eyeling 1.6.13 → 1.6.14

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (75) hide show
  1. package/examples/output/age.n3 +0 -17
  2. package/examples/output/alignment-demo.n3 +0 -572
  3. package/examples/output/backward.n3 +0 -15
  4. package/examples/output/basic-monadic.n3 +0 -105
  5. package/examples/output/brussels-brew-club.n3 +0 -476
  6. package/examples/output/cat-koko.n3 +0 -108
  7. package/examples/output/cobalt-kepler-kitchen.n3 +0 -7064
  8. package/examples/output/complex.n3 +0 -46
  9. package/examples/output/control-system.n3 +0 -75
  10. package/examples/output/cranberry-calculus.n3 +0 -1313
  11. package/examples/output/crypto-builtins-tests.n3 +0 -60
  12. package/examples/output/deep-taxonomy-10.n3 +0 -602
  13. package/examples/output/deep-taxonomy-100.n3 +1 -5733
  14. package/examples/output/deep-taxonomy-1000.n3 +1 -57033
  15. package/examples/output/deep-taxonomy-10000.n3 +1 -570033
  16. package/examples/output/derived-backward-rule-2.n3 +0 -58
  17. package/examples/output/derived-backward-rule.n3 +0 -44
  18. package/examples/output/derived-rule.n3 +0 -42
  19. package/examples/output/dijkstra.n3 +0 -297
  20. package/examples/output/dog.n3 +0 -30
  21. package/examples/output/drone-corridor-planner.n3 +0 -799
  22. package/examples/output/easter.n3 +0 -3570
  23. package/examples/output/equals.n3 +0 -15
  24. package/examples/output/ev-roundtrip-planner.n3 +0 -392
  25. package/examples/output/existential-rule.n3 +0 -34
  26. package/examples/output/expression-eval.n3 +0 -20
  27. package/examples/output/family-cousins.n3 +0 -636
  28. package/examples/output/fibonacci.n3 +0 -36
  29. package/examples/output/french-cities.n3 +0 -484
  30. package/examples/output/good-cobbler.n3 +0 -22
  31. package/examples/output/gps.n3 +0 -62
  32. package/examples/output/gray-code-counter.n3 +0 -17
  33. package/examples/output/hanoi.n3 +0 -17
  34. package/examples/output/jade-eigen-loom.n3 +0 -4690
  35. package/examples/output/json-pointer.n3 +0 -529
  36. package/examples/output/json-reconcile-vat.n3 +0 -12882
  37. package/examples/output/light-eaters.n3 +0 -311
  38. package/examples/output/list-builtins-tests.n3 +0 -167
  39. package/examples/output/list-iterate.n3 +0 -124
  40. package/examples/output/lldm.n3 +0 -960
  41. package/examples/output/log-collect-all-in.n3 +0 -117
  42. package/examples/output/log-for-all-in.n3 +0 -27
  43. package/examples/output/log-not-includes.n3 +0 -59
  44. package/examples/output/log-skolem.n3 +0 -17
  45. package/examples/output/log-uri.n3 +0 -42
  46. package/examples/output/math-builtins-tests.n3 +0 -4434
  47. package/examples/output/minimal-skos-alignment.n3 +0 -39
  48. package/examples/output/monkey.n3 +0 -36
  49. package/examples/output/odrl-trust.n3 +0 -46
  50. package/examples/output/oslo-steps-library-scholarly.n3 +0 -1260
  51. package/examples/output/oslo-steps-workflow-composition.n3 +0 -180
  52. package/examples/output/peano.n3 +0 -23
  53. package/examples/output/pi.n3 +0 -17
  54. package/examples/output/pillar.n3 +0 -32
  55. package/examples/output/polygon.n3 +0 -17
  56. package/examples/output/rdf-list.n3 +0 -28
  57. package/examples/output/reordering.n3 +0 -26
  58. package/examples/output/ruby-runge-workshop.n3 +0 -613
  59. package/examples/output/rule-matching.n3 +0 -26
  60. package/examples/output/saffron-slopeworks.n3 +0 -1447
  61. package/examples/output/self-referential.n3 +0 -81
  62. package/examples/output/similar.n3 +0 -15
  63. package/examples/output/snaf.n3 +0 -23
  64. package/examples/output/socrates.n3 +0 -21
  65. package/examples/output/spectral-week.n3 +0 -350
  66. package/examples/output/string-builtins-tests.n3 +0 -240
  67. package/examples/output/topaz-markov-mill.n3 +0 -4178
  68. package/examples/output/traffic-skos-aggregate.n3 +0 -3151
  69. package/examples/output/turing.n3 +0 -36
  70. package/examples/output/ultramarine-simpson-forge.n3 +0 -3873
  71. package/examples/output/witch.n3 +0 -107
  72. package/examples/output/zebra.n3 +0 -111
  73. package/eyeling.js +97 -18
  74. package/package.json +1 -1
  75. package/test/examples.test.js +1 -1
@@ -3,69 +3,11 @@
3
3
  @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
4
4
  @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
5
5
 
6
- # ----------------------------------------------------------------------
7
- # Proof for derived triple:
8
- # {
9
- # :Socrates a :Human .
10
- # } <= true .
11
- # This triple is the head of a forward rule with an empty premise,
12
- # so it holds unconditionally whenever the program is loaded.
13
- # Therefore the derived triple above is entailed by the rules and facts.
14
- # ----------------------------------------------------------------------
15
-
16
6
  {
17
7
  :Socrates a :Human .
18
8
  } <= true .
19
-
20
- # ----------------------------------------------------------------------
21
- # Proof for derived triple:
22
- # {
23
- # :Human rdfs:subClassOf :Mortal .
24
- # } <= true .
25
- # This triple is the head of a forward rule with an empty premise,
26
- # so it holds unconditionally whenever the program is loaded.
27
- # Therefore the derived triple above is entailed by the rules and facts.
28
- # ----------------------------------------------------------------------
29
-
30
9
  {
31
10
  :Human rdfs:subClassOf :Mortal .
32
11
  } <= true .
33
-
34
- # ----------------------------------------------------------------------
35
- # Proof for derived triple:
36
- # :Socrates a :Mortal .
37
- # It holds because the following instance of the rule body is provable:
38
- # :Socrates a :Human .
39
- # :Human rdfs:subClassOf :Mortal .
40
- # via the schematic forward rule:
41
- # {
42
- # ?S a ?A .
43
- # ?A rdfs:subClassOf ?B .
44
- # } => {
45
- # ?S a ?B .
46
- # } .
47
- # with substitution (on rule variables):
48
- # ?A = :Human
49
- # ?B = :Mortal
50
- # ?S = :Socrates
51
- # Therefore the derived triple above is entailed by the rules and facts.
52
- # ----------------------------------------------------------------------
53
-
54
12
  :Socrates a :Mortal .
55
-
56
- # ----------------------------------------------------------------------
57
- # Proof for derived triple:
58
- # :test :is true .
59
- # It holds because the following instance of the rule body is provable:
60
- # :Socrates a :Mortal .
61
- # via the schematic forward rule:
62
- # {
63
- # :Socrates a :Mortal .
64
- # } => {
65
- # :test :is true .
66
- # } .
67
- # Therefore the derived triple above is entailed by the rules and facts.
68
- # ----------------------------------------------------------------------
69
-
70
13
  :test :is true .
71
-
@@ -1,53 +1,9 @@
1
1
  @prefix : <https://eyereasoner.github.io/ns#> .
2
2
  @prefix log: <http://www.w3.org/2000/10/swap/log#> .
3
3
 
4
- # ----------------------------------------------------------------------
5
- # Proof for derived triple:
6
- # {
7
- # ?x :childOf ?y .
8
- # } <= {
9
- # ?y :parentOf ?x .
10
- # } .
11
- # It holds because the following instance of the rule body is provable:
12
- # :parentOf :invOf :childOf .
13
- # via the schematic forward rule:
14
- # {
15
- # ?p :invOf ?q .
16
- # } => {
17
- # {
18
- # ?x ?q ?y .
19
- # } <= {
20
- # ?y ?p ?x .
21
- # } .
22
- # } .
23
- # with substitution (on rule variables):
24
- # ?p = :parentOf
25
- # ?q = :childOf
26
- # Therefore the derived triple above is entailed by the rules and facts.
27
- # ----------------------------------------------------------------------
28
-
29
4
  {
30
5
  ?x :childOf ?y .
31
6
  } <= {
32
7
  ?y :parentOf ?x .
33
8
  } .
34
-
35
- # ----------------------------------------------------------------------
36
- # Proof for derived triple:
37
- # :bob :hasParent :alice .
38
- # It holds because the following instance of the rule body is provable:
39
- # :bob :childOf :alice .
40
- # via the schematic forward rule:
41
- # {
42
- # ?x :childOf ?y .
43
- # } => {
44
- # ?x :hasParent ?y .
45
- # } .
46
- # with substitution (on rule variables):
47
- # ?x = :bob
48
- # ?y = :alice
49
- # Therefore the derived triple above is entailed by the rules and facts.
50
- # ----------------------------------------------------------------------
51
-
52
9
  :bob :hasParent :alice .
53
-
@@ -2,51 +2,9 @@
2
2
  @prefix log: <http://www.w3.org/2000/10/swap/log#> .
3
3
  @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
4
4
 
5
- # ----------------------------------------------------------------------
6
- # Proof for derived triple:
7
- # {
8
- # ?y a :Dog .
9
- # } => {
10
- # :test :is true .
11
- # } .
12
- # It holds because the following instance of the rule body is provable:
13
- # :Minka a :Cat .
14
- # via the schematic forward rule:
15
- # {
16
- # ?x a :Cat .
17
- # } => {
18
- # {
19
- # ?y a :Dog .
20
- # } => {
21
- # :test :is true .
22
- # } .
23
- # } .
24
- # with substitution (on rule variables):
25
- # ?x = :Minka
26
- # Therefore the derived triple above is entailed by the rules and facts.
27
- # ----------------------------------------------------------------------
28
-
29
5
  {
30
6
  ?y a :Dog .
31
7
  } => {
32
8
  :test :is true .
33
9
  } .
34
-
35
- # ----------------------------------------------------------------------
36
- # Proof for derived triple:
37
- # :test :is true .
38
- # It holds because the following instance of the rule body is provable:
39
- # :Charly a :Dog .
40
- # via the schematic forward rule:
41
- # {
42
- # ?y a :Dog .
43
- # } => {
44
- # :test :is true .
45
- # } .
46
- # with substitution (on rule variables):
47
- # ?y = :Charly
48
- # Therefore the derived triple above is entailed by the rules and facts.
49
- # ----------------------------------------------------------------------
50
-
51
10
  :test :is true .
52
-
@@ -1,315 +1,18 @@
1
1
  @prefix : <https://eyereasoner.github.io/ns#> .
2
2
 
3
- # ----------------------------------------------------------------------
4
- # Proof for derived triple:
5
- # (:b :a) :edge 4 .
6
- # It holds because the following instance of the rule body is provable:
7
- # (:a :b) :edge 4 .
8
- # via the schematic forward rule:
9
- # {
10
- # (?A ?B) :edge ?C .
11
- # } => {
12
- # (?B ?A) :edge ?C .
13
- # } .
14
- # with substitution (on rule variables):
15
- # ?A = :a
16
- # ?B = :b
17
- # ?C = 4
18
- # Therefore the derived triple above is entailed by the rules and facts.
19
- # ----------------------------------------------------------------------
20
-
21
3
  (:b :a) :edge 4 .
22
-
23
- # ----------------------------------------------------------------------
24
- # Proof for derived triple:
25
- # (:c :a) :edge 2 .
26
- # It holds because the following instance of the rule body is provable:
27
- # (:a :c) :edge 2 .
28
- # via the schematic forward rule:
29
- # {
30
- # (?A ?B) :edge ?C .
31
- # } => {
32
- # (?B ?A) :edge ?C .
33
- # } .
34
- # with substitution (on rule variables):
35
- # ?A = :a
36
- # ?B = :c
37
- # ?C = 2
38
- # Therefore the derived triple above is entailed by the rules and facts.
39
- # ----------------------------------------------------------------------
40
-
41
4
  (:c :a) :edge 2 .
42
-
43
- # ----------------------------------------------------------------------
44
- # Proof for derived triple:
45
- # (:c :b) :edge 1 .
46
- # It holds because the following instance of the rule body is provable:
47
- # (:b :c) :edge 1 .
48
- # via the schematic forward rule:
49
- # {
50
- # (?A ?B) :edge ?C .
51
- # } => {
52
- # (?B ?A) :edge ?C .
53
- # } .
54
- # with substitution (on rule variables):
55
- # ?A = :b
56
- # ?B = :c
57
- # ?C = 1
58
- # Therefore the derived triple above is entailed by the rules and facts.
59
- # ----------------------------------------------------------------------
60
-
61
5
  (:c :b) :edge 1 .
62
-
63
- # ----------------------------------------------------------------------
64
- # Proof for derived triple:
65
- # (:d :b) :edge 5 .
66
- # It holds because the following instance of the rule body is provable:
67
- # (:b :d) :edge 5 .
68
- # via the schematic forward rule:
69
- # {
70
- # (?A ?B) :edge ?C .
71
- # } => {
72
- # (?B ?A) :edge ?C .
73
- # } .
74
- # with substitution (on rule variables):
75
- # ?A = :b
76
- # ?B = :d
77
- # ?C = 5
78
- # Therefore the derived triple above is entailed by the rules and facts.
79
- # ----------------------------------------------------------------------
80
-
81
6
  (:d :b) :edge 5 .
82
-
83
- # ----------------------------------------------------------------------
84
- # Proof for derived triple:
85
- # (:d :c) :edge 8 .
86
- # It holds because the following instance of the rule body is provable:
87
- # (:c :d) :edge 8 .
88
- # via the schematic forward rule:
89
- # {
90
- # (?A ?B) :edge ?C .
91
- # } => {
92
- # (?B ?A) :edge ?C .
93
- # } .
94
- # with substitution (on rule variables):
95
- # ?A = :c
96
- # ?B = :d
97
- # ?C = 8
98
- # Therefore the derived triple above is entailed by the rules and facts.
99
- # ----------------------------------------------------------------------
100
-
101
7
  (:d :c) :edge 8 .
102
-
103
- # ----------------------------------------------------------------------
104
- # Proof for derived triple:
105
- # (:e :c) :edge 10 .
106
- # It holds because the following instance of the rule body is provable:
107
- # (:c :e) :edge 10 .
108
- # via the schematic forward rule:
109
- # {
110
- # (?A ?B) :edge ?C .
111
- # } => {
112
- # (?B ?A) :edge ?C .
113
- # } .
114
- # with substitution (on rule variables):
115
- # ?A = :c
116
- # ?B = :e
117
- # ?C = 10
118
- # Therefore the derived triple above is entailed by the rules and facts.
119
- # ----------------------------------------------------------------------
120
-
121
8
  (:e :c) :edge 10 .
122
-
123
- # ----------------------------------------------------------------------
124
- # Proof for derived triple:
125
- # (:e :d) :edge 2 .
126
- # It holds because the following instance of the rule body is provable:
127
- # (:d :e) :edge 2 .
128
- # via the schematic forward rule:
129
- # {
130
- # (?A ?B) :edge ?C .
131
- # } => {
132
- # (?B ?A) :edge ?C .
133
- # } .
134
- # with substitution (on rule variables):
135
- # ?A = :d
136
- # ?B = :e
137
- # ?C = 2
138
- # Therefore the derived triple above is entailed by the rules and facts.
139
- # ----------------------------------------------------------------------
140
-
141
9
  (:e :d) :edge 2 .
142
-
143
- # ----------------------------------------------------------------------
144
- # Proof for derived triple:
145
- # (:f :d) :edge 6 .
146
- # It holds because the following instance of the rule body is provable:
147
- # (:d :f) :edge 6 .
148
- # via the schematic forward rule:
149
- # {
150
- # (?A ?B) :edge ?C .
151
- # } => {
152
- # (?B ?A) :edge ?C .
153
- # } .
154
- # with substitution (on rule variables):
155
- # ?A = :d
156
- # ?B = :f
157
- # ?C = 6
158
- # Therefore the derived triple above is entailed by the rules and facts.
159
- # ----------------------------------------------------------------------
160
-
161
10
  (:f :d) :edge 6 .
162
-
163
- # ----------------------------------------------------------------------
164
- # Proof for derived triple:
165
- # (:f :e) :edge 3 .
166
- # It holds because the following instance of the rule body is provable:
167
- # (:e :f) :edge 3 .
168
- # via the schematic forward rule:
169
- # {
170
- # (?A ?B) :edge ?C .
171
- # } => {
172
- # (?B ?A) :edge ?C .
173
- # } .
174
- # with substitution (on rule variables):
175
- # ?A = :e
176
- # ?B = :f
177
- # ?C = 3
178
- # Therefore the derived triple above is entailed by the rules and facts.
179
- # ----------------------------------------------------------------------
180
-
181
11
  (:f :e) :edge 3 .
182
-
183
- # ----------------------------------------------------------------------
184
- # Proof for derived triple:
185
- # (:a :f) :path ((:a :c :d :f) 16) .
186
- # It holds because the following instance of the rule body is provable:
187
- # (:a :f) :dijkstra ((:a :c :d :f) 16) .
188
- # via the schematic forward rule:
189
- # {
190
- # (:a :f) :dijkstra (?Path ?Cost) .
191
- # } => {
192
- # (:a :f) :path (?Path ?Cost) .
193
- # } .
194
- # with substitution (on rule variables):
195
- # ?Cost = 16
196
- # ?Path = (:a :c :d :f)
197
- # Therefore the derived triple above is entailed by the rules and facts.
198
- # ----------------------------------------------------------------------
199
-
200
12
  (:a :f) :path ((:a :c :d :f) 16) .
201
-
202
- # ----------------------------------------------------------------------
203
- # Proof for derived triple:
204
- # (:a :f) :path ((:a :c :d :e :f) 15) .
205
- # It holds because the following instance of the rule body is provable:
206
- # (:a :f) :dijkstra ((:a :c :d :e :f) 15) .
207
- # via the schematic forward rule:
208
- # {
209
- # (:a :f) :dijkstra (?Path ?Cost) .
210
- # } => {
211
- # (:a :f) :path (?Path ?Cost) .
212
- # } .
213
- # with substitution (on rule variables):
214
- # ?Cost = 15
215
- # ?Path = (:a :c :d :e :f)
216
- # Therefore the derived triple above is entailed by the rules and facts.
217
- # ----------------------------------------------------------------------
218
-
219
13
  (:a :f) :path ((:a :c :d :e :f) 15) .
220
-
221
- # ----------------------------------------------------------------------
222
- # Proof for derived triple:
223
- # (:a :f) :path ((:a :c :e :f) 15) .
224
- # It holds because the following instance of the rule body is provable:
225
- # (:a :f) :dijkstra ((:a :c :e :f) 15) .
226
- # via the schematic forward rule:
227
- # {
228
- # (:a :f) :dijkstra (?Path ?Cost) .
229
- # } => {
230
- # (:a :f) :path (?Path ?Cost) .
231
- # } .
232
- # with substitution (on rule variables):
233
- # ?Cost = 15
234
- # ?Path = (:a :c :e :f)
235
- # Therefore the derived triple above is entailed by the rules and facts.
236
- # ----------------------------------------------------------------------
237
-
238
14
  (:a :f) :path ((:a :c :e :f) 15) .
239
-
240
- # ----------------------------------------------------------------------
241
- # Proof for derived triple:
242
- # (:a :f) :path ((:a :b :d :f) 15) .
243
- # It holds because the following instance of the rule body is provable:
244
- # (:a :f) :dijkstra ((:a :b :d :f) 15) .
245
- # via the schematic forward rule:
246
- # {
247
- # (:a :f) :dijkstra (?Path ?Cost) .
248
- # } => {
249
- # (:a :f) :path (?Path ?Cost) .
250
- # } .
251
- # with substitution (on rule variables):
252
- # ?Cost = 15
253
- # ?Path = (:a :b :d :f)
254
- # Therefore the derived triple above is entailed by the rules and facts.
255
- # ----------------------------------------------------------------------
256
-
257
15
  (:a :f) :path ((:a :b :d :f) 15) .
258
-
259
- # ----------------------------------------------------------------------
260
- # Proof for derived triple:
261
- # (:a :f) :path ((:a :b :d :e :f) 14) .
262
- # It holds because the following instance of the rule body is provable:
263
- # (:a :f) :dijkstra ((:a :b :d :e :f) 14) .
264
- # via the schematic forward rule:
265
- # {
266
- # (:a :f) :dijkstra (?Path ?Cost) .
267
- # } => {
268
- # (:a :f) :path (?Path ?Cost) .
269
- # } .
270
- # with substitution (on rule variables):
271
- # ?Cost = 14
272
- # ?Path = (:a :b :d :e :f)
273
- # Therefore the derived triple above is entailed by the rules and facts.
274
- # ----------------------------------------------------------------------
275
-
276
16
  (:a :f) :path ((:a :b :d :e :f) 14) .
277
-
278
- # ----------------------------------------------------------------------
279
- # Proof for derived triple:
280
- # (:a :f) :path ((:a :c :b :d :f) 14) .
281
- # It holds because the following instance of the rule body is provable:
282
- # (:a :f) :dijkstra ((:a :c :b :d :f) 14) .
283
- # via the schematic forward rule:
284
- # {
285
- # (:a :f) :dijkstra (?Path ?Cost) .
286
- # } => {
287
- # (:a :f) :path (?Path ?Cost) .
288
- # } .
289
- # with substitution (on rule variables):
290
- # ?Cost = 14
291
- # ?Path = (:a :c :b :d :f)
292
- # Therefore the derived triple above is entailed by the rules and facts.
293
- # ----------------------------------------------------------------------
294
-
295
17
  (:a :f) :path ((:a :c :b :d :f) 14) .
296
-
297
- # ----------------------------------------------------------------------
298
- # Proof for derived triple:
299
- # (:a :f) :path ((:a :c :b :d :e :f) 13) .
300
- # It holds because the following instance of the rule body is provable:
301
- # (:a :f) :dijkstra ((:a :c :b :d :e :f) 13) .
302
- # via the schematic forward rule:
303
- # {
304
- # (:a :f) :dijkstra (?Path ?Cost) .
305
- # } => {
306
- # (:a :f) :path (?Path ?Cost) .
307
- # } .
308
- # with substitution (on rule variables):
309
- # ?Cost = 13
310
- # ?Path = (:a :c :b :d :e :f)
311
- # Therefore the derived triple above is entailed by the rules and facts.
312
- # ----------------------------------------------------------------------
313
-
314
18
  (:a :f) :path ((:a :c :b :d :e :f) 13) .
315
-
@@ -1,33 +1,3 @@
1
1
  @prefix : <https://eyereasoner.github.io/ns#> .
2
2
 
3
- # ----------------------------------------------------------------------
4
- # Proof for derived triple:
5
- # :alice :mustHave :dogLicense .
6
- # It holds because the following instance of the rule body is provable:
7
- # :alice :hasDog :dog5 .
8
- # (1 {
9
- # :alice :hasDog ?Dog .
10
- # } (1 1 1 1 1)) log:collectAllIn ?Scope .
11
- # (1 1 1 1 1) math:sum 5 .
12
- # 5 math:greaterThan 4 .
13
- # via the schematic forward rule:
14
- # {
15
- # ?Subject :hasDog ?Any .
16
- # (1 {
17
- # ?Subject :hasDog ?Dog .
18
- # } ?List) log:collectAllIn ?Scope .
19
- # ?List math:sum ?Count .
20
- # ?Count math:greaterThan 4 .
21
- # } => {
22
- # ?Subject :mustHave :dogLicense .
23
- # } .
24
- # with substitution (on rule variables):
25
- # ?Any = :dog5
26
- # ?Count = 5
27
- # ?List = (1 1 1 1 1)
28
- # ?Subject = :alice
29
- # Therefore the derived triple above is entailed by the rules and facts.
30
- # ----------------------------------------------------------------------
31
-
32
3
  :alice :mustHave :dogLicense .
33
-