eyeling 1.6.13 → 1.6.14
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/examples/output/age.n3 +0 -17
- package/examples/output/alignment-demo.n3 +0 -572
- package/examples/output/backward.n3 +0 -15
- package/examples/output/basic-monadic.n3 +0 -105
- package/examples/output/brussels-brew-club.n3 +0 -476
- package/examples/output/cat-koko.n3 +0 -108
- package/examples/output/cobalt-kepler-kitchen.n3 +0 -7064
- package/examples/output/complex.n3 +0 -46
- package/examples/output/control-system.n3 +0 -75
- package/examples/output/cranberry-calculus.n3 +0 -1313
- package/examples/output/crypto-builtins-tests.n3 +0 -60
- package/examples/output/deep-taxonomy-10.n3 +0 -602
- package/examples/output/deep-taxonomy-100.n3 +1 -5733
- package/examples/output/deep-taxonomy-1000.n3 +1 -57033
- package/examples/output/deep-taxonomy-10000.n3 +1 -570033
- package/examples/output/derived-backward-rule-2.n3 +0 -58
- package/examples/output/derived-backward-rule.n3 +0 -44
- package/examples/output/derived-rule.n3 +0 -42
- package/examples/output/dijkstra.n3 +0 -297
- package/examples/output/dog.n3 +0 -30
- package/examples/output/drone-corridor-planner.n3 +0 -799
- package/examples/output/easter.n3 +0 -3570
- package/examples/output/equals.n3 +0 -15
- package/examples/output/ev-roundtrip-planner.n3 +0 -392
- package/examples/output/existential-rule.n3 +0 -34
- package/examples/output/expression-eval.n3 +0 -20
- package/examples/output/family-cousins.n3 +0 -636
- package/examples/output/fibonacci.n3 +0 -36
- package/examples/output/french-cities.n3 +0 -484
- package/examples/output/good-cobbler.n3 +0 -22
- package/examples/output/gps.n3 +0 -62
- package/examples/output/gray-code-counter.n3 +0 -17
- package/examples/output/hanoi.n3 +0 -17
- package/examples/output/jade-eigen-loom.n3 +0 -4690
- package/examples/output/json-pointer.n3 +0 -529
- package/examples/output/json-reconcile-vat.n3 +0 -12882
- package/examples/output/light-eaters.n3 +0 -311
- package/examples/output/list-builtins-tests.n3 +0 -167
- package/examples/output/list-iterate.n3 +0 -124
- package/examples/output/lldm.n3 +0 -960
- package/examples/output/log-collect-all-in.n3 +0 -117
- package/examples/output/log-for-all-in.n3 +0 -27
- package/examples/output/log-not-includes.n3 +0 -59
- package/examples/output/log-skolem.n3 +0 -17
- package/examples/output/log-uri.n3 +0 -42
- package/examples/output/math-builtins-tests.n3 +0 -4434
- package/examples/output/minimal-skos-alignment.n3 +0 -39
- package/examples/output/monkey.n3 +0 -36
- package/examples/output/odrl-trust.n3 +0 -46
- package/examples/output/oslo-steps-library-scholarly.n3 +0 -1260
- package/examples/output/oslo-steps-workflow-composition.n3 +0 -180
- package/examples/output/peano.n3 +0 -23
- package/examples/output/pi.n3 +0 -17
- package/examples/output/pillar.n3 +0 -32
- package/examples/output/polygon.n3 +0 -17
- package/examples/output/rdf-list.n3 +0 -28
- package/examples/output/reordering.n3 +0 -26
- package/examples/output/ruby-runge-workshop.n3 +0 -613
- package/examples/output/rule-matching.n3 +0 -26
- package/examples/output/saffron-slopeworks.n3 +0 -1447
- package/examples/output/self-referential.n3 +0 -81
- package/examples/output/similar.n3 +0 -15
- package/examples/output/snaf.n3 +0 -23
- package/examples/output/socrates.n3 +0 -21
- package/examples/output/spectral-week.n3 +0 -350
- package/examples/output/string-builtins-tests.n3 +0 -240
- package/examples/output/topaz-markov-mill.n3 +0 -4178
- package/examples/output/traffic-skos-aggregate.n3 +0 -3151
- package/examples/output/turing.n3 +0 -36
- package/examples/output/ultramarine-simpson-forge.n3 +0 -3873
- package/examples/output/witch.n3 +0 -107
- package/examples/output/zebra.n3 +0 -111
- package/eyeling.js +97 -18
- package/package.json +1 -1
- package/test/examples.test.js +1 -1
|
@@ -1,507 +1,23 @@
|
|
|
1
1
|
@prefix : <http://www.agfa.com/w3c/euler/graph.axiom#> .
|
|
2
2
|
|
|
3
|
-
# ----------------------------------------------------------------------
|
|
4
|
-
# Proof for derived triple:
|
|
5
|
-
# :paris :path :orleans .
|
|
6
|
-
# It holds because the following instance of the rule body is provable:
|
|
7
|
-
# :oneway rdfs:subPropertyOf :path .
|
|
8
|
-
# :paris :oneway :orleans .
|
|
9
|
-
# via the schematic forward rule:
|
|
10
|
-
# {
|
|
11
|
-
# ?P rdfs:subPropertyOf ?Q .
|
|
12
|
-
# ?S ?P ?O .
|
|
13
|
-
# } => {
|
|
14
|
-
# ?S ?Q ?O .
|
|
15
|
-
# } .
|
|
16
|
-
# with substitution (on rule variables):
|
|
17
|
-
# ?O = :orleans
|
|
18
|
-
# ?P = :oneway
|
|
19
|
-
# ?Q = :path
|
|
20
|
-
# ?S = :paris
|
|
21
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
22
|
-
# ----------------------------------------------------------------------
|
|
23
|
-
|
|
24
3
|
:paris :path :orleans .
|
|
25
|
-
|
|
26
|
-
# ----------------------------------------------------------------------
|
|
27
|
-
# Proof for derived triple:
|
|
28
|
-
# :paris :path :chartres .
|
|
29
|
-
# It holds because the following instance of the rule body is provable:
|
|
30
|
-
# :oneway rdfs:subPropertyOf :path .
|
|
31
|
-
# :paris :oneway :chartres .
|
|
32
|
-
# via the schematic forward rule:
|
|
33
|
-
# {
|
|
34
|
-
# ?P rdfs:subPropertyOf ?Q .
|
|
35
|
-
# ?S ?P ?O .
|
|
36
|
-
# } => {
|
|
37
|
-
# ?S ?Q ?O .
|
|
38
|
-
# } .
|
|
39
|
-
# with substitution (on rule variables):
|
|
40
|
-
# ?O = :chartres
|
|
41
|
-
# ?P = :oneway
|
|
42
|
-
# ?Q = :path
|
|
43
|
-
# ?S = :paris
|
|
44
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
45
|
-
# ----------------------------------------------------------------------
|
|
46
|
-
|
|
47
4
|
:paris :path :chartres .
|
|
48
|
-
|
|
49
|
-
# ----------------------------------------------------------------------
|
|
50
|
-
# Proof for derived triple:
|
|
51
|
-
# :paris :path :amiens .
|
|
52
|
-
# It holds because the following instance of the rule body is provable:
|
|
53
|
-
# :oneway rdfs:subPropertyOf :path .
|
|
54
|
-
# :paris :oneway :amiens .
|
|
55
|
-
# via the schematic forward rule:
|
|
56
|
-
# {
|
|
57
|
-
# ?P rdfs:subPropertyOf ?Q .
|
|
58
|
-
# ?S ?P ?O .
|
|
59
|
-
# } => {
|
|
60
|
-
# ?S ?Q ?O .
|
|
61
|
-
# } .
|
|
62
|
-
# with substitution (on rule variables):
|
|
63
|
-
# ?O = :amiens
|
|
64
|
-
# ?P = :oneway
|
|
65
|
-
# ?Q = :path
|
|
66
|
-
# ?S = :paris
|
|
67
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
68
|
-
# ----------------------------------------------------------------------
|
|
69
|
-
|
|
70
5
|
:paris :path :amiens .
|
|
71
|
-
|
|
72
|
-
# ----------------------------------------------------------------------
|
|
73
|
-
# Proof for derived triple:
|
|
74
|
-
# :orleans :path :blois .
|
|
75
|
-
# It holds because the following instance of the rule body is provable:
|
|
76
|
-
# :oneway rdfs:subPropertyOf :path .
|
|
77
|
-
# :orleans :oneway :blois .
|
|
78
|
-
# via the schematic forward rule:
|
|
79
|
-
# {
|
|
80
|
-
# ?P rdfs:subPropertyOf ?Q .
|
|
81
|
-
# ?S ?P ?O .
|
|
82
|
-
# } => {
|
|
83
|
-
# ?S ?Q ?O .
|
|
84
|
-
# } .
|
|
85
|
-
# with substitution (on rule variables):
|
|
86
|
-
# ?O = :blois
|
|
87
|
-
# ?P = :oneway
|
|
88
|
-
# ?Q = :path
|
|
89
|
-
# ?S = :orleans
|
|
90
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
91
|
-
# ----------------------------------------------------------------------
|
|
92
|
-
|
|
93
6
|
:orleans :path :blois .
|
|
94
|
-
|
|
95
|
-
# ----------------------------------------------------------------------
|
|
96
|
-
# Proof for derived triple:
|
|
97
|
-
# :orleans :path :bourges .
|
|
98
|
-
# It holds because the following instance of the rule body is provable:
|
|
99
|
-
# :oneway rdfs:subPropertyOf :path .
|
|
100
|
-
# :orleans :oneway :bourges .
|
|
101
|
-
# via the schematic forward rule:
|
|
102
|
-
# {
|
|
103
|
-
# ?P rdfs:subPropertyOf ?Q .
|
|
104
|
-
# ?S ?P ?O .
|
|
105
|
-
# } => {
|
|
106
|
-
# ?S ?Q ?O .
|
|
107
|
-
# } .
|
|
108
|
-
# with substitution (on rule variables):
|
|
109
|
-
# ?O = :bourges
|
|
110
|
-
# ?P = :oneway
|
|
111
|
-
# ?Q = :path
|
|
112
|
-
# ?S = :orleans
|
|
113
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
114
|
-
# ----------------------------------------------------------------------
|
|
115
|
-
|
|
116
7
|
:orleans :path :bourges .
|
|
117
|
-
|
|
118
|
-
# ----------------------------------------------------------------------
|
|
119
|
-
# Proof for derived triple:
|
|
120
|
-
# :blois :path :tours .
|
|
121
|
-
# It holds because the following instance of the rule body is provable:
|
|
122
|
-
# :oneway rdfs:subPropertyOf :path .
|
|
123
|
-
# :blois :oneway :tours .
|
|
124
|
-
# via the schematic forward rule:
|
|
125
|
-
# {
|
|
126
|
-
# ?P rdfs:subPropertyOf ?Q .
|
|
127
|
-
# ?S ?P ?O .
|
|
128
|
-
# } => {
|
|
129
|
-
# ?S ?Q ?O .
|
|
130
|
-
# } .
|
|
131
|
-
# with substitution (on rule variables):
|
|
132
|
-
# ?O = :tours
|
|
133
|
-
# ?P = :oneway
|
|
134
|
-
# ?Q = :path
|
|
135
|
-
# ?S = :blois
|
|
136
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
137
|
-
# ----------------------------------------------------------------------
|
|
138
|
-
|
|
139
8
|
:blois :path :tours .
|
|
140
|
-
|
|
141
|
-
# ----------------------------------------------------------------------
|
|
142
|
-
# Proof for derived triple:
|
|
143
|
-
# :chartres :path :lemans .
|
|
144
|
-
# It holds because the following instance of the rule body is provable:
|
|
145
|
-
# :oneway rdfs:subPropertyOf :path .
|
|
146
|
-
# :chartres :oneway :lemans .
|
|
147
|
-
# via the schematic forward rule:
|
|
148
|
-
# {
|
|
149
|
-
# ?P rdfs:subPropertyOf ?Q .
|
|
150
|
-
# ?S ?P ?O .
|
|
151
|
-
# } => {
|
|
152
|
-
# ?S ?Q ?O .
|
|
153
|
-
# } .
|
|
154
|
-
# with substitution (on rule variables):
|
|
155
|
-
# ?O = :lemans
|
|
156
|
-
# ?P = :oneway
|
|
157
|
-
# ?Q = :path
|
|
158
|
-
# ?S = :chartres
|
|
159
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
160
|
-
# ----------------------------------------------------------------------
|
|
161
|
-
|
|
162
9
|
:chartres :path :lemans .
|
|
163
|
-
|
|
164
|
-
# ----------------------------------------------------------------------
|
|
165
|
-
# Proof for derived triple:
|
|
166
|
-
# :lemans :path :angers .
|
|
167
|
-
# It holds because the following instance of the rule body is provable:
|
|
168
|
-
# :oneway rdfs:subPropertyOf :path .
|
|
169
|
-
# :lemans :oneway :angers .
|
|
170
|
-
# via the schematic forward rule:
|
|
171
|
-
# {
|
|
172
|
-
# ?P rdfs:subPropertyOf ?Q .
|
|
173
|
-
# ?S ?P ?O .
|
|
174
|
-
# } => {
|
|
175
|
-
# ?S ?Q ?O .
|
|
176
|
-
# } .
|
|
177
|
-
# with substitution (on rule variables):
|
|
178
|
-
# ?O = :angers
|
|
179
|
-
# ?P = :oneway
|
|
180
|
-
# ?Q = :path
|
|
181
|
-
# ?S = :lemans
|
|
182
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
183
|
-
# ----------------------------------------------------------------------
|
|
184
|
-
|
|
185
10
|
:lemans :path :angers .
|
|
186
|
-
|
|
187
|
-
# ----------------------------------------------------------------------
|
|
188
|
-
# Proof for derived triple:
|
|
189
|
-
# :lemans :path :tours .
|
|
190
|
-
# It holds because the following instance of the rule body is provable:
|
|
191
|
-
# :oneway rdfs:subPropertyOf :path .
|
|
192
|
-
# :lemans :oneway :tours .
|
|
193
|
-
# via the schematic forward rule:
|
|
194
|
-
# {
|
|
195
|
-
# ?P rdfs:subPropertyOf ?Q .
|
|
196
|
-
# ?S ?P ?O .
|
|
197
|
-
# } => {
|
|
198
|
-
# ?S ?Q ?O .
|
|
199
|
-
# } .
|
|
200
|
-
# with substitution (on rule variables):
|
|
201
|
-
# ?O = :tours
|
|
202
|
-
# ?P = :oneway
|
|
203
|
-
# ?Q = :path
|
|
204
|
-
# ?S = :lemans
|
|
205
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
206
|
-
# ----------------------------------------------------------------------
|
|
207
|
-
|
|
208
11
|
:lemans :path :tours .
|
|
209
|
-
|
|
210
|
-
# ----------------------------------------------------------------------
|
|
211
|
-
# Proof for derived triple:
|
|
212
|
-
# :angers :path :nantes .
|
|
213
|
-
# It holds because the following instance of the rule body is provable:
|
|
214
|
-
# :oneway rdfs:subPropertyOf :path .
|
|
215
|
-
# :angers :oneway :nantes .
|
|
216
|
-
# via the schematic forward rule:
|
|
217
|
-
# {
|
|
218
|
-
# ?P rdfs:subPropertyOf ?Q .
|
|
219
|
-
# ?S ?P ?O .
|
|
220
|
-
# } => {
|
|
221
|
-
# ?S ?Q ?O .
|
|
222
|
-
# } .
|
|
223
|
-
# with substitution (on rule variables):
|
|
224
|
-
# ?O = :nantes
|
|
225
|
-
# ?P = :oneway
|
|
226
|
-
# ?Q = :path
|
|
227
|
-
# ?S = :angers
|
|
228
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
229
|
-
# ----------------------------------------------------------------------
|
|
230
|
-
|
|
231
12
|
:angers :path :nantes .
|
|
232
|
-
|
|
233
|
-
# ----------------------------------------------------------------------
|
|
234
|
-
# Proof for derived triple:
|
|
235
|
-
# :lemans :path :nantes .
|
|
236
|
-
# It holds because the following instance of the rule body is provable:
|
|
237
|
-
# :path a owl:TransitiveProperty .
|
|
238
|
-
# :lemans :path :angers .
|
|
239
|
-
# :angers :path :nantes .
|
|
240
|
-
# via the schematic forward rule:
|
|
241
|
-
# {
|
|
242
|
-
# ?P a owl:TransitiveProperty .
|
|
243
|
-
# ?S ?P ?X .
|
|
244
|
-
# ?X ?P ?O .
|
|
245
|
-
# } => {
|
|
246
|
-
# ?S ?P ?O .
|
|
247
|
-
# } .
|
|
248
|
-
# with substitution (on rule variables):
|
|
249
|
-
# ?O = :nantes
|
|
250
|
-
# ?P = :path
|
|
251
|
-
# ?S = :lemans
|
|
252
|
-
# ?X = :angers
|
|
253
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
254
|
-
# ----------------------------------------------------------------------
|
|
255
|
-
|
|
256
13
|
:lemans :path :nantes .
|
|
257
|
-
|
|
258
|
-
# ----------------------------------------------------------------------
|
|
259
|
-
# Proof for derived triple:
|
|
260
|
-
# :chartres :path :angers .
|
|
261
|
-
# It holds because the following instance of the rule body is provable:
|
|
262
|
-
# :path a owl:TransitiveProperty .
|
|
263
|
-
# :chartres :path :lemans .
|
|
264
|
-
# :lemans :path :angers .
|
|
265
|
-
# via the schematic forward rule:
|
|
266
|
-
# {
|
|
267
|
-
# ?P a owl:TransitiveProperty .
|
|
268
|
-
# ?S ?P ?X .
|
|
269
|
-
# ?X ?P ?O .
|
|
270
|
-
# } => {
|
|
271
|
-
# ?S ?P ?O .
|
|
272
|
-
# } .
|
|
273
|
-
# with substitution (on rule variables):
|
|
274
|
-
# ?O = :angers
|
|
275
|
-
# ?P = :path
|
|
276
|
-
# ?S = :chartres
|
|
277
|
-
# ?X = :lemans
|
|
278
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
279
|
-
# ----------------------------------------------------------------------
|
|
280
|
-
|
|
281
14
|
:chartres :path :angers .
|
|
282
|
-
|
|
283
|
-
# ----------------------------------------------------------------------
|
|
284
|
-
# Proof for derived triple:
|
|
285
|
-
# :chartres :path :tours .
|
|
286
|
-
# It holds because the following instance of the rule body is provable:
|
|
287
|
-
# :path a owl:TransitiveProperty .
|
|
288
|
-
# :chartres :path :lemans .
|
|
289
|
-
# :lemans :path :tours .
|
|
290
|
-
# via the schematic forward rule:
|
|
291
|
-
# {
|
|
292
|
-
# ?P a owl:TransitiveProperty .
|
|
293
|
-
# ?S ?P ?X .
|
|
294
|
-
# ?X ?P ?O .
|
|
295
|
-
# } => {
|
|
296
|
-
# ?S ?P ?O .
|
|
297
|
-
# } .
|
|
298
|
-
# with substitution (on rule variables):
|
|
299
|
-
# ?O = :tours
|
|
300
|
-
# ?P = :path
|
|
301
|
-
# ?S = :chartres
|
|
302
|
-
# ?X = :lemans
|
|
303
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
304
|
-
# ----------------------------------------------------------------------
|
|
305
|
-
|
|
306
15
|
:chartres :path :tours .
|
|
307
|
-
|
|
308
|
-
# ----------------------------------------------------------------------
|
|
309
|
-
# Proof for derived triple:
|
|
310
|
-
# :orleans :path :tours .
|
|
311
|
-
# It holds because the following instance of the rule body is provable:
|
|
312
|
-
# :path a owl:TransitiveProperty .
|
|
313
|
-
# :orleans :path :blois .
|
|
314
|
-
# :blois :path :tours .
|
|
315
|
-
# via the schematic forward rule:
|
|
316
|
-
# {
|
|
317
|
-
# ?P a owl:TransitiveProperty .
|
|
318
|
-
# ?S ?P ?X .
|
|
319
|
-
# ?X ?P ?O .
|
|
320
|
-
# } => {
|
|
321
|
-
# ?S ?P ?O .
|
|
322
|
-
# } .
|
|
323
|
-
# with substitution (on rule variables):
|
|
324
|
-
# ?O = :tours
|
|
325
|
-
# ?P = :path
|
|
326
|
-
# ?S = :orleans
|
|
327
|
-
# ?X = :blois
|
|
328
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
329
|
-
# ----------------------------------------------------------------------
|
|
330
|
-
|
|
331
16
|
:orleans :path :tours .
|
|
332
|
-
|
|
333
|
-
# ----------------------------------------------------------------------
|
|
334
|
-
# Proof for derived triple:
|
|
335
|
-
# :paris :path :lemans .
|
|
336
|
-
# It holds because the following instance of the rule body is provable:
|
|
337
|
-
# :path a owl:TransitiveProperty .
|
|
338
|
-
# :paris :path :chartres .
|
|
339
|
-
# :chartres :path :lemans .
|
|
340
|
-
# via the schematic forward rule:
|
|
341
|
-
# {
|
|
342
|
-
# ?P a owl:TransitiveProperty .
|
|
343
|
-
# ?S ?P ?X .
|
|
344
|
-
# ?X ?P ?O .
|
|
345
|
-
# } => {
|
|
346
|
-
# ?S ?P ?O .
|
|
347
|
-
# } .
|
|
348
|
-
# with substitution (on rule variables):
|
|
349
|
-
# ?O = :lemans
|
|
350
|
-
# ?P = :path
|
|
351
|
-
# ?S = :paris
|
|
352
|
-
# ?X = :chartres
|
|
353
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
354
|
-
# ----------------------------------------------------------------------
|
|
355
|
-
|
|
356
17
|
:paris :path :lemans .
|
|
357
|
-
|
|
358
|
-
# ----------------------------------------------------------------------
|
|
359
|
-
# Proof for derived triple:
|
|
360
|
-
# :paris :path :blois .
|
|
361
|
-
# It holds because the following instance of the rule body is provable:
|
|
362
|
-
# :path a owl:TransitiveProperty .
|
|
363
|
-
# :paris :path :orleans .
|
|
364
|
-
# :orleans :path :blois .
|
|
365
|
-
# via the schematic forward rule:
|
|
366
|
-
# {
|
|
367
|
-
# ?P a owl:TransitiveProperty .
|
|
368
|
-
# ?S ?P ?X .
|
|
369
|
-
# ?X ?P ?O .
|
|
370
|
-
# } => {
|
|
371
|
-
# ?S ?P ?O .
|
|
372
|
-
# } .
|
|
373
|
-
# with substitution (on rule variables):
|
|
374
|
-
# ?O = :blois
|
|
375
|
-
# ?P = :path
|
|
376
|
-
# ?S = :paris
|
|
377
|
-
# ?X = :orleans
|
|
378
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
379
|
-
# ----------------------------------------------------------------------
|
|
380
|
-
|
|
381
18
|
:paris :path :blois .
|
|
382
|
-
|
|
383
|
-
# ----------------------------------------------------------------------
|
|
384
|
-
# Proof for derived triple:
|
|
385
|
-
# :paris :path :bourges .
|
|
386
|
-
# It holds because the following instance of the rule body is provable:
|
|
387
|
-
# :path a owl:TransitiveProperty .
|
|
388
|
-
# :paris :path :orleans .
|
|
389
|
-
# :orleans :path :bourges .
|
|
390
|
-
# via the schematic forward rule:
|
|
391
|
-
# {
|
|
392
|
-
# ?P a owl:TransitiveProperty .
|
|
393
|
-
# ?S ?P ?X .
|
|
394
|
-
# ?X ?P ?O .
|
|
395
|
-
# } => {
|
|
396
|
-
# ?S ?P ?O .
|
|
397
|
-
# } .
|
|
398
|
-
# with substitution (on rule variables):
|
|
399
|
-
# ?O = :bourges
|
|
400
|
-
# ?P = :path
|
|
401
|
-
# ?S = :paris
|
|
402
|
-
# ?X = :orleans
|
|
403
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
404
|
-
# ----------------------------------------------------------------------
|
|
405
|
-
|
|
406
19
|
:paris :path :bourges .
|
|
407
|
-
|
|
408
|
-
# ----------------------------------------------------------------------
|
|
409
|
-
# Proof for derived triple:
|
|
410
|
-
# :paris :path :tours .
|
|
411
|
-
# It holds because the following instance of the rule body is provable:
|
|
412
|
-
# :path a owl:TransitiveProperty .
|
|
413
|
-
# :paris :path :blois .
|
|
414
|
-
# :blois :path :tours .
|
|
415
|
-
# via the schematic forward rule:
|
|
416
|
-
# {
|
|
417
|
-
# ?P a owl:TransitiveProperty .
|
|
418
|
-
# ?S ?P ?X .
|
|
419
|
-
# ?X ?P ?O .
|
|
420
|
-
# } => {
|
|
421
|
-
# ?S ?P ?O .
|
|
422
|
-
# } .
|
|
423
|
-
# with substitution (on rule variables):
|
|
424
|
-
# ?O = :tours
|
|
425
|
-
# ?P = :path
|
|
426
|
-
# ?S = :paris
|
|
427
|
-
# ?X = :blois
|
|
428
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
429
|
-
# ----------------------------------------------------------------------
|
|
430
|
-
|
|
431
20
|
:paris :path :tours .
|
|
432
|
-
|
|
433
|
-
# ----------------------------------------------------------------------
|
|
434
|
-
# Proof for derived triple:
|
|
435
|
-
# :paris :path :angers .
|
|
436
|
-
# It holds because the following instance of the rule body is provable:
|
|
437
|
-
# :path a owl:TransitiveProperty .
|
|
438
|
-
# :paris :path :lemans .
|
|
439
|
-
# :lemans :path :angers .
|
|
440
|
-
# via the schematic forward rule:
|
|
441
|
-
# {
|
|
442
|
-
# ?P a owl:TransitiveProperty .
|
|
443
|
-
# ?S ?P ?X .
|
|
444
|
-
# ?X ?P ?O .
|
|
445
|
-
# } => {
|
|
446
|
-
# ?S ?P ?O .
|
|
447
|
-
# } .
|
|
448
|
-
# with substitution (on rule variables):
|
|
449
|
-
# ?O = :angers
|
|
450
|
-
# ?P = :path
|
|
451
|
-
# ?S = :paris
|
|
452
|
-
# ?X = :lemans
|
|
453
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
454
|
-
# ----------------------------------------------------------------------
|
|
455
|
-
|
|
456
21
|
:paris :path :angers .
|
|
457
|
-
|
|
458
|
-
# ----------------------------------------------------------------------
|
|
459
|
-
# Proof for derived triple:
|
|
460
|
-
# :paris :path :nantes .
|
|
461
|
-
# It holds because the following instance of the rule body is provable:
|
|
462
|
-
# :path a owl:TransitiveProperty .
|
|
463
|
-
# :paris :path :lemans .
|
|
464
|
-
# :lemans :path :nantes .
|
|
465
|
-
# via the schematic forward rule:
|
|
466
|
-
# {
|
|
467
|
-
# ?P a owl:TransitiveProperty .
|
|
468
|
-
# ?S ?P ?X .
|
|
469
|
-
# ?X ?P ?O .
|
|
470
|
-
# } => {
|
|
471
|
-
# ?S ?P ?O .
|
|
472
|
-
# } .
|
|
473
|
-
# with substitution (on rule variables):
|
|
474
|
-
# ?O = :nantes
|
|
475
|
-
# ?P = :path
|
|
476
|
-
# ?S = :paris
|
|
477
|
-
# ?X = :lemans
|
|
478
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
479
|
-
# ----------------------------------------------------------------------
|
|
480
|
-
|
|
481
22
|
:paris :path :nantes .
|
|
482
|
-
|
|
483
|
-
# ----------------------------------------------------------------------
|
|
484
|
-
# Proof for derived triple:
|
|
485
|
-
# :chartres :path :nantes .
|
|
486
|
-
# It holds because the following instance of the rule body is provable:
|
|
487
|
-
# :path a owl:TransitiveProperty .
|
|
488
|
-
# :chartres :path :angers .
|
|
489
|
-
# :angers :path :nantes .
|
|
490
|
-
# via the schematic forward rule:
|
|
491
|
-
# {
|
|
492
|
-
# ?P a owl:TransitiveProperty .
|
|
493
|
-
# ?S ?P ?X .
|
|
494
|
-
# ?X ?P ?O .
|
|
495
|
-
# } => {
|
|
496
|
-
# ?S ?P ?O .
|
|
497
|
-
# } .
|
|
498
|
-
# with substitution (on rule variables):
|
|
499
|
-
# ?O = :nantes
|
|
500
|
-
# ?P = :path
|
|
501
|
-
# ?S = :chartres
|
|
502
|
-
# ?X = :angers
|
|
503
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
504
|
-
# ----------------------------------------------------------------------
|
|
505
|
-
|
|
506
23
|
:chartres :path :nantes .
|
|
507
|
-
|
|
@@ -1,27 +1,5 @@
|
|
|
1
1
|
@prefix : <https://eyereasoner.github.io/ns#> .
|
|
2
2
|
|
|
3
|
-
# ----------------------------------------------------------------------
|
|
4
|
-
# Proof for derived triple:
|
|
5
|
-
# :test :is {
|
|
6
|
-
# :joe :is (:good :Cobbler) .
|
|
7
|
-
# } .
|
|
8
|
-
# It holds because the following instance of the rule body is provable:
|
|
9
|
-
# :joe :is (:good :Cobbler) .
|
|
10
|
-
# via the schematic forward rule:
|
|
11
|
-
# {
|
|
12
|
-
# ?X :is (:good ?Y) .
|
|
13
|
-
# } => {
|
|
14
|
-
# :test :is {
|
|
15
|
-
# ?X :is (:good ?Y) .
|
|
16
|
-
# } .
|
|
17
|
-
# } .
|
|
18
|
-
# with substitution (on rule variables):
|
|
19
|
-
# ?X = :joe
|
|
20
|
-
# ?Y = :Cobbler
|
|
21
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
22
|
-
# ----------------------------------------------------------------------
|
|
23
|
-
|
|
24
3
|
:test :is {
|
|
25
4
|
:joe :is (:good :Cobbler) .
|
|
26
5
|
} .
|
|
27
|
-
|
package/examples/output/gps.n3
CHANGED
|
@@ -2,67 +2,5 @@
|
|
|
2
2
|
@prefix gps: <https://eyereasoner.github.io/eye/reasoning/gps/gps-schema#> .
|
|
3
3
|
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
|
|
4
4
|
|
|
5
|
-
# ----------------------------------------------------------------------
|
|
6
|
-
# Proof for derived triple:
|
|
7
|
-
# :i1 gps:path ((:drive_gent_kortrijk :drive_kortrijk_brugge :drive_brugge_oostende) "4100"^^xsd:decimal "0.018"^^xsd:decimal "0.903168"^^xsd:decimal "0.9801"^^xsd:decimal) .
|
|
8
|
-
# It holds because the following instance of the rule body is provable:
|
|
9
|
-
# :i1 :location :Gent .
|
|
10
|
-
# ({
|
|
11
|
-
# :i1 :location :Gent .
|
|
12
|
-
# } {
|
|
13
|
-
# :i1 :location :Oostende .
|
|
14
|
-
# } (:drive_gent_kortrijk :drive_kortrijk_brugge :drive_brugge_oostende) "4100"^^xsd:decimal "0.018"^^xsd:decimal "0.903168"^^xsd:decimal "0.9801"^^xsd:decimal) :path true .
|
|
15
|
-
# via the schematic forward rule:
|
|
16
|
-
# {
|
|
17
|
-
# :i1 :location :Gent .
|
|
18
|
-
# ({
|
|
19
|
-
# :i1 :location :Gent .
|
|
20
|
-
# } {
|
|
21
|
-
# :i1 :location :Oostende .
|
|
22
|
-
# } ?Acts ?Dur ?Cost ?Bel ?Comf) :path true .
|
|
23
|
-
# } => {
|
|
24
|
-
# :i1 gps:path (?Acts ?Dur ?Cost ?Bel ?Comf) .
|
|
25
|
-
# } .
|
|
26
|
-
# with substitution (on rule variables):
|
|
27
|
-
# ?Acts = (:drive_gent_kortrijk :drive_kortrijk_brugge :drive_brugge_oostende)
|
|
28
|
-
# ?Bel = "0.903168"^^xsd:decimal
|
|
29
|
-
# ?Comf = "0.9801"^^xsd:decimal
|
|
30
|
-
# ?Cost = "0.018"^^xsd:decimal
|
|
31
|
-
# ?Dur = "4100"^^xsd:decimal
|
|
32
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
33
|
-
# ----------------------------------------------------------------------
|
|
34
|
-
|
|
35
5
|
:i1 gps:path ((:drive_gent_kortrijk :drive_kortrijk_brugge :drive_brugge_oostende) "4100"^^xsd:decimal "0.018"^^xsd:decimal "0.903168"^^xsd:decimal "0.9801"^^xsd:decimal) .
|
|
36
|
-
|
|
37
|
-
# ----------------------------------------------------------------------
|
|
38
|
-
# Proof for derived triple:
|
|
39
|
-
# :i1 gps:path ((:drive_gent_brugge :drive_brugge_oostende) "2400"^^xsd:decimal "0.01"^^xsd:decimal "0.9408"^^xsd:decimal "0.99"^^xsd:decimal) .
|
|
40
|
-
# It holds because the following instance of the rule body is provable:
|
|
41
|
-
# :i1 :location :Gent .
|
|
42
|
-
# ({
|
|
43
|
-
# :i1 :location :Gent .
|
|
44
|
-
# } {
|
|
45
|
-
# :i1 :location :Oostende .
|
|
46
|
-
# } (:drive_gent_brugge :drive_brugge_oostende) "2400"^^xsd:decimal "0.01"^^xsd:decimal "0.9408"^^xsd:decimal "0.99"^^xsd:decimal) :path true .
|
|
47
|
-
# via the schematic forward rule:
|
|
48
|
-
# {
|
|
49
|
-
# :i1 :location :Gent .
|
|
50
|
-
# ({
|
|
51
|
-
# :i1 :location :Gent .
|
|
52
|
-
# } {
|
|
53
|
-
# :i1 :location :Oostende .
|
|
54
|
-
# } ?Acts ?Dur ?Cost ?Bel ?Comf) :path true .
|
|
55
|
-
# } => {
|
|
56
|
-
# :i1 gps:path (?Acts ?Dur ?Cost ?Bel ?Comf) .
|
|
57
|
-
# } .
|
|
58
|
-
# with substitution (on rule variables):
|
|
59
|
-
# ?Acts = (:drive_gent_brugge :drive_brugge_oostende)
|
|
60
|
-
# ?Bel = "0.9408"^^xsd:decimal
|
|
61
|
-
# ?Comf = "0.99"^^xsd:decimal
|
|
62
|
-
# ?Cost = "0.01"^^xsd:decimal
|
|
63
|
-
# ?Dur = "2400"^^xsd:decimal
|
|
64
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
65
|
-
# ----------------------------------------------------------------------
|
|
66
|
-
|
|
67
6
|
:i1 gps:path ((:drive_gent_brugge :drive_brugge_oostende) "2400"^^xsd:decimal "0.01"^^xsd:decimal "0.9408"^^xsd:decimal "0.99"^^xsd:decimal) .
|
|
68
|
-
|
|
@@ -1,20 +1,3 @@
|
|
|
1
1
|
@prefix : <https://eyereasoner.github.io/eye/reasoning#> .
|
|
2
2
|
|
|
3
|
-
# ----------------------------------------------------------------------
|
|
4
|
-
# Proof for derived triple:
|
|
5
|
-
# ((1 1 1 1 1 1 1 1 1) (0 0 0)) :isgcc ((0 0 1) (0 1 1) (0 1 0) (1 1 0) (1 1 1) (1 0 1) (1 0 0) (0 0 0) (0 0 1)) .
|
|
6
|
-
# It holds because the following instance of the rule body is provable:
|
|
7
|
-
# ((1 1 1 1 1 1 1 1 1) (0 0 0)) :testgcc ((0 0 1) (0 1 1) (0 1 0) (1 1 0) (1 1 1) (1 0 1) (1 0 0) (0 0 0) (0 0 1)) .
|
|
8
|
-
# via the schematic forward rule:
|
|
9
|
-
# {
|
|
10
|
-
# ((1 1 1 1 1 1 1 1 1) (0 0 0)) :testgcc ?Q .
|
|
11
|
-
# } => {
|
|
12
|
-
# ((1 1 1 1 1 1 1 1 1) (0 0 0)) :isgcc ?Q .
|
|
13
|
-
# } .
|
|
14
|
-
# with substitution (on rule variables):
|
|
15
|
-
# ?Q = ((0 0 1) (0 1 1) (0 1 0) (1 1 0) (1 1 1) (1 0 1) (1 0 0) (0 0 0) (0 0 1))
|
|
16
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
17
|
-
# ----------------------------------------------------------------------
|
|
18
|
-
|
|
19
3
|
((1 1 1 1 1 1 1 1 1) (0 0 0)) :isgcc ((0 0 1) (0 1 1) (0 1 0) (1 1 0) (1 1 1) (1 0 1) (1 0 0) (0 0 0) (0 0 1)) .
|
|
20
|
-
|
package/examples/output/hanoi.n3
CHANGED
|
@@ -1,20 +1,3 @@
|
|
|
1
1
|
@prefix : <https://eyereasoner.github.io/eye/reasoning#> .
|
|
2
2
|
|
|
3
|
-
# ----------------------------------------------------------------------
|
|
4
|
-
# Proof for derived triple:
|
|
5
|
-
# 3 :answer ((:left :right) (:left :center) (:right :center) (:left :right) (:center :left) (:center :right) (:left :right)) .
|
|
6
|
-
# It holds because the following instance of the rule body is provable:
|
|
7
|
-
# (3 :left :right :center) :moves ((:left :right) (:left :center) (:right :center) (:left :right) (:center :left) (:center :right) (:left :right)) .
|
|
8
|
-
# via the schematic forward rule:
|
|
9
|
-
# {
|
|
10
|
-
# (3 :left :right :center) :moves ?M .
|
|
11
|
-
# } => {
|
|
12
|
-
# 3 :answer ?M .
|
|
13
|
-
# } .
|
|
14
|
-
# with substitution (on rule variables):
|
|
15
|
-
# ?M = ((:left :right) (:left :center) (:right :center) (:left :right) (:center :left) (:center :right) (:left :right))
|
|
16
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
17
|
-
# ----------------------------------------------------------------------
|
|
18
|
-
|
|
19
3
|
3 :answer ((:left :right) (:left :center) (:right :center) (:left :right) (:center :left) (:center :right) (:left :right)) .
|
|
20
|
-
|