eyeling 1.6.13 → 1.6.14

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (75) hide show
  1. package/examples/output/age.n3 +0 -17
  2. package/examples/output/alignment-demo.n3 +0 -572
  3. package/examples/output/backward.n3 +0 -15
  4. package/examples/output/basic-monadic.n3 +0 -105
  5. package/examples/output/brussels-brew-club.n3 +0 -476
  6. package/examples/output/cat-koko.n3 +0 -108
  7. package/examples/output/cobalt-kepler-kitchen.n3 +0 -7064
  8. package/examples/output/complex.n3 +0 -46
  9. package/examples/output/control-system.n3 +0 -75
  10. package/examples/output/cranberry-calculus.n3 +0 -1313
  11. package/examples/output/crypto-builtins-tests.n3 +0 -60
  12. package/examples/output/deep-taxonomy-10.n3 +0 -602
  13. package/examples/output/deep-taxonomy-100.n3 +1 -5733
  14. package/examples/output/deep-taxonomy-1000.n3 +1 -57033
  15. package/examples/output/deep-taxonomy-10000.n3 +1 -570033
  16. package/examples/output/derived-backward-rule-2.n3 +0 -58
  17. package/examples/output/derived-backward-rule.n3 +0 -44
  18. package/examples/output/derived-rule.n3 +0 -42
  19. package/examples/output/dijkstra.n3 +0 -297
  20. package/examples/output/dog.n3 +0 -30
  21. package/examples/output/drone-corridor-planner.n3 +0 -799
  22. package/examples/output/easter.n3 +0 -3570
  23. package/examples/output/equals.n3 +0 -15
  24. package/examples/output/ev-roundtrip-planner.n3 +0 -392
  25. package/examples/output/existential-rule.n3 +0 -34
  26. package/examples/output/expression-eval.n3 +0 -20
  27. package/examples/output/family-cousins.n3 +0 -636
  28. package/examples/output/fibonacci.n3 +0 -36
  29. package/examples/output/french-cities.n3 +0 -484
  30. package/examples/output/good-cobbler.n3 +0 -22
  31. package/examples/output/gps.n3 +0 -62
  32. package/examples/output/gray-code-counter.n3 +0 -17
  33. package/examples/output/hanoi.n3 +0 -17
  34. package/examples/output/jade-eigen-loom.n3 +0 -4690
  35. package/examples/output/json-pointer.n3 +0 -529
  36. package/examples/output/json-reconcile-vat.n3 +0 -12882
  37. package/examples/output/light-eaters.n3 +0 -311
  38. package/examples/output/list-builtins-tests.n3 +0 -167
  39. package/examples/output/list-iterate.n3 +0 -124
  40. package/examples/output/lldm.n3 +0 -960
  41. package/examples/output/log-collect-all-in.n3 +0 -117
  42. package/examples/output/log-for-all-in.n3 +0 -27
  43. package/examples/output/log-not-includes.n3 +0 -59
  44. package/examples/output/log-skolem.n3 +0 -17
  45. package/examples/output/log-uri.n3 +0 -42
  46. package/examples/output/math-builtins-tests.n3 +0 -4434
  47. package/examples/output/minimal-skos-alignment.n3 +0 -39
  48. package/examples/output/monkey.n3 +0 -36
  49. package/examples/output/odrl-trust.n3 +0 -46
  50. package/examples/output/oslo-steps-library-scholarly.n3 +0 -1260
  51. package/examples/output/oslo-steps-workflow-composition.n3 +0 -180
  52. package/examples/output/peano.n3 +0 -23
  53. package/examples/output/pi.n3 +0 -17
  54. package/examples/output/pillar.n3 +0 -32
  55. package/examples/output/polygon.n3 +0 -17
  56. package/examples/output/rdf-list.n3 +0 -28
  57. package/examples/output/reordering.n3 +0 -26
  58. package/examples/output/ruby-runge-workshop.n3 +0 -613
  59. package/examples/output/rule-matching.n3 +0 -26
  60. package/examples/output/saffron-slopeworks.n3 +0 -1447
  61. package/examples/output/self-referential.n3 +0 -81
  62. package/examples/output/similar.n3 +0 -15
  63. package/examples/output/snaf.n3 +0 -23
  64. package/examples/output/socrates.n3 +0 -21
  65. package/examples/output/spectral-week.n3 +0 -350
  66. package/examples/output/string-builtins-tests.n3 +0 -240
  67. package/examples/output/topaz-markov-mill.n3 +0 -4178
  68. package/examples/output/traffic-skos-aggregate.n3 +0 -3151
  69. package/examples/output/turing.n3 +0 -36
  70. package/examples/output/ultramarine-simpson-forge.n3 +0 -3873
  71. package/examples/output/witch.n3 +0 -107
  72. package/examples/output/zebra.n3 +0 -111
  73. package/eyeling.js +97 -18
  74. package/package.json +1 -1
  75. package/test/examples.test.js +1 -1
@@ -1,663 +1,27 @@
1
1
  @prefix : <http://example.org/family#> .
2
2
 
3
- # ----------------------------------------------------------------------
4
- # Proof for derived triple:
5
- # :Adam :generation 0 .
6
- # This triple is the head of a forward rule with an empty premise,
7
- # so it holds unconditionally whenever the program is loaded.
8
- # Therefore the derived triple above is entailed by the rules and facts.
9
- # ----------------------------------------------------------------------
10
-
11
3
  :Adam :generation 0 .
12
-
13
- # ----------------------------------------------------------------------
14
- # Proof for derived triple:
15
- # :Carol :generation 1 .
16
- # It holds because the following instance of the rule body is provable:
17
- # :Adam :parentOf :Carol .
18
- # :Adam :generation 0 .
19
- # (0 1) math:sum 1 .
20
- # via the schematic forward rule:
21
- # {
22
- # ?P :parentOf ?C .
23
- # ?P :generation ?G .
24
- # (?G 1) math:sum ?G1 .
25
- # } => {
26
- # ?C :generation ?G1 .
27
- # } .
28
- # with substitution (on rule variables):
29
- # ?C = :Carol
30
- # ?G = 0
31
- # ?G1 = 1
32
- # ?P = :Adam
33
- # Therefore the derived triple above is entailed by the rules and facts.
34
- # ----------------------------------------------------------------------
35
-
36
4
  :Carol :generation 1 .
37
-
38
- # ----------------------------------------------------------------------
39
- # Proof for derived triple:
40
- # :Bob :generation 1 .
41
- # It holds because the following instance of the rule body is provable:
42
- # :Adam :parentOf :Bob .
43
- # :Adam :generation 0 .
44
- # (0 1) math:sum 1 .
45
- # via the schematic forward rule:
46
- # {
47
- # ?P :parentOf ?C .
48
- # ?P :generation ?G .
49
- # (?G 1) math:sum ?G1 .
50
- # } => {
51
- # ?C :generation ?G1 .
52
- # } .
53
- # with substitution (on rule variables):
54
- # ?C = :Bob
55
- # ?G = 0
56
- # ?G1 = 1
57
- # ?P = :Adam
58
- # Therefore the derived triple above is entailed by the rules and facts.
59
- # ----------------------------------------------------------------------
60
-
61
5
  :Bob :generation 1 .
62
-
63
- # ----------------------------------------------------------------------
64
- # Proof for derived triple:
65
- # :Judy :branch :c .
66
- # It holds because the following instance of the rule body is provable:
67
- # :Frank :parentOf :Judy .
68
- # :Frank :branch :c .
69
- # via the schematic forward rule:
70
- # {
71
- # ?P :parentOf ?C .
72
- # ?P :branch ?B .
73
- # } => {
74
- # ?C :branch ?B .
75
- # } .
76
- # with substitution (on rule variables):
77
- # ?B = :c
78
- # ?C = :Judy
79
- # ?P = :Frank
80
- # Therefore the derived triple above is entailed by the rules and facts.
81
- # ----------------------------------------------------------------------
82
-
83
6
  :Judy :branch :c .
84
-
85
- # ----------------------------------------------------------------------
86
- # Proof for derived triple:
87
- # :Ivan :branch :b .
88
- # It holds because the following instance of the rule body is provable:
89
- # :Eve :parentOf :Ivan .
90
- # :Eve :branch :b .
91
- # via the schematic forward rule:
92
- # {
93
- # ?P :parentOf ?C .
94
- # ?P :branch ?B .
95
- # } => {
96
- # ?C :branch ?B .
97
- # } .
98
- # with substitution (on rule variables):
99
- # ?B = :b
100
- # ?C = :Ivan
101
- # ?P = :Eve
102
- # Therefore the derived triple above is entailed by the rules and facts.
103
- # ----------------------------------------------------------------------
104
-
105
7
  :Ivan :branch :b .
106
-
107
- # ----------------------------------------------------------------------
108
- # Proof for derived triple:
109
- # :Heidi :branch :b .
110
- # It holds because the following instance of the rule body is provable:
111
- # :Dave :parentOf :Heidi .
112
- # :Dave :branch :b .
113
- # via the schematic forward rule:
114
- # {
115
- # ?P :parentOf ?C .
116
- # ?P :branch ?B .
117
- # } => {
118
- # ?C :branch ?B .
119
- # } .
120
- # with substitution (on rule variables):
121
- # ?B = :b
122
- # ?C = :Heidi
123
- # ?P = :Dave
124
- # Therefore the derived triple above is entailed by the rules and facts.
125
- # ----------------------------------------------------------------------
126
-
127
8
  :Heidi :branch :b .
128
-
129
- # ----------------------------------------------------------------------
130
- # Proof for derived triple:
131
- # :Grace :generation 2 .
132
- # It holds because the following instance of the rule body is provable:
133
- # :Carol :parentOf :Grace .
134
- # :Carol :generation 1 .
135
- # (1 1) math:sum 2 .
136
- # via the schematic forward rule:
137
- # {
138
- # ?P :parentOf ?C .
139
- # ?P :generation ?G .
140
- # (?G 1) math:sum ?G1 .
141
- # } => {
142
- # ?C :generation ?G1 .
143
- # } .
144
- # with substitution (on rule variables):
145
- # ?C = :Grace
146
- # ?G = 1
147
- # ?G1 = 2
148
- # ?P = :Carol
149
- # Therefore the derived triple above is entailed by the rules and facts.
150
- # ----------------------------------------------------------------------
151
-
152
9
  :Grace :generation 2 .
153
-
154
- # ----------------------------------------------------------------------
155
- # Proof for derived triple:
156
- # :Frank :generation 2 .
157
- # It holds because the following instance of the rule body is provable:
158
- # :Carol :parentOf :Frank .
159
- # :Carol :generation 1 .
160
- # (1 1) math:sum 2 .
161
- # via the schematic forward rule:
162
- # {
163
- # ?P :parentOf ?C .
164
- # ?P :generation ?G .
165
- # (?G 1) math:sum ?G1 .
166
- # } => {
167
- # ?C :generation ?G1 .
168
- # } .
169
- # with substitution (on rule variables):
170
- # ?C = :Frank
171
- # ?G = 1
172
- # ?G1 = 2
173
- # ?P = :Carol
174
- # Therefore the derived triple above is entailed by the rules and facts.
175
- # ----------------------------------------------------------------------
176
-
177
10
  :Frank :generation 2 .
178
-
179
- # ----------------------------------------------------------------------
180
- # Proof for derived triple:
181
- # :Eve :generation 2 .
182
- # It holds because the following instance of the rule body is provable:
183
- # :Bob :parentOf :Eve .
184
- # :Bob :generation 1 .
185
- # (1 1) math:sum 2 .
186
- # via the schematic forward rule:
187
- # {
188
- # ?P :parentOf ?C .
189
- # ?P :generation ?G .
190
- # (?G 1) math:sum ?G1 .
191
- # } => {
192
- # ?C :generation ?G1 .
193
- # } .
194
- # with substitution (on rule variables):
195
- # ?C = :Eve
196
- # ?G = 1
197
- # ?G1 = 2
198
- # ?P = :Bob
199
- # Therefore the derived triple above is entailed by the rules and facts.
200
- # ----------------------------------------------------------------------
201
-
202
11
  :Eve :generation 2 .
203
-
204
- # ----------------------------------------------------------------------
205
- # Proof for derived triple:
206
- # :Dave :generation 2 .
207
- # It holds because the following instance of the rule body is provable:
208
- # :Bob :parentOf :Dave .
209
- # :Bob :generation 1 .
210
- # (1 1) math:sum 2 .
211
- # via the schematic forward rule:
212
- # {
213
- # ?P :parentOf ?C .
214
- # ?P :generation ?G .
215
- # (?G 1) math:sum ?G1 .
216
- # } => {
217
- # ?C :generation ?G1 .
218
- # } .
219
- # with substitution (on rule variables):
220
- # ?C = :Dave
221
- # ?G = 1
222
- # ?G1 = 2
223
- # ?P = :Bob
224
- # Therefore the derived triple above is entailed by the rules and facts.
225
- # ----------------------------------------------------------------------
226
-
227
12
  :Dave :generation 2 .
228
-
229
- # ----------------------------------------------------------------------
230
- # Proof for derived triple:
231
- # :Dave :cousin :Frank .
232
- # It holds because the following instance of the rule body is provable:
233
- # :Dave :generation 2 .
234
- # :Frank :generation 2 .
235
- # :Dave :branch :b .
236
- # :Frank :branch :c .
237
- # :b :differentFrom :c .
238
- # via the schematic forward rule:
239
- # {
240
- # ?X :generation ?G .
241
- # ?Y :generation ?G .
242
- # ?X :branch ?BX .
243
- # ?Y :branch ?BY .
244
- # ?BX :differentFrom ?BY .
245
- # } => {
246
- # ?X :cousin ?Y .
247
- # } .
248
- # with substitution (on rule variables):
249
- # ?BX = :b
250
- # ?BY = :c
251
- # ?G = 2
252
- # ?X = :Dave
253
- # ?Y = :Frank
254
- # Therefore the derived triple above is entailed by the rules and facts.
255
- # ----------------------------------------------------------------------
256
-
257
13
  :Dave :cousin :Frank .
258
-
259
- # ----------------------------------------------------------------------
260
- # Proof for derived triple:
261
- # :Dave :cousin :Grace .
262
- # It holds because the following instance of the rule body is provable:
263
- # :Dave :generation 2 .
264
- # :Grace :generation 2 .
265
- # :Dave :branch :b .
266
- # :Grace :branch :c .
267
- # :b :differentFrom :c .
268
- # via the schematic forward rule:
269
- # {
270
- # ?X :generation ?G .
271
- # ?Y :generation ?G .
272
- # ?X :branch ?BX .
273
- # ?Y :branch ?BY .
274
- # ?BX :differentFrom ?BY .
275
- # } => {
276
- # ?X :cousin ?Y .
277
- # } .
278
- # with substitution (on rule variables):
279
- # ?BX = :b
280
- # ?BY = :c
281
- # ?G = 2
282
- # ?X = :Dave
283
- # ?Y = :Grace
284
- # Therefore the derived triple above is entailed by the rules and facts.
285
- # ----------------------------------------------------------------------
286
-
287
14
  :Dave :cousin :Grace .
288
-
289
- # ----------------------------------------------------------------------
290
- # Proof for derived triple:
291
- # :Eve :cousin :Frank .
292
- # It holds because the following instance of the rule body is provable:
293
- # :Eve :generation 2 .
294
- # :Frank :generation 2 .
295
- # :Eve :branch :b .
296
- # :Frank :branch :c .
297
- # :b :differentFrom :c .
298
- # via the schematic forward rule:
299
- # {
300
- # ?X :generation ?G .
301
- # ?Y :generation ?G .
302
- # ?X :branch ?BX .
303
- # ?Y :branch ?BY .
304
- # ?BX :differentFrom ?BY .
305
- # } => {
306
- # ?X :cousin ?Y .
307
- # } .
308
- # with substitution (on rule variables):
309
- # ?BX = :b
310
- # ?BY = :c
311
- # ?G = 2
312
- # ?X = :Eve
313
- # ?Y = :Frank
314
- # Therefore the derived triple above is entailed by the rules and facts.
315
- # ----------------------------------------------------------------------
316
-
317
15
  :Eve :cousin :Frank .
318
-
319
- # ----------------------------------------------------------------------
320
- # Proof for derived triple:
321
- # :Eve :cousin :Grace .
322
- # It holds because the following instance of the rule body is provable:
323
- # :Eve :generation 2 .
324
- # :Grace :generation 2 .
325
- # :Eve :branch :b .
326
- # :Grace :branch :c .
327
- # :b :differentFrom :c .
328
- # via the schematic forward rule:
329
- # {
330
- # ?X :generation ?G .
331
- # ?Y :generation ?G .
332
- # ?X :branch ?BX .
333
- # ?Y :branch ?BY .
334
- # ?BX :differentFrom ?BY .
335
- # } => {
336
- # ?X :cousin ?Y .
337
- # } .
338
- # with substitution (on rule variables):
339
- # ?BX = :b
340
- # ?BY = :c
341
- # ?G = 2
342
- # ?X = :Eve
343
- # ?Y = :Grace
344
- # Therefore the derived triple above is entailed by the rules and facts.
345
- # ----------------------------------------------------------------------
346
-
347
16
  :Eve :cousin :Grace .
348
-
349
- # ----------------------------------------------------------------------
350
- # Proof for derived triple:
351
- # :Frank :cousin :Dave .
352
- # It holds because the following instance of the rule body is provable:
353
- # :Frank :generation 2 .
354
- # :Dave :generation 2 .
355
- # :Frank :branch :c .
356
- # :Dave :branch :b .
357
- # :c :differentFrom :b .
358
- # via the schematic forward rule:
359
- # {
360
- # ?X :generation ?G .
361
- # ?Y :generation ?G .
362
- # ?X :branch ?BX .
363
- # ?Y :branch ?BY .
364
- # ?BX :differentFrom ?BY .
365
- # } => {
366
- # ?X :cousin ?Y .
367
- # } .
368
- # with substitution (on rule variables):
369
- # ?BX = :c
370
- # ?BY = :b
371
- # ?G = 2
372
- # ?X = :Frank
373
- # ?Y = :Dave
374
- # Therefore the derived triple above is entailed by the rules and facts.
375
- # ----------------------------------------------------------------------
376
-
377
17
  :Frank :cousin :Dave .
378
-
379
- # ----------------------------------------------------------------------
380
- # Proof for derived triple:
381
- # :Frank :cousin :Eve .
382
- # It holds because the following instance of the rule body is provable:
383
- # :Frank :generation 2 .
384
- # :Eve :generation 2 .
385
- # :Frank :branch :c .
386
- # :Eve :branch :b .
387
- # :c :differentFrom :b .
388
- # via the schematic forward rule:
389
- # {
390
- # ?X :generation ?G .
391
- # ?Y :generation ?G .
392
- # ?X :branch ?BX .
393
- # ?Y :branch ?BY .
394
- # ?BX :differentFrom ?BY .
395
- # } => {
396
- # ?X :cousin ?Y .
397
- # } .
398
- # with substitution (on rule variables):
399
- # ?BX = :c
400
- # ?BY = :b
401
- # ?G = 2
402
- # ?X = :Frank
403
- # ?Y = :Eve
404
- # Therefore the derived triple above is entailed by the rules and facts.
405
- # ----------------------------------------------------------------------
406
-
407
18
  :Frank :cousin :Eve .
408
-
409
- # ----------------------------------------------------------------------
410
- # Proof for derived triple:
411
- # :Grace :cousin :Dave .
412
- # It holds because the following instance of the rule body is provable:
413
- # :Grace :generation 2 .
414
- # :Dave :generation 2 .
415
- # :Grace :branch :c .
416
- # :Dave :branch :b .
417
- # :c :differentFrom :b .
418
- # via the schematic forward rule:
419
- # {
420
- # ?X :generation ?G .
421
- # ?Y :generation ?G .
422
- # ?X :branch ?BX .
423
- # ?Y :branch ?BY .
424
- # ?BX :differentFrom ?BY .
425
- # } => {
426
- # ?X :cousin ?Y .
427
- # } .
428
- # with substitution (on rule variables):
429
- # ?BX = :c
430
- # ?BY = :b
431
- # ?G = 2
432
- # ?X = :Grace
433
- # ?Y = :Dave
434
- # Therefore the derived triple above is entailed by the rules and facts.
435
- # ----------------------------------------------------------------------
436
-
437
19
  :Grace :cousin :Dave .
438
-
439
- # ----------------------------------------------------------------------
440
- # Proof for derived triple:
441
- # :Grace :cousin :Eve .
442
- # It holds because the following instance of the rule body is provable:
443
- # :Grace :generation 2 .
444
- # :Eve :generation 2 .
445
- # :Grace :branch :c .
446
- # :Eve :branch :b .
447
- # :c :differentFrom :b .
448
- # via the schematic forward rule:
449
- # {
450
- # ?X :generation ?G .
451
- # ?Y :generation ?G .
452
- # ?X :branch ?BX .
453
- # ?Y :branch ?BY .
454
- # ?BX :differentFrom ?BY .
455
- # } => {
456
- # ?X :cousin ?Y .
457
- # } .
458
- # with substitution (on rule variables):
459
- # ?BX = :c
460
- # ?BY = :b
461
- # ?G = 2
462
- # ?X = :Grace
463
- # ?Y = :Eve
464
- # Therefore the derived triple above is entailed by the rules and facts.
465
- # ----------------------------------------------------------------------
466
-
467
20
  :Grace :cousin :Eve .
468
-
469
- # ----------------------------------------------------------------------
470
- # Proof for derived triple:
471
- # :Judy :generation 3 .
472
- # It holds because the following instance of the rule body is provable:
473
- # :Frank :parentOf :Judy .
474
- # :Frank :generation 2 .
475
- # (2 1) math:sum 3 .
476
- # via the schematic forward rule:
477
- # {
478
- # ?P :parentOf ?C .
479
- # ?P :generation ?G .
480
- # (?G 1) math:sum ?G1 .
481
- # } => {
482
- # ?C :generation ?G1 .
483
- # } .
484
- # with substitution (on rule variables):
485
- # ?C = :Judy
486
- # ?G = 2
487
- # ?G1 = 3
488
- # ?P = :Frank
489
- # Therefore the derived triple above is entailed by the rules and facts.
490
- # ----------------------------------------------------------------------
491
-
492
21
  :Judy :generation 3 .
493
-
494
- # ----------------------------------------------------------------------
495
- # Proof for derived triple:
496
- # :Ivan :generation 3 .
497
- # It holds because the following instance of the rule body is provable:
498
- # :Eve :parentOf :Ivan .
499
- # :Eve :generation 2 .
500
- # (2 1) math:sum 3 .
501
- # via the schematic forward rule:
502
- # {
503
- # ?P :parentOf ?C .
504
- # ?P :generation ?G .
505
- # (?G 1) math:sum ?G1 .
506
- # } => {
507
- # ?C :generation ?G1 .
508
- # } .
509
- # with substitution (on rule variables):
510
- # ?C = :Ivan
511
- # ?G = 2
512
- # ?G1 = 3
513
- # ?P = :Eve
514
- # Therefore the derived triple above is entailed by the rules and facts.
515
- # ----------------------------------------------------------------------
516
-
517
22
  :Ivan :generation 3 .
518
-
519
- # ----------------------------------------------------------------------
520
- # Proof for derived triple:
521
- # :Heidi :generation 3 .
522
- # It holds because the following instance of the rule body is provable:
523
- # :Dave :parentOf :Heidi .
524
- # :Dave :generation 2 .
525
- # (2 1) math:sum 3 .
526
- # via the schematic forward rule:
527
- # {
528
- # ?P :parentOf ?C .
529
- # ?P :generation ?G .
530
- # (?G 1) math:sum ?G1 .
531
- # } => {
532
- # ?C :generation ?G1 .
533
- # } .
534
- # with substitution (on rule variables):
535
- # ?C = :Heidi
536
- # ?G = 2
537
- # ?G1 = 3
538
- # ?P = :Dave
539
- # Therefore the derived triple above is entailed by the rules and facts.
540
- # ----------------------------------------------------------------------
541
-
542
23
  :Heidi :generation 3 .
543
-
544
- # ----------------------------------------------------------------------
545
- # Proof for derived triple:
546
- # :Heidi :cousin :Judy .
547
- # It holds because the following instance of the rule body is provable:
548
- # :Heidi :generation 3 .
549
- # :Judy :generation 3 .
550
- # :Heidi :branch :b .
551
- # :Judy :branch :c .
552
- # :b :differentFrom :c .
553
- # via the schematic forward rule:
554
- # {
555
- # ?X :generation ?G .
556
- # ?Y :generation ?G .
557
- # ?X :branch ?BX .
558
- # ?Y :branch ?BY .
559
- # ?BX :differentFrom ?BY .
560
- # } => {
561
- # ?X :cousin ?Y .
562
- # } .
563
- # with substitution (on rule variables):
564
- # ?BX = :b
565
- # ?BY = :c
566
- # ?G = 3
567
- # ?X = :Heidi
568
- # ?Y = :Judy
569
- # Therefore the derived triple above is entailed by the rules and facts.
570
- # ----------------------------------------------------------------------
571
-
572
24
  :Heidi :cousin :Judy .
573
-
574
- # ----------------------------------------------------------------------
575
- # Proof for derived triple:
576
- # :Ivan :cousin :Judy .
577
- # It holds because the following instance of the rule body is provable:
578
- # :Ivan :generation 3 .
579
- # :Judy :generation 3 .
580
- # :Ivan :branch :b .
581
- # :Judy :branch :c .
582
- # :b :differentFrom :c .
583
- # via the schematic forward rule:
584
- # {
585
- # ?X :generation ?G .
586
- # ?Y :generation ?G .
587
- # ?X :branch ?BX .
588
- # ?Y :branch ?BY .
589
- # ?BX :differentFrom ?BY .
590
- # } => {
591
- # ?X :cousin ?Y .
592
- # } .
593
- # with substitution (on rule variables):
594
- # ?BX = :b
595
- # ?BY = :c
596
- # ?G = 3
597
- # ?X = :Ivan
598
- # ?Y = :Judy
599
- # Therefore the derived triple above is entailed by the rules and facts.
600
- # ----------------------------------------------------------------------
601
-
602
25
  :Ivan :cousin :Judy .
603
-
604
- # ----------------------------------------------------------------------
605
- # Proof for derived triple:
606
- # :Judy :cousin :Heidi .
607
- # It holds because the following instance of the rule body is provable:
608
- # :Judy :generation 3 .
609
- # :Heidi :generation 3 .
610
- # :Judy :branch :c .
611
- # :Heidi :branch :b .
612
- # :c :differentFrom :b .
613
- # via the schematic forward rule:
614
- # {
615
- # ?X :generation ?G .
616
- # ?Y :generation ?G .
617
- # ?X :branch ?BX .
618
- # ?Y :branch ?BY .
619
- # ?BX :differentFrom ?BY .
620
- # } => {
621
- # ?X :cousin ?Y .
622
- # } .
623
- # with substitution (on rule variables):
624
- # ?BX = :c
625
- # ?BY = :b
626
- # ?G = 3
627
- # ?X = :Judy
628
- # ?Y = :Heidi
629
- # Therefore the derived triple above is entailed by the rules and facts.
630
- # ----------------------------------------------------------------------
631
-
632
26
  :Judy :cousin :Heidi .
633
-
634
- # ----------------------------------------------------------------------
635
- # Proof for derived triple:
636
- # :Judy :cousin :Ivan .
637
- # It holds because the following instance of the rule body is provable:
638
- # :Judy :generation 3 .
639
- # :Ivan :generation 3 .
640
- # :Judy :branch :c .
641
- # :Ivan :branch :b .
642
- # :c :differentFrom :b .
643
- # via the schematic forward rule:
644
- # {
645
- # ?X :generation ?G .
646
- # ?Y :generation ?G .
647
- # ?X :branch ?BX .
648
- # ?Y :branch ?BY .
649
- # ?BX :differentFrom ?BY .
650
- # } => {
651
- # ?X :cousin ?Y .
652
- # } .
653
- # with substitution (on rule variables):
654
- # ?BX = :c
655
- # ?BY = :b
656
- # ?G = 3
657
- # ?X = :Judy
658
- # ?Y = :Ivan
659
- # Therefore the derived triple above is entailed by the rules and facts.
660
- # ----------------------------------------------------------------------
661
-
662
27
  :Judy :cousin :Ivan .
663
-
@@ -1,44 +1,8 @@
1
1
  @prefix : <https://eyereasoner.github.io/eye/reasoning#> .
2
2
 
3
- # ----------------------------------------------------------------------
4
- # Proof for derived triple:
5
- # :test :is {
6
- # 0 :fibonacci 0 .
7
- # 1 :fibonacci 1 .
8
- # 10 :fibonacci 55 .
9
- # 100 :fibonacci 354224848179261915075 .
10
- # } .
11
- # It holds because the following instance of the rule body is provable:
12
- # 0 :fibonacci 0 .
13
- # 1 :fibonacci 1 .
14
- # 10 :fibonacci 55 .
15
- # 100 :fibonacci 354224848179261915075 .
16
- # via the schematic forward rule:
17
- # {
18
- # 0 :fibonacci ?F0 .
19
- # 1 :fibonacci ?F1 .
20
- # 10 :fibonacci ?F10 .
21
- # 100 :fibonacci ?F100 .
22
- # } => {
23
- # :test :is {
24
- # 0 :fibonacci ?F0 .
25
- # 1 :fibonacci ?F1 .
26
- # 10 :fibonacci ?F10 .
27
- # 100 :fibonacci ?F100 .
28
- # } .
29
- # } .
30
- # with substitution (on rule variables):
31
- # ?F0 = 0
32
- # ?F1 = 1
33
- # ?F10 = 55
34
- # ?F100 = 354224848179261915075
35
- # Therefore the derived triple above is entailed by the rules and facts.
36
- # ----------------------------------------------------------------------
37
-
38
3
  :test :is {
39
4
  0 :fibonacci 0 .
40
5
  1 :fibonacci 1 .
41
6
  10 :fibonacci 55 .
42
7
  100 :fibonacci 354224848179261915075 .
43
8
  } .
44
-