eyeling 1.6.13 → 1.6.14

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (75) hide show
  1. package/examples/output/age.n3 +0 -17
  2. package/examples/output/alignment-demo.n3 +0 -572
  3. package/examples/output/backward.n3 +0 -15
  4. package/examples/output/basic-monadic.n3 +0 -105
  5. package/examples/output/brussels-brew-club.n3 +0 -476
  6. package/examples/output/cat-koko.n3 +0 -108
  7. package/examples/output/cobalt-kepler-kitchen.n3 +0 -7064
  8. package/examples/output/complex.n3 +0 -46
  9. package/examples/output/control-system.n3 +0 -75
  10. package/examples/output/cranberry-calculus.n3 +0 -1313
  11. package/examples/output/crypto-builtins-tests.n3 +0 -60
  12. package/examples/output/deep-taxonomy-10.n3 +0 -602
  13. package/examples/output/deep-taxonomy-100.n3 +1 -5733
  14. package/examples/output/deep-taxonomy-1000.n3 +1 -57033
  15. package/examples/output/deep-taxonomy-10000.n3 +1 -570033
  16. package/examples/output/derived-backward-rule-2.n3 +0 -58
  17. package/examples/output/derived-backward-rule.n3 +0 -44
  18. package/examples/output/derived-rule.n3 +0 -42
  19. package/examples/output/dijkstra.n3 +0 -297
  20. package/examples/output/dog.n3 +0 -30
  21. package/examples/output/drone-corridor-planner.n3 +0 -799
  22. package/examples/output/easter.n3 +0 -3570
  23. package/examples/output/equals.n3 +0 -15
  24. package/examples/output/ev-roundtrip-planner.n3 +0 -392
  25. package/examples/output/existential-rule.n3 +0 -34
  26. package/examples/output/expression-eval.n3 +0 -20
  27. package/examples/output/family-cousins.n3 +0 -636
  28. package/examples/output/fibonacci.n3 +0 -36
  29. package/examples/output/french-cities.n3 +0 -484
  30. package/examples/output/good-cobbler.n3 +0 -22
  31. package/examples/output/gps.n3 +0 -62
  32. package/examples/output/gray-code-counter.n3 +0 -17
  33. package/examples/output/hanoi.n3 +0 -17
  34. package/examples/output/jade-eigen-loom.n3 +0 -4690
  35. package/examples/output/json-pointer.n3 +0 -529
  36. package/examples/output/json-reconcile-vat.n3 +0 -12882
  37. package/examples/output/light-eaters.n3 +0 -311
  38. package/examples/output/list-builtins-tests.n3 +0 -167
  39. package/examples/output/list-iterate.n3 +0 -124
  40. package/examples/output/lldm.n3 +0 -960
  41. package/examples/output/log-collect-all-in.n3 +0 -117
  42. package/examples/output/log-for-all-in.n3 +0 -27
  43. package/examples/output/log-not-includes.n3 +0 -59
  44. package/examples/output/log-skolem.n3 +0 -17
  45. package/examples/output/log-uri.n3 +0 -42
  46. package/examples/output/math-builtins-tests.n3 +0 -4434
  47. package/examples/output/minimal-skos-alignment.n3 +0 -39
  48. package/examples/output/monkey.n3 +0 -36
  49. package/examples/output/odrl-trust.n3 +0 -46
  50. package/examples/output/oslo-steps-library-scholarly.n3 +0 -1260
  51. package/examples/output/oslo-steps-workflow-composition.n3 +0 -180
  52. package/examples/output/peano.n3 +0 -23
  53. package/examples/output/pi.n3 +0 -17
  54. package/examples/output/pillar.n3 +0 -32
  55. package/examples/output/polygon.n3 +0 -17
  56. package/examples/output/rdf-list.n3 +0 -28
  57. package/examples/output/reordering.n3 +0 -26
  58. package/examples/output/ruby-runge-workshop.n3 +0 -613
  59. package/examples/output/rule-matching.n3 +0 -26
  60. package/examples/output/saffron-slopeworks.n3 +0 -1447
  61. package/examples/output/self-referential.n3 +0 -81
  62. package/examples/output/similar.n3 +0 -15
  63. package/examples/output/snaf.n3 +0 -23
  64. package/examples/output/socrates.n3 +0 -21
  65. package/examples/output/spectral-week.n3 +0 -350
  66. package/examples/output/string-builtins-tests.n3 +0 -240
  67. package/examples/output/topaz-markov-mill.n3 +0 -4178
  68. package/examples/output/traffic-skos-aggregate.n3 +0 -3151
  69. package/examples/output/turing.n3 +0 -36
  70. package/examples/output/ultramarine-simpson-forge.n3 +0 -3873
  71. package/examples/output/witch.n3 +0 -107
  72. package/examples/output/zebra.n3 +0 -111
  73. package/eyeling.js +97 -18
  74. package/package.json +1 -1
  75. package/test/examples.test.js +1 -1
@@ -1,629 +1,16 @@
1
1
  @prefix : <http://example.org/ruby-runge#> .
2
2
  @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
3
3
 
4
- # ----------------------------------------------------------------------
5
- # Proof for derived triple:
6
- # :Interp1 :yAtX0 "-0.27999999999999986"^^xsd:decimal .
7
- # It holds because the following instance of the rule body is provable:
8
- # :Interp1 :points (_:b1 _:b2 _:b3 _:b4 _:b5) .
9
- # :Interp1 :x0 0.6 .
10
- # (?term {
11
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pi .
12
- # ?pi :x ?xi .
13
- # ?pi :y ?yi .
14
- # (?f {
15
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pj .
16
- # ?pj :x ?xj .
17
- # ?xj math:notEqualTo ?xi .
18
- # (0.6 ?xj) math:difference ?num .
19
- # (?xi ?xj) math:difference ?den .
20
- # (?num ?den) math:quotient ?f .
21
- # } ?factors) log:collectAllIn ?_b1 .
22
- # ?factors math:product ?basis .
23
- # (?yi ?basis) math:product ?term .
24
- # } ("-0.2912"^^xsd:decimal "0.5824"^^xsd:decimal "-0.5823999999999999"^^xsd:decimal "-0.14559999999999998"^^xsd:decimal "0.1568"^^xsd:decimal)) log:collectAllIn ?_b2 .
25
- # ("-0.2912"^^xsd:decimal "0.5824"^^xsd:decimal "-0.5823999999999999"^^xsd:decimal "-0.14559999999999998"^^xsd:decimal "0.1568"^^xsd:decimal) math:sum "-0.27999999999999986"^^xsd:decimal .
26
- # via the schematic forward rule:
27
- # {
28
- # :Interp1 :points ?pts .
29
- # :Interp1 :x0 ?x0 .
30
- # (?term {
31
- # ?pts list:member ?pi .
32
- # ?pi :x ?xi .
33
- # ?pi :y ?yi .
34
- # (?f {
35
- # ?pts list:member ?pj .
36
- # ?pj :x ?xj .
37
- # ?xj math:notEqualTo ?xi .
38
- # (?x0 ?xj) math:difference ?num .
39
- # (?xi ?xj) math:difference ?den .
40
- # (?num ?den) math:quotient ?f .
41
- # } ?factors) log:collectAllIn ?_b1 .
42
- # ?factors math:product ?basis .
43
- # (?yi ?basis) math:product ?term .
44
- # } ?terms) log:collectAllIn ?_b2 .
45
- # ?terms math:sum ?y0 .
46
- # } => {
47
- # :Interp1 :yAtX0 ?y0 .
48
- # } .
49
- # with substitution (on rule variables):
50
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5)
51
- # ?terms = ("-0.2912"^^xsd:decimal "0.5824"^^xsd:decimal "-0.5823999999999999"^^xsd:decimal "-0.14559999999999998"^^xsd:decimal "0.1568"^^xsd:decimal)
52
- # ?x0 = 0.6
53
- # ?y0 = "-0.27999999999999986"^^xsd:decimal
54
- # Therefore the derived triple above is entailed by the rules and facts.
55
- # ----------------------------------------------------------------------
56
-
57
4
  :Interp1 :yAtX0 "-0.27999999999999986"^^xsd:decimal .
58
-
59
- # ----------------------------------------------------------------------
60
- # Proof for derived triple:
61
- # :Interp1 :yAtXPlus "-0.2775980000000001"^^xsd:decimal .
62
- # It holds because the following instance of the rule body is provable:
63
- # :Interp1 :points (_:b1 _:b2 _:b3 _:b4 _:b5) .
64
- # :Interp1 :x0 0.6 .
65
- # :Interp1 :h 0.001 .
66
- # (0.6 0.001) math:sum "0.601"^^xsd:decimal .
67
- # (?term {
68
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pi .
69
- # ?pi :x ?xi .
70
- # ?pi :y ?yi .
71
- # (?f {
72
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pj .
73
- # ?pj :x ?xj .
74
- # ?xj math:notEqualTo ?xi .
75
- # ("0.601"^^xsd:decimal ?xj) math:difference ?num .
76
- # (?xi ?xj) math:difference ?den .
77
- # (?num ?den) math:quotient ?f .
78
- # } ?factors) log:collectAllIn ?_b1 .
79
- # ?factors math:product ?basis .
80
- # (?yi ?basis) math:product ?term .
81
- # } ("-0.291249943716375"^^xsd:decimal "0.5835426727665"^^xsd:decimal "-0.58111529060025"^^xsd:decimal "-0.1454300602335"^^xsd:decimal "0.15665462178362502"^^xsd:decimal)) log:collectAllIn ?_b2 .
82
- # ("-0.291249943716375"^^xsd:decimal "0.5835426727665"^^xsd:decimal "-0.58111529060025"^^xsd:decimal "-0.1454300602335"^^xsd:decimal "0.15665462178362502"^^xsd:decimal) math:sum "-0.2775980000000001"^^xsd:decimal .
83
- # via the schematic forward rule:
84
- # {
85
- # :Interp1 :points ?pts .
86
- # :Interp1 :x0 ?x0 .
87
- # :Interp1 :h ?h .
88
- # (?x0 ?h) math:sum ?xPlus .
89
- # (?term {
90
- # ?pts list:member ?pi .
91
- # ?pi :x ?xi .
92
- # ?pi :y ?yi .
93
- # (?f {
94
- # ?pts list:member ?pj .
95
- # ?pj :x ?xj .
96
- # ?xj math:notEqualTo ?xi .
97
- # (?xPlus ?xj) math:difference ?num .
98
- # (?xi ?xj) math:difference ?den .
99
- # (?num ?den) math:quotient ?f .
100
- # } ?factors) log:collectAllIn ?_b1 .
101
- # ?factors math:product ?basis .
102
- # (?yi ?basis) math:product ?term .
103
- # } ?terms) log:collectAllIn ?_b2 .
104
- # ?terms math:sum ?yPlus .
105
- # } => {
106
- # :Interp1 :yAtXPlus ?yPlus .
107
- # :Interp1 :xPlus ?xPlus .
108
- # } .
109
- # with substitution (on rule variables):
110
- # ?h = 0.001
111
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5)
112
- # ?terms = ("-0.291249943716375"^^xsd:decimal "0.5835426727665"^^xsd:decimal "-0.58111529060025"^^xsd:decimal "-0.1454300602335"^^xsd:decimal "0.15665462178362502"^^xsd:decimal)
113
- # ?x0 = 0.6
114
- # ?xPlus = "0.601"^^xsd:decimal
115
- # ?yPlus = "-0.2775980000000001"^^xsd:decimal
116
- # Therefore the derived triple above is entailed by the rules and facts.
117
- # ----------------------------------------------------------------------
118
-
119
5
  :Interp1 :yAtXPlus "-0.2775980000000001"^^xsd:decimal .
120
-
121
- # ----------------------------------------------------------------------
122
- # Proof for derived triple:
123
- # :Interp1 :xPlus "0.601"^^xsd:decimal .
124
- # It holds because the following instance of the rule body is provable:
125
- # :Interp1 :points (_:b1 _:b2 _:b3 _:b4 _:b5) .
126
- # :Interp1 :x0 0.6 .
127
- # :Interp1 :h 0.001 .
128
- # (0.6 0.001) math:sum "0.601"^^xsd:decimal .
129
- # (?term {
130
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pi .
131
- # ?pi :x ?xi .
132
- # ?pi :y ?yi .
133
- # (?f {
134
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pj .
135
- # ?pj :x ?xj .
136
- # ?xj math:notEqualTo ?xi .
137
- # ("0.601"^^xsd:decimal ?xj) math:difference ?num .
138
- # (?xi ?xj) math:difference ?den .
139
- # (?num ?den) math:quotient ?f .
140
- # } ?factors) log:collectAllIn ?_b1 .
141
- # ?factors math:product ?basis .
142
- # (?yi ?basis) math:product ?term .
143
- # } ("-0.291249943716375"^^xsd:decimal "0.5835426727665"^^xsd:decimal "-0.58111529060025"^^xsd:decimal "-0.1454300602335"^^xsd:decimal "0.15665462178362502"^^xsd:decimal)) log:collectAllIn ?_b2 .
144
- # ("-0.291249943716375"^^xsd:decimal "0.5835426727665"^^xsd:decimal "-0.58111529060025"^^xsd:decimal "-0.1454300602335"^^xsd:decimal "0.15665462178362502"^^xsd:decimal) math:sum "-0.2775980000000001"^^xsd:decimal .
145
- # via the schematic forward rule:
146
- # {
147
- # :Interp1 :points ?pts .
148
- # :Interp1 :x0 ?x0 .
149
- # :Interp1 :h ?h .
150
- # (?x0 ?h) math:sum ?xPlus .
151
- # (?term {
152
- # ?pts list:member ?pi .
153
- # ?pi :x ?xi .
154
- # ?pi :y ?yi .
155
- # (?f {
156
- # ?pts list:member ?pj .
157
- # ?pj :x ?xj .
158
- # ?xj math:notEqualTo ?xi .
159
- # (?xPlus ?xj) math:difference ?num .
160
- # (?xi ?xj) math:difference ?den .
161
- # (?num ?den) math:quotient ?f .
162
- # } ?factors) log:collectAllIn ?_b1 .
163
- # ?factors math:product ?basis .
164
- # (?yi ?basis) math:product ?term .
165
- # } ?terms) log:collectAllIn ?_b2 .
166
- # ?terms math:sum ?yPlus .
167
- # } => {
168
- # :Interp1 :yAtXPlus ?yPlus .
169
- # :Interp1 :xPlus ?xPlus .
170
- # } .
171
- # with substitution (on rule variables):
172
- # ?h = 0.001
173
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5)
174
- # ?terms = ("-0.291249943716375"^^xsd:decimal "0.5835426727665"^^xsd:decimal "-0.58111529060025"^^xsd:decimal "-0.1454300602335"^^xsd:decimal "0.15665462178362502"^^xsd:decimal)
175
- # ?x0 = 0.6
176
- # ?xPlus = "0.601"^^xsd:decimal
177
- # ?yPlus = "-0.2775980000000001"^^xsd:decimal
178
- # Therefore the derived triple above is entailed by the rules and facts.
179
- # ----------------------------------------------------------------------
180
-
181
6
  :Interp1 :xPlus "0.601"^^xsd:decimal .
182
-
183
- # ----------------------------------------------------------------------
184
- # Proof for derived triple:
185
- # :Interp1 :yAtXMinus "-0.28239800000000004"^^xsd:decimal .
186
- # It holds because the following instance of the rule body is provable:
187
- # :Interp1 :points (_:b1 _:b2 _:b3 _:b4 _:b5) .
188
- # :Interp1 :x0 0.6 .
189
- # :Interp1 :h 0.001 .
190
- # (0.6 0.001) math:difference "0.599"^^xsd:decimal .
191
- # (?term {
192
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pi .
193
- # ?pi :x ?xi .
194
- # ?pi :y ?yi .
195
- # (?f {
196
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pj .
197
- # ?pj :x ?xj .
198
- # ?xj math:notEqualTo ?xi .
199
- # ("0.599"^^xsd:decimal ?xj) math:difference ?num .
200
- # (?xi ?xj) math:difference ?den .
201
- # (?num ?den) math:quotient ?f .
202
- # } ?factors) log:collectAllIn ?_b1 .
203
- # ?factors math:product ?basis .
204
- # (?yi ?basis) math:product ?term .
205
- # } ("-0.291147279616375"^^xsd:decimal "0.5812573405665"^^xsd:decimal "-0.58368328940025"^^xsd:decimal "-0.1457687264335"^^xsd:decimal "0.156943954883625"^^xsd:decimal)) log:collectAllIn ?_b2 .
206
- # ("-0.291147279616375"^^xsd:decimal "0.5812573405665"^^xsd:decimal "-0.58368328940025"^^xsd:decimal "-0.1457687264335"^^xsd:decimal "0.156943954883625"^^xsd:decimal) math:sum "-0.28239800000000004"^^xsd:decimal .
207
- # via the schematic forward rule:
208
- # {
209
- # :Interp1 :points ?pts .
210
- # :Interp1 :x0 ?x0 .
211
- # :Interp1 :h ?h .
212
- # (?x0 ?h) math:difference ?xMinus .
213
- # (?term {
214
- # ?pts list:member ?pi .
215
- # ?pi :x ?xi .
216
- # ?pi :y ?yi .
217
- # (?f {
218
- # ?pts list:member ?pj .
219
- # ?pj :x ?xj .
220
- # ?xj math:notEqualTo ?xi .
221
- # (?xMinus ?xj) math:difference ?num .
222
- # (?xi ?xj) math:difference ?den .
223
- # (?num ?den) math:quotient ?f .
224
- # } ?factors) log:collectAllIn ?_b1 .
225
- # ?factors math:product ?basis .
226
- # (?yi ?basis) math:product ?term .
227
- # } ?terms) log:collectAllIn ?_b2 .
228
- # ?terms math:sum ?yMinus .
229
- # } => {
230
- # :Interp1 :yAtXMinus ?yMinus .
231
- # :Interp1 :xMinus ?xMinus .
232
- # } .
233
- # with substitution (on rule variables):
234
- # ?h = 0.001
235
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5)
236
- # ?terms = ("-0.291147279616375"^^xsd:decimal "0.5812573405665"^^xsd:decimal "-0.58368328940025"^^xsd:decimal "-0.1457687264335"^^xsd:decimal "0.156943954883625"^^xsd:decimal)
237
- # ?x0 = 0.6
238
- # ?xMinus = "0.599"^^xsd:decimal
239
- # ?yMinus = "-0.28239800000000004"^^xsd:decimal
240
- # Therefore the derived triple above is entailed by the rules and facts.
241
- # ----------------------------------------------------------------------
242
-
243
7
  :Interp1 :yAtXMinus "-0.28239800000000004"^^xsd:decimal .
244
-
245
- # ----------------------------------------------------------------------
246
- # Proof for derived triple:
247
- # :Interp1 :xMinus "0.599"^^xsd:decimal .
248
- # It holds because the following instance of the rule body is provable:
249
- # :Interp1 :points (_:b1 _:b2 _:b3 _:b4 _:b5) .
250
- # :Interp1 :x0 0.6 .
251
- # :Interp1 :h 0.001 .
252
- # (0.6 0.001) math:difference "0.599"^^xsd:decimal .
253
- # (?term {
254
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pi .
255
- # ?pi :x ?xi .
256
- # ?pi :y ?yi .
257
- # (?f {
258
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pj .
259
- # ?pj :x ?xj .
260
- # ?xj math:notEqualTo ?xi .
261
- # ("0.599"^^xsd:decimal ?xj) math:difference ?num .
262
- # (?xi ?xj) math:difference ?den .
263
- # (?num ?den) math:quotient ?f .
264
- # } ?factors) log:collectAllIn ?_b1 .
265
- # ?factors math:product ?basis .
266
- # (?yi ?basis) math:product ?term .
267
- # } ("-0.291147279616375"^^xsd:decimal "0.5812573405665"^^xsd:decimal "-0.58368328940025"^^xsd:decimal "-0.1457687264335"^^xsd:decimal "0.156943954883625"^^xsd:decimal)) log:collectAllIn ?_b2 .
268
- # ("-0.291147279616375"^^xsd:decimal "0.5812573405665"^^xsd:decimal "-0.58368328940025"^^xsd:decimal "-0.1457687264335"^^xsd:decimal "0.156943954883625"^^xsd:decimal) math:sum "-0.28239800000000004"^^xsd:decimal .
269
- # via the schematic forward rule:
270
- # {
271
- # :Interp1 :points ?pts .
272
- # :Interp1 :x0 ?x0 .
273
- # :Interp1 :h ?h .
274
- # (?x0 ?h) math:difference ?xMinus .
275
- # (?term {
276
- # ?pts list:member ?pi .
277
- # ?pi :x ?xi .
278
- # ?pi :y ?yi .
279
- # (?f {
280
- # ?pts list:member ?pj .
281
- # ?pj :x ?xj .
282
- # ?xj math:notEqualTo ?xi .
283
- # (?xMinus ?xj) math:difference ?num .
284
- # (?xi ?xj) math:difference ?den .
285
- # (?num ?den) math:quotient ?f .
286
- # } ?factors) log:collectAllIn ?_b1 .
287
- # ?factors math:product ?basis .
288
- # (?yi ?basis) math:product ?term .
289
- # } ?terms) log:collectAllIn ?_b2 .
290
- # ?terms math:sum ?yMinus .
291
- # } => {
292
- # :Interp1 :yAtXMinus ?yMinus .
293
- # :Interp1 :xMinus ?xMinus .
294
- # } .
295
- # with substitution (on rule variables):
296
- # ?h = 0.001
297
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5)
298
- # ?terms = ("-0.291147279616375"^^xsd:decimal "0.5812573405665"^^xsd:decimal "-0.58368328940025"^^xsd:decimal "-0.1457687264335"^^xsd:decimal "0.156943954883625"^^xsd:decimal)
299
- # ?x0 = 0.6
300
- # ?xMinus = "0.599"^^xsd:decimal
301
- # ?yMinus = "-0.28239800000000004"^^xsd:decimal
302
- # Therefore the derived triple above is entailed by the rules and facts.
303
- # ----------------------------------------------------------------------
304
-
305
8
  :Interp1 :xMinus "0.599"^^xsd:decimal .
306
-
307
- # ----------------------------------------------------------------------
308
- # Proof for derived triple:
309
- # :Interp1 :derivativeAtX0 "2.3999999999999577"^^xsd:decimal .
310
- # It holds because the following instance of the rule body is provable:
311
- # :Interp1 :yAtXPlus "-0.2775980000000001"^^xsd:decimal .
312
- # :Interp1 :yAtXMinus "-0.28239800000000004"^^xsd:decimal .
313
- # :Interp1 :h 0.001 .
314
- # ("-0.2775980000000001"^^xsd:decimal "-0.28239800000000004"^^xsd:decimal) math:difference "0.0047999999999999154"^^xsd:decimal .
315
- # (2.0 0.001) math:product "0.002"^^xsd:decimal .
316
- # ("0.0047999999999999154"^^xsd:decimal "0.002"^^xsd:decimal) math:quotient "2.3999999999999577"^^xsd:decimal .
317
- # via the schematic forward rule:
318
- # {
319
- # :Interp1 :yAtXPlus ?yP .
320
- # :Interp1 :yAtXMinus ?yM .
321
- # :Interp1 :h ?h .
322
- # (?yP ?yM) math:difference ?dy .
323
- # (2.0 ?h) math:product ?twoH .
324
- # (?dy ?twoH) math:quotient ?dydx .
325
- # } => {
326
- # :Interp1 :derivativeAtX0 ?dydx .
327
- # } .
328
- # with substitution (on rule variables):
329
- # ?dy = "0.0047999999999999154"^^xsd:decimal
330
- # ?dydx = "2.3999999999999577"^^xsd:decimal
331
- # ?h = 0.001
332
- # ?twoH = "0.002"^^xsd:decimal
333
- # ?yM = "-0.28239800000000004"^^xsd:decimal
334
- # ?yP = "-0.2775980000000001"^^xsd:decimal
335
- # Therefore the derived triple above is entailed by the rules and facts.
336
- # ----------------------------------------------------------------------
337
-
338
9
  :Interp1 :derivativeAtX0 "2.3999999999999577"^^xsd:decimal .
339
-
340
- # ----------------------------------------------------------------------
341
- # Proof for derived triple:
342
- # :Interp1 :yAtBracketA "-1"^^xsd:decimal .
343
- # It holds because the following instance of the rule body is provable:
344
- # :Interp1 :points (_:b1 _:b2 _:b3 _:b4 _:b5) .
345
- # :Interp1 :bracketA 0.0 .
346
- # (?term {
347
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pi .
348
- # ?pi :x ?xi .
349
- # ?pi :y ?yi .
350
- # (?f {
351
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pj .
352
- # ?pj :x ?xj .
353
- # ?xj math:notEqualTo ?xi .
354
- # (0.0 ?xj) math:difference ?num .
355
- # (?xi ?xj) math:difference ?den .
356
- # (?num ?den) math:quotient ?f .
357
- # } ?factors) log:collectAllIn ?_b1 .
358
- # ?factors math:product ?basis .
359
- # (?yi ?basis) math:product ?term .
360
- # } ("0"^^xsd:decimal "0"^^xsd:decimal "-1"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b2 .
361
- # ("0"^^xsd:decimal "0"^^xsd:decimal "-1"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal) math:sum "-1"^^xsd:decimal .
362
- # via the schematic forward rule:
363
- # {
364
- # :Interp1 :points ?pts .
365
- # :Interp1 :bracketA ?xa .
366
- # (?term {
367
- # ?pts list:member ?pi .
368
- # ?pi :x ?xi .
369
- # ?pi :y ?yi .
370
- # (?f {
371
- # ?pts list:member ?pj .
372
- # ?pj :x ?xj .
373
- # ?xj math:notEqualTo ?xi .
374
- # (?xa ?xj) math:difference ?num .
375
- # (?xi ?xj) math:difference ?den .
376
- # (?num ?den) math:quotient ?f .
377
- # } ?factors) log:collectAllIn ?_b1 .
378
- # ?factors math:product ?basis .
379
- # (?yi ?basis) math:product ?term .
380
- # } ?terms) log:collectAllIn ?_b2 .
381
- # ?terms math:sum ?ya .
382
- # } => {
383
- # :Interp1 :yAtBracketA ?ya .
384
- # } .
385
- # with substitution (on rule variables):
386
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5)
387
- # ?terms = ("0"^^xsd:decimal "0"^^xsd:decimal "-1"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal)
388
- # ?xa = 0.0
389
- # ?ya = "-1"^^xsd:decimal
390
- # Therefore the derived triple above is entailed by the rules and facts.
391
- # ----------------------------------------------------------------------
392
-
393
10
  :Interp1 :yAtBracketA "-1"^^xsd:decimal .
394
-
395
- # ----------------------------------------------------------------------
396
- # Proof for derived triple:
397
- # :Interp1 :yAtBracketB "1"^^xsd:decimal .
398
- # It holds because the following instance of the rule body is provable:
399
- # :Interp1 :points (_:b1 _:b2 _:b3 _:b4 _:b5) .
400
- # :Interp1 :bracketB 1.0 .
401
- # (?term {
402
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pi .
403
- # ?pi :x ?xi .
404
- # ?pi :y ?yi .
405
- # (?f {
406
- # (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pj .
407
- # ?pj :x ?xj .
408
- # ?xj math:notEqualTo ?xi .
409
- # (1.0 ?xj) math:difference ?num .
410
- # (?xi ?xj) math:difference ?den .
411
- # (?num ?den) math:quotient ?f .
412
- # } ?factors) log:collectAllIn ?_b1 .
413
- # ?factors math:product ?basis .
414
- # (?yi ?basis) math:product ?term .
415
- # } ("0"^^xsd:decimal "1"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b2 .
416
- # ("0"^^xsd:decimal "1"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
417
- # via the schematic forward rule:
418
- # {
419
- # :Interp1 :points ?pts .
420
- # :Interp1 :bracketB ?xb .
421
- # (?term {
422
- # ?pts list:member ?pi .
423
- # ?pi :x ?xi .
424
- # ?pi :y ?yi .
425
- # (?f {
426
- # ?pts list:member ?pj .
427
- # ?pj :x ?xj .
428
- # ?xj math:notEqualTo ?xi .
429
- # (?xb ?xj) math:difference ?num .
430
- # (?xi ?xj) math:difference ?den .
431
- # (?num ?den) math:quotient ?f .
432
- # } ?factors) log:collectAllIn ?_b1 .
433
- # ?factors math:product ?basis .
434
- # (?yi ?basis) math:product ?term .
435
- # } ?terms) log:collectAllIn ?_b2 .
436
- # ?terms math:sum ?yb .
437
- # } => {
438
- # :Interp1 :yAtBracketB ?yb .
439
- # } .
440
- # with substitution (on rule variables):
441
- # ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5)
442
- # ?terms = ("0"^^xsd:decimal "1"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal)
443
- # ?xb = 1.0
444
- # ?yb = "1"^^xsd:decimal
445
- # Therefore the derived triple above is entailed by the rules and facts.
446
- # ----------------------------------------------------------------------
447
-
448
11
  :Interp1 :yAtBracketB "1"^^xsd:decimal .
449
-
450
- # ----------------------------------------------------------------------
451
- # Proof for derived triple:
452
- # _:sk_0 :a 0.0 .
453
- # It holds because the following instance of the rule body is provable:
454
- # :Interp1 :bracketA 0.0 .
455
- # :Interp1 :bracketB 1.0 .
456
- # :Interp1 :yAtBracketA "-1"^^xsd:decimal .
457
- # :Interp1 :yAtBracketB "1"^^xsd:decimal .
458
- # ("-1"^^xsd:decimal "1"^^xsd:decimal) math:product "-1"^^xsd:decimal .
459
- # "-1"^^xsd:decimal math:lessThan 0.0 .
460
- # via the schematic forward rule:
461
- # {
462
- # :Interp1 :bracketA ?xa .
463
- # :Interp1 :bracketB ?xb .
464
- # :Interp1 :yAtBracketA ?ya .
465
- # :Interp1 :yAtBracketB ?yb .
466
- # (?ya ?yb) math:product ?prod .
467
- # ?prod math:lessThan 0.0 .
468
- # } => {
469
- # _:b6 :a ?xa .
470
- # _:b6 :b ?xb .
471
- # _:b6 :ya ?ya .
472
- # _:b6 :yb ?yb .
473
- # :Interp1 :rootBracket _:b6 .
474
- # } .
475
- # with substitution (on rule variables):
476
- # ?prod = "-1"^^xsd:decimal
477
- # ?xa = 0.0
478
- # ?xb = 1.0
479
- # ?ya = "-1"^^xsd:decimal
480
- # ?yb = "1"^^xsd:decimal
481
- # Therefore the derived triple above is entailed by the rules and facts.
482
- # ----------------------------------------------------------------------
483
-
484
12
  _:sk_0 :a 0.0 .
485
-
486
- # ----------------------------------------------------------------------
487
- # Proof for derived triple:
488
- # _:sk_0 :b 1.0 .
489
- # It holds because the following instance of the rule body is provable:
490
- # :Interp1 :bracketA 0.0 .
491
- # :Interp1 :bracketB 1.0 .
492
- # :Interp1 :yAtBracketA "-1"^^xsd:decimal .
493
- # :Interp1 :yAtBracketB "1"^^xsd:decimal .
494
- # ("-1"^^xsd:decimal "1"^^xsd:decimal) math:product "-1"^^xsd:decimal .
495
- # "-1"^^xsd:decimal math:lessThan 0.0 .
496
- # via the schematic forward rule:
497
- # {
498
- # :Interp1 :bracketA ?xa .
499
- # :Interp1 :bracketB ?xb .
500
- # :Interp1 :yAtBracketA ?ya .
501
- # :Interp1 :yAtBracketB ?yb .
502
- # (?ya ?yb) math:product ?prod .
503
- # ?prod math:lessThan 0.0 .
504
- # } => {
505
- # _:b6 :a ?xa .
506
- # _:b6 :b ?xb .
507
- # _:b6 :ya ?ya .
508
- # _:b6 :yb ?yb .
509
- # :Interp1 :rootBracket _:b6 .
510
- # } .
511
- # with substitution (on rule variables):
512
- # ?prod = "-1"^^xsd:decimal
513
- # ?xa = 0.0
514
- # ?xb = 1.0
515
- # ?ya = "-1"^^xsd:decimal
516
- # ?yb = "1"^^xsd:decimal
517
- # Therefore the derived triple above is entailed by the rules and facts.
518
- # ----------------------------------------------------------------------
519
-
520
13
  _:sk_0 :b 1.0 .
521
-
522
- # ----------------------------------------------------------------------
523
- # Proof for derived triple:
524
- # _:sk_0 :ya "-1"^^xsd:decimal .
525
- # It holds because the following instance of the rule body is provable:
526
- # :Interp1 :bracketA 0.0 .
527
- # :Interp1 :bracketB 1.0 .
528
- # :Interp1 :yAtBracketA "-1"^^xsd:decimal .
529
- # :Interp1 :yAtBracketB "1"^^xsd:decimal .
530
- # ("-1"^^xsd:decimal "1"^^xsd:decimal) math:product "-1"^^xsd:decimal .
531
- # "-1"^^xsd:decimal math:lessThan 0.0 .
532
- # via the schematic forward rule:
533
- # {
534
- # :Interp1 :bracketA ?xa .
535
- # :Interp1 :bracketB ?xb .
536
- # :Interp1 :yAtBracketA ?ya .
537
- # :Interp1 :yAtBracketB ?yb .
538
- # (?ya ?yb) math:product ?prod .
539
- # ?prod math:lessThan 0.0 .
540
- # } => {
541
- # _:b6 :a ?xa .
542
- # _:b6 :b ?xb .
543
- # _:b6 :ya ?ya .
544
- # _:b6 :yb ?yb .
545
- # :Interp1 :rootBracket _:b6 .
546
- # } .
547
- # with substitution (on rule variables):
548
- # ?prod = "-1"^^xsd:decimal
549
- # ?xa = 0.0
550
- # ?xb = 1.0
551
- # ?ya = "-1"^^xsd:decimal
552
- # ?yb = "1"^^xsd:decimal
553
- # Therefore the derived triple above is entailed by the rules and facts.
554
- # ----------------------------------------------------------------------
555
-
556
14
  _:sk_0 :ya "-1"^^xsd:decimal .
557
-
558
- # ----------------------------------------------------------------------
559
- # Proof for derived triple:
560
- # _:sk_0 :yb "1"^^xsd:decimal .
561
- # It holds because the following instance of the rule body is provable:
562
- # :Interp1 :bracketA 0.0 .
563
- # :Interp1 :bracketB 1.0 .
564
- # :Interp1 :yAtBracketA "-1"^^xsd:decimal .
565
- # :Interp1 :yAtBracketB "1"^^xsd:decimal .
566
- # ("-1"^^xsd:decimal "1"^^xsd:decimal) math:product "-1"^^xsd:decimal .
567
- # "-1"^^xsd:decimal math:lessThan 0.0 .
568
- # via the schematic forward rule:
569
- # {
570
- # :Interp1 :bracketA ?xa .
571
- # :Interp1 :bracketB ?xb .
572
- # :Interp1 :yAtBracketA ?ya .
573
- # :Interp1 :yAtBracketB ?yb .
574
- # (?ya ?yb) math:product ?prod .
575
- # ?prod math:lessThan 0.0 .
576
- # } => {
577
- # _:b6 :a ?xa .
578
- # _:b6 :b ?xb .
579
- # _:b6 :ya ?ya .
580
- # _:b6 :yb ?yb .
581
- # :Interp1 :rootBracket _:b6 .
582
- # } .
583
- # with substitution (on rule variables):
584
- # ?prod = "-1"^^xsd:decimal
585
- # ?xa = 0.0
586
- # ?xb = 1.0
587
- # ?ya = "-1"^^xsd:decimal
588
- # ?yb = "1"^^xsd:decimal
589
- # Therefore the derived triple above is entailed by the rules and facts.
590
- # ----------------------------------------------------------------------
591
-
592
15
  _:sk_0 :yb "1"^^xsd:decimal .
593
-
594
- # ----------------------------------------------------------------------
595
- # Proof for derived triple:
596
- # :Interp1 :rootBracket _:sk_0 .
597
- # It holds because the following instance of the rule body is provable:
598
- # :Interp1 :bracketA 0.0 .
599
- # :Interp1 :bracketB 1.0 .
600
- # :Interp1 :yAtBracketA "-1"^^xsd:decimal .
601
- # :Interp1 :yAtBracketB "1"^^xsd:decimal .
602
- # ("-1"^^xsd:decimal "1"^^xsd:decimal) math:product "-1"^^xsd:decimal .
603
- # "-1"^^xsd:decimal math:lessThan 0.0 .
604
- # via the schematic forward rule:
605
- # {
606
- # :Interp1 :bracketA ?xa .
607
- # :Interp1 :bracketB ?xb .
608
- # :Interp1 :yAtBracketA ?ya .
609
- # :Interp1 :yAtBracketB ?yb .
610
- # (?ya ?yb) math:product ?prod .
611
- # ?prod math:lessThan 0.0 .
612
- # } => {
613
- # _:b6 :a ?xa .
614
- # _:b6 :b ?xb .
615
- # _:b6 :ya ?ya .
616
- # _:b6 :yb ?yb .
617
- # :Interp1 :rootBracket _:b6 .
618
- # } .
619
- # with substitution (on rule variables):
620
- # ?prod = "-1"^^xsd:decimal
621
- # ?xa = 0.0
622
- # ?xb = 1.0
623
- # ?ya = "-1"^^xsd:decimal
624
- # ?yb = "1"^^xsd:decimal
625
- # Therefore the derived triple above is entailed by the rules and facts.
626
- # ----------------------------------------------------------------------
627
-
628
16
  :Interp1 :rootBracket _:sk_0 .
629
-
@@ -1,29 +1,3 @@
1
1
  @prefix : <https://eyereasoner.github.io/ns#> .
2
2
 
3
- # ----------------------------------------------------------------------
4
- # Proof for derived triple:
5
- # :result :is true .
6
- # It holds because the following instance of the rule body is provable:
7
- # {
8
- # ?A__0 => ?B__1 .
9
- # } => {
10
- # :result :is true .
11
- # } .
12
- # via the schematic forward rule:
13
- # {
14
- # ?A => ?B .
15
- # } => {
16
- # :result :is true .
17
- # } .
18
- # with substitution (on rule variables):
19
- # ?A = {
20
- # ?A__0 => ?B__1 .
21
- # }
22
- # ?B = {
23
- # :result :is true .
24
- # }
25
- # Therefore the derived triple above is entailed by the rules and facts.
26
- # ----------------------------------------------------------------------
27
-
28
3
  :result :is true .
29
-