eyeling 1.6.13 → 1.6.14
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/examples/output/age.n3 +0 -17
- package/examples/output/alignment-demo.n3 +0 -572
- package/examples/output/backward.n3 +0 -15
- package/examples/output/basic-monadic.n3 +0 -105
- package/examples/output/brussels-brew-club.n3 +0 -476
- package/examples/output/cat-koko.n3 +0 -108
- package/examples/output/cobalt-kepler-kitchen.n3 +0 -7064
- package/examples/output/complex.n3 +0 -46
- package/examples/output/control-system.n3 +0 -75
- package/examples/output/cranberry-calculus.n3 +0 -1313
- package/examples/output/crypto-builtins-tests.n3 +0 -60
- package/examples/output/deep-taxonomy-10.n3 +0 -602
- package/examples/output/deep-taxonomy-100.n3 +1 -5733
- package/examples/output/deep-taxonomy-1000.n3 +1 -57033
- package/examples/output/deep-taxonomy-10000.n3 +1 -570033
- package/examples/output/derived-backward-rule-2.n3 +0 -58
- package/examples/output/derived-backward-rule.n3 +0 -44
- package/examples/output/derived-rule.n3 +0 -42
- package/examples/output/dijkstra.n3 +0 -297
- package/examples/output/dog.n3 +0 -30
- package/examples/output/drone-corridor-planner.n3 +0 -799
- package/examples/output/easter.n3 +0 -3570
- package/examples/output/equals.n3 +0 -15
- package/examples/output/ev-roundtrip-planner.n3 +0 -392
- package/examples/output/existential-rule.n3 +0 -34
- package/examples/output/expression-eval.n3 +0 -20
- package/examples/output/family-cousins.n3 +0 -636
- package/examples/output/fibonacci.n3 +0 -36
- package/examples/output/french-cities.n3 +0 -484
- package/examples/output/good-cobbler.n3 +0 -22
- package/examples/output/gps.n3 +0 -62
- package/examples/output/gray-code-counter.n3 +0 -17
- package/examples/output/hanoi.n3 +0 -17
- package/examples/output/jade-eigen-loom.n3 +0 -4690
- package/examples/output/json-pointer.n3 +0 -529
- package/examples/output/json-reconcile-vat.n3 +0 -12882
- package/examples/output/light-eaters.n3 +0 -311
- package/examples/output/list-builtins-tests.n3 +0 -167
- package/examples/output/list-iterate.n3 +0 -124
- package/examples/output/lldm.n3 +0 -960
- package/examples/output/log-collect-all-in.n3 +0 -117
- package/examples/output/log-for-all-in.n3 +0 -27
- package/examples/output/log-not-includes.n3 +0 -59
- package/examples/output/log-skolem.n3 +0 -17
- package/examples/output/log-uri.n3 +0 -42
- package/examples/output/math-builtins-tests.n3 +0 -4434
- package/examples/output/minimal-skos-alignment.n3 +0 -39
- package/examples/output/monkey.n3 +0 -36
- package/examples/output/odrl-trust.n3 +0 -46
- package/examples/output/oslo-steps-library-scholarly.n3 +0 -1260
- package/examples/output/oslo-steps-workflow-composition.n3 +0 -180
- package/examples/output/peano.n3 +0 -23
- package/examples/output/pi.n3 +0 -17
- package/examples/output/pillar.n3 +0 -32
- package/examples/output/polygon.n3 +0 -17
- package/examples/output/rdf-list.n3 +0 -28
- package/examples/output/reordering.n3 +0 -26
- package/examples/output/ruby-runge-workshop.n3 +0 -613
- package/examples/output/rule-matching.n3 +0 -26
- package/examples/output/saffron-slopeworks.n3 +0 -1447
- package/examples/output/self-referential.n3 +0 -81
- package/examples/output/similar.n3 +0 -15
- package/examples/output/snaf.n3 +0 -23
- package/examples/output/socrates.n3 +0 -21
- package/examples/output/spectral-week.n3 +0 -350
- package/examples/output/string-builtins-tests.n3 +0 -240
- package/examples/output/topaz-markov-mill.n3 +0 -4178
- package/examples/output/traffic-skos-aggregate.n3 +0 -3151
- package/examples/output/turing.n3 +0 -36
- package/examples/output/ultramarine-simpson-forge.n3 +0 -3873
- package/examples/output/witch.n3 +0 -107
- package/examples/output/zebra.n3 +0 -111
- package/eyeling.js +97 -18
- package/package.json +1 -1
- package/test/examples.test.js +1 -1
|
@@ -1,327 +1,16 @@
|
|
|
1
1
|
@prefix : <http://example.org/light-eaters#> .
|
|
2
2
|
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
|
|
3
3
|
|
|
4
|
-
# ----------------------------------------------------------------------
|
|
5
|
-
# Proof for derived triple:
|
|
6
|
-
# :Forest :dailyLightEnergy "200"^^xsd:decimal .
|
|
7
|
-
# It holds because the following instance of the rule body is provable:
|
|
8
|
-
# :Today :lightHours 10.0 .
|
|
9
|
-
# :Forest :lightIntensity 20.0 .
|
|
10
|
-
# (20.0 10.0) math:product "200"^^xsd:decimal .
|
|
11
|
-
# via the schematic forward rule:
|
|
12
|
-
# {
|
|
13
|
-
# :Today :lightHours ?H .
|
|
14
|
-
# ?Place :lightIntensity ?I .
|
|
15
|
-
# (?I ?H) math:product ?E .
|
|
16
|
-
# } => {
|
|
17
|
-
# ?Place :dailyLightEnergy ?E .
|
|
18
|
-
# } .
|
|
19
|
-
# with substitution (on rule variables):
|
|
20
|
-
# ?E = "200"^^xsd:decimal
|
|
21
|
-
# ?H = 10.0
|
|
22
|
-
# ?I = 20.0
|
|
23
|
-
# ?Place = :Forest
|
|
24
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
25
|
-
# ----------------------------------------------------------------------
|
|
26
|
-
|
|
27
4
|
:Forest :dailyLightEnergy "200"^^xsd:decimal .
|
|
28
|
-
|
|
29
|
-
# ----------------------------------------------------------------------
|
|
30
|
-
# Proof for derived triple:
|
|
31
|
-
# :Meadow :dailyLightEnergy "1000"^^xsd:decimal .
|
|
32
|
-
# It holds because the following instance of the rule body is provable:
|
|
33
|
-
# :Today :lightHours 10.0 .
|
|
34
|
-
# :Meadow :lightIntensity 100.0 .
|
|
35
|
-
# (100.0 10.0) math:product "1000"^^xsd:decimal .
|
|
36
|
-
# via the schematic forward rule:
|
|
37
|
-
# {
|
|
38
|
-
# :Today :lightHours ?H .
|
|
39
|
-
# ?Place :lightIntensity ?I .
|
|
40
|
-
# (?I ?H) math:product ?E .
|
|
41
|
-
# } => {
|
|
42
|
-
# ?Place :dailyLightEnergy ?E .
|
|
43
|
-
# } .
|
|
44
|
-
# with substitution (on rule variables):
|
|
45
|
-
# ?E = "1000"^^xsd:decimal
|
|
46
|
-
# ?H = 10.0
|
|
47
|
-
# ?I = 100.0
|
|
48
|
-
# ?Place = :Meadow
|
|
49
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
50
|
-
# ----------------------------------------------------------------------
|
|
51
|
-
|
|
52
5
|
:Meadow :dailyLightEnergy "1000"^^xsd:decimal .
|
|
53
|
-
|
|
54
|
-
# ----------------------------------------------------------------------
|
|
55
|
-
# Proof for derived triple:
|
|
56
|
-
# :Fern :storedEnergy "50"^^xsd:decimal .
|
|
57
|
-
# It holds because the following instance of the rule body is provable:
|
|
58
|
-
# :Fern a :Plant .
|
|
59
|
-
# :Fern :location :Forest .
|
|
60
|
-
# :Forest :dailyLightEnergy "200"^^xsd:decimal .
|
|
61
|
-
# :Fern :efficiency 0.25 .
|
|
62
|
-
# ("200"^^xsd:decimal 0.25) math:product "50"^^xsd:decimal .
|
|
63
|
-
# via the schematic forward rule:
|
|
64
|
-
# {
|
|
65
|
-
# ?Plant a :Plant .
|
|
66
|
-
# ?Plant :location ?Place .
|
|
67
|
-
# ?Place :dailyLightEnergy ?E .
|
|
68
|
-
# ?Plant :efficiency ?Eff .
|
|
69
|
-
# (?E ?Eff) math:product ?Stored .
|
|
70
|
-
# } => {
|
|
71
|
-
# ?Plant :storedEnergy ?Stored .
|
|
72
|
-
# } .
|
|
73
|
-
# with substitution (on rule variables):
|
|
74
|
-
# ?E = "200"^^xsd:decimal
|
|
75
|
-
# ?Eff = 0.25
|
|
76
|
-
# ?Place = :Forest
|
|
77
|
-
# ?Plant = :Fern
|
|
78
|
-
# ?Stored = "50"^^xsd:decimal
|
|
79
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
80
|
-
# ----------------------------------------------------------------------
|
|
81
|
-
|
|
82
6
|
:Fern :storedEnergy "50"^^xsd:decimal .
|
|
83
|
-
|
|
84
|
-
# ----------------------------------------------------------------------
|
|
85
|
-
# Proof for derived triple:
|
|
86
|
-
# :Sunflower :storedEnergy "250"^^xsd:decimal .
|
|
87
|
-
# It holds because the following instance of the rule body is provable:
|
|
88
|
-
# :Sunflower a :Plant .
|
|
89
|
-
# :Sunflower :location :Meadow .
|
|
90
|
-
# :Meadow :dailyLightEnergy "1000"^^xsd:decimal .
|
|
91
|
-
# :Sunflower :efficiency 0.25 .
|
|
92
|
-
# ("1000"^^xsd:decimal 0.25) math:product "250"^^xsd:decimal .
|
|
93
|
-
# via the schematic forward rule:
|
|
94
|
-
# {
|
|
95
|
-
# ?Plant a :Plant .
|
|
96
|
-
# ?Plant :location ?Place .
|
|
97
|
-
# ?Place :dailyLightEnergy ?E .
|
|
98
|
-
# ?Plant :efficiency ?Eff .
|
|
99
|
-
# (?E ?Eff) math:product ?Stored .
|
|
100
|
-
# } => {
|
|
101
|
-
# ?Plant :storedEnergy ?Stored .
|
|
102
|
-
# } .
|
|
103
|
-
# with substitution (on rule variables):
|
|
104
|
-
# ?E = "1000"^^xsd:decimal
|
|
105
|
-
# ?Eff = 0.25
|
|
106
|
-
# ?Place = :Meadow
|
|
107
|
-
# ?Plant = :Sunflower
|
|
108
|
-
# ?Stored = "250"^^xsd:decimal
|
|
109
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
110
|
-
# ----------------------------------------------------------------------
|
|
111
|
-
|
|
112
7
|
:Sunflower :storedEnergy "250"^^xsd:decimal .
|
|
113
|
-
|
|
114
|
-
# ----------------------------------------------------------------------
|
|
115
|
-
# Proof for derived triple:
|
|
116
|
-
# :Sunflower :netEnergy "100"^^xsd:decimal .
|
|
117
|
-
# It holds because the following instance of the rule body is provable:
|
|
118
|
-
# :Sunflower :storedEnergy "250"^^xsd:decimal .
|
|
119
|
-
# :Sunflower :maintenance 150.0 .
|
|
120
|
-
# ("250"^^xsd:decimal 150.0) math:difference "100"^^xsd:decimal .
|
|
121
|
-
# via the schematic forward rule:
|
|
122
|
-
# {
|
|
123
|
-
# ?Org :storedEnergy ?Stored .
|
|
124
|
-
# ?Org :maintenance ?Maint .
|
|
125
|
-
# (?Stored ?Maint) math:difference ?Net .
|
|
126
|
-
# } => {
|
|
127
|
-
# ?Org :netEnergy ?Net .
|
|
128
|
-
# } .
|
|
129
|
-
# with substitution (on rule variables):
|
|
130
|
-
# ?Maint = 150.0
|
|
131
|
-
# ?Net = "100"^^xsd:decimal
|
|
132
|
-
# ?Org = :Sunflower
|
|
133
|
-
# ?Stored = "250"^^xsd:decimal
|
|
134
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
135
|
-
# ----------------------------------------------------------------------
|
|
136
|
-
|
|
137
8
|
:Sunflower :netEnergy "100"^^xsd:decimal .
|
|
138
|
-
|
|
139
|
-
# ----------------------------------------------------------------------
|
|
140
|
-
# Proof for derived triple:
|
|
141
|
-
# :Fern :netEnergy "-100"^^xsd:decimal .
|
|
142
|
-
# It holds because the following instance of the rule body is provable:
|
|
143
|
-
# :Fern :storedEnergy "50"^^xsd:decimal .
|
|
144
|
-
# :Fern :maintenance 150.0 .
|
|
145
|
-
# ("50"^^xsd:decimal 150.0) math:difference "-100"^^xsd:decimal .
|
|
146
|
-
# via the schematic forward rule:
|
|
147
|
-
# {
|
|
148
|
-
# ?Org :storedEnergy ?Stored .
|
|
149
|
-
# ?Org :maintenance ?Maint .
|
|
150
|
-
# (?Stored ?Maint) math:difference ?Net .
|
|
151
|
-
# } => {
|
|
152
|
-
# ?Org :netEnergy ?Net .
|
|
153
|
-
# } .
|
|
154
|
-
# with substitution (on rule variables):
|
|
155
|
-
# ?Maint = 150.0
|
|
156
|
-
# ?Net = "-100"^^xsd:decimal
|
|
157
|
-
# ?Org = :Fern
|
|
158
|
-
# ?Stored = "50"^^xsd:decimal
|
|
159
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
160
|
-
# ----------------------------------------------------------------------
|
|
161
|
-
|
|
162
9
|
:Fern :netEnergy "-100"^^xsd:decimal .
|
|
163
|
-
|
|
164
|
-
# ----------------------------------------------------------------------
|
|
165
|
-
# Proof for derived triple:
|
|
166
|
-
# :Fern :canPhotosynthesize true .
|
|
167
|
-
# It holds because the following instance of the rule body is provable:
|
|
168
|
-
# :Fern a :Plant .
|
|
169
|
-
# :Fern :chlorophyll true .
|
|
170
|
-
# :Fern :storedEnergy "50"^^xsd:decimal .
|
|
171
|
-
# ("50"^^xsd:decimal 0.0) math:greaterThan true .
|
|
172
|
-
# via the schematic forward rule:
|
|
173
|
-
# {
|
|
174
|
-
# ?Plant a :Plant .
|
|
175
|
-
# ?Plant :chlorophyll true .
|
|
176
|
-
# ?Plant :storedEnergy ?Stored .
|
|
177
|
-
# (?Stored 0.0) math:greaterThan true .
|
|
178
|
-
# } => {
|
|
179
|
-
# ?Plant :canPhotosynthesize true .
|
|
180
|
-
# ?Plant :lightEater true .
|
|
181
|
-
# } .
|
|
182
|
-
# with substitution (on rule variables):
|
|
183
|
-
# ?Plant = :Fern
|
|
184
|
-
# ?Stored = "50"^^xsd:decimal
|
|
185
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
186
|
-
# ----------------------------------------------------------------------
|
|
187
|
-
|
|
188
10
|
:Fern :canPhotosynthesize true .
|
|
189
|
-
|
|
190
|
-
# ----------------------------------------------------------------------
|
|
191
|
-
# Proof for derived triple:
|
|
192
|
-
# :Fern :lightEater true .
|
|
193
|
-
# It holds because the following instance of the rule body is provable:
|
|
194
|
-
# :Fern a :Plant .
|
|
195
|
-
# :Fern :chlorophyll true .
|
|
196
|
-
# :Fern :storedEnergy "50"^^xsd:decimal .
|
|
197
|
-
# ("50"^^xsd:decimal 0.0) math:greaterThan true .
|
|
198
|
-
# via the schematic forward rule:
|
|
199
|
-
# {
|
|
200
|
-
# ?Plant a :Plant .
|
|
201
|
-
# ?Plant :chlorophyll true .
|
|
202
|
-
# ?Plant :storedEnergy ?Stored .
|
|
203
|
-
# (?Stored 0.0) math:greaterThan true .
|
|
204
|
-
# } => {
|
|
205
|
-
# ?Plant :canPhotosynthesize true .
|
|
206
|
-
# ?Plant :lightEater true .
|
|
207
|
-
# } .
|
|
208
|
-
# with substitution (on rule variables):
|
|
209
|
-
# ?Plant = :Fern
|
|
210
|
-
# ?Stored = "50"^^xsd:decimal
|
|
211
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
212
|
-
# ----------------------------------------------------------------------
|
|
213
|
-
|
|
214
11
|
:Fern :lightEater true .
|
|
215
|
-
|
|
216
|
-
# ----------------------------------------------------------------------
|
|
217
|
-
# Proof for derived triple:
|
|
218
|
-
# :Sunflower :canPhotosynthesize true .
|
|
219
|
-
# It holds because the following instance of the rule body is provable:
|
|
220
|
-
# :Sunflower a :Plant .
|
|
221
|
-
# :Sunflower :chlorophyll true .
|
|
222
|
-
# :Sunflower :storedEnergy "250"^^xsd:decimal .
|
|
223
|
-
# ("250"^^xsd:decimal 0.0) math:greaterThan true .
|
|
224
|
-
# via the schematic forward rule:
|
|
225
|
-
# {
|
|
226
|
-
# ?Plant a :Plant .
|
|
227
|
-
# ?Plant :chlorophyll true .
|
|
228
|
-
# ?Plant :storedEnergy ?Stored .
|
|
229
|
-
# (?Stored 0.0) math:greaterThan true .
|
|
230
|
-
# } => {
|
|
231
|
-
# ?Plant :canPhotosynthesize true .
|
|
232
|
-
# ?Plant :lightEater true .
|
|
233
|
-
# } .
|
|
234
|
-
# with substitution (on rule variables):
|
|
235
|
-
# ?Plant = :Sunflower
|
|
236
|
-
# ?Stored = "250"^^xsd:decimal
|
|
237
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
238
|
-
# ----------------------------------------------------------------------
|
|
239
|
-
|
|
240
12
|
:Sunflower :canPhotosynthesize true .
|
|
241
|
-
|
|
242
|
-
# ----------------------------------------------------------------------
|
|
243
|
-
# Proof for derived triple:
|
|
244
|
-
# :Sunflower :lightEater true .
|
|
245
|
-
# It holds because the following instance of the rule body is provable:
|
|
246
|
-
# :Sunflower a :Plant .
|
|
247
|
-
# :Sunflower :chlorophyll true .
|
|
248
|
-
# :Sunflower :storedEnergy "250"^^xsd:decimal .
|
|
249
|
-
# ("250"^^xsd:decimal 0.0) math:greaterThan true .
|
|
250
|
-
# via the schematic forward rule:
|
|
251
|
-
# {
|
|
252
|
-
# ?Plant a :Plant .
|
|
253
|
-
# ?Plant :chlorophyll true .
|
|
254
|
-
# ?Plant :storedEnergy ?Stored .
|
|
255
|
-
# (?Stored 0.0) math:greaterThan true .
|
|
256
|
-
# } => {
|
|
257
|
-
# ?Plant :canPhotosynthesize true .
|
|
258
|
-
# ?Plant :lightEater true .
|
|
259
|
-
# } .
|
|
260
|
-
# with substitution (on rule variables):
|
|
261
|
-
# ?Plant = :Sunflower
|
|
262
|
-
# ?Stored = "250"^^xsd:decimal
|
|
263
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
264
|
-
# ----------------------------------------------------------------------
|
|
265
|
-
|
|
266
13
|
:Sunflower :lightEater true .
|
|
267
|
-
|
|
268
|
-
# ----------------------------------------------------------------------
|
|
269
|
-
# Proof for derived triple:
|
|
270
|
-
# :Mushroom :lightEater false .
|
|
271
|
-
# It holds because the following instance of the rule body is provable:
|
|
272
|
-
# :Mushroom a :Fungus .
|
|
273
|
-
# via the schematic forward rule:
|
|
274
|
-
# {
|
|
275
|
-
# ?X a :Fungus .
|
|
276
|
-
# } => {
|
|
277
|
-
# ?X :lightEater false .
|
|
278
|
-
# } .
|
|
279
|
-
# with substitution (on rule variables):
|
|
280
|
-
# ?X = :Mushroom
|
|
281
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
282
|
-
# ----------------------------------------------------------------------
|
|
283
|
-
|
|
284
14
|
:Mushroom :lightEater false .
|
|
285
|
-
|
|
286
|
-
# ----------------------------------------------------------------------
|
|
287
|
-
# Proof for derived triple:
|
|
288
|
-
# :Sunflower :thriving true .
|
|
289
|
-
# It holds because the following instance of the rule body is provable:
|
|
290
|
-
# :Sunflower :netEnergy "100"^^xsd:decimal .
|
|
291
|
-
# ("100"^^xsd:decimal 0.0) math:greaterThan true .
|
|
292
|
-
# via the schematic forward rule:
|
|
293
|
-
# {
|
|
294
|
-
# ?Org :netEnergy ?Net .
|
|
295
|
-
# (?Net 0.0) math:greaterThan true .
|
|
296
|
-
# } => {
|
|
297
|
-
# ?Org :thriving true .
|
|
298
|
-
# } .
|
|
299
|
-
# with substitution (on rule variables):
|
|
300
|
-
# ?Net = "100"^^xsd:decimal
|
|
301
|
-
# ?Org = :Sunflower
|
|
302
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
303
|
-
# ----------------------------------------------------------------------
|
|
304
|
-
|
|
305
15
|
:Sunflower :thriving true .
|
|
306
|
-
|
|
307
|
-
# ----------------------------------------------------------------------
|
|
308
|
-
# Proof for derived triple:
|
|
309
|
-
# :Fern :hungry true .
|
|
310
|
-
# It holds because the following instance of the rule body is provable:
|
|
311
|
-
# :Fern :netEnergy "-100"^^xsd:decimal .
|
|
312
|
-
# ("-100"^^xsd:decimal 0.0) math:notGreaterThan true .
|
|
313
|
-
# via the schematic forward rule:
|
|
314
|
-
# {
|
|
315
|
-
# ?Org :netEnergy ?Net .
|
|
316
|
-
# (?Net 0.0) math:notGreaterThan true .
|
|
317
|
-
# } => {
|
|
318
|
-
# ?Org :hungry true .
|
|
319
|
-
# } .
|
|
320
|
-
# with substitution (on rule variables):
|
|
321
|
-
# ?Net = "-100"^^xsd:decimal
|
|
322
|
-
# ?Org = :Fern
|
|
323
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
324
|
-
# ----------------------------------------------------------------------
|
|
325
|
-
|
|
326
16
|
:Fern :hungry true .
|
|
327
|
-
|
|
@@ -1,180 +1,13 @@
|
|
|
1
1
|
@prefix : <https://eyereasoner.github.io/ns#> .
|
|
2
2
|
|
|
3
|
-
# ----------------------------------------------------------------------
|
|
4
|
-
# Proof for derived triple:
|
|
5
|
-
# :ok_list_append_1 a :Pass .
|
|
6
|
-
# It holds because the following instance of the rule body is provable:
|
|
7
|
-
# ((1 2) (3 4)) list:append (1 2 3 4) .
|
|
8
|
-
# via the schematic forward rule:
|
|
9
|
-
# {
|
|
10
|
-
# ((1 2) (3 4)) list:append (1 2 3 4) .
|
|
11
|
-
# } => {
|
|
12
|
-
# :ok_list_append_1 a :Pass .
|
|
13
|
-
# } .
|
|
14
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
15
|
-
# ----------------------------------------------------------------------
|
|
16
|
-
|
|
17
3
|
:ok_list_append_1 a :Pass .
|
|
18
|
-
|
|
19
|
-
# ----------------------------------------------------------------------
|
|
20
|
-
# Proof for derived triple:
|
|
21
|
-
# :ok_list_first_1 a :Pass .
|
|
22
|
-
# It holds because the following instance of the rule body is provable:
|
|
23
|
-
# (1 2 3 4) list:first 1 .
|
|
24
|
-
# via the schematic forward rule:
|
|
25
|
-
# {
|
|
26
|
-
# (1 2 3 4) list:first 1 .
|
|
27
|
-
# } => {
|
|
28
|
-
# :ok_list_first_1 a :Pass .
|
|
29
|
-
# } .
|
|
30
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
31
|
-
# ----------------------------------------------------------------------
|
|
32
|
-
|
|
33
4
|
:ok_list_first_1 a :Pass .
|
|
34
|
-
|
|
35
|
-
# ----------------------------------------------------------------------
|
|
36
|
-
# Proof for derived triple:
|
|
37
|
-
# :ok_list_in_1 a :Pass .
|
|
38
|
-
# It holds because the following instance of the rule body is provable:
|
|
39
|
-
# "cat" list:in ("dog" "penguin" "cat") .
|
|
40
|
-
# via the schematic forward rule:
|
|
41
|
-
# {
|
|
42
|
-
# "cat" list:in ("dog" "penguin" "cat") .
|
|
43
|
-
# } => {
|
|
44
|
-
# :ok_list_in_1 a :Pass .
|
|
45
|
-
# } .
|
|
46
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
47
|
-
# ----------------------------------------------------------------------
|
|
48
|
-
|
|
49
5
|
:ok_list_in_1 a :Pass .
|
|
50
|
-
|
|
51
|
-
# ----------------------------------------------------------------------
|
|
52
|
-
# Proof for derived triple:
|
|
53
|
-
# :ok_list_iterate_1 a :Pass .
|
|
54
|
-
# It holds because the following instance of the rule body is provable:
|
|
55
|
-
# ("dog" "penguin" "cat") list:iterate (2 "cat") .
|
|
56
|
-
# via the schematic forward rule:
|
|
57
|
-
# {
|
|
58
|
-
# ("dog" "penguin" "cat") list:iterate (?index "cat") .
|
|
59
|
-
# } => {
|
|
60
|
-
# :ok_list_iterate_1 a :Pass .
|
|
61
|
-
# } .
|
|
62
|
-
# with substitution (on rule variables):
|
|
63
|
-
# ?index = 2
|
|
64
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
65
|
-
# ----------------------------------------------------------------------
|
|
66
|
-
|
|
67
6
|
:ok_list_iterate_1 a :Pass .
|
|
68
|
-
|
|
69
|
-
# ----------------------------------------------------------------------
|
|
70
|
-
# Proof for derived triple:
|
|
71
|
-
# :ok_list_last_1 a :Pass .
|
|
72
|
-
# It holds because the following instance of the rule body is provable:
|
|
73
|
-
# (1 2 3 4) list:last 4 .
|
|
74
|
-
# via the schematic forward rule:
|
|
75
|
-
# {
|
|
76
|
-
# (1 2 3 4) list:last 4 .
|
|
77
|
-
# } => {
|
|
78
|
-
# :ok_list_last_1 a :Pass .
|
|
79
|
-
# } .
|
|
80
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
81
|
-
# ----------------------------------------------------------------------
|
|
82
|
-
|
|
83
7
|
:ok_list_last_1 a :Pass .
|
|
84
|
-
|
|
85
|
-
# ----------------------------------------------------------------------
|
|
86
|
-
# Proof for derived triple:
|
|
87
|
-
# :ok_list_length_1 a :Pass .
|
|
88
|
-
# It holds because the following instance of the rule body is provable:
|
|
89
|
-
# (1 2 3 4) list:length 4 .
|
|
90
|
-
# via the schematic forward rule:
|
|
91
|
-
# {
|
|
92
|
-
# (1 2 3 4) list:length 4 .
|
|
93
|
-
# } => {
|
|
94
|
-
# :ok_list_length_1 a :Pass .
|
|
95
|
-
# } .
|
|
96
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
97
|
-
# ----------------------------------------------------------------------
|
|
98
|
-
|
|
99
8
|
:ok_list_length_1 a :Pass .
|
|
100
|
-
|
|
101
|
-
# ----------------------------------------------------------------------
|
|
102
|
-
# Proof for derived triple:
|
|
103
|
-
# :ok_list_member_1 a :Pass .
|
|
104
|
-
# It holds because the following instance of the rule body is provable:
|
|
105
|
-
# ("dog" "penguin" "cat") list:member "cat" .
|
|
106
|
-
# via the schematic forward rule:
|
|
107
|
-
# {
|
|
108
|
-
# ("dog" "penguin" "cat") list:member "cat" .
|
|
109
|
-
# } => {
|
|
110
|
-
# :ok_list_member_1 a :Pass .
|
|
111
|
-
# } .
|
|
112
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
113
|
-
# ----------------------------------------------------------------------
|
|
114
|
-
|
|
115
9
|
:ok_list_member_1 a :Pass .
|
|
116
|
-
|
|
117
|
-
# ----------------------------------------------------------------------
|
|
118
|
-
# Proof for derived triple:
|
|
119
|
-
# :ok_list_memberAt_1 a :Pass .
|
|
120
|
-
# It holds because the following instance of the rule body is provable:
|
|
121
|
-
# (("dog" "penguin" "cat") 2) list:memberAt "cat" .
|
|
122
|
-
# via the schematic forward rule:
|
|
123
|
-
# {
|
|
124
|
-
# (("dog" "penguin" "cat") 2) list:memberAt "cat" .
|
|
125
|
-
# } => {
|
|
126
|
-
# :ok_list_memberAt_1 a :Pass .
|
|
127
|
-
# } .
|
|
128
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
129
|
-
# ----------------------------------------------------------------------
|
|
130
|
-
|
|
131
10
|
:ok_list_memberAt_1 a :Pass .
|
|
132
|
-
|
|
133
|
-
# ----------------------------------------------------------------------
|
|
134
|
-
# Proof for derived triple:
|
|
135
|
-
# :ok_list_remove_1 a :Pass .
|
|
136
|
-
# It holds because the following instance of the rule body is provable:
|
|
137
|
-
# (("dog" "penguin" "cat" "penguin") "penguin") list:remove ("dog" "cat") .
|
|
138
|
-
# via the schematic forward rule:
|
|
139
|
-
# {
|
|
140
|
-
# (("dog" "penguin" "cat" "penguin") "penguin") list:remove ("dog" "cat") .
|
|
141
|
-
# } => {
|
|
142
|
-
# :ok_list_remove_1 a :Pass .
|
|
143
|
-
# } .
|
|
144
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
145
|
-
# ----------------------------------------------------------------------
|
|
146
|
-
|
|
147
11
|
:ok_list_remove_1 a :Pass .
|
|
148
|
-
|
|
149
|
-
# ----------------------------------------------------------------------
|
|
150
|
-
# Proof for derived triple:
|
|
151
|
-
# :ok_list_rest_1 a :Pass .
|
|
152
|
-
# It holds because the following instance of the rule body is provable:
|
|
153
|
-
# (1 2 3 4) list:rest (2 3 4) .
|
|
154
|
-
# via the schematic forward rule:
|
|
155
|
-
# {
|
|
156
|
-
# (1 2 3 4) list:rest (2 3 4) .
|
|
157
|
-
# } => {
|
|
158
|
-
# :ok_list_rest_1 a :Pass .
|
|
159
|
-
# } .
|
|
160
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
161
|
-
# ----------------------------------------------------------------------
|
|
162
|
-
|
|
163
12
|
:ok_list_rest_1 a :Pass .
|
|
164
|
-
|
|
165
|
-
# ----------------------------------------------------------------------
|
|
166
|
-
# Proof for derived triple:
|
|
167
|
-
# :ok_list_firstRest_1 a :Pass .
|
|
168
|
-
# It holds because the following instance of the rule body is provable:
|
|
169
|
-
# (1 2 3 4) list:firstRest (1 (2 3 4)) .
|
|
170
|
-
# via the schematic forward rule:
|
|
171
|
-
# {
|
|
172
|
-
# (1 2 3 4) list:firstRest (1 (2 3 4)) .
|
|
173
|
-
# } => {
|
|
174
|
-
# :ok_list_firstRest_1 a :Pass .
|
|
175
|
-
# } .
|
|
176
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
177
|
-
# ----------------------------------------------------------------------
|
|
178
|
-
|
|
179
13
|
:ok_list_firstRest_1 a :Pass .
|
|
180
|
-
|
|
@@ -1,131 +1,7 @@
|
|
|
1
1
|
@prefix : <urn:example:> .
|
|
2
2
|
|
|
3
|
-
# ----------------------------------------------------------------------
|
|
4
|
-
# Proof for derived triple:
|
|
5
|
-
# ("Huey" "Dewey" "Louie") :iterate (2 "Louie") .
|
|
6
|
-
# It holds because the following instance of the rule body is provable:
|
|
7
|
-
# :Let :param ("Huey" "Dewey" "Louie") .
|
|
8
|
-
# ("Huey" "Dewey" "Louie") list:iterate (2 "Louie") .
|
|
9
|
-
# ("Huey" "Dewey" "Louie") list:iterate (1 "Dewey") .
|
|
10
|
-
# ("Huey" "Dewey" "Louie") list:iterate (1 "Dewey") .
|
|
11
|
-
# via the schematic forward rule:
|
|
12
|
-
# {
|
|
13
|
-
# :Let :param ?X .
|
|
14
|
-
# ?X list:iterate ?Y .
|
|
15
|
-
# ?X list:iterate (1 "Dewey") .
|
|
16
|
-
# ?X list:iterate (?Z "Dewey") .
|
|
17
|
-
# } => {
|
|
18
|
-
# ?X :iterate ?Y .
|
|
19
|
-
# "Dewey" :hasIndex ?Z .
|
|
20
|
-
# } .
|
|
21
|
-
# with substitution (on rule variables):
|
|
22
|
-
# ?X = ("Huey" "Dewey" "Louie")
|
|
23
|
-
# ?Y = (2 "Louie")
|
|
24
|
-
# ?Z = 1
|
|
25
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
26
|
-
# ----------------------------------------------------------------------
|
|
27
|
-
|
|
28
3
|
("Huey" "Dewey" "Louie") :iterate (2 "Louie") .
|
|
29
|
-
|
|
30
|
-
# ----------------------------------------------------------------------
|
|
31
|
-
# Proof for derived triple:
|
|
32
|
-
# "Dewey" :hasIndex 1 .
|
|
33
|
-
# It holds because the following instance of the rule body is provable:
|
|
34
|
-
# :Let :param ("Huey" "Dewey" "Louie") .
|
|
35
|
-
# ("Huey" "Dewey" "Louie") list:iterate (2 "Louie") .
|
|
36
|
-
# ("Huey" "Dewey" "Louie") list:iterate (1 "Dewey") .
|
|
37
|
-
# ("Huey" "Dewey" "Louie") list:iterate (1 "Dewey") .
|
|
38
|
-
# via the schematic forward rule:
|
|
39
|
-
# {
|
|
40
|
-
# :Let :param ?X .
|
|
41
|
-
# ?X list:iterate ?Y .
|
|
42
|
-
# ?X list:iterate (1 "Dewey") .
|
|
43
|
-
# ?X list:iterate (?Z "Dewey") .
|
|
44
|
-
# } => {
|
|
45
|
-
# ?X :iterate ?Y .
|
|
46
|
-
# "Dewey" :hasIndex ?Z .
|
|
47
|
-
# } .
|
|
48
|
-
# with substitution (on rule variables):
|
|
49
|
-
# ?X = ("Huey" "Dewey" "Louie")
|
|
50
|
-
# ?Y = (2 "Louie")
|
|
51
|
-
# ?Z = 1
|
|
52
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
53
|
-
# ----------------------------------------------------------------------
|
|
54
|
-
|
|
55
4
|
"Dewey" :hasIndex 1 .
|
|
56
|
-
|
|
57
|
-
# ----------------------------------------------------------------------
|
|
58
|
-
# Proof for derived triple:
|
|
59
|
-
# ("Huey" "Dewey" "Louie") :iterate (1 "Dewey") .
|
|
60
|
-
# It holds because the following instance of the rule body is provable:
|
|
61
|
-
# :Let :param ("Huey" "Dewey" "Louie") .
|
|
62
|
-
# ("Huey" "Dewey" "Louie") list:iterate (1 "Dewey") .
|
|
63
|
-
# ("Huey" "Dewey" "Louie") list:iterate (1 "Dewey") .
|
|
64
|
-
# ("Huey" "Dewey" "Louie") list:iterate (1 "Dewey") .
|
|
65
|
-
# via the schematic forward rule:
|
|
66
|
-
# {
|
|
67
|
-
# :Let :param ?X .
|
|
68
|
-
# ?X list:iterate ?Y .
|
|
69
|
-
# ?X list:iterate (1 "Dewey") .
|
|
70
|
-
# ?X list:iterate (?Z "Dewey") .
|
|
71
|
-
# } => {
|
|
72
|
-
# ?X :iterate ?Y .
|
|
73
|
-
# "Dewey" :hasIndex ?Z .
|
|
74
|
-
# } .
|
|
75
|
-
# with substitution (on rule variables):
|
|
76
|
-
# ?X = ("Huey" "Dewey" "Louie")
|
|
77
|
-
# ?Y = (1 "Dewey")
|
|
78
|
-
# ?Z = 1
|
|
79
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
80
|
-
# ----------------------------------------------------------------------
|
|
81
|
-
|
|
82
5
|
("Huey" "Dewey" "Louie") :iterate (1 "Dewey") .
|
|
83
|
-
|
|
84
|
-
# ----------------------------------------------------------------------
|
|
85
|
-
# Proof for derived triple:
|
|
86
|
-
# ("Huey" "Dewey" "Louie") :iterate (0 "Huey") .
|
|
87
|
-
# It holds because the following instance of the rule body is provable:
|
|
88
|
-
# :Let :param ("Huey" "Dewey" "Louie") .
|
|
89
|
-
# ("Huey" "Dewey" "Louie") list:iterate (0 "Huey") .
|
|
90
|
-
# ("Huey" "Dewey" "Louie") list:iterate (1 "Dewey") .
|
|
91
|
-
# ("Huey" "Dewey" "Louie") list:iterate (1 "Dewey") .
|
|
92
|
-
# via the schematic forward rule:
|
|
93
|
-
# {
|
|
94
|
-
# :Let :param ?X .
|
|
95
|
-
# ?X list:iterate ?Y .
|
|
96
|
-
# ?X list:iterate (1 "Dewey") .
|
|
97
|
-
# ?X list:iterate (?Z "Dewey") .
|
|
98
|
-
# } => {
|
|
99
|
-
# ?X :iterate ?Y .
|
|
100
|
-
# "Dewey" :hasIndex ?Z .
|
|
101
|
-
# } .
|
|
102
|
-
# with substitution (on rule variables):
|
|
103
|
-
# ?X = ("Huey" "Dewey" "Louie")
|
|
104
|
-
# ?Y = (0 "Huey")
|
|
105
|
-
# ?Z = 1
|
|
106
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
107
|
-
# ----------------------------------------------------------------------
|
|
108
|
-
|
|
109
6
|
("Huey" "Dewey" "Louie") :iterate (0 "Huey") .
|
|
110
|
-
|
|
111
|
-
# ----------------------------------------------------------------------
|
|
112
|
-
# Proof for derived triple:
|
|
113
|
-
# :test :is true .
|
|
114
|
-
# It holds because the following instance of the rule body is provable:
|
|
115
|
-
# ("Huey" "Dewey" "Louie") :iterate (0 "Huey") .
|
|
116
|
-
# "Dewey" :hasIndex 1 .
|
|
117
|
-
# via the schematic forward rule:
|
|
118
|
-
# {
|
|
119
|
-
# ?X :iterate ?Y .
|
|
120
|
-
# "Dewey" :hasIndex 1 .
|
|
121
|
-
# } => {
|
|
122
|
-
# :test :is true .
|
|
123
|
-
# } .
|
|
124
|
-
# with substitution (on rule variables):
|
|
125
|
-
# ?X = ("Huey" "Dewey" "Louie")
|
|
126
|
-
# ?Y = (0 "Huey")
|
|
127
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
128
|
-
# ----------------------------------------------------------------------
|
|
129
|
-
|
|
130
7
|
:test :is true .
|
|
131
|
-
|