc2) math:sum ?s3 .
3573
- # (?s3 0.5) math:exponentiation ?l2 .
3574
- # } => {
3575
- # ?m :sumSq ?sumSq .
3576
- # ?m :gini ?gini .
3577
- # ?m :effectiveStates ?effN .
3578
- # ?m :tvToUniform ?tv .
3579
- # ?m :l2ToUniform ?l2 .
3580
- # } .
3581
- # with substitution (on rule variables):
3582
- # ?a = "0.535"^^xsd:decimal
3583
- # ?a2 = "0.286225"^^xsd:decimal
3584
- # ?ab2 = "0.39185000000000003"^^xsd:decimal
3585
- # ?ada = "0.20166666666666672"^^xsd:decimal
3586
- # ?adb = "0.008333333333333304"^^xsd:decimal
3587
- # ?adc = "0.1933333333333333"^^xsd:decimal
3588
- # ?b = "0.325"^^xsd:decimal
3589
- # ?b2 = "0.10562500000000001"^^xsd:decimal
3590
- # ?c = "0.14"^^xsd:decimal
3591
- # ?c2 = "0.019600000000000003"^^xsd:decimal
3592
- # ?da = "0.20166666666666672"^^xsd:decimal
3593
- # ?da2 = "0.040669444444444466"^^xsd:decimal
3594
- # ?db = "-0.008333333333333304"^^xsd:decimal
3595
- # ?db2 = "0.00006944444444444396"^^xsd:decimal
3596
- # ?dc = "-0.1933333333333333"^^xsd:decimal
3597
- # ?dc2 = "0.03737777777777777"^^xsd:decimal
3598
- # ?effN = "2.4304289707133306"^^xsd:decimal
3599
- # ?gini = "0.5885499999999999"^^xsd:decimal
3600
- # ?l2 = "0.2794935896700793"^^xsd:decimal
3601
- # ?m = _:sk_5
3602
- # ?pi = _:sk_0
3603
- # ?s1 = "0.21000000000000002"^^xsd:decimal
3604
- # ?s2 = "0.04073888888888891"^^xsd:decimal
3605
- # ?s3 = "0.07811666666666667"^^xsd:decimal
3606
- # ?sAbs = "0.4033333333333333"^^xsd:decimal
3607
- # ?sumSq = "0.41145000000000004"^^xsd:decimal
3608
- # ?tv = "0.20166666666666666"^^xsd:decimal
3609
- # ?u = "0.3333333333333333"^^xsd:decimal
3610
- # Therefore the derived triple above is entailed by the rules and facts.
3611
- # ----------------------------------------------------------------------
3612
-
3613
48
  _:sk_5 :tvToUniform "0.20166666666666666"^^xsd:decimal .
3614
-
3615
- # ----------------------------------------------------------------------
3616
- # Proof for derived triple:
3617
- # _:sk_5 :l2ToUniform "0.2794935896700793"^^xsd:decimal .
3618
- # It holds because the following instance of the rule body is provable:
3619
- # :MC1 :metrics _:sk_5 .
3620
- # _:sk_5 :pi _:sk_0 .
3621
- # _:sk_0 :pA "0.535"^^xsd:decimal .
3622
- # _:sk_0 :pB "0.325"^^xsd:decimal .
3623
- # _:sk_0 :pC "0.14"^^xsd:decimal .
3624
- # (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
3625
- # ("0.535"^^xsd:decimal 2.0) math:exponentiation "0.286225"^^xsd:decimal .
3626
- # ("0.325"^^xsd:decimal 2.0) math:exponentiation "0.10562500000000001"^^xsd:decimal .
3627
- # ("0.14"^^xsd:decimal 2.0) math:exponentiation "0.019600000000000003"^^xsd:decimal .
3628
- # ("0.286225"^^xsd:decimal "0.10562500000000001"^^xsd:decimal) math:sum "0.39185000000000003"^^xsd:decimal .
3629
- # ("0.39185000000000003"^^xsd:decimal "0.019600000000000003"^^xsd:decimal) math:sum "0.41145000000000004"^^xsd:decimal .
3630
- # (1.0 "0.41145000000000004"^^xsd:decimal) math:difference "0.5885499999999999"^^xsd:decimal .
3631
- # (1.0 "0.41145000000000004"^^xsd:decimal) math:quotient "2.4304289707133306"^^xsd:decimal .
3632
- # ("0.535"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "0.20166666666666672"^^xsd:decimal .
3633
- # "0.20166666666666672"^^xsd:decimal math:absoluteValue "0.20166666666666672"^^xsd:decimal .
3634
- # ("0.325"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.008333333333333304"^^xsd:decimal .
3635
- # "-0.008333333333333304"^^xsd:decimal math:absoluteValue "0.008333333333333304"^^xsd:decimal .
3636
- # ("0.14"^^xsd:decimal "0.3333333333333333"^^xsd:decimal) math:difference "-0.1933333333333333"^^xsd:decimal .
3637
- # "-0.1933333333333333"^^xsd:decimal math:absoluteValue "0.1933333333333333"^^xsd:decimal .
3638
- # ("0.20166666666666672"^^xsd:decimal "0.008333333333333304"^^xsd:decimal) math:sum "0.21000000000000002"^^xsd:decimal .
3639
- # ("0.21000000000000002"^^xsd:decimal "0.1933333333333333"^^xsd:decimal) math:sum "0.4033333333333333"^^xsd:decimal .
3640
- # (0.5 "0.4033333333333333"^^xsd:decimal) math:product "0.20166666666666666"^^xsd:decimal .
3641
- # ("0.20166666666666672"^^xsd:decimal 2.0) math:exponentiation "0.040669444444444466"^^xsd:decimal .
3642
- # ("-0.008333333333333304"^^xsd:decimal 2.0) math:exponentiation "0.00006944444444444396"^^xsd:decimal .
3643
- # ("-0.1933333333333333"^^xsd:decimal 2.0) math:exponentiation "0.03737777777777777"^^xsd:decimal .
3644
- # ("0.040669444444444466"^^xsd:decimal "0.00006944444444444396"^^xsd:decimal) math:sum "0.04073888888888891"^^xsd:decimal .
3645
- # ("0.04073888888888891"^^xsd:decimal "0.03737777777777777"^^xsd:decimal) math:sum "0.07811666666666667"^^xsd:decimal .
3646
- # ("0.07811666666666667"^^xsd:decimal 0.5) math:exponentiation "0.2794935896700793"^^xsd:decimal .
3647
- # via the schematic forward rule:
3648
- # {
3649
- # :MC1 :metrics ?m .
3650
- # ?m :pi ?pi .
3651
- # ?pi :pA ?a .
3652
- # ?pi :pB ?b .
3653
- # ?pi :pC ?c .
3654
- # (1.0 3.0) math:quotient ?u .
3655
- # (?a 2.0) math:exponentiation ?a2 .
3656
- # (?b 2.0) math:exponentiation ?b2 .
3657
- # (?c 2.0) math:exponentiation ?c2 .
3658
- # (?a2 ?b2) math:sum ?ab2 .
3659
- # (?ab2 ?c2) math:sum ?sumSq .
3660
- # (1.0 ?sumSq) math:difference ?gini .
3661
- # (1.0 ?sumSq) math:quotient ?effN .
3662
- # (?a ?u) math:difference ?da .
3663
- # ?da math:absoluteValue ?ada .
3664
- # (?b ?u) math:difference ?db .
3665
- # ?db math:absoluteValue ?adb .
3666
- # (?c ?u) math:difference ?dc .
3667
- # ?dc math:absoluteValue ?adc .
3668
- # (?ada ?adb) math:sum ?s1 .
3669
- # (?s1 ?adc) math:sum ?sAbs .
3670
- # (0.5 ?sAbs) math:product ?tv .
3671
- # (?da 2.0) math:exponentiation ?da2 .
3672
- # (?db 2.0) math:exponentiation ?db2 .
3673
- # (?dc 2.0) math:exponentiation ?dc2 .
3674
- # (?da2 ?db2) math:sum ?s2 .
3675
- # (?s2 ?dc2) math:sum ?s3 .
3676
- # (?s3 0.5) math:exponentiation ?l2 .
3677
- # } => {
3678
- # ?m :sumSq ?sumSq .
3679
- # ?m :gini ?gini .
3680
- # ?m :effectiveStates ?effN .
3681
- # ?m :tvToUniform ?tv .
3682
- # ?m :l2ToUniform ?l2 .
3683
- # } .
3684
- # with substitution (on rule variables):
3685
- # ?a = "0.535"^^xsd:decimal
3686
- # ?a2 = "0.286225"^^xsd:decimal
3687
- # ?ab2 = "0.39185000000000003"^^xsd:decimal
3688
- # ?ada = "0.20166666666666672"^^xsd:decimal
3689
- # ?adb = "0.008333333333333304"^^xsd:decimal
3690
- # ?adc = "0.1933333333333333"^^xsd:decimal
3691
- # ?b = "0.325"^^xsd:decimal
3692
- # ?b2 = "0.10562500000000001"^^xsd:decimal
3693
- # ?c = "0.14"^^xsd:decimal
3694
- # ?c2 = "0.019600000000000003"^^xsd:decimal
3695
- # ?da = "0.20166666666666672"^^xsd:decimal
3696
- # ?da2 = "0.040669444444444466"^^xsd:decimal
3697
- # ?db = "-0.008333333333333304"^^xsd:decimal
3698
- # ?db2 = "0.00006944444444444396"^^xsd:decimal
3699
- # ?dc = "-0.1933333333333333"^^xsd:decimal
3700
- # ?dc2 = "0.03737777777777777"^^xsd:decimal
3701
- # ?effN = "2.4304289707133306"^^xsd:decimal
3702
- # ?gini = "0.5885499999999999"^^xsd:decimal
3703
- # ?l2 = "0.2794935896700793"^^xsd:decimal
3704
- # ?m = _:sk_5
3705
- # ?pi = _:sk_0
3706
- # ?s1 = "0.21000000000000002"^^xsd:decimal
3707
- # ?s2 = "0.04073888888888891"^^xsd:decimal
3708
- # ?s3 = "0.07811666666666667"^^xsd:decimal
3709
- # ?sAbs = "0.4033333333333333"^^xsd:decimal
3710
- # ?sumSq = "0.41145000000000004"^^xsd:decimal
3711
- # ?tv = "0.20166666666666666"^^xsd:decimal
3712
- # ?u = "0.3333333333333333"^^xsd:decimal
3713
- # Therefore the derived triple above is entailed by the rules and facts.
3714
- # ----------------------------------------------------------------------
3715
-
3716
49
  _:sk_5 :l2ToUniform "0.2794935896700793"^^xsd:decimal .
3717
-
3718
- # ----------------------------------------------------------------------
3719
- # Proof for derived triple:
3720
- # _:sk_4 :sumSq "0.45999999999999996"^^xsd:decimal .
3721
- # It holds because the following instance of the rule body is provable:
3722
- # :MC1 :metrics _:sk_4 .
3723
- # _:sk_4 :pi _:b4 .
3724
- # _:b4 :pA 0.60 .
3725
- # _:b4 :pB 0.30 .
3726
- # _:b4 :pC 0.10 .
3727
- # (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
3728
- # (0.60 2.0) math:exponentiation "0.36"^^xsd:decimal .
3729
- # (0.30 2.0) math:exponentiation "0.09"^^xsd:decimal .
3730
- # (0.10 2.0) math:exponentiation "0.010000000000000002"^^xsd:decimal .
3731
- # ("0.36"^^xsd:decimal "0.09"^^xsd:decimal) math:sum "0.44999999999999996"^^xsd:decimal .
3732
- # ("0.44999999999999996"^^xsd:decimal "0.010000000000000002"^^xsd:decimal) math:sum "0.45999999999999996"^^xsd:decimal .
3733
- # (1.0 "0.45999999999999996"^^xsd:decimal) math:difference "0.54"^^xsd:decimal .
3734
- # (1.0 "0.45999999999999996"^^xsd:decimal) math:quotient "2.173913043478261"^^xsd:decimal .
3735
- # (0.60 "0.3333333333333333"^^xsd:decimal) math:difference "0.26666666666666666"^^xsd:decimal .
3736
- # "0.26666666666666666"^^xsd:decimal math:absoluteValue "0.26666666666666666"^^xsd:decimal .
3737
- # (0.30 "0.3333333333333333"^^xsd:decimal) math:difference "-0.033333333333333326"^^xsd:decimal .
3738
- # "-0.033333333333333326"^^xsd:decimal math:absoluteValue "0.033333333333333326"^^xsd:decimal .
3739
- # (0.10 "0.3333333333333333"^^xsd:decimal) math:difference "-0.2333333333333333"^^xsd:decimal .
3740
- # "-0.2333333333333333"^^xsd:decimal math:absoluteValue "0.2333333333333333"^^xsd:decimal .
3741
- # ("0.26666666666666666"^^xsd:decimal "0.033333333333333326"^^xsd:decimal) math:sum "0.3"^^xsd:decimal .
3742
- # ("0.3"^^xsd:decimal "0.2333333333333333"^^xsd:decimal) math:sum "0.5333333333333333"^^xsd:decimal .
3743
- # (0.5 "0.5333333333333333"^^xsd:decimal) math:product "0.26666666666666666"^^xsd:decimal .
3744
- # ("0.26666666666666666"^^xsd:decimal 2.0) math:exponentiation "0.07111111111111111"^^xsd:decimal .
3745
- # ("-0.033333333333333326"^^xsd:decimal 2.0) math:exponentiation "0.0011111111111111107"^^xsd:decimal .
3746
- # ("-0.2333333333333333"^^xsd:decimal 2.0) math:exponentiation "0.054444444444444434"^^xsd:decimal .
3747
- # ("0.07111111111111111"^^xsd:decimal "0.0011111111111111107"^^xsd:decimal) math:sum "0.07222222222222222"^^xsd:decimal .
3748
- # ("0.07222222222222222"^^xsd:decimal "0.054444444444444434"^^xsd:decimal) math:sum "0.12666666666666665"^^xsd:decimal .
3749
- # ("0.12666666666666665"^^xsd:decimal 0.5) math:exponentiation "0.3559026084010437"^^xsd:decimal .
3750
- # via the schematic forward rule:
3751
- # {
3752
- # :MC1 :metrics ?m .
3753
- # ?m :pi ?pi .
3754
- # ?pi :pA ?a .
3755
- # ?pi :pB ?b .
3756
- # ?pi :pC ?c .
3757
- # (1.0 3.0) math:quotient ?u .
3758
- # (?a 2.0) math:exponentiation ?a2 .
3759
- # (?b 2.0) math:exponentiation ?b2 .
3760
- # (?c 2.0) math:exponentiation ?c2 .
3761
- # (?a2 ?b2) math:sum ?ab2 .
3762
- # (?ab2 ?c2) math:sum ?sumSq .
3763
- # (1.0 ?sumSq) math:difference ?gini .
3764
- # (1.0 ?sumSq) math:quotient ?effN .
3765
- # (?a ?u) math:difference ?da .
3766
- # ?da math:absoluteValue ?ada .
3767
- # (?b ?u) math:difference ?db .
3768
- # ?db math:absoluteValue ?adb .
3769
- # (?c ?u) math:difference ?dc .
3770
- # ?dc math:absoluteValue ?adc .
3771
- # (?ada ?adb) math:sum ?s1 .
3772
- # (?s1 ?adc) math:sum ?sAbs .
3773
- # (0.5 ?sAbs) math:product ?tv .
3774
- # (?da 2.0) math:exponentiation ?da2 .
3775
- # (?db 2.0) math:exponentiation ?db2 .
3776
- # (?dc 2.0) math:exponentiation ?dc2 .
3777
- # (?da2 ?db2) math:sum ?s2 .
3778
- # (?s2 ?dc2) math:sum ?s3 .
3779
- # (?s3 0.5) math:exponentiation ?l2 .
3780
- # } => {
3781
- # ?m :sumSq ?sumSq .
3782
- # ?m :gini ?gini .
3783
- # ?m :effectiveStates ?effN .
3784
- # ?m :tvToUniform ?tv .
3785
- # ?m :l2ToUniform ?l2 .
3786
- # } .
3787
- # with substitution (on rule variables):
3788
- # ?a = 0.60
3789
- # ?a2 = "0.36"^^xsd:decimal
3790
- # ?ab2 = "0.44999999999999996"^^xsd:decimal
3791
- # ?ada = "0.26666666666666666"^^xsd:decimal
3792
- # ?adb = "0.033333333333333326"^^xsd:decimal
3793
- # ?adc = "0.2333333333333333"^^xsd:decimal
3794
- # ?b = 0.30
3795
- # ?b2 = "0.09"^^xsd:decimal
3796
- # ?c = 0.10
3797
- # ?c2 = "0.010000000000000002"^^xsd:decimal
3798
- # ?da = "0.26666666666666666"^^xsd:decimal
3799
- # ?da2 = "0.07111111111111111"^^xsd:decimal
3800
- # ?db = "-0.033333333333333326"^^xsd:decimal
3801
- # ?db2 = "0.0011111111111111107"^^xsd:decimal
3802
- # ?dc = "-0.2333333333333333"^^xsd:decimal
3803
- # ?dc2 = "0.054444444444444434"^^xsd:decimal
3804
- # ?effN = "2.173913043478261"^^xsd:decimal
3805
- # ?gini = "0.54"^^xsd:decimal
3806
- # ?l2 = "0.3559026084010437"^^xsd:decimal
3807
- # ?m = _:sk_4
3808
- # ?pi = _:b4
3809
- # ?s1 = "0.3"^^xsd:decimal
3810
- # ?s2 = "0.07222222222222222"^^xsd:decimal
3811
- # ?s3 = "0.12666666666666665"^^xsd:decimal
3812
- # ?sAbs = "0.5333333333333333"^^xsd:decimal
3813
- # ?sumSq = "0.45999999999999996"^^xsd:decimal
3814
- # ?tv = "0.26666666666666666"^^xsd:decimal
3815
- # ?u = "0.3333333333333333"^^xsd:decimal
3816
- # Therefore the derived triple above is entailed by the rules and facts.
3817
- # ----------------------------------------------------------------------
3818
-
3819
50
  _:sk_4 :sumSq "0.45999999999999996"^^xsd:decimal .
3820
-
3821
- # ----------------------------------------------------------------------
3822
- # Proof for derived triple:
3823
- # _:sk_4 :gini "0.54"^^xsd:decimal .
3824
- # It holds because the following instance of the rule body is provable:
3825
- # :MC1 :metrics _:sk_4 .
3826
- # _:sk_4 :pi _:b4 .
3827
- # _:b4 :pA 0.60 .
3828
- # _:b4 :pB 0.30 .
3829
- # _:b4 :pC 0.10 .
3830
- # (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
3831
- # (0.60 2.0) math:exponentiation "0.36"^^xsd:decimal .
3832
- # (0.30 2.0) math:exponentiation "0.09"^^xsd:decimal .
3833
- # (0.10 2.0) math:exponentiation "0.010000000000000002"^^xsd:decimal .
3834
- # ("0.36"^^xsd:decimal "0.09"^^xsd:decimal) math:sum "0.44999999999999996"^^xsd:decimal .
3835
- # ("0.44999999999999996"^^xsd:decimal "0.010000000000000002"^^xsd:decimal) math:sum "0.45999999999999996"^^xsd:decimal .
3836
- # (1.0 "0.45999999999999996"^^xsd:decimal) math:difference "0.54"^^xsd:decimal .
3837
- # (1.0 "0.45999999999999996"^^xsd:decimal) math:quotient "2.173913043478261"^^xsd:decimal .
3838
- # (0.60 "0.3333333333333333"^^xsd:decimal) math:difference "0.26666666666666666"^^xsd:decimal .
3839
- # "0.26666666666666666"^^xsd:decimal math:absoluteValue "0.26666666666666666"^^xsd:decimal .
3840
- # (0.30 "0.3333333333333333"^^xsd:decimal) math:difference "-0.033333333333333326"^^xsd:decimal .
3841
- # "-0.033333333333333326"^^xsd:decimal math:absoluteValue "0.033333333333333326"^^xsd:decimal .
3842
- # (0.10 "0.3333333333333333"^^xsd:decimal) math:difference "-0.2333333333333333"^^xsd:decimal .
3843
- # "-0.2333333333333333"^^xsd:decimal math:absoluteValue "0.2333333333333333"^^xsd:decimal .
3844
- # ("0.26666666666666666"^^xsd:decimal "0.033333333333333326"^^xsd:decimal) math:sum "0.3"^^xsd:decimal .
3845
- # ("0.3"^^xsd:decimal "0.2333333333333333"^^xsd:decimal) math:sum "0.5333333333333333"^^xsd:decimal .
3846
- # (0.5 "0.5333333333333333"^^xsd:decimal) math:product "0.26666666666666666"^^xsd:decimal .
3847
- # ("0.26666666666666666"^^xsd:decimal 2.0) math:exponentiation "0.07111111111111111"^^xsd:decimal .
3848
- # ("-0.033333333333333326"^^xsd:decimal 2.0) math:exponentiation "0.0011111111111111107"^^xsd:decimal .
3849
- # ("-0.2333333333333333"^^xsd:decimal 2.0) math:exponentiation "0.054444444444444434"^^xsd:decimal .
3850
- # ("0.07111111111111111"^^xsd:decimal "0.0011111111111111107"^^xsd:decimal) math:sum "0.07222222222222222"^^xsd:decimal .
3851
- # ("0.07222222222222222"^^xsd:decimal "0.054444444444444434"^^xsd:decimal) math:sum "0.12666666666666665"^^xsd:decimal .
3852
- # ("0.12666666666666665"^^xsd:decimal 0.5) math:exponentiation "0.3559026084010437"^^xsd:decimal .
3853
- # via the schematic forward rule:
3854
- # {
3855
- # :MC1 :metrics ?m .
3856
- # ?m :pi ?pi .
3857
- # ?pi :pA ?a .
3858
- # ?pi :pB ?b .
3859
- # ?pi :pC ?c .
3860
- # (1.0 3.0) math:quotient ?u .
3861
- # (?a 2.0) math:exponentiation ?a2 .
3862
- # (?b 2.0) math:exponentiation ?b2 .
3863
- # (?c 2.0) math:exponentiation ?c2 .
3864
- # (?a2 ?b2) math:sum ?ab2 .
3865
- # (?ab2 ?c2) math:sum ?sumSq .
3866
- # (1.0 ?sumSq) math:difference ?gini .
3867
- # (1.0 ?sumSq) math:quotient ?effN .
3868
- # (?a ?u) math:difference ?da .
3869
- # ?da math:absoluteValue ?ada .
3870
- # (?b ?u) math:difference ?db .
3871
- # ?db math:absoluteValue ?adb .
3872
- # (?c ?u) math:difference ?dc .
3873
- # ?dc math:absoluteValue ?adc .
3874
- # (?ada ?adb) math:sum ?s1 .
3875
- # (?s1 ?adc) math:sum ?sAbs .
3876
- # (0.5 ?sAbs) math:product ?tv .
3877
- # (?da 2.0) math:exponentiation ?da2 .
3878
- # (?db 2.0) math:exponentiation ?db2 .
3879
- # (?dc 2.0) math:exponentiation ?dc2 .
3880
- # (?da2 ?db2) math:sum ?s2 .
3881
- # (?s2 ?dc2) math:sum ?s3 .
3882
- # (?s3 0.5) math:exponentiation ?l2 .
3883
- # } => {
3884
- # ?m :sumSq ?sumSq .
3885
- # ?m :gini ?gini .
3886
- # ?m :effectiveStates ?effN .
3887
- # ?m :tvToUniform ?tv .
3888
- # ?m :l2ToUniform ?l2 .
3889
- # } .
3890
- # with substitution (on rule variables):
3891
- # ?a = 0.60
3892
- # ?a2 = "0.36"^^xsd:decimal
3893
- # ?ab2 = "0.44999999999999996"^^xsd:decimal
3894
- # ?ada = "0.26666666666666666"^^xsd:decimal
3895
- # ?adb = "0.033333333333333326"^^xsd:decimal
3896
- # ?adc = "0.2333333333333333"^^xsd:decimal
3897
- # ?b = 0.30
3898
- # ?b2 = "0.09"^^xsd:decimal
3899
- # ?c = 0.10
3900
- # ?c2 = "0.010000000000000002"^^xsd:decimal
3901
- # ?da = "0.26666666666666666"^^xsd:decimal
3902
- # ?da2 = "0.07111111111111111"^^xsd:decimal
3903
- # ?db = "-0.033333333333333326"^^xsd:decimal
3904
- # ?db2 = "0.0011111111111111107"^^xsd:decimal
3905
- # ?dc = "-0.2333333333333333"^^xsd:decimal
3906
- # ?dc2 = "0.054444444444444434"^^xsd:decimal
3907
- # ?effN = "2.173913043478261"^^xsd:decimal
3908
- # ?gini = "0.54"^^xsd:decimal
3909
- # ?l2 = "0.3559026084010437"^^xsd:decimal
3910
- # ?m = _:sk_4
3911
- # ?pi = _:b4
3912
- # ?s1 = "0.3"^^xsd:decimal
3913
- # ?s2 = "0.07222222222222222"^^xsd:decimal
3914
- # ?s3 = "0.12666666666666665"^^xsd:decimal
3915
- # ?sAbs = "0.5333333333333333"^^xsd:decimal
3916
- # ?sumSq = "0.45999999999999996"^^xsd:decimal
3917
- # ?tv = "0.26666666666666666"^^xsd:decimal
3918
- # ?u = "0.3333333333333333"^^xsd:decimal
3919
- # Therefore the derived triple above is entailed by the rules and facts.
3920
- # ----------------------------------------------------------------------
3921
-
3922
51
  _:sk_4 :gini "0.54"^^xsd:decimal .
3923
-
3924
- # ----------------------------------------------------------------------
3925
- # Proof for derived triple:
3926
- # _:sk_4 :effectiveStates "2.173913043478261"^^xsd:decimal .
3927
- # It holds because the following instance of the rule body is provable:
3928
- # :MC1 :metrics _:sk_4 .
3929
- # _:sk_4 :pi _:b4 .
3930
- # _:b4 :pA 0.60 .
3931
- # _:b4 :pB 0.30 .
3932
- # _:b4 :pC 0.10 .
3933
- # (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
3934
- # (0.60 2.0) math:exponentiation "0.36"^^xsd:decimal .
3935
- # (0.30 2.0) math:exponentiation "0.09"^^xsd:decimal .
3936
- # (0.10 2.0) math:exponentiation "0.010000000000000002"^^xsd:decimal .
3937
- # ("0.36"^^xsd:decimal "0.09"^^xsd:decimal) math:sum "0.44999999999999996"^^xsd:decimal .
3938
- # ("0.44999999999999996"^^xsd:decimal "0.010000000000000002"^^xsd:decimal) math:sum "0.45999999999999996"^^xsd:decimal .
3939
- # (1.0 "0.45999999999999996"^^xsd:decimal) math:difference "0.54"^^xsd:decimal .
3940
- # (1.0 "0.45999999999999996"^^xsd:decimal) math:quotient "2.173913043478261"^^xsd:decimal .
3941
- # (0.60 "0.3333333333333333"^^xsd:decimal) math:difference "0.26666666666666666"^^xsd:decimal .
3942
- # "0.26666666666666666"^^xsd:decimal math:absoluteValue "0.26666666666666666"^^xsd:decimal .
3943
- # (0.30 "0.3333333333333333"^^xsd:decimal) math:difference "-0.033333333333333326"^^xsd:decimal .
3944
- # "-0.033333333333333326"^^xsd:decimal math:absoluteValue "0.033333333333333326"^^xsd:decimal .
3945
- # (0.10 "0.3333333333333333"^^xsd:decimal) math:difference "-0.2333333333333333"^^xsd:decimal .
3946
- # "-0.2333333333333333"^^xsd:decimal math:absoluteValue "0.2333333333333333"^^xsd:decimal .
3947
- # ("0.26666666666666666"^^xsd:decimal "0.033333333333333326"^^xsd:decimal) math:sum "0.3"^^xsd:decimal .
3948
- # ("0.3"^^xsd:decimal "0.2333333333333333"^^xsd:decimal) math:sum "0.5333333333333333"^^xsd:decimal .
3949
- # (0.5 "0.5333333333333333"^^xsd:decimal) math:product "0.26666666666666666"^^xsd:decimal .
3950
- # ("0.26666666666666666"^^xsd:decimal 2.0) math:exponentiation "0.07111111111111111"^^xsd:decimal .
3951
- # ("-0.033333333333333326"^^xsd:decimal 2.0) math:exponentiation "0.0011111111111111107"^^xsd:decimal .
3952
- # ("-0.2333333333333333"^^xsd:decimal 2.0) math:exponentiation "0.054444444444444434"^^xsd:decimal .
3953
- # ("0.07111111111111111"^^xsd:decimal "0.0011111111111111107"^^xsd:decimal) math:sum "0.07222222222222222"^^xsd:decimal .
3954
- # ("0.07222222222222222"^^xsd:decimal "0.054444444444444434"^^xsd:decimal) math:sum "0.12666666666666665"^^xsd:decimal .
3955
- # ("0.12666666666666665"^^xsd:decimal 0.5) math:exponentiation "0.3559026084010437"^^xsd:decimal .
3956
- # via the schematic forward rule:
3957
- # {
3958
- # :MC1 :metrics ?m .
3959
- # ?m :pi ?pi .
3960
- # ?pi :pA ?a .
3961
- # ?pi :pB ?b .
3962
- # ?pi :pC ?c .
3963
- # (1.0 3.0) math:quotient ?u .
3964
- # (?a 2.0) math:exponentiation ?a2 .
3965
- # (?b 2.0) math:exponentiation ?b2 .
3966
- # (?c 2.0) math:exponentiation ?c2 .
3967
- # (?a2 ?b2) math:sum ?ab2 .
3968
- # (?ab2 ?c2) math:sum ?sumSq .
3969
- # (1.0 ?sumSq) math:difference ?gini .
3970
- # (1.0 ?sumSq) math:quotient ?effN .
3971
- # (?a ?u) math:difference ?da .
3972
- # ?da math:absoluteValue ?ada .
3973
- # (?b ?u) math:difference ?db .
3974
- # ?db math:absoluteValue ?adb .
3975
- # (?c ?u) math:difference ?dc .
3976
- # ?dc math:absoluteValue ?adc .
3977
- # (?ada ?adb) math:sum ?s1 .
3978
- # (?s1 ?adc) math:sum ?sAbs .
3979
- # (0.5 ?sAbs) math:product ?tv .
3980
- # (?da 2.0) math:exponentiation ?da2 .
3981
- # (?db 2.0) math:exponentiation ?db2 .
3982
- # (?dc 2.0) math:exponentiation ?dc2 .
3983
- # (?da2 ?db2) math:sum ?s2 .
3984
- # (?s2 ?dc2) math:sum ?s3 .
3985
- # (?s3 0.5) math:exponentiation ?l2 .
3986
- # } => {
3987
- # ?m :sumSq ?sumSq .
3988
- # ?m :gini ?gini .
3989
- # ?m :effectiveStates ?effN .
3990
- # ?m :tvToUniform ?tv .
3991
- # ?m :l2ToUniform ?l2 .
3992
- # } .
3993
- # with substitution (on rule variables):
3994
- # ?a = 0.60
3995
- # ?a2 = "0.36"^^xsd:decimal
3996
- # ?ab2 = "0.44999999999999996"^^xsd:decimal
3997
- # ?ada = "0.26666666666666666"^^xsd:decimal
3998
- # ?adb = "0.033333333333333326"^^xsd:decimal
3999
- # ?adc = "0.2333333333333333"^^xsd:decimal
4000
- # ?b = 0.30
4001
- # ?b2 = "0.09"^^xsd:decimal
4002
- # ?c = 0.10
4003
- # ?c2 = "0.010000000000000002"^^xsd:decimal
4004
- # ?da = "0.26666666666666666"^^xsd:decimal
4005
- # ?da2 = "0.07111111111111111"^^xsd:decimal
4006
- # ?db = "-0.033333333333333326"^^xsd:decimal
4007
- # ?db2 = "0.0011111111111111107"^^xsd:decimal
4008
- # ?dc = "-0.2333333333333333"^^xsd:decimal
4009
- # ?dc2 = "0.054444444444444434"^^xsd:decimal
4010
- # ?effN = "2.173913043478261"^^xsd:decimal
4011
- # ?gini = "0.54"^^xsd:decimal
4012
- # ?l2 = "0.3559026084010437"^^xsd:decimal
4013
- # ?m = _:sk_4
4014
- # ?pi = _:b4
4015
- # ?s1 = "0.3"^^xsd:decimal
4016
- # ?s2 = "0.07222222222222222"^^xsd:decimal
4017
- # ?s3 = "0.12666666666666665"^^xsd:decimal
4018
- # ?sAbs = "0.5333333333333333"^^xsd:decimal
4019
- # ?sumSq = "0.45999999999999996"^^xsd:decimal
4020
- # ?tv = "0.26666666666666666"^^xsd:decimal
4021
- # ?u = "0.3333333333333333"^^xsd:decimal
4022
- # Therefore the derived triple above is entailed by the rules and facts.
4023
- # ----------------------------------------------------------------------
4024
-
4025
52
  _:sk_4 :effectiveStates "2.173913043478261"^^xsd:decimal .
4026
-
4027
- # ----------------------------------------------------------------------
4028
- # Proof for derived triple:
4029
- # _:sk_4 :tvToUniform "0.26666666666666666"^^xsd:decimal .
4030
- # It holds because the following instance of the rule body is provable:
4031
- # :MC1 :metrics _:sk_4 .
4032
- # _:sk_4 :pi _:b4 .
4033
- # _:b4 :pA 0.60 .
4034
- # _:b4 :pB 0.30 .
4035
- # _:b4 :pC 0.10 .
4036
- # (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
4037
- # (0.60 2.0) math:exponentiation "0.36"^^xsd:decimal .
4038
- # (0.30 2.0) math:exponentiation "0.09"^^xsd:decimal .
4039
- # (0.10 2.0) math:exponentiation "0.010000000000000002"^^xsd:decimal .
4040
- # ("0.36"^^xsd:decimal "0.09"^^xsd:decimal) math:sum "0.44999999999999996"^^xsd:decimal .
4041
- # ("0.44999999999999996"^^xsd:decimal "0.010000000000000002"^^xsd:decimal) math:sum "0.45999999999999996"^^xsd:decimal .
4042
- # (1.0 "0.45999999999999996"^^xsd:decimal) math:difference "0.54"^^xsd:decimal .
4043
- # (1.0 "0.45999999999999996"^^xsd:decimal) math:quotient "2.173913043478261"^^xsd:decimal .
4044
- # (0.60 "0.3333333333333333"^^xsd:decimal) math:difference "0.26666666666666666"^^xsd:decimal .
4045
- # "0.26666666666666666"^^xsd:decimal math:absoluteValue "0.26666666666666666"^^xsd:decimal .
4046
- # (0.30 "0.3333333333333333"^^xsd:decimal) math:difference "-0.033333333333333326"^^xsd:decimal .
4047
- # "-0.033333333333333326"^^xsd:decimal math:absoluteValue "0.033333333333333326"^^xsd:decimal .
4048
- # (0.10 "0.3333333333333333"^^xsd:decimal) math:difference "-0.2333333333333333"^^xsd:decimal .
4049
- # "-0.2333333333333333"^^xsd:decimal math:absoluteValue "0.2333333333333333"^^xsd:decimal .
4050
- # ("0.26666666666666666"^^xsd:decimal "0.033333333333333326"^^xsd:decimal) math:sum "0.3"^^xsd:decimal .
4051
- # ("0.3"^^xsd:decimal "0.2333333333333333"^^xsd:decimal) math:sum "0.5333333333333333"^^xsd:decimal .
4052
- # (0.5 "0.5333333333333333"^^xsd:decimal) math:product "0.26666666666666666"^^xsd:decimal .
4053
- # ("0.26666666666666666"^^xsd:decimal 2.0) math:exponentiation "0.07111111111111111"^^xsd:decimal .
4054
- # ("-0.033333333333333326"^^xsd:decimal 2.0) math:exponentiation "0.0011111111111111107"^^xsd:decimal .
4055
- # ("-0.2333333333333333"^^xsd:decimal 2.0) math:exponentiation "0.054444444444444434"^^xsd:decimal .
4056
- # ("0.07111111111111111"^^xsd:decimal "0.0011111111111111107"^^xsd:decimal) math:sum "0.07222222222222222"^^xsd:decimal .
4057
- # ("0.07222222222222222"^^xsd:decimal "0.054444444444444434"^^xsd:decimal) math:sum "0.12666666666666665"^^xsd:decimal .
4058
- # ("0.12666666666666665"^^xsd:decimal 0.5) math:exponentiation "0.3559026084010437"^^xsd:decimal .
4059
- # via the schematic forward rule:
4060
- # {
4061
- # :MC1 :metrics ?m .
4062
- # ?m :pi ?pi .
4063
- # ?pi :pA ?a .
4064
- # ?pi :pB ?b .
4065
- # ?pi :pC ?c .
4066
- # (1.0 3.0) math:quotient ?u .
4067
- # (?a 2.0) math:exponentiation ?a2 .
4068
- # (?b 2.0) math:exponentiation ?b2 .
4069
- # (?c 2.0) math:exponentiation ?c2 .
4070
- # (?a2 ?b2) math:sum ?ab2 .
4071
- # (?ab2 ?c2) math:sum ?sumSq .
4072
- # (1.0 ?sumSq) math:difference ?gini .
4073
- # (1.0 ?sumSq) math:quotient ?effN .
4074
- # (?a ?u) math:difference ?da .
4075
- # ?da math:absoluteValue ?ada .
4076
- # (?b ?u) math:difference ?db .
4077
- # ?db math:absoluteValue ?adb .
4078
- # (?c ?u) math:difference ?dc .
4079
- # ?dc math:absoluteValue ?adc .
4080
- # (?ada ?adb) math:sum ?s1 .
4081
- # (?s1 ?adc) math:sum ?sAbs .
4082
- # (0.5 ?sAbs) math:product ?tv .
4083
- # (?da 2.0) math:exponentiation ?da2 .
4084
- # (?db 2.0) math:exponentiation ?db2 .
4085
- # (?dc 2.0) math:exponentiation ?dc2 .
4086
- # (?da2 ?db2) math:sum ?s2 .
4087
- # (?s2 ?dc2) math:sum ?s3 .
4088
- # (?s3 0.5) math:exponentiation ?l2 .
4089
- # } => {
4090
- # ?m :sumSq ?sumSq .
4091
- # ?m :gini ?gini .
4092
- # ?m :effectiveStates ?effN .
4093
- # ?m :tvToUniform ?tv .
4094
- # ?m :l2ToUniform ?l2 .
4095
- # } .
4096
- # with substitution (on rule variables):
4097
- # ?a = 0.60
4098
- # ?a2 = "0.36"^^xsd:decimal
4099
- # ?ab2 = "0.44999999999999996"^^xsd:decimal
4100
- # ?ada = "0.26666666666666666"^^xsd:decimal
4101
- # ?adb = "0.033333333333333326"^^xsd:decimal
4102
- # ?adc = "0.2333333333333333"^^xsd:decimal
4103
- # ?b = 0.30
4104
- # ?b2 = "0.09"^^xsd:decimal
4105
- # ?c = 0.10
4106
- # ?c2 = "0.010000000000000002"^^xsd:decimal
4107
- # ?da = "0.26666666666666666"^^xsd:decimal
4108
- # ?da2 = "0.07111111111111111"^^xsd:decimal
4109
- # ?db = "-0.033333333333333326"^^xsd:decimal
4110
- # ?db2 = "0.0011111111111111107"^^xsd:decimal
4111
- # ?dc = "-0.2333333333333333"^^xsd:decimal
4112
- # ?dc2 = "0.054444444444444434"^^xsd:decimal
4113
- # ?effN = "2.173913043478261"^^xsd:decimal
4114
- # ?gini = "0.54"^^xsd:decimal
4115
- # ?l2 = "0.3559026084010437"^^xsd:decimal
4116
- # ?m = _:sk_4
4117
- # ?pi = _:b4
4118
- # ?s1 = "0.3"^^xsd:decimal
4119
- # ?s2 = "0.07222222222222222"^^xsd:decimal
4120
- # ?s3 = "0.12666666666666665"^^xsd:decimal
4121
- # ?sAbs = "0.5333333333333333"^^xsd:decimal
4122
- # ?sumSq = "0.45999999999999996"^^xsd:decimal
4123
- # ?tv = "0.26666666666666666"^^xsd:decimal
4124
- # ?u = "0.3333333333333333"^^xsd:decimal
4125
- # Therefore the derived triple above is entailed by the rules and facts.
4126
- # ----------------------------------------------------------------------
4127
-
4128
53
  _:sk_4 :tvToUniform "0.26666666666666666"^^xsd:decimal .
4129
-
4130
- # ----------------------------------------------------------------------
4131
- # Proof for derived triple:
4132
- # _:sk_4 :l2ToUniform "0.3559026084010437"^^xsd:decimal .
4133
- # It holds because the following instance of the rule body is provable:
4134
- # :MC1 :metrics _:sk_4 .
4135
- # _:sk_4 :pi _:b4 .
4136
- # _:b4 :pA 0.60 .
4137
- # _:b4 :pB 0.30 .
4138
- # _:b4 :pC 0.10 .
4139
- # (1.0 3.0) math:quotient "0.3333333333333333"^^xsd:decimal .
4140
- # (0.60 2.0) math:exponentiation "0.36"^^xsd:decimal .
4141
- # (0.30 2.0) math:exponentiation "0.09"^^xsd:decimal .
4142
- # (0.10 2.0) math:exponentiation "0.010000000000000002"^^xsd:decimal .
4143
- # ("0.36"^^xsd:decimal "0.09"^^xsd:decimal) math:sum "0.44999999999999996"^^xsd:decimal .
4144
- # ("0.44999999999999996"^^xsd:decimal "0.010000000000000002"^^xsd:decimal) math:sum "0.45999999999999996"^^xsd:decimal .
4145
- # (1.0 "0.45999999999999996"^^xsd:decimal) math:difference "0.54"^^xsd:decimal .
4146
- # (1.0 "0.45999999999999996"^^xsd:decimal) math:quotient "2.173913043478261"^^xsd:decimal .
4147
- # (0.60 "0.3333333333333333"^^xsd:decimal) math:difference "0.26666666666666666"^^xsd:decimal .
4148
- # "0.26666666666666666"^^xsd:decimal math:absoluteValue "0.26666666666666666"^^xsd:decimal .
4149
- # (0.30 "0.3333333333333333"^^xsd:decimal) math:difference "-0.033333333333333326"^^xsd:decimal .
4150
- # "-0.033333333333333326"^^xsd:decimal math:absoluteValue "0.033333333333333326"^^xsd:decimal .
4151
- # (0.10 "0.3333333333333333"^^xsd:decimal) math:difference "-0.2333333333333333"^^xsd:decimal .
4152
- # "-0.2333333333333333"^^xsd:decimal math:absoluteValue "0.2333333333333333"^^xsd:decimal .
4153
- # ("0.26666666666666666"^^xsd:decimal "0.033333333333333326"^^xsd:decimal) math:sum "0.3"^^xsd:decimal .
4154
- # ("0.3"^^xsd:decimal "0.2333333333333333"^^xsd:decimal) math:sum "0.5333333333333333"^^xsd:decimal .
4155
- # (0.5 "0.5333333333333333"^^xsd:decimal) math:product "0.26666666666666666"^^xsd:decimal .
4156
- # ("0.26666666666666666"^^xsd:decimal 2.0) math:exponentiation "0.07111111111111111"^^xsd:decimal .
4157
- # ("-0.033333333333333326"^^xsd:decimal 2.0) math:exponentiation "0.0011111111111111107"^^xsd:decimal .
4158
- # ("-0.2333333333333333"^^xsd:decimal 2.0) math:exponentiation "0.054444444444444434"^^xsd:decimal .
4159
- # ("0.07111111111111111"^^xsd:decimal "0.0011111111111111107"^^xsd:decimal) math:sum "0.07222222222222222"^^xsd:decimal .
4160
- # ("0.07222222222222222"^^xsd:decimal "0.054444444444444434"^^xsd:decimal) math:sum "0.12666666666666665"^^xsd:decimal .
4161
- # ("0.12666666666666665"^^xsd:decimal 0.5) math:exponentiation "0.3559026084010437"^^xsd:decimal .
4162
- # via the schematic forward rule:
4163
- # {
4164
- # :MC1 :metrics ?m .
4165
- # ?m :pi ?pi .
4166
- # ?pi :pA ?a .
4167
- # ?pi :pB ?b .
4168
- # ?pi :pC ?c .
4169
- # (1.0 3.0) math:quotient ?u .
4170
- # (?a 2.0) math:exponentiation ?a2 .
4171
- # (?b 2.0) math:exponentiation ?b2 .
4172
- # (?c 2.0) math:exponentiation ?c2 .
4173
- # (?a2 ?b2) math:sum ?ab2 .
4174
- # (?ab2 ?c2) math:sum ?sumSq .
4175
- # (1.0 ?sumSq) math:difference ?gini .
4176
- # (1.0 ?sumSq) math:quotient ?effN .
4177
- # (?a ?u) math:difference ?da .
4178
- # ?da math:absoluteValue ?ada .
4179
- # (?b ?u) math:difference ?db .
4180
- # ?db math:absoluteValue ?adb .
4181
- # (?c ?u) math:difference ?dc .
4182
- # ?dc math:absoluteValue ?adc .
4183
- # (?ada ?adb) math:sum ?s1 .
4184
- # (?s1 ?adc) math:sum ?sAbs .
4185
- # (0.5 ?sAbs) math:product ?tv .
4186
- # (?da 2.0) math:exponentiation ?da2 .
4187
- # (?db 2.0) math:exponentiation ?db2 .
4188
- # (?dc 2.0) math:exponentiation ?dc2 .
4189
- # (?da2 ?db2) math:sum ?s2 .
4190
- # (?s2 ?dc2) math:sum ?s3 .
4191
- # (?s3 0.5) math:exponentiation ?l2 .
4192
- # } => {
4193
- # ?m :sumSq ?sumSq .
4194
- # ?m :gini ?gini .
4195
- # ?m :effectiveStates ?effN .
4196
- # ?m :tvToUniform ?tv .
4197
- # ?m :l2ToUniform ?l2 .
4198
- # } .
4199
- # with substitution (on rule variables):
4200
- # ?a = 0.60
4201
- # ?a2 = "0.36"^^xsd:decimal
4202
- # ?ab2 = "0.44999999999999996"^^xsd:decimal
4203
- # ?ada = "0.26666666666666666"^^xsd:decimal
4204
- # ?adb = "0.033333333333333326"^^xsd:decimal
4205
- # ?adc = "0.2333333333333333"^^xsd:decimal
4206
- # ?b = 0.30
4207
- # ?b2 = "0.09"^^xsd:decimal
4208
- # ?c = 0.10
4209
- # ?c2 = "0.010000000000000002"^^xsd:decimal
4210
- # ?da = "0.26666666666666666"^^xsd:decimal
4211
- # ?da2 = "0.07111111111111111"^^xsd:decimal
4212
- # ?db = "-0.033333333333333326"^^xsd:decimal
4213
- # ?db2 = "0.0011111111111111107"^^xsd:decimal
4214
- # ?dc = "-0.2333333333333333"^^xsd:decimal
4215
- # ?dc2 = "0.054444444444444434"^^xsd:decimal
4216
- # ?effN = "2.173913043478261"^^xsd:decimal
4217
- # ?gini = "0.54"^^xsd:decimal
4218
- # ?l2 = "0.3559026084010437"^^xsd:decimal
4219
- # ?m = _:sk_4
4220
- # ?pi = _:b4
4221
- # ?s1 = "0.3"^^xsd:decimal
4222
- # ?s2 = "0.07222222222222222"^^xsd:decimal
4223
- # ?s3 = "0.12666666666666665"^^xsd:decimal
4224
- # ?sAbs = "0.5333333333333333"^^xsd:decimal
4225
- # ?sumSq = "0.45999999999999996"^^xsd:decimal
4226
- # ?tv = "0.26666666666666666"^^xsd:decimal
4227
- # ?u = "0.3333333333333333"^^xsd:decimal
4228
- # Therefore the derived triple above is entailed by the rules and facts.
4229
- # ----------------------------------------------------------------------
4230
-
4231
54
  _:sk_4 :l2ToUniform "0.3559026084010437"^^xsd:decimal .
4232
-