eyeling 1.6.13 → 1.6.14

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (75) hide show
  1. package/examples/output/age.n3 +0 -17
  2. package/examples/output/alignment-demo.n3 +0 -572
  3. package/examples/output/backward.n3 +0 -15
  4. package/examples/output/basic-monadic.n3 +0 -105
  5. package/examples/output/brussels-brew-club.n3 +0 -476
  6. package/examples/output/cat-koko.n3 +0 -108
  7. package/examples/output/cobalt-kepler-kitchen.n3 +0 -7064
  8. package/examples/output/complex.n3 +0 -46
  9. package/examples/output/control-system.n3 +0 -75
  10. package/examples/output/cranberry-calculus.n3 +0 -1313
  11. package/examples/output/crypto-builtins-tests.n3 +0 -60
  12. package/examples/output/deep-taxonomy-10.n3 +0 -602
  13. package/examples/output/deep-taxonomy-100.n3 +1 -5733
  14. package/examples/output/deep-taxonomy-1000.n3 +1 -57033
  15. package/examples/output/deep-taxonomy-10000.n3 +1 -570033
  16. package/examples/output/derived-backward-rule-2.n3 +0 -58
  17. package/examples/output/derived-backward-rule.n3 +0 -44
  18. package/examples/output/derived-rule.n3 +0 -42
  19. package/examples/output/dijkstra.n3 +0 -297
  20. package/examples/output/dog.n3 +0 -30
  21. package/examples/output/drone-corridor-planner.n3 +0 -799
  22. package/examples/output/easter.n3 +0 -3570
  23. package/examples/output/equals.n3 +0 -15
  24. package/examples/output/ev-roundtrip-planner.n3 +0 -392
  25. package/examples/output/existential-rule.n3 +0 -34
  26. package/examples/output/expression-eval.n3 +0 -20
  27. package/examples/output/family-cousins.n3 +0 -636
  28. package/examples/output/fibonacci.n3 +0 -36
  29. package/examples/output/french-cities.n3 +0 -484
  30. package/examples/output/good-cobbler.n3 +0 -22
  31. package/examples/output/gps.n3 +0 -62
  32. package/examples/output/gray-code-counter.n3 +0 -17
  33. package/examples/output/hanoi.n3 +0 -17
  34. package/examples/output/jade-eigen-loom.n3 +0 -4690
  35. package/examples/output/json-pointer.n3 +0 -529
  36. package/examples/output/json-reconcile-vat.n3 +0 -12882
  37. package/examples/output/light-eaters.n3 +0 -311
  38. package/examples/output/list-builtins-tests.n3 +0 -167
  39. package/examples/output/list-iterate.n3 +0 -124
  40. package/examples/output/lldm.n3 +0 -960
  41. package/examples/output/log-collect-all-in.n3 +0 -117
  42. package/examples/output/log-for-all-in.n3 +0 -27
  43. package/examples/output/log-not-includes.n3 +0 -59
  44. package/examples/output/log-skolem.n3 +0 -17
  45. package/examples/output/log-uri.n3 +0 -42
  46. package/examples/output/math-builtins-tests.n3 +0 -4434
  47. package/examples/output/minimal-skos-alignment.n3 +0 -39
  48. package/examples/output/monkey.n3 +0 -36
  49. package/examples/output/odrl-trust.n3 +0 -46
  50. package/examples/output/oslo-steps-library-scholarly.n3 +0 -1260
  51. package/examples/output/oslo-steps-workflow-composition.n3 +0 -180
  52. package/examples/output/peano.n3 +0 -23
  53. package/examples/output/pi.n3 +0 -17
  54. package/examples/output/pillar.n3 +0 -32
  55. package/examples/output/polygon.n3 +0 -17
  56. package/examples/output/rdf-list.n3 +0 -28
  57. package/examples/output/reordering.n3 +0 -26
  58. package/examples/output/ruby-runge-workshop.n3 +0 -613
  59. package/examples/output/rule-matching.n3 +0 -26
  60. package/examples/output/saffron-slopeworks.n3 +0 -1447
  61. package/examples/output/self-referential.n3 +0 -81
  62. package/examples/output/similar.n3 +0 -15
  63. package/examples/output/snaf.n3 +0 -23
  64. package/examples/output/socrates.n3 +0 -21
  65. package/examples/output/spectral-week.n3 +0 -350
  66. package/examples/output/string-builtins-tests.n3 +0 -240
  67. package/examples/output/topaz-markov-mill.n3 +0 -4178
  68. package/examples/output/traffic-skos-aggregate.n3 +0 -3151
  69. package/examples/output/turing.n3 +0 -36
  70. package/examples/output/ultramarine-simpson-forge.n3 +0 -3873
  71. package/examples/output/witch.n3 +0 -107
  72. package/examples/output/zebra.n3 +0 -111
  73. package/eyeling.js +97 -18
  74. package/package.json +1 -1
  75. package/test/examples.test.js +1 -1
@@ -1,327 +1,16 @@
1
1
  @prefix : <http://example.org/light-eaters#> .
2
2
  @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
3
3
 
4
- # ----------------------------------------------------------------------
5
- # Proof for derived triple:
6
- # :Forest :dailyLightEnergy "200"^^xsd:decimal .
7
- # It holds because the following instance of the rule body is provable:
8
- # :Today :lightHours 10.0 .
9
- # :Forest :lightIntensity 20.0 .
10
- # (20.0 10.0) math:product "200"^^xsd:decimal .
11
- # via the schematic forward rule:
12
- # {
13
- # :Today :lightHours ?H .
14
- # ?Place :lightIntensity ?I .
15
- # (?I ?H) math:product ?E .
16
- # } => {
17
- # ?Place :dailyLightEnergy ?E .
18
- # } .
19
- # with substitution (on rule variables):
20
- # ?E = "200"^^xsd:decimal
21
- # ?H = 10.0
22
- # ?I = 20.0
23
- # ?Place = :Forest
24
- # Therefore the derived triple above is entailed by the rules and facts.
25
- # ----------------------------------------------------------------------
26
-
27
4
  :Forest :dailyLightEnergy "200"^^xsd:decimal .
28
-
29
- # ----------------------------------------------------------------------
30
- # Proof for derived triple:
31
- # :Meadow :dailyLightEnergy "1000"^^xsd:decimal .
32
- # It holds because the following instance of the rule body is provable:
33
- # :Today :lightHours 10.0 .
34
- # :Meadow :lightIntensity 100.0 .
35
- # (100.0 10.0) math:product "1000"^^xsd:decimal .
36
- # via the schematic forward rule:
37
- # {
38
- # :Today :lightHours ?H .
39
- # ?Place :lightIntensity ?I .
40
- # (?I ?H) math:product ?E .
41
- # } => {
42
- # ?Place :dailyLightEnergy ?E .
43
- # } .
44
- # with substitution (on rule variables):
45
- # ?E = "1000"^^xsd:decimal
46
- # ?H = 10.0
47
- # ?I = 100.0
48
- # ?Place = :Meadow
49
- # Therefore the derived triple above is entailed by the rules and facts.
50
- # ----------------------------------------------------------------------
51
-
52
5
  :Meadow :dailyLightEnergy "1000"^^xsd:decimal .
53
-
54
- # ----------------------------------------------------------------------
55
- # Proof for derived triple:
56
- # :Fern :storedEnergy "50"^^xsd:decimal .
57
- # It holds because the following instance of the rule body is provable:
58
- # :Fern a :Plant .
59
- # :Fern :location :Forest .
60
- # :Forest :dailyLightEnergy "200"^^xsd:decimal .
61
- # :Fern :efficiency 0.25 .
62
- # ("200"^^xsd:decimal 0.25) math:product "50"^^xsd:decimal .
63
- # via the schematic forward rule:
64
- # {
65
- # ?Plant a :Plant .
66
- # ?Plant :location ?Place .
67
- # ?Place :dailyLightEnergy ?E .
68
- # ?Plant :efficiency ?Eff .
69
- # (?E ?Eff) math:product ?Stored .
70
- # } => {
71
- # ?Plant :storedEnergy ?Stored .
72
- # } .
73
- # with substitution (on rule variables):
74
- # ?E = "200"^^xsd:decimal
75
- # ?Eff = 0.25
76
- # ?Place = :Forest
77
- # ?Plant = :Fern
78
- # ?Stored = "50"^^xsd:decimal
79
- # Therefore the derived triple above is entailed by the rules and facts.
80
- # ----------------------------------------------------------------------
81
-
82
6
  :Fern :storedEnergy "50"^^xsd:decimal .
83
-
84
- # ----------------------------------------------------------------------
85
- # Proof for derived triple:
86
- # :Sunflower :storedEnergy "250"^^xsd:decimal .
87
- # It holds because the following instance of the rule body is provable:
88
- # :Sunflower a :Plant .
89
- # :Sunflower :location :Meadow .
90
- # :Meadow :dailyLightEnergy "1000"^^xsd:decimal .
91
- # :Sunflower :efficiency 0.25 .
92
- # ("1000"^^xsd:decimal 0.25) math:product "250"^^xsd:decimal .
93
- # via the schematic forward rule:
94
- # {
95
- # ?Plant a :Plant .
96
- # ?Plant :location ?Place .
97
- # ?Place :dailyLightEnergy ?E .
98
- # ?Plant :efficiency ?Eff .
99
- # (?E ?Eff) math:product ?Stored .
100
- # } => {
101
- # ?Plant :storedEnergy ?Stored .
102
- # } .
103
- # with substitution (on rule variables):
104
- # ?E = "1000"^^xsd:decimal
105
- # ?Eff = 0.25
106
- # ?Place = :Meadow
107
- # ?Plant = :Sunflower
108
- # ?Stored = "250"^^xsd:decimal
109
- # Therefore the derived triple above is entailed by the rules and facts.
110
- # ----------------------------------------------------------------------
111
-
112
7
  :Sunflower :storedEnergy "250"^^xsd:decimal .
113
-
114
- # ----------------------------------------------------------------------
115
- # Proof for derived triple:
116
- # :Sunflower :netEnergy "100"^^xsd:decimal .
117
- # It holds because the following instance of the rule body is provable:
118
- # :Sunflower :storedEnergy "250"^^xsd:decimal .
119
- # :Sunflower :maintenance 150.0 .
120
- # ("250"^^xsd:decimal 150.0) math:difference "100"^^xsd:decimal .
121
- # via the schematic forward rule:
122
- # {
123
- # ?Org :storedEnergy ?Stored .
124
- # ?Org :maintenance ?Maint .
125
- # (?Stored ?Maint) math:difference ?Net .
126
- # } => {
127
- # ?Org :netEnergy ?Net .
128
- # } .
129
- # with substitution (on rule variables):
130
- # ?Maint = 150.0
131
- # ?Net = "100"^^xsd:decimal
132
- # ?Org = :Sunflower
133
- # ?Stored = "250"^^xsd:decimal
134
- # Therefore the derived triple above is entailed by the rules and facts.
135
- # ----------------------------------------------------------------------
136
-
137
8
  :Sunflower :netEnergy "100"^^xsd:decimal .
138
-
139
- # ----------------------------------------------------------------------
140
- # Proof for derived triple:
141
- # :Fern :netEnergy "-100"^^xsd:decimal .
142
- # It holds because the following instance of the rule body is provable:
143
- # :Fern :storedEnergy "50"^^xsd:decimal .
144
- # :Fern :maintenance 150.0 .
145
- # ("50"^^xsd:decimal 150.0) math:difference "-100"^^xsd:decimal .
146
- # via the schematic forward rule:
147
- # {
148
- # ?Org :storedEnergy ?Stored .
149
- # ?Org :maintenance ?Maint .
150
- # (?Stored ?Maint) math:difference ?Net .
151
- # } => {
152
- # ?Org :netEnergy ?Net .
153
- # } .
154
- # with substitution (on rule variables):
155
- # ?Maint = 150.0
156
- # ?Net = "-100"^^xsd:decimal
157
- # ?Org = :Fern
158
- # ?Stored = "50"^^xsd:decimal
159
- # Therefore the derived triple above is entailed by the rules and facts.
160
- # ----------------------------------------------------------------------
161
-
162
9
  :Fern :netEnergy "-100"^^xsd:decimal .
163
-
164
- # ----------------------------------------------------------------------
165
- # Proof for derived triple:
166
- # :Fern :canPhotosynthesize true .
167
- # It holds because the following instance of the rule body is provable:
168
- # :Fern a :Plant .
169
- # :Fern :chlorophyll true .
170
- # :Fern :storedEnergy "50"^^xsd:decimal .
171
- # ("50"^^xsd:decimal 0.0) math:greaterThan true .
172
- # via the schematic forward rule:
173
- # {
174
- # ?Plant a :Plant .
175
- # ?Plant :chlorophyll true .
176
- # ?Plant :storedEnergy ?Stored .
177
- # (?Stored 0.0) math:greaterThan true .
178
- # } => {
179
- # ?Plant :canPhotosynthesize true .
180
- # ?Plant :lightEater true .
181
- # } .
182
- # with substitution (on rule variables):
183
- # ?Plant = :Fern
184
- # ?Stored = "50"^^xsd:decimal
185
- # Therefore the derived triple above is entailed by the rules and facts.
186
- # ----------------------------------------------------------------------
187
-
188
10
  :Fern :canPhotosynthesize true .
189
-
190
- # ----------------------------------------------------------------------
191
- # Proof for derived triple:
192
- # :Fern :lightEater true .
193
- # It holds because the following instance of the rule body is provable:
194
- # :Fern a :Plant .
195
- # :Fern :chlorophyll true .
196
- # :Fern :storedEnergy "50"^^xsd:decimal .
197
- # ("50"^^xsd:decimal 0.0) math:greaterThan true .
198
- # via the schematic forward rule:
199
- # {
200
- # ?Plant a :Plant .
201
- # ?Plant :chlorophyll true .
202
- # ?Plant :storedEnergy ?Stored .
203
- # (?Stored 0.0) math:greaterThan true .
204
- # } => {
205
- # ?Plant :canPhotosynthesize true .
206
- # ?Plant :lightEater true .
207
- # } .
208
- # with substitution (on rule variables):
209
- # ?Plant = :Fern
210
- # ?Stored = "50"^^xsd:decimal
211
- # Therefore the derived triple above is entailed by the rules and facts.
212
- # ----------------------------------------------------------------------
213
-
214
11
  :Fern :lightEater true .
215
-
216
- # ----------------------------------------------------------------------
217
- # Proof for derived triple:
218
- # :Sunflower :canPhotosynthesize true .
219
- # It holds because the following instance of the rule body is provable:
220
- # :Sunflower a :Plant .
221
- # :Sunflower :chlorophyll true .
222
- # :Sunflower :storedEnergy "250"^^xsd:decimal .
223
- # ("250"^^xsd:decimal 0.0) math:greaterThan true .
224
- # via the schematic forward rule:
225
- # {
226
- # ?Plant a :Plant .
227
- # ?Plant :chlorophyll true .
228
- # ?Plant :storedEnergy ?Stored .
229
- # (?Stored 0.0) math:greaterThan true .
230
- # } => {
231
- # ?Plant :canPhotosynthesize true .
232
- # ?Plant :lightEater true .
233
- # } .
234
- # with substitution (on rule variables):
235
- # ?Plant = :Sunflower
236
- # ?Stored = "250"^^xsd:decimal
237
- # Therefore the derived triple above is entailed by the rules and facts.
238
- # ----------------------------------------------------------------------
239
-
240
12
  :Sunflower :canPhotosynthesize true .
241
-
242
- # ----------------------------------------------------------------------
243
- # Proof for derived triple:
244
- # :Sunflower :lightEater true .
245
- # It holds because the following instance of the rule body is provable:
246
- # :Sunflower a :Plant .
247
- # :Sunflower :chlorophyll true .
248
- # :Sunflower :storedEnergy "250"^^xsd:decimal .
249
- # ("250"^^xsd:decimal 0.0) math:greaterThan true .
250
- # via the schematic forward rule:
251
- # {
252
- # ?Plant a :Plant .
253
- # ?Plant :chlorophyll true .
254
- # ?Plant :storedEnergy ?Stored .
255
- # (?Stored 0.0) math:greaterThan true .
256
- # } => {
257
- # ?Plant :canPhotosynthesize true .
258
- # ?Plant :lightEater true .
259
- # } .
260
- # with substitution (on rule variables):
261
- # ?Plant = :Sunflower
262
- # ?Stored = "250"^^xsd:decimal
263
- # Therefore the derived triple above is entailed by the rules and facts.
264
- # ----------------------------------------------------------------------
265
-
266
13
  :Sunflower :lightEater true .
267
-
268
- # ----------------------------------------------------------------------
269
- # Proof for derived triple:
270
- # :Mushroom :lightEater false .
271
- # It holds because the following instance of the rule body is provable:
272
- # :Mushroom a :Fungus .
273
- # via the schematic forward rule:
274
- # {
275
- # ?X a :Fungus .
276
- # } => {
277
- # ?X :lightEater false .
278
- # } .
279
- # with substitution (on rule variables):
280
- # ?X = :Mushroom
281
- # Therefore the derived triple above is entailed by the rules and facts.
282
- # ----------------------------------------------------------------------
283
-
284
14
  :Mushroom :lightEater false .
285
-
286
- # ----------------------------------------------------------------------
287
- # Proof for derived triple:
288
- # :Sunflower :thriving true .
289
- # It holds because the following instance of the rule body is provable:
290
- # :Sunflower :netEnergy "100"^^xsd:decimal .
291
- # ("100"^^xsd:decimal 0.0) math:greaterThan true .
292
- # via the schematic forward rule:
293
- # {
294
- # ?Org :netEnergy ?Net .
295
- # (?Net 0.0) math:greaterThan true .
296
- # } => {
297
- # ?Org :thriving true .
298
- # } .
299
- # with substitution (on rule variables):
300
- # ?Net = "100"^^xsd:decimal
301
- # ?Org = :Sunflower
302
- # Therefore the derived triple above is entailed by the rules and facts.
303
- # ----------------------------------------------------------------------
304
-
305
15
  :Sunflower :thriving true .
306
-
307
- # ----------------------------------------------------------------------
308
- # Proof for derived triple:
309
- # :Fern :hungry true .
310
- # It holds because the following instance of the rule body is provable:
311
- # :Fern :netEnergy "-100"^^xsd:decimal .
312
- # ("-100"^^xsd:decimal 0.0) math:notGreaterThan true .
313
- # via the schematic forward rule:
314
- # {
315
- # ?Org :netEnergy ?Net .
316
- # (?Net 0.0) math:notGreaterThan true .
317
- # } => {
318
- # ?Org :hungry true .
319
- # } .
320
- # with substitution (on rule variables):
321
- # ?Net = "-100"^^xsd:decimal
322
- # ?Org = :Fern
323
- # Therefore the derived triple above is entailed by the rules and facts.
324
- # ----------------------------------------------------------------------
325
-
326
16
  :Fern :hungry true .
327
-
@@ -1,180 +1,13 @@
1
1
  @prefix : <https://eyereasoner.github.io/ns#> .
2
2
 
3
- # ----------------------------------------------------------------------
4
- # Proof for derived triple:
5
- # :ok_list_append_1 a :Pass .
6
- # It holds because the following instance of the rule body is provable:
7
- # ((1 2) (3 4)) list:append (1 2 3 4) .
8
- # via the schematic forward rule:
9
- # {
10
- # ((1 2) (3 4)) list:append (1 2 3 4) .
11
- # } => {
12
- # :ok_list_append_1 a :Pass .
13
- # } .
14
- # Therefore the derived triple above is entailed by the rules and facts.
15
- # ----------------------------------------------------------------------
16
-
17
3
  :ok_list_append_1 a :Pass .
18
-
19
- # ----------------------------------------------------------------------
20
- # Proof for derived triple:
21
- # :ok_list_first_1 a :Pass .
22
- # It holds because the following instance of the rule body is provable:
23
- # (1 2 3 4) list:first 1 .
24
- # via the schematic forward rule:
25
- # {
26
- # (1 2 3 4) list:first 1 .
27
- # } => {
28
- # :ok_list_first_1 a :Pass .
29
- # } .
30
- # Therefore the derived triple above is entailed by the rules and facts.
31
- # ----------------------------------------------------------------------
32
-
33
4
  :ok_list_first_1 a :Pass .
34
-
35
- # ----------------------------------------------------------------------
36
- # Proof for derived triple:
37
- # :ok_list_in_1 a :Pass .
38
- # It holds because the following instance of the rule body is provable:
39
- # "cat" list:in ("dog" "penguin" "cat") .
40
- # via the schematic forward rule:
41
- # {
42
- # "cat" list:in ("dog" "penguin" "cat") .
43
- # } => {
44
- # :ok_list_in_1 a :Pass .
45
- # } .
46
- # Therefore the derived triple above is entailed by the rules and facts.
47
- # ----------------------------------------------------------------------
48
-
49
5
  :ok_list_in_1 a :Pass .
50
-
51
- # ----------------------------------------------------------------------
52
- # Proof for derived triple:
53
- # :ok_list_iterate_1 a :Pass .
54
- # It holds because the following instance of the rule body is provable:
55
- # ("dog" "penguin" "cat") list:iterate (2 "cat") .
56
- # via the schematic forward rule:
57
- # {
58
- # ("dog" "penguin" "cat") list:iterate (?index "cat") .
59
- # } => {
60
- # :ok_list_iterate_1 a :Pass .
61
- # } .
62
- # with substitution (on rule variables):
63
- # ?index = 2
64
- # Therefore the derived triple above is entailed by the rules and facts.
65
- # ----------------------------------------------------------------------
66
-
67
6
  :ok_list_iterate_1 a :Pass .
68
-
69
- # ----------------------------------------------------------------------
70
- # Proof for derived triple:
71
- # :ok_list_last_1 a :Pass .
72
- # It holds because the following instance of the rule body is provable:
73
- # (1 2 3 4) list:last 4 .
74
- # via the schematic forward rule:
75
- # {
76
- # (1 2 3 4) list:last 4 .
77
- # } => {
78
- # :ok_list_last_1 a :Pass .
79
- # } .
80
- # Therefore the derived triple above is entailed by the rules and facts.
81
- # ----------------------------------------------------------------------
82
-
83
7
  :ok_list_last_1 a :Pass .
84
-
85
- # ----------------------------------------------------------------------
86
- # Proof for derived triple:
87
- # :ok_list_length_1 a :Pass .
88
- # It holds because the following instance of the rule body is provable:
89
- # (1 2 3 4) list:length 4 .
90
- # via the schematic forward rule:
91
- # {
92
- # (1 2 3 4) list:length 4 .
93
- # } => {
94
- # :ok_list_length_1 a :Pass .
95
- # } .
96
- # Therefore the derived triple above is entailed by the rules and facts.
97
- # ----------------------------------------------------------------------
98
-
99
8
  :ok_list_length_1 a :Pass .
100
-
101
- # ----------------------------------------------------------------------
102
- # Proof for derived triple:
103
- # :ok_list_member_1 a :Pass .
104
- # It holds because the following instance of the rule body is provable:
105
- # ("dog" "penguin" "cat") list:member "cat" .
106
- # via the schematic forward rule:
107
- # {
108
- # ("dog" "penguin" "cat") list:member "cat" .
109
- # } => {
110
- # :ok_list_member_1 a :Pass .
111
- # } .
112
- # Therefore the derived triple above is entailed by the rules and facts.
113
- # ----------------------------------------------------------------------
114
-
115
9
  :ok_list_member_1 a :Pass .
116
-
117
- # ----------------------------------------------------------------------
118
- # Proof for derived triple:
119
- # :ok_list_memberAt_1 a :Pass .
120
- # It holds because the following instance of the rule body is provable:
121
- # (("dog" "penguin" "cat") 2) list:memberAt "cat" .
122
- # via the schematic forward rule:
123
- # {
124
- # (("dog" "penguin" "cat") 2) list:memberAt "cat" .
125
- # } => {
126
- # :ok_list_memberAt_1 a :Pass .
127
- # } .
128
- # Therefore the derived triple above is entailed by the rules and facts.
129
- # ----------------------------------------------------------------------
130
-
131
10
  :ok_list_memberAt_1 a :Pass .
132
-
133
- # ----------------------------------------------------------------------
134
- # Proof for derived triple:
135
- # :ok_list_remove_1 a :Pass .
136
- # It holds because the following instance of the rule body is provable:
137
- # (("dog" "penguin" "cat" "penguin") "penguin") list:remove ("dog" "cat") .
138
- # via the schematic forward rule:
139
- # {
140
- # (("dog" "penguin" "cat" "penguin") "penguin") list:remove ("dog" "cat") .
141
- # } => {
142
- # :ok_list_remove_1 a :Pass .
143
- # } .
144
- # Therefore the derived triple above is entailed by the rules and facts.
145
- # ----------------------------------------------------------------------
146
-
147
11
  :ok_list_remove_1 a :Pass .
148
-
149
- # ----------------------------------------------------------------------
150
- # Proof for derived triple:
151
- # :ok_list_rest_1 a :Pass .
152
- # It holds because the following instance of the rule body is provable:
153
- # (1 2 3 4) list:rest (2 3 4) .
154
- # via the schematic forward rule:
155
- # {
156
- # (1 2 3 4) list:rest (2 3 4) .
157
- # } => {
158
- # :ok_list_rest_1 a :Pass .
159
- # } .
160
- # Therefore the derived triple above is entailed by the rules and facts.
161
- # ----------------------------------------------------------------------
162
-
163
12
  :ok_list_rest_1 a :Pass .
164
-
165
- # ----------------------------------------------------------------------
166
- # Proof for derived triple:
167
- # :ok_list_firstRest_1 a :Pass .
168
- # It holds because the following instance of the rule body is provable:
169
- # (1 2 3 4) list:firstRest (1 (2 3 4)) .
170
- # via the schematic forward rule:
171
- # {
172
- # (1 2 3 4) list:firstRest (1 (2 3 4)) .
173
- # } => {
174
- # :ok_list_firstRest_1 a :Pass .
175
- # } .
176
- # Therefore the derived triple above is entailed by the rules and facts.
177
- # ----------------------------------------------------------------------
178
-
179
13
  :ok_list_firstRest_1 a :Pass .
180
-
@@ -1,131 +1,7 @@
1
1
  @prefix : <urn:example:> .
2
2
 
3
- # ----------------------------------------------------------------------
4
- # Proof for derived triple:
5
- # ("Huey" "Dewey" "Louie") :iterate (2 "Louie") .
6
- # It holds because the following instance of the rule body is provable:
7
- # :Let :param ("Huey" "Dewey" "Louie") .
8
- # ("Huey" "Dewey" "Louie") list:iterate (2 "Louie") .
9
- # ("Huey" "Dewey" "Louie") list:iterate (1 "Dewey") .
10
- # ("Huey" "Dewey" "Louie") list:iterate (1 "Dewey") .
11
- # via the schematic forward rule:
12
- # {
13
- # :Let :param ?X .
14
- # ?X list:iterate ?Y .
15
- # ?X list:iterate (1 "Dewey") .
16
- # ?X list:iterate (?Z "Dewey") .
17
- # } => {
18
- # ?X :iterate ?Y .
19
- # "Dewey" :hasIndex ?Z .
20
- # } .
21
- # with substitution (on rule variables):
22
- # ?X = ("Huey" "Dewey" "Louie")
23
- # ?Y = (2 "Louie")
24
- # ?Z = 1
25
- # Therefore the derived triple above is entailed by the rules and facts.
26
- # ----------------------------------------------------------------------
27
-
28
3
  ("Huey" "Dewey" "Louie") :iterate (2 "Louie") .
29
-
30
- # ----------------------------------------------------------------------
31
- # Proof for derived triple:
32
- # "Dewey" :hasIndex 1 .
33
- # It holds because the following instance of the rule body is provable:
34
- # :Let :param ("Huey" "Dewey" "Louie") .
35
- # ("Huey" "Dewey" "Louie") list:iterate (2 "Louie") .
36
- # ("Huey" "Dewey" "Louie") list:iterate (1 "Dewey") .
37
- # ("Huey" "Dewey" "Louie") list:iterate (1 "Dewey") .
38
- # via the schematic forward rule:
39
- # {
40
- # :Let :param ?X .
41
- # ?X list:iterate ?Y .
42
- # ?X list:iterate (1 "Dewey") .
43
- # ?X list:iterate (?Z "Dewey") .
44
- # } => {
45
- # ?X :iterate ?Y .
46
- # "Dewey" :hasIndex ?Z .
47
- # } .
48
- # with substitution (on rule variables):
49
- # ?X = ("Huey" "Dewey" "Louie")
50
- # ?Y = (2 "Louie")
51
- # ?Z = 1
52
- # Therefore the derived triple above is entailed by the rules and facts.
53
- # ----------------------------------------------------------------------
54
-
55
4
  "Dewey" :hasIndex 1 .
56
-
57
- # ----------------------------------------------------------------------
58
- # Proof for derived triple:
59
- # ("Huey" "Dewey" "Louie") :iterate (1 "Dewey") .
60
- # It holds because the following instance of the rule body is provable:
61
- # :Let :param ("Huey" "Dewey" "Louie") .
62
- # ("Huey" "Dewey" "Louie") list:iterate (1 "Dewey") .
63
- # ("Huey" "Dewey" "Louie") list:iterate (1 "Dewey") .
64
- # ("Huey" "Dewey" "Louie") list:iterate (1 "Dewey") .
65
- # via the schematic forward rule:
66
- # {
67
- # :Let :param ?X .
68
- # ?X list:iterate ?Y .
69
- # ?X list:iterate (1 "Dewey") .
70
- # ?X list:iterate (?Z "Dewey") .
71
- # } => {
72
- # ?X :iterate ?Y .
73
- # "Dewey" :hasIndex ?Z .
74
- # } .
75
- # with substitution (on rule variables):
76
- # ?X = ("Huey" "Dewey" "Louie")
77
- # ?Y = (1 "Dewey")
78
- # ?Z = 1
79
- # Therefore the derived triple above is entailed by the rules and facts.
80
- # ----------------------------------------------------------------------
81
-
82
5
  ("Huey" "Dewey" "Louie") :iterate (1 "Dewey") .
83
-
84
- # ----------------------------------------------------------------------
85
- # Proof for derived triple:
86
- # ("Huey" "Dewey" "Louie") :iterate (0 "Huey") .
87
- # It holds because the following instance of the rule body is provable:
88
- # :Let :param ("Huey" "Dewey" "Louie") .
89
- # ("Huey" "Dewey" "Louie") list:iterate (0 "Huey") .
90
- # ("Huey" "Dewey" "Louie") list:iterate (1 "Dewey") .
91
- # ("Huey" "Dewey" "Louie") list:iterate (1 "Dewey") .
92
- # via the schematic forward rule:
93
- # {
94
- # :Let :param ?X .
95
- # ?X list:iterate ?Y .
96
- # ?X list:iterate (1 "Dewey") .
97
- # ?X list:iterate (?Z "Dewey") .
98
- # } => {
99
- # ?X :iterate ?Y .
100
- # "Dewey" :hasIndex ?Z .
101
- # } .
102
- # with substitution (on rule variables):
103
- # ?X = ("Huey" "Dewey" "Louie")
104
- # ?Y = (0 "Huey")
105
- # ?Z = 1
106
- # Therefore the derived triple above is entailed by the rules and facts.
107
- # ----------------------------------------------------------------------
108
-
109
6
  ("Huey" "Dewey" "Louie") :iterate (0 "Huey") .
110
-
111
- # ----------------------------------------------------------------------
112
- # Proof for derived triple:
113
- # :test :is true .
114
- # It holds because the following instance of the rule body is provable:
115
- # ("Huey" "Dewey" "Louie") :iterate (0 "Huey") .
116
- # "Dewey" :hasIndex 1 .
117
- # via the schematic forward rule:
118
- # {
119
- # ?X :iterate ?Y .
120
- # "Dewey" :hasIndex 1 .
121
- # } => {
122
- # :test :is true .
123
- # } .
124
- # with substitution (on rule variables):
125
- # ?X = ("Huey" "Dewey" "Louie")
126
- # ?Y = (0 "Huey")
127
- # Therefore the derived triple above is entailed by the rules and facts.
128
- # ----------------------------------------------------------------------
129
-
130
7
  :test :is true .
131
-