eyeling 1.6.13 → 1.6.14
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/examples/output/age.n3 +0 -17
- package/examples/output/alignment-demo.n3 +0 -572
- package/examples/output/backward.n3 +0 -15
- package/examples/output/basic-monadic.n3 +0 -105
- package/examples/output/brussels-brew-club.n3 +0 -476
- package/examples/output/cat-koko.n3 +0 -108
- package/examples/output/cobalt-kepler-kitchen.n3 +0 -7064
- package/examples/output/complex.n3 +0 -46
- package/examples/output/control-system.n3 +0 -75
- package/examples/output/cranberry-calculus.n3 +0 -1313
- package/examples/output/crypto-builtins-tests.n3 +0 -60
- package/examples/output/deep-taxonomy-10.n3 +0 -602
- package/examples/output/deep-taxonomy-100.n3 +1 -5733
- package/examples/output/deep-taxonomy-1000.n3 +1 -57033
- package/examples/output/deep-taxonomy-10000.n3 +1 -570033
- package/examples/output/derived-backward-rule-2.n3 +0 -58
- package/examples/output/derived-backward-rule.n3 +0 -44
- package/examples/output/derived-rule.n3 +0 -42
- package/examples/output/dijkstra.n3 +0 -297
- package/examples/output/dog.n3 +0 -30
- package/examples/output/drone-corridor-planner.n3 +0 -799
- package/examples/output/easter.n3 +0 -3570
- package/examples/output/equals.n3 +0 -15
- package/examples/output/ev-roundtrip-planner.n3 +0 -392
- package/examples/output/existential-rule.n3 +0 -34
- package/examples/output/expression-eval.n3 +0 -20
- package/examples/output/family-cousins.n3 +0 -636
- package/examples/output/fibonacci.n3 +0 -36
- package/examples/output/french-cities.n3 +0 -484
- package/examples/output/good-cobbler.n3 +0 -22
- package/examples/output/gps.n3 +0 -62
- package/examples/output/gray-code-counter.n3 +0 -17
- package/examples/output/hanoi.n3 +0 -17
- package/examples/output/jade-eigen-loom.n3 +0 -4690
- package/examples/output/json-pointer.n3 +0 -529
- package/examples/output/json-reconcile-vat.n3 +0 -12882
- package/examples/output/light-eaters.n3 +0 -311
- package/examples/output/list-builtins-tests.n3 +0 -167
- package/examples/output/list-iterate.n3 +0 -124
- package/examples/output/lldm.n3 +0 -960
- package/examples/output/log-collect-all-in.n3 +0 -117
- package/examples/output/log-for-all-in.n3 +0 -27
- package/examples/output/log-not-includes.n3 +0 -59
- package/examples/output/log-skolem.n3 +0 -17
- package/examples/output/log-uri.n3 +0 -42
- package/examples/output/math-builtins-tests.n3 +0 -4434
- package/examples/output/minimal-skos-alignment.n3 +0 -39
- package/examples/output/monkey.n3 +0 -36
- package/examples/output/odrl-trust.n3 +0 -46
- package/examples/output/oslo-steps-library-scholarly.n3 +0 -1260
- package/examples/output/oslo-steps-workflow-composition.n3 +0 -180
- package/examples/output/peano.n3 +0 -23
- package/examples/output/pi.n3 +0 -17
- package/examples/output/pillar.n3 +0 -32
- package/examples/output/polygon.n3 +0 -17
- package/examples/output/rdf-list.n3 +0 -28
- package/examples/output/reordering.n3 +0 -26
- package/examples/output/ruby-runge-workshop.n3 +0 -613
- package/examples/output/rule-matching.n3 +0 -26
- package/examples/output/saffron-slopeworks.n3 +0 -1447
- package/examples/output/self-referential.n3 +0 -81
- package/examples/output/similar.n3 +0 -15
- package/examples/output/snaf.n3 +0 -23
- package/examples/output/socrates.n3 +0 -21
- package/examples/output/spectral-week.n3 +0 -350
- package/examples/output/string-builtins-tests.n3 +0 -240
- package/examples/output/topaz-markov-mill.n3 +0 -4178
- package/examples/output/traffic-skos-aggregate.n3 +0 -3151
- package/examples/output/turing.n3 +0 -36
- package/examples/output/ultramarine-simpson-forge.n3 +0 -3873
- package/examples/output/witch.n3 +0 -107
- package/examples/output/zebra.n3 +0 -111
- package/eyeling.js +97 -18
- package/package.json +1 -1
- package/test/examples.test.js +1 -1
|
@@ -1,629 +1,16 @@
|
|
|
1
1
|
@prefix : <http://example.org/ruby-runge#> .
|
|
2
2
|
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
|
|
3
3
|
|
|
4
|
-
# ----------------------------------------------------------------------
|
|
5
|
-
# Proof for derived triple:
|
|
6
|
-
# :Interp1 :yAtX0 "-0.27999999999999986"^^xsd:decimal .
|
|
7
|
-
# It holds because the following instance of the rule body is provable:
|
|
8
|
-
# :Interp1 :points (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
9
|
-
# :Interp1 :x0 0.6 .
|
|
10
|
-
# (?term {
|
|
11
|
-
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pi .
|
|
12
|
-
# ?pi :x ?xi .
|
|
13
|
-
# ?pi :y ?yi .
|
|
14
|
-
# (?f {
|
|
15
|
-
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pj .
|
|
16
|
-
# ?pj :x ?xj .
|
|
17
|
-
# ?xj math:notEqualTo ?xi .
|
|
18
|
-
# (0.6 ?xj) math:difference ?num .
|
|
19
|
-
# (?xi ?xj) math:difference ?den .
|
|
20
|
-
# (?num ?den) math:quotient ?f .
|
|
21
|
-
# } ?factors) log:collectAllIn ?_b1 .
|
|
22
|
-
# ?factors math:product ?basis .
|
|
23
|
-
# (?yi ?basis) math:product ?term .
|
|
24
|
-
# } ("-0.2912"^^xsd:decimal "0.5824"^^xsd:decimal "-0.5823999999999999"^^xsd:decimal "-0.14559999999999998"^^xsd:decimal "0.1568"^^xsd:decimal)) log:collectAllIn ?_b2 .
|
|
25
|
-
# ("-0.2912"^^xsd:decimal "0.5824"^^xsd:decimal "-0.5823999999999999"^^xsd:decimal "-0.14559999999999998"^^xsd:decimal "0.1568"^^xsd:decimal) math:sum "-0.27999999999999986"^^xsd:decimal .
|
|
26
|
-
# via the schematic forward rule:
|
|
27
|
-
# {
|
|
28
|
-
# :Interp1 :points ?pts .
|
|
29
|
-
# :Interp1 :x0 ?x0 .
|
|
30
|
-
# (?term {
|
|
31
|
-
# ?pts list:member ?pi .
|
|
32
|
-
# ?pi :x ?xi .
|
|
33
|
-
# ?pi :y ?yi .
|
|
34
|
-
# (?f {
|
|
35
|
-
# ?pts list:member ?pj .
|
|
36
|
-
# ?pj :x ?xj .
|
|
37
|
-
# ?xj math:notEqualTo ?xi .
|
|
38
|
-
# (?x0 ?xj) math:difference ?num .
|
|
39
|
-
# (?xi ?xj) math:difference ?den .
|
|
40
|
-
# (?num ?den) math:quotient ?f .
|
|
41
|
-
# } ?factors) log:collectAllIn ?_b1 .
|
|
42
|
-
# ?factors math:product ?basis .
|
|
43
|
-
# (?yi ?basis) math:product ?term .
|
|
44
|
-
# } ?terms) log:collectAllIn ?_b2 .
|
|
45
|
-
# ?terms math:sum ?y0 .
|
|
46
|
-
# } => {
|
|
47
|
-
# :Interp1 :yAtX0 ?y0 .
|
|
48
|
-
# } .
|
|
49
|
-
# with substitution (on rule variables):
|
|
50
|
-
# ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
51
|
-
# ?terms = ("-0.2912"^^xsd:decimal "0.5824"^^xsd:decimal "-0.5823999999999999"^^xsd:decimal "-0.14559999999999998"^^xsd:decimal "0.1568"^^xsd:decimal)
|
|
52
|
-
# ?x0 = 0.6
|
|
53
|
-
# ?y0 = "-0.27999999999999986"^^xsd:decimal
|
|
54
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
55
|
-
# ----------------------------------------------------------------------
|
|
56
|
-
|
|
57
4
|
:Interp1 :yAtX0 "-0.27999999999999986"^^xsd:decimal .
|
|
58
|
-
|
|
59
|
-
# ----------------------------------------------------------------------
|
|
60
|
-
# Proof for derived triple:
|
|
61
|
-
# :Interp1 :yAtXPlus "-0.2775980000000001"^^xsd:decimal .
|
|
62
|
-
# It holds because the following instance of the rule body is provable:
|
|
63
|
-
# :Interp1 :points (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
64
|
-
# :Interp1 :x0 0.6 .
|
|
65
|
-
# :Interp1 :h 0.001 .
|
|
66
|
-
# (0.6 0.001) math:sum "0.601"^^xsd:decimal .
|
|
67
|
-
# (?term {
|
|
68
|
-
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pi .
|
|
69
|
-
# ?pi :x ?xi .
|
|
70
|
-
# ?pi :y ?yi .
|
|
71
|
-
# (?f {
|
|
72
|
-
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pj .
|
|
73
|
-
# ?pj :x ?xj .
|
|
74
|
-
# ?xj math:notEqualTo ?xi .
|
|
75
|
-
# ("0.601"^^xsd:decimal ?xj) math:difference ?num .
|
|
76
|
-
# (?xi ?xj) math:difference ?den .
|
|
77
|
-
# (?num ?den) math:quotient ?f .
|
|
78
|
-
# } ?factors) log:collectAllIn ?_b1 .
|
|
79
|
-
# ?factors math:product ?basis .
|
|
80
|
-
# (?yi ?basis) math:product ?term .
|
|
81
|
-
# } ("-0.291249943716375"^^xsd:decimal "0.5835426727665"^^xsd:decimal "-0.58111529060025"^^xsd:decimal "-0.1454300602335"^^xsd:decimal "0.15665462178362502"^^xsd:decimal)) log:collectAllIn ?_b2 .
|
|
82
|
-
# ("-0.291249943716375"^^xsd:decimal "0.5835426727665"^^xsd:decimal "-0.58111529060025"^^xsd:decimal "-0.1454300602335"^^xsd:decimal "0.15665462178362502"^^xsd:decimal) math:sum "-0.2775980000000001"^^xsd:decimal .
|
|
83
|
-
# via the schematic forward rule:
|
|
84
|
-
# {
|
|
85
|
-
# :Interp1 :points ?pts .
|
|
86
|
-
# :Interp1 :x0 ?x0 .
|
|
87
|
-
# :Interp1 :h ?h .
|
|
88
|
-
# (?x0 ?h) math:sum ?xPlus .
|
|
89
|
-
# (?term {
|
|
90
|
-
# ?pts list:member ?pi .
|
|
91
|
-
# ?pi :x ?xi .
|
|
92
|
-
# ?pi :y ?yi .
|
|
93
|
-
# (?f {
|
|
94
|
-
# ?pts list:member ?pj .
|
|
95
|
-
# ?pj :x ?xj .
|
|
96
|
-
# ?xj math:notEqualTo ?xi .
|
|
97
|
-
# (?xPlus ?xj) math:difference ?num .
|
|
98
|
-
# (?xi ?xj) math:difference ?den .
|
|
99
|
-
# (?num ?den) math:quotient ?f .
|
|
100
|
-
# } ?factors) log:collectAllIn ?_b1 .
|
|
101
|
-
# ?factors math:product ?basis .
|
|
102
|
-
# (?yi ?basis) math:product ?term .
|
|
103
|
-
# } ?terms) log:collectAllIn ?_b2 .
|
|
104
|
-
# ?terms math:sum ?yPlus .
|
|
105
|
-
# } => {
|
|
106
|
-
# :Interp1 :yAtXPlus ?yPlus .
|
|
107
|
-
# :Interp1 :xPlus ?xPlus .
|
|
108
|
-
# } .
|
|
109
|
-
# with substitution (on rule variables):
|
|
110
|
-
# ?h = 0.001
|
|
111
|
-
# ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
112
|
-
# ?terms = ("-0.291249943716375"^^xsd:decimal "0.5835426727665"^^xsd:decimal "-0.58111529060025"^^xsd:decimal "-0.1454300602335"^^xsd:decimal "0.15665462178362502"^^xsd:decimal)
|
|
113
|
-
# ?x0 = 0.6
|
|
114
|
-
# ?xPlus = "0.601"^^xsd:decimal
|
|
115
|
-
# ?yPlus = "-0.2775980000000001"^^xsd:decimal
|
|
116
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
117
|
-
# ----------------------------------------------------------------------
|
|
118
|
-
|
|
119
5
|
:Interp1 :yAtXPlus "-0.2775980000000001"^^xsd:decimal .
|
|
120
|
-
|
|
121
|
-
# ----------------------------------------------------------------------
|
|
122
|
-
# Proof for derived triple:
|
|
123
|
-
# :Interp1 :xPlus "0.601"^^xsd:decimal .
|
|
124
|
-
# It holds because the following instance of the rule body is provable:
|
|
125
|
-
# :Interp1 :points (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
126
|
-
# :Interp1 :x0 0.6 .
|
|
127
|
-
# :Interp1 :h 0.001 .
|
|
128
|
-
# (0.6 0.001) math:sum "0.601"^^xsd:decimal .
|
|
129
|
-
# (?term {
|
|
130
|
-
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pi .
|
|
131
|
-
# ?pi :x ?xi .
|
|
132
|
-
# ?pi :y ?yi .
|
|
133
|
-
# (?f {
|
|
134
|
-
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pj .
|
|
135
|
-
# ?pj :x ?xj .
|
|
136
|
-
# ?xj math:notEqualTo ?xi .
|
|
137
|
-
# ("0.601"^^xsd:decimal ?xj) math:difference ?num .
|
|
138
|
-
# (?xi ?xj) math:difference ?den .
|
|
139
|
-
# (?num ?den) math:quotient ?f .
|
|
140
|
-
# } ?factors) log:collectAllIn ?_b1 .
|
|
141
|
-
# ?factors math:product ?basis .
|
|
142
|
-
# (?yi ?basis) math:product ?term .
|
|
143
|
-
# } ("-0.291249943716375"^^xsd:decimal "0.5835426727665"^^xsd:decimal "-0.58111529060025"^^xsd:decimal "-0.1454300602335"^^xsd:decimal "0.15665462178362502"^^xsd:decimal)) log:collectAllIn ?_b2 .
|
|
144
|
-
# ("-0.291249943716375"^^xsd:decimal "0.5835426727665"^^xsd:decimal "-0.58111529060025"^^xsd:decimal "-0.1454300602335"^^xsd:decimal "0.15665462178362502"^^xsd:decimal) math:sum "-0.2775980000000001"^^xsd:decimal .
|
|
145
|
-
# via the schematic forward rule:
|
|
146
|
-
# {
|
|
147
|
-
# :Interp1 :points ?pts .
|
|
148
|
-
# :Interp1 :x0 ?x0 .
|
|
149
|
-
# :Interp1 :h ?h .
|
|
150
|
-
# (?x0 ?h) math:sum ?xPlus .
|
|
151
|
-
# (?term {
|
|
152
|
-
# ?pts list:member ?pi .
|
|
153
|
-
# ?pi :x ?xi .
|
|
154
|
-
# ?pi :y ?yi .
|
|
155
|
-
# (?f {
|
|
156
|
-
# ?pts list:member ?pj .
|
|
157
|
-
# ?pj :x ?xj .
|
|
158
|
-
# ?xj math:notEqualTo ?xi .
|
|
159
|
-
# (?xPlus ?xj) math:difference ?num .
|
|
160
|
-
# (?xi ?xj) math:difference ?den .
|
|
161
|
-
# (?num ?den) math:quotient ?f .
|
|
162
|
-
# } ?factors) log:collectAllIn ?_b1 .
|
|
163
|
-
# ?factors math:product ?basis .
|
|
164
|
-
# (?yi ?basis) math:product ?term .
|
|
165
|
-
# } ?terms) log:collectAllIn ?_b2 .
|
|
166
|
-
# ?terms math:sum ?yPlus .
|
|
167
|
-
# } => {
|
|
168
|
-
# :Interp1 :yAtXPlus ?yPlus .
|
|
169
|
-
# :Interp1 :xPlus ?xPlus .
|
|
170
|
-
# } .
|
|
171
|
-
# with substitution (on rule variables):
|
|
172
|
-
# ?h = 0.001
|
|
173
|
-
# ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
174
|
-
# ?terms = ("-0.291249943716375"^^xsd:decimal "0.5835426727665"^^xsd:decimal "-0.58111529060025"^^xsd:decimal "-0.1454300602335"^^xsd:decimal "0.15665462178362502"^^xsd:decimal)
|
|
175
|
-
# ?x0 = 0.6
|
|
176
|
-
# ?xPlus = "0.601"^^xsd:decimal
|
|
177
|
-
# ?yPlus = "-0.2775980000000001"^^xsd:decimal
|
|
178
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
179
|
-
# ----------------------------------------------------------------------
|
|
180
|
-
|
|
181
6
|
:Interp1 :xPlus "0.601"^^xsd:decimal .
|
|
182
|
-
|
|
183
|
-
# ----------------------------------------------------------------------
|
|
184
|
-
# Proof for derived triple:
|
|
185
|
-
# :Interp1 :yAtXMinus "-0.28239800000000004"^^xsd:decimal .
|
|
186
|
-
# It holds because the following instance of the rule body is provable:
|
|
187
|
-
# :Interp1 :points (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
188
|
-
# :Interp1 :x0 0.6 .
|
|
189
|
-
# :Interp1 :h 0.001 .
|
|
190
|
-
# (0.6 0.001) math:difference "0.599"^^xsd:decimal .
|
|
191
|
-
# (?term {
|
|
192
|
-
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pi .
|
|
193
|
-
# ?pi :x ?xi .
|
|
194
|
-
# ?pi :y ?yi .
|
|
195
|
-
# (?f {
|
|
196
|
-
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pj .
|
|
197
|
-
# ?pj :x ?xj .
|
|
198
|
-
# ?xj math:notEqualTo ?xi .
|
|
199
|
-
# ("0.599"^^xsd:decimal ?xj) math:difference ?num .
|
|
200
|
-
# (?xi ?xj) math:difference ?den .
|
|
201
|
-
# (?num ?den) math:quotient ?f .
|
|
202
|
-
# } ?factors) log:collectAllIn ?_b1 .
|
|
203
|
-
# ?factors math:product ?basis .
|
|
204
|
-
# (?yi ?basis) math:product ?term .
|
|
205
|
-
# } ("-0.291147279616375"^^xsd:decimal "0.5812573405665"^^xsd:decimal "-0.58368328940025"^^xsd:decimal "-0.1457687264335"^^xsd:decimal "0.156943954883625"^^xsd:decimal)) log:collectAllIn ?_b2 .
|
|
206
|
-
# ("-0.291147279616375"^^xsd:decimal "0.5812573405665"^^xsd:decimal "-0.58368328940025"^^xsd:decimal "-0.1457687264335"^^xsd:decimal "0.156943954883625"^^xsd:decimal) math:sum "-0.28239800000000004"^^xsd:decimal .
|
|
207
|
-
# via the schematic forward rule:
|
|
208
|
-
# {
|
|
209
|
-
# :Interp1 :points ?pts .
|
|
210
|
-
# :Interp1 :x0 ?x0 .
|
|
211
|
-
# :Interp1 :h ?h .
|
|
212
|
-
# (?x0 ?h) math:difference ?xMinus .
|
|
213
|
-
# (?term {
|
|
214
|
-
# ?pts list:member ?pi .
|
|
215
|
-
# ?pi :x ?xi .
|
|
216
|
-
# ?pi :y ?yi .
|
|
217
|
-
# (?f {
|
|
218
|
-
# ?pts list:member ?pj .
|
|
219
|
-
# ?pj :x ?xj .
|
|
220
|
-
# ?xj math:notEqualTo ?xi .
|
|
221
|
-
# (?xMinus ?xj) math:difference ?num .
|
|
222
|
-
# (?xi ?xj) math:difference ?den .
|
|
223
|
-
# (?num ?den) math:quotient ?f .
|
|
224
|
-
# } ?factors) log:collectAllIn ?_b1 .
|
|
225
|
-
# ?factors math:product ?basis .
|
|
226
|
-
# (?yi ?basis) math:product ?term .
|
|
227
|
-
# } ?terms) log:collectAllIn ?_b2 .
|
|
228
|
-
# ?terms math:sum ?yMinus .
|
|
229
|
-
# } => {
|
|
230
|
-
# :Interp1 :yAtXMinus ?yMinus .
|
|
231
|
-
# :Interp1 :xMinus ?xMinus .
|
|
232
|
-
# } .
|
|
233
|
-
# with substitution (on rule variables):
|
|
234
|
-
# ?h = 0.001
|
|
235
|
-
# ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
236
|
-
# ?terms = ("-0.291147279616375"^^xsd:decimal "0.5812573405665"^^xsd:decimal "-0.58368328940025"^^xsd:decimal "-0.1457687264335"^^xsd:decimal "0.156943954883625"^^xsd:decimal)
|
|
237
|
-
# ?x0 = 0.6
|
|
238
|
-
# ?xMinus = "0.599"^^xsd:decimal
|
|
239
|
-
# ?yMinus = "-0.28239800000000004"^^xsd:decimal
|
|
240
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
241
|
-
# ----------------------------------------------------------------------
|
|
242
|
-
|
|
243
7
|
:Interp1 :yAtXMinus "-0.28239800000000004"^^xsd:decimal .
|
|
244
|
-
|
|
245
|
-
# ----------------------------------------------------------------------
|
|
246
|
-
# Proof for derived triple:
|
|
247
|
-
# :Interp1 :xMinus "0.599"^^xsd:decimal .
|
|
248
|
-
# It holds because the following instance of the rule body is provable:
|
|
249
|
-
# :Interp1 :points (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
250
|
-
# :Interp1 :x0 0.6 .
|
|
251
|
-
# :Interp1 :h 0.001 .
|
|
252
|
-
# (0.6 0.001) math:difference "0.599"^^xsd:decimal .
|
|
253
|
-
# (?term {
|
|
254
|
-
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pi .
|
|
255
|
-
# ?pi :x ?xi .
|
|
256
|
-
# ?pi :y ?yi .
|
|
257
|
-
# (?f {
|
|
258
|
-
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pj .
|
|
259
|
-
# ?pj :x ?xj .
|
|
260
|
-
# ?xj math:notEqualTo ?xi .
|
|
261
|
-
# ("0.599"^^xsd:decimal ?xj) math:difference ?num .
|
|
262
|
-
# (?xi ?xj) math:difference ?den .
|
|
263
|
-
# (?num ?den) math:quotient ?f .
|
|
264
|
-
# } ?factors) log:collectAllIn ?_b1 .
|
|
265
|
-
# ?factors math:product ?basis .
|
|
266
|
-
# (?yi ?basis) math:product ?term .
|
|
267
|
-
# } ("-0.291147279616375"^^xsd:decimal "0.5812573405665"^^xsd:decimal "-0.58368328940025"^^xsd:decimal "-0.1457687264335"^^xsd:decimal "0.156943954883625"^^xsd:decimal)) log:collectAllIn ?_b2 .
|
|
268
|
-
# ("-0.291147279616375"^^xsd:decimal "0.5812573405665"^^xsd:decimal "-0.58368328940025"^^xsd:decimal "-0.1457687264335"^^xsd:decimal "0.156943954883625"^^xsd:decimal) math:sum "-0.28239800000000004"^^xsd:decimal .
|
|
269
|
-
# via the schematic forward rule:
|
|
270
|
-
# {
|
|
271
|
-
# :Interp1 :points ?pts .
|
|
272
|
-
# :Interp1 :x0 ?x0 .
|
|
273
|
-
# :Interp1 :h ?h .
|
|
274
|
-
# (?x0 ?h) math:difference ?xMinus .
|
|
275
|
-
# (?term {
|
|
276
|
-
# ?pts list:member ?pi .
|
|
277
|
-
# ?pi :x ?xi .
|
|
278
|
-
# ?pi :y ?yi .
|
|
279
|
-
# (?f {
|
|
280
|
-
# ?pts list:member ?pj .
|
|
281
|
-
# ?pj :x ?xj .
|
|
282
|
-
# ?xj math:notEqualTo ?xi .
|
|
283
|
-
# (?xMinus ?xj) math:difference ?num .
|
|
284
|
-
# (?xi ?xj) math:difference ?den .
|
|
285
|
-
# (?num ?den) math:quotient ?f .
|
|
286
|
-
# } ?factors) log:collectAllIn ?_b1 .
|
|
287
|
-
# ?factors math:product ?basis .
|
|
288
|
-
# (?yi ?basis) math:product ?term .
|
|
289
|
-
# } ?terms) log:collectAllIn ?_b2 .
|
|
290
|
-
# ?terms math:sum ?yMinus .
|
|
291
|
-
# } => {
|
|
292
|
-
# :Interp1 :yAtXMinus ?yMinus .
|
|
293
|
-
# :Interp1 :xMinus ?xMinus .
|
|
294
|
-
# } .
|
|
295
|
-
# with substitution (on rule variables):
|
|
296
|
-
# ?h = 0.001
|
|
297
|
-
# ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
298
|
-
# ?terms = ("-0.291147279616375"^^xsd:decimal "0.5812573405665"^^xsd:decimal "-0.58368328940025"^^xsd:decimal "-0.1457687264335"^^xsd:decimal "0.156943954883625"^^xsd:decimal)
|
|
299
|
-
# ?x0 = 0.6
|
|
300
|
-
# ?xMinus = "0.599"^^xsd:decimal
|
|
301
|
-
# ?yMinus = "-0.28239800000000004"^^xsd:decimal
|
|
302
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
303
|
-
# ----------------------------------------------------------------------
|
|
304
|
-
|
|
305
8
|
:Interp1 :xMinus "0.599"^^xsd:decimal .
|
|
306
|
-
|
|
307
|
-
# ----------------------------------------------------------------------
|
|
308
|
-
# Proof for derived triple:
|
|
309
|
-
# :Interp1 :derivativeAtX0 "2.3999999999999577"^^xsd:decimal .
|
|
310
|
-
# It holds because the following instance of the rule body is provable:
|
|
311
|
-
# :Interp1 :yAtXPlus "-0.2775980000000001"^^xsd:decimal .
|
|
312
|
-
# :Interp1 :yAtXMinus "-0.28239800000000004"^^xsd:decimal .
|
|
313
|
-
# :Interp1 :h 0.001 .
|
|
314
|
-
# ("-0.2775980000000001"^^xsd:decimal "-0.28239800000000004"^^xsd:decimal) math:difference "0.0047999999999999154"^^xsd:decimal .
|
|
315
|
-
# (2.0 0.001) math:product "0.002"^^xsd:decimal .
|
|
316
|
-
# ("0.0047999999999999154"^^xsd:decimal "0.002"^^xsd:decimal) math:quotient "2.3999999999999577"^^xsd:decimal .
|
|
317
|
-
# via the schematic forward rule:
|
|
318
|
-
# {
|
|
319
|
-
# :Interp1 :yAtXPlus ?yP .
|
|
320
|
-
# :Interp1 :yAtXMinus ?yM .
|
|
321
|
-
# :Interp1 :h ?h .
|
|
322
|
-
# (?yP ?yM) math:difference ?dy .
|
|
323
|
-
# (2.0 ?h) math:product ?twoH .
|
|
324
|
-
# (?dy ?twoH) math:quotient ?dydx .
|
|
325
|
-
# } => {
|
|
326
|
-
# :Interp1 :derivativeAtX0 ?dydx .
|
|
327
|
-
# } .
|
|
328
|
-
# with substitution (on rule variables):
|
|
329
|
-
# ?dy = "0.0047999999999999154"^^xsd:decimal
|
|
330
|
-
# ?dydx = "2.3999999999999577"^^xsd:decimal
|
|
331
|
-
# ?h = 0.001
|
|
332
|
-
# ?twoH = "0.002"^^xsd:decimal
|
|
333
|
-
# ?yM = "-0.28239800000000004"^^xsd:decimal
|
|
334
|
-
# ?yP = "-0.2775980000000001"^^xsd:decimal
|
|
335
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
336
|
-
# ----------------------------------------------------------------------
|
|
337
|
-
|
|
338
9
|
:Interp1 :derivativeAtX0 "2.3999999999999577"^^xsd:decimal .
|
|
339
|
-
|
|
340
|
-
# ----------------------------------------------------------------------
|
|
341
|
-
# Proof for derived triple:
|
|
342
|
-
# :Interp1 :yAtBracketA "-1"^^xsd:decimal .
|
|
343
|
-
# It holds because the following instance of the rule body is provable:
|
|
344
|
-
# :Interp1 :points (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
345
|
-
# :Interp1 :bracketA 0.0 .
|
|
346
|
-
# (?term {
|
|
347
|
-
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pi .
|
|
348
|
-
# ?pi :x ?xi .
|
|
349
|
-
# ?pi :y ?yi .
|
|
350
|
-
# (?f {
|
|
351
|
-
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pj .
|
|
352
|
-
# ?pj :x ?xj .
|
|
353
|
-
# ?xj math:notEqualTo ?xi .
|
|
354
|
-
# (0.0 ?xj) math:difference ?num .
|
|
355
|
-
# (?xi ?xj) math:difference ?den .
|
|
356
|
-
# (?num ?den) math:quotient ?f .
|
|
357
|
-
# } ?factors) log:collectAllIn ?_b1 .
|
|
358
|
-
# ?factors math:product ?basis .
|
|
359
|
-
# (?yi ?basis) math:product ?term .
|
|
360
|
-
# } ("0"^^xsd:decimal "0"^^xsd:decimal "-1"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b2 .
|
|
361
|
-
# ("0"^^xsd:decimal "0"^^xsd:decimal "-1"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal) math:sum "-1"^^xsd:decimal .
|
|
362
|
-
# via the schematic forward rule:
|
|
363
|
-
# {
|
|
364
|
-
# :Interp1 :points ?pts .
|
|
365
|
-
# :Interp1 :bracketA ?xa .
|
|
366
|
-
# (?term {
|
|
367
|
-
# ?pts list:member ?pi .
|
|
368
|
-
# ?pi :x ?xi .
|
|
369
|
-
# ?pi :y ?yi .
|
|
370
|
-
# (?f {
|
|
371
|
-
# ?pts list:member ?pj .
|
|
372
|
-
# ?pj :x ?xj .
|
|
373
|
-
# ?xj math:notEqualTo ?xi .
|
|
374
|
-
# (?xa ?xj) math:difference ?num .
|
|
375
|
-
# (?xi ?xj) math:difference ?den .
|
|
376
|
-
# (?num ?den) math:quotient ?f .
|
|
377
|
-
# } ?factors) log:collectAllIn ?_b1 .
|
|
378
|
-
# ?factors math:product ?basis .
|
|
379
|
-
# (?yi ?basis) math:product ?term .
|
|
380
|
-
# } ?terms) log:collectAllIn ?_b2 .
|
|
381
|
-
# ?terms math:sum ?ya .
|
|
382
|
-
# } => {
|
|
383
|
-
# :Interp1 :yAtBracketA ?ya .
|
|
384
|
-
# } .
|
|
385
|
-
# with substitution (on rule variables):
|
|
386
|
-
# ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
387
|
-
# ?terms = ("0"^^xsd:decimal "0"^^xsd:decimal "-1"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal)
|
|
388
|
-
# ?xa = 0.0
|
|
389
|
-
# ?ya = "-1"^^xsd:decimal
|
|
390
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
391
|
-
# ----------------------------------------------------------------------
|
|
392
|
-
|
|
393
10
|
:Interp1 :yAtBracketA "-1"^^xsd:decimal .
|
|
394
|
-
|
|
395
|
-
# ----------------------------------------------------------------------
|
|
396
|
-
# Proof for derived triple:
|
|
397
|
-
# :Interp1 :yAtBracketB "1"^^xsd:decimal .
|
|
398
|
-
# It holds because the following instance of the rule body is provable:
|
|
399
|
-
# :Interp1 :points (_:b1 _:b2 _:b3 _:b4 _:b5) .
|
|
400
|
-
# :Interp1 :bracketB 1.0 .
|
|
401
|
-
# (?term {
|
|
402
|
-
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pi .
|
|
403
|
-
# ?pi :x ?xi .
|
|
404
|
-
# ?pi :y ?yi .
|
|
405
|
-
# (?f {
|
|
406
|
-
# (_:b1 _:b2 _:b3 _:b4 _:b5) list:member ?pj .
|
|
407
|
-
# ?pj :x ?xj .
|
|
408
|
-
# ?xj math:notEqualTo ?xi .
|
|
409
|
-
# (1.0 ?xj) math:difference ?num .
|
|
410
|
-
# (?xi ?xj) math:difference ?den .
|
|
411
|
-
# (?num ?den) math:quotient ?f .
|
|
412
|
-
# } ?factors) log:collectAllIn ?_b1 .
|
|
413
|
-
# ?factors math:product ?basis .
|
|
414
|
-
# (?yi ?basis) math:product ?term .
|
|
415
|
-
# } ("0"^^xsd:decimal "1"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal)) log:collectAllIn ?_b2 .
|
|
416
|
-
# ("0"^^xsd:decimal "1"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal) math:sum "1"^^xsd:decimal .
|
|
417
|
-
# via the schematic forward rule:
|
|
418
|
-
# {
|
|
419
|
-
# :Interp1 :points ?pts .
|
|
420
|
-
# :Interp1 :bracketB ?xb .
|
|
421
|
-
# (?term {
|
|
422
|
-
# ?pts list:member ?pi .
|
|
423
|
-
# ?pi :x ?xi .
|
|
424
|
-
# ?pi :y ?yi .
|
|
425
|
-
# (?f {
|
|
426
|
-
# ?pts list:member ?pj .
|
|
427
|
-
# ?pj :x ?xj .
|
|
428
|
-
# ?xj math:notEqualTo ?xi .
|
|
429
|
-
# (?xb ?xj) math:difference ?num .
|
|
430
|
-
# (?xi ?xj) math:difference ?den .
|
|
431
|
-
# (?num ?den) math:quotient ?f .
|
|
432
|
-
# } ?factors) log:collectAllIn ?_b1 .
|
|
433
|
-
# ?factors math:product ?basis .
|
|
434
|
-
# (?yi ?basis) math:product ?term .
|
|
435
|
-
# } ?terms) log:collectAllIn ?_b2 .
|
|
436
|
-
# ?terms math:sum ?yb .
|
|
437
|
-
# } => {
|
|
438
|
-
# :Interp1 :yAtBracketB ?yb .
|
|
439
|
-
# } .
|
|
440
|
-
# with substitution (on rule variables):
|
|
441
|
-
# ?pts = (_:b1 _:b2 _:b3 _:b4 _:b5)
|
|
442
|
-
# ?terms = ("0"^^xsd:decimal "1"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal "0"^^xsd:decimal)
|
|
443
|
-
# ?xb = 1.0
|
|
444
|
-
# ?yb = "1"^^xsd:decimal
|
|
445
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
446
|
-
# ----------------------------------------------------------------------
|
|
447
|
-
|
|
448
11
|
:Interp1 :yAtBracketB "1"^^xsd:decimal .
|
|
449
|
-
|
|
450
|
-
# ----------------------------------------------------------------------
|
|
451
|
-
# Proof for derived triple:
|
|
452
|
-
# _:sk_0 :a 0.0 .
|
|
453
|
-
# It holds because the following instance of the rule body is provable:
|
|
454
|
-
# :Interp1 :bracketA 0.0 .
|
|
455
|
-
# :Interp1 :bracketB 1.0 .
|
|
456
|
-
# :Interp1 :yAtBracketA "-1"^^xsd:decimal .
|
|
457
|
-
# :Interp1 :yAtBracketB "1"^^xsd:decimal .
|
|
458
|
-
# ("-1"^^xsd:decimal "1"^^xsd:decimal) math:product "-1"^^xsd:decimal .
|
|
459
|
-
# "-1"^^xsd:decimal math:lessThan 0.0 .
|
|
460
|
-
# via the schematic forward rule:
|
|
461
|
-
# {
|
|
462
|
-
# :Interp1 :bracketA ?xa .
|
|
463
|
-
# :Interp1 :bracketB ?xb .
|
|
464
|
-
# :Interp1 :yAtBracketA ?ya .
|
|
465
|
-
# :Interp1 :yAtBracketB ?yb .
|
|
466
|
-
# (?ya ?yb) math:product ?prod .
|
|
467
|
-
# ?prod math:lessThan 0.0 .
|
|
468
|
-
# } => {
|
|
469
|
-
# _:b6 :a ?xa .
|
|
470
|
-
# _:b6 :b ?xb .
|
|
471
|
-
# _:b6 :ya ?ya .
|
|
472
|
-
# _:b6 :yb ?yb .
|
|
473
|
-
# :Interp1 :rootBracket _:b6 .
|
|
474
|
-
# } .
|
|
475
|
-
# with substitution (on rule variables):
|
|
476
|
-
# ?prod = "-1"^^xsd:decimal
|
|
477
|
-
# ?xa = 0.0
|
|
478
|
-
# ?xb = 1.0
|
|
479
|
-
# ?ya = "-1"^^xsd:decimal
|
|
480
|
-
# ?yb = "1"^^xsd:decimal
|
|
481
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
482
|
-
# ----------------------------------------------------------------------
|
|
483
|
-
|
|
484
12
|
_:sk_0 :a 0.0 .
|
|
485
|
-
|
|
486
|
-
# ----------------------------------------------------------------------
|
|
487
|
-
# Proof for derived triple:
|
|
488
|
-
# _:sk_0 :b 1.0 .
|
|
489
|
-
# It holds because the following instance of the rule body is provable:
|
|
490
|
-
# :Interp1 :bracketA 0.0 .
|
|
491
|
-
# :Interp1 :bracketB 1.0 .
|
|
492
|
-
# :Interp1 :yAtBracketA "-1"^^xsd:decimal .
|
|
493
|
-
# :Interp1 :yAtBracketB "1"^^xsd:decimal .
|
|
494
|
-
# ("-1"^^xsd:decimal "1"^^xsd:decimal) math:product "-1"^^xsd:decimal .
|
|
495
|
-
# "-1"^^xsd:decimal math:lessThan 0.0 .
|
|
496
|
-
# via the schematic forward rule:
|
|
497
|
-
# {
|
|
498
|
-
# :Interp1 :bracketA ?xa .
|
|
499
|
-
# :Interp1 :bracketB ?xb .
|
|
500
|
-
# :Interp1 :yAtBracketA ?ya .
|
|
501
|
-
# :Interp1 :yAtBracketB ?yb .
|
|
502
|
-
# (?ya ?yb) math:product ?prod .
|
|
503
|
-
# ?prod math:lessThan 0.0 .
|
|
504
|
-
# } => {
|
|
505
|
-
# _:b6 :a ?xa .
|
|
506
|
-
# _:b6 :b ?xb .
|
|
507
|
-
# _:b6 :ya ?ya .
|
|
508
|
-
# _:b6 :yb ?yb .
|
|
509
|
-
# :Interp1 :rootBracket _:b6 .
|
|
510
|
-
# } .
|
|
511
|
-
# with substitution (on rule variables):
|
|
512
|
-
# ?prod = "-1"^^xsd:decimal
|
|
513
|
-
# ?xa = 0.0
|
|
514
|
-
# ?xb = 1.0
|
|
515
|
-
# ?ya = "-1"^^xsd:decimal
|
|
516
|
-
# ?yb = "1"^^xsd:decimal
|
|
517
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
518
|
-
# ----------------------------------------------------------------------
|
|
519
|
-
|
|
520
13
|
_:sk_0 :b 1.0 .
|
|
521
|
-
|
|
522
|
-
# ----------------------------------------------------------------------
|
|
523
|
-
# Proof for derived triple:
|
|
524
|
-
# _:sk_0 :ya "-1"^^xsd:decimal .
|
|
525
|
-
# It holds because the following instance of the rule body is provable:
|
|
526
|
-
# :Interp1 :bracketA 0.0 .
|
|
527
|
-
# :Interp1 :bracketB 1.0 .
|
|
528
|
-
# :Interp1 :yAtBracketA "-1"^^xsd:decimal .
|
|
529
|
-
# :Interp1 :yAtBracketB "1"^^xsd:decimal .
|
|
530
|
-
# ("-1"^^xsd:decimal "1"^^xsd:decimal) math:product "-1"^^xsd:decimal .
|
|
531
|
-
# "-1"^^xsd:decimal math:lessThan 0.0 .
|
|
532
|
-
# via the schematic forward rule:
|
|
533
|
-
# {
|
|
534
|
-
# :Interp1 :bracketA ?xa .
|
|
535
|
-
# :Interp1 :bracketB ?xb .
|
|
536
|
-
# :Interp1 :yAtBracketA ?ya .
|
|
537
|
-
# :Interp1 :yAtBracketB ?yb .
|
|
538
|
-
# (?ya ?yb) math:product ?prod .
|
|
539
|
-
# ?prod math:lessThan 0.0 .
|
|
540
|
-
# } => {
|
|
541
|
-
# _:b6 :a ?xa .
|
|
542
|
-
# _:b6 :b ?xb .
|
|
543
|
-
# _:b6 :ya ?ya .
|
|
544
|
-
# _:b6 :yb ?yb .
|
|
545
|
-
# :Interp1 :rootBracket _:b6 .
|
|
546
|
-
# } .
|
|
547
|
-
# with substitution (on rule variables):
|
|
548
|
-
# ?prod = "-1"^^xsd:decimal
|
|
549
|
-
# ?xa = 0.0
|
|
550
|
-
# ?xb = 1.0
|
|
551
|
-
# ?ya = "-1"^^xsd:decimal
|
|
552
|
-
# ?yb = "1"^^xsd:decimal
|
|
553
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
554
|
-
# ----------------------------------------------------------------------
|
|
555
|
-
|
|
556
14
|
_:sk_0 :ya "-1"^^xsd:decimal .
|
|
557
|
-
|
|
558
|
-
# ----------------------------------------------------------------------
|
|
559
|
-
# Proof for derived triple:
|
|
560
|
-
# _:sk_0 :yb "1"^^xsd:decimal .
|
|
561
|
-
# It holds because the following instance of the rule body is provable:
|
|
562
|
-
# :Interp1 :bracketA 0.0 .
|
|
563
|
-
# :Interp1 :bracketB 1.0 .
|
|
564
|
-
# :Interp1 :yAtBracketA "-1"^^xsd:decimal .
|
|
565
|
-
# :Interp1 :yAtBracketB "1"^^xsd:decimal .
|
|
566
|
-
# ("-1"^^xsd:decimal "1"^^xsd:decimal) math:product "-1"^^xsd:decimal .
|
|
567
|
-
# "-1"^^xsd:decimal math:lessThan 0.0 .
|
|
568
|
-
# via the schematic forward rule:
|
|
569
|
-
# {
|
|
570
|
-
# :Interp1 :bracketA ?xa .
|
|
571
|
-
# :Interp1 :bracketB ?xb .
|
|
572
|
-
# :Interp1 :yAtBracketA ?ya .
|
|
573
|
-
# :Interp1 :yAtBracketB ?yb .
|
|
574
|
-
# (?ya ?yb) math:product ?prod .
|
|
575
|
-
# ?prod math:lessThan 0.0 .
|
|
576
|
-
# } => {
|
|
577
|
-
# _:b6 :a ?xa .
|
|
578
|
-
# _:b6 :b ?xb .
|
|
579
|
-
# _:b6 :ya ?ya .
|
|
580
|
-
# _:b6 :yb ?yb .
|
|
581
|
-
# :Interp1 :rootBracket _:b6 .
|
|
582
|
-
# } .
|
|
583
|
-
# with substitution (on rule variables):
|
|
584
|
-
# ?prod = "-1"^^xsd:decimal
|
|
585
|
-
# ?xa = 0.0
|
|
586
|
-
# ?xb = 1.0
|
|
587
|
-
# ?ya = "-1"^^xsd:decimal
|
|
588
|
-
# ?yb = "1"^^xsd:decimal
|
|
589
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
590
|
-
# ----------------------------------------------------------------------
|
|
591
|
-
|
|
592
15
|
_:sk_0 :yb "1"^^xsd:decimal .
|
|
593
|
-
|
|
594
|
-
# ----------------------------------------------------------------------
|
|
595
|
-
# Proof for derived triple:
|
|
596
|
-
# :Interp1 :rootBracket _:sk_0 .
|
|
597
|
-
# It holds because the following instance of the rule body is provable:
|
|
598
|
-
# :Interp1 :bracketA 0.0 .
|
|
599
|
-
# :Interp1 :bracketB 1.0 .
|
|
600
|
-
# :Interp1 :yAtBracketA "-1"^^xsd:decimal .
|
|
601
|
-
# :Interp1 :yAtBracketB "1"^^xsd:decimal .
|
|
602
|
-
# ("-1"^^xsd:decimal "1"^^xsd:decimal) math:product "-1"^^xsd:decimal .
|
|
603
|
-
# "-1"^^xsd:decimal math:lessThan 0.0 .
|
|
604
|
-
# via the schematic forward rule:
|
|
605
|
-
# {
|
|
606
|
-
# :Interp1 :bracketA ?xa .
|
|
607
|
-
# :Interp1 :bracketB ?xb .
|
|
608
|
-
# :Interp1 :yAtBracketA ?ya .
|
|
609
|
-
# :Interp1 :yAtBracketB ?yb .
|
|
610
|
-
# (?ya ?yb) math:product ?prod .
|
|
611
|
-
# ?prod math:lessThan 0.0 .
|
|
612
|
-
# } => {
|
|
613
|
-
# _:b6 :a ?xa .
|
|
614
|
-
# _:b6 :b ?xb .
|
|
615
|
-
# _:b6 :ya ?ya .
|
|
616
|
-
# _:b6 :yb ?yb .
|
|
617
|
-
# :Interp1 :rootBracket _:b6 .
|
|
618
|
-
# } .
|
|
619
|
-
# with substitution (on rule variables):
|
|
620
|
-
# ?prod = "-1"^^xsd:decimal
|
|
621
|
-
# ?xa = 0.0
|
|
622
|
-
# ?xb = 1.0
|
|
623
|
-
# ?ya = "-1"^^xsd:decimal
|
|
624
|
-
# ?yb = "1"^^xsd:decimal
|
|
625
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
626
|
-
# ----------------------------------------------------------------------
|
|
627
|
-
|
|
628
16
|
:Interp1 :rootBracket _:sk_0 .
|
|
629
|
-
|
|
@@ -1,29 +1,3 @@
|
|
|
1
1
|
@prefix : <https://eyereasoner.github.io/ns#> .
|
|
2
2
|
|
|
3
|
-
# ----------------------------------------------------------------------
|
|
4
|
-
# Proof for derived triple:
|
|
5
|
-
# :result :is true .
|
|
6
|
-
# It holds because the following instance of the rule body is provable:
|
|
7
|
-
# {
|
|
8
|
-
# ?A__0 => ?B__1 .
|
|
9
|
-
# } => {
|
|
10
|
-
# :result :is true .
|
|
11
|
-
# } .
|
|
12
|
-
# via the schematic forward rule:
|
|
13
|
-
# {
|
|
14
|
-
# ?A => ?B .
|
|
15
|
-
# } => {
|
|
16
|
-
# :result :is true .
|
|
17
|
-
# } .
|
|
18
|
-
# with substitution (on rule variables):
|
|
19
|
-
# ?A = {
|
|
20
|
-
# ?A__0 => ?B__1 .
|
|
21
|
-
# }
|
|
22
|
-
# ?B = {
|
|
23
|
-
# :result :is true .
|
|
24
|
-
# }
|
|
25
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
26
|
-
# ----------------------------------------------------------------------
|
|
27
|
-
|
|
28
3
|
:result :is true .
|
|
29
|
-
|