eyeling 1.6.13 → 1.6.14
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/examples/output/age.n3 +0 -17
- package/examples/output/alignment-demo.n3 +0 -572
- package/examples/output/backward.n3 +0 -15
- package/examples/output/basic-monadic.n3 +0 -105
- package/examples/output/brussels-brew-club.n3 +0 -476
- package/examples/output/cat-koko.n3 +0 -108
- package/examples/output/cobalt-kepler-kitchen.n3 +0 -7064
- package/examples/output/complex.n3 +0 -46
- package/examples/output/control-system.n3 +0 -75
- package/examples/output/cranberry-calculus.n3 +0 -1313
- package/examples/output/crypto-builtins-tests.n3 +0 -60
- package/examples/output/deep-taxonomy-10.n3 +0 -602
- package/examples/output/deep-taxonomy-100.n3 +1 -5733
- package/examples/output/deep-taxonomy-1000.n3 +1 -57033
- package/examples/output/deep-taxonomy-10000.n3 +1 -570033
- package/examples/output/derived-backward-rule-2.n3 +0 -58
- package/examples/output/derived-backward-rule.n3 +0 -44
- package/examples/output/derived-rule.n3 +0 -42
- package/examples/output/dijkstra.n3 +0 -297
- package/examples/output/dog.n3 +0 -30
- package/examples/output/drone-corridor-planner.n3 +0 -799
- package/examples/output/easter.n3 +0 -3570
- package/examples/output/equals.n3 +0 -15
- package/examples/output/ev-roundtrip-planner.n3 +0 -392
- package/examples/output/existential-rule.n3 +0 -34
- package/examples/output/expression-eval.n3 +0 -20
- package/examples/output/family-cousins.n3 +0 -636
- package/examples/output/fibonacci.n3 +0 -36
- package/examples/output/french-cities.n3 +0 -484
- package/examples/output/good-cobbler.n3 +0 -22
- package/examples/output/gps.n3 +0 -62
- package/examples/output/gray-code-counter.n3 +0 -17
- package/examples/output/hanoi.n3 +0 -17
- package/examples/output/jade-eigen-loom.n3 +0 -4690
- package/examples/output/json-pointer.n3 +0 -529
- package/examples/output/json-reconcile-vat.n3 +0 -12882
- package/examples/output/light-eaters.n3 +0 -311
- package/examples/output/list-builtins-tests.n3 +0 -167
- package/examples/output/list-iterate.n3 +0 -124
- package/examples/output/lldm.n3 +0 -960
- package/examples/output/log-collect-all-in.n3 +0 -117
- package/examples/output/log-for-all-in.n3 +0 -27
- package/examples/output/log-not-includes.n3 +0 -59
- package/examples/output/log-skolem.n3 +0 -17
- package/examples/output/log-uri.n3 +0 -42
- package/examples/output/math-builtins-tests.n3 +0 -4434
- package/examples/output/minimal-skos-alignment.n3 +0 -39
- package/examples/output/monkey.n3 +0 -36
- package/examples/output/odrl-trust.n3 +0 -46
- package/examples/output/oslo-steps-library-scholarly.n3 +0 -1260
- package/examples/output/oslo-steps-workflow-composition.n3 +0 -180
- package/examples/output/peano.n3 +0 -23
- package/examples/output/pi.n3 +0 -17
- package/examples/output/pillar.n3 +0 -32
- package/examples/output/polygon.n3 +0 -17
- package/examples/output/rdf-list.n3 +0 -28
- package/examples/output/reordering.n3 +0 -26
- package/examples/output/ruby-runge-workshop.n3 +0 -613
- package/examples/output/rule-matching.n3 +0 -26
- package/examples/output/saffron-slopeworks.n3 +0 -1447
- package/examples/output/self-referential.n3 +0 -81
- package/examples/output/similar.n3 +0 -15
- package/examples/output/snaf.n3 +0 -23
- package/examples/output/socrates.n3 +0 -21
- package/examples/output/spectral-week.n3 +0 -350
- package/examples/output/string-builtins-tests.n3 +0 -240
- package/examples/output/topaz-markov-mill.n3 +0 -4178
- package/examples/output/traffic-skos-aggregate.n3 +0 -3151
- package/examples/output/turing.n3 +0 -36
- package/examples/output/ultramarine-simpson-forge.n3 +0 -3873
- package/examples/output/witch.n3 +0 -107
- package/examples/output/zebra.n3 +0 -111
- package/eyeling.js +97 -18
- package/package.json +1 -1
- package/test/examples.test.js +1 -1
|
@@ -1,663 +1,27 @@
|
|
|
1
1
|
@prefix : <http://example.org/family#> .
|
|
2
2
|
|
|
3
|
-
# ----------------------------------------------------------------------
|
|
4
|
-
# Proof for derived triple:
|
|
5
|
-
# :Adam :generation 0 .
|
|
6
|
-
# This triple is the head of a forward rule with an empty premise,
|
|
7
|
-
# so it holds unconditionally whenever the program is loaded.
|
|
8
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
9
|
-
# ----------------------------------------------------------------------
|
|
10
|
-
|
|
11
3
|
:Adam :generation 0 .
|
|
12
|
-
|
|
13
|
-
# ----------------------------------------------------------------------
|
|
14
|
-
# Proof for derived triple:
|
|
15
|
-
# :Carol :generation 1 .
|
|
16
|
-
# It holds because the following instance of the rule body is provable:
|
|
17
|
-
# :Adam :parentOf :Carol .
|
|
18
|
-
# :Adam :generation 0 .
|
|
19
|
-
# (0 1) math:sum 1 .
|
|
20
|
-
# via the schematic forward rule:
|
|
21
|
-
# {
|
|
22
|
-
# ?P :parentOf ?C .
|
|
23
|
-
# ?P :generation ?G .
|
|
24
|
-
# (?G 1) math:sum ?G1 .
|
|
25
|
-
# } => {
|
|
26
|
-
# ?C :generation ?G1 .
|
|
27
|
-
# } .
|
|
28
|
-
# with substitution (on rule variables):
|
|
29
|
-
# ?C = :Carol
|
|
30
|
-
# ?G = 0
|
|
31
|
-
# ?G1 = 1
|
|
32
|
-
# ?P = :Adam
|
|
33
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
34
|
-
# ----------------------------------------------------------------------
|
|
35
|
-
|
|
36
4
|
:Carol :generation 1 .
|
|
37
|
-
|
|
38
|
-
# ----------------------------------------------------------------------
|
|
39
|
-
# Proof for derived triple:
|
|
40
|
-
# :Bob :generation 1 .
|
|
41
|
-
# It holds because the following instance of the rule body is provable:
|
|
42
|
-
# :Adam :parentOf :Bob .
|
|
43
|
-
# :Adam :generation 0 .
|
|
44
|
-
# (0 1) math:sum 1 .
|
|
45
|
-
# via the schematic forward rule:
|
|
46
|
-
# {
|
|
47
|
-
# ?P :parentOf ?C .
|
|
48
|
-
# ?P :generation ?G .
|
|
49
|
-
# (?G 1) math:sum ?G1 .
|
|
50
|
-
# } => {
|
|
51
|
-
# ?C :generation ?G1 .
|
|
52
|
-
# } .
|
|
53
|
-
# with substitution (on rule variables):
|
|
54
|
-
# ?C = :Bob
|
|
55
|
-
# ?G = 0
|
|
56
|
-
# ?G1 = 1
|
|
57
|
-
# ?P = :Adam
|
|
58
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
59
|
-
# ----------------------------------------------------------------------
|
|
60
|
-
|
|
61
5
|
:Bob :generation 1 .
|
|
62
|
-
|
|
63
|
-
# ----------------------------------------------------------------------
|
|
64
|
-
# Proof for derived triple:
|
|
65
|
-
# :Judy :branch :c .
|
|
66
|
-
# It holds because the following instance of the rule body is provable:
|
|
67
|
-
# :Frank :parentOf :Judy .
|
|
68
|
-
# :Frank :branch :c .
|
|
69
|
-
# via the schematic forward rule:
|
|
70
|
-
# {
|
|
71
|
-
# ?P :parentOf ?C .
|
|
72
|
-
# ?P :branch ?B .
|
|
73
|
-
# } => {
|
|
74
|
-
# ?C :branch ?B .
|
|
75
|
-
# } .
|
|
76
|
-
# with substitution (on rule variables):
|
|
77
|
-
# ?B = :c
|
|
78
|
-
# ?C = :Judy
|
|
79
|
-
# ?P = :Frank
|
|
80
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
81
|
-
# ----------------------------------------------------------------------
|
|
82
|
-
|
|
83
6
|
:Judy :branch :c .
|
|
84
|
-
|
|
85
|
-
# ----------------------------------------------------------------------
|
|
86
|
-
# Proof for derived triple:
|
|
87
|
-
# :Ivan :branch :b .
|
|
88
|
-
# It holds because the following instance of the rule body is provable:
|
|
89
|
-
# :Eve :parentOf :Ivan .
|
|
90
|
-
# :Eve :branch :b .
|
|
91
|
-
# via the schematic forward rule:
|
|
92
|
-
# {
|
|
93
|
-
# ?P :parentOf ?C .
|
|
94
|
-
# ?P :branch ?B .
|
|
95
|
-
# } => {
|
|
96
|
-
# ?C :branch ?B .
|
|
97
|
-
# } .
|
|
98
|
-
# with substitution (on rule variables):
|
|
99
|
-
# ?B = :b
|
|
100
|
-
# ?C = :Ivan
|
|
101
|
-
# ?P = :Eve
|
|
102
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
103
|
-
# ----------------------------------------------------------------------
|
|
104
|
-
|
|
105
7
|
:Ivan :branch :b .
|
|
106
|
-
|
|
107
|
-
# ----------------------------------------------------------------------
|
|
108
|
-
# Proof for derived triple:
|
|
109
|
-
# :Heidi :branch :b .
|
|
110
|
-
# It holds because the following instance of the rule body is provable:
|
|
111
|
-
# :Dave :parentOf :Heidi .
|
|
112
|
-
# :Dave :branch :b .
|
|
113
|
-
# via the schematic forward rule:
|
|
114
|
-
# {
|
|
115
|
-
# ?P :parentOf ?C .
|
|
116
|
-
# ?P :branch ?B .
|
|
117
|
-
# } => {
|
|
118
|
-
# ?C :branch ?B .
|
|
119
|
-
# } .
|
|
120
|
-
# with substitution (on rule variables):
|
|
121
|
-
# ?B = :b
|
|
122
|
-
# ?C = :Heidi
|
|
123
|
-
# ?P = :Dave
|
|
124
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
125
|
-
# ----------------------------------------------------------------------
|
|
126
|
-
|
|
127
8
|
:Heidi :branch :b .
|
|
128
|
-
|
|
129
|
-
# ----------------------------------------------------------------------
|
|
130
|
-
# Proof for derived triple:
|
|
131
|
-
# :Grace :generation 2 .
|
|
132
|
-
# It holds because the following instance of the rule body is provable:
|
|
133
|
-
# :Carol :parentOf :Grace .
|
|
134
|
-
# :Carol :generation 1 .
|
|
135
|
-
# (1 1) math:sum 2 .
|
|
136
|
-
# via the schematic forward rule:
|
|
137
|
-
# {
|
|
138
|
-
# ?P :parentOf ?C .
|
|
139
|
-
# ?P :generation ?G .
|
|
140
|
-
# (?G 1) math:sum ?G1 .
|
|
141
|
-
# } => {
|
|
142
|
-
# ?C :generation ?G1 .
|
|
143
|
-
# } .
|
|
144
|
-
# with substitution (on rule variables):
|
|
145
|
-
# ?C = :Grace
|
|
146
|
-
# ?G = 1
|
|
147
|
-
# ?G1 = 2
|
|
148
|
-
# ?P = :Carol
|
|
149
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
150
|
-
# ----------------------------------------------------------------------
|
|
151
|
-
|
|
152
9
|
:Grace :generation 2 .
|
|
153
|
-
|
|
154
|
-
# ----------------------------------------------------------------------
|
|
155
|
-
# Proof for derived triple:
|
|
156
|
-
# :Frank :generation 2 .
|
|
157
|
-
# It holds because the following instance of the rule body is provable:
|
|
158
|
-
# :Carol :parentOf :Frank .
|
|
159
|
-
# :Carol :generation 1 .
|
|
160
|
-
# (1 1) math:sum 2 .
|
|
161
|
-
# via the schematic forward rule:
|
|
162
|
-
# {
|
|
163
|
-
# ?P :parentOf ?C .
|
|
164
|
-
# ?P :generation ?G .
|
|
165
|
-
# (?G 1) math:sum ?G1 .
|
|
166
|
-
# } => {
|
|
167
|
-
# ?C :generation ?G1 .
|
|
168
|
-
# } .
|
|
169
|
-
# with substitution (on rule variables):
|
|
170
|
-
# ?C = :Frank
|
|
171
|
-
# ?G = 1
|
|
172
|
-
# ?G1 = 2
|
|
173
|
-
# ?P = :Carol
|
|
174
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
175
|
-
# ----------------------------------------------------------------------
|
|
176
|
-
|
|
177
10
|
:Frank :generation 2 .
|
|
178
|
-
|
|
179
|
-
# ----------------------------------------------------------------------
|
|
180
|
-
# Proof for derived triple:
|
|
181
|
-
# :Eve :generation 2 .
|
|
182
|
-
# It holds because the following instance of the rule body is provable:
|
|
183
|
-
# :Bob :parentOf :Eve .
|
|
184
|
-
# :Bob :generation 1 .
|
|
185
|
-
# (1 1) math:sum 2 .
|
|
186
|
-
# via the schematic forward rule:
|
|
187
|
-
# {
|
|
188
|
-
# ?P :parentOf ?C .
|
|
189
|
-
# ?P :generation ?G .
|
|
190
|
-
# (?G 1) math:sum ?G1 .
|
|
191
|
-
# } => {
|
|
192
|
-
# ?C :generation ?G1 .
|
|
193
|
-
# } .
|
|
194
|
-
# with substitution (on rule variables):
|
|
195
|
-
# ?C = :Eve
|
|
196
|
-
# ?G = 1
|
|
197
|
-
# ?G1 = 2
|
|
198
|
-
# ?P = :Bob
|
|
199
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
200
|
-
# ----------------------------------------------------------------------
|
|
201
|
-
|
|
202
11
|
:Eve :generation 2 .
|
|
203
|
-
|
|
204
|
-
# ----------------------------------------------------------------------
|
|
205
|
-
# Proof for derived triple:
|
|
206
|
-
# :Dave :generation 2 .
|
|
207
|
-
# It holds because the following instance of the rule body is provable:
|
|
208
|
-
# :Bob :parentOf :Dave .
|
|
209
|
-
# :Bob :generation 1 .
|
|
210
|
-
# (1 1) math:sum 2 .
|
|
211
|
-
# via the schematic forward rule:
|
|
212
|
-
# {
|
|
213
|
-
# ?P :parentOf ?C .
|
|
214
|
-
# ?P :generation ?G .
|
|
215
|
-
# (?G 1) math:sum ?G1 .
|
|
216
|
-
# } => {
|
|
217
|
-
# ?C :generation ?G1 .
|
|
218
|
-
# } .
|
|
219
|
-
# with substitution (on rule variables):
|
|
220
|
-
# ?C = :Dave
|
|
221
|
-
# ?G = 1
|
|
222
|
-
# ?G1 = 2
|
|
223
|
-
# ?P = :Bob
|
|
224
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
225
|
-
# ----------------------------------------------------------------------
|
|
226
|
-
|
|
227
12
|
:Dave :generation 2 .
|
|
228
|
-
|
|
229
|
-
# ----------------------------------------------------------------------
|
|
230
|
-
# Proof for derived triple:
|
|
231
|
-
# :Dave :cousin :Frank .
|
|
232
|
-
# It holds because the following instance of the rule body is provable:
|
|
233
|
-
# :Dave :generation 2 .
|
|
234
|
-
# :Frank :generation 2 .
|
|
235
|
-
# :Dave :branch :b .
|
|
236
|
-
# :Frank :branch :c .
|
|
237
|
-
# :b :differentFrom :c .
|
|
238
|
-
# via the schematic forward rule:
|
|
239
|
-
# {
|
|
240
|
-
# ?X :generation ?G .
|
|
241
|
-
# ?Y :generation ?G .
|
|
242
|
-
# ?X :branch ?BX .
|
|
243
|
-
# ?Y :branch ?BY .
|
|
244
|
-
# ?BX :differentFrom ?BY .
|
|
245
|
-
# } => {
|
|
246
|
-
# ?X :cousin ?Y .
|
|
247
|
-
# } .
|
|
248
|
-
# with substitution (on rule variables):
|
|
249
|
-
# ?BX = :b
|
|
250
|
-
# ?BY = :c
|
|
251
|
-
# ?G = 2
|
|
252
|
-
# ?X = :Dave
|
|
253
|
-
# ?Y = :Frank
|
|
254
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
255
|
-
# ----------------------------------------------------------------------
|
|
256
|
-
|
|
257
13
|
:Dave :cousin :Frank .
|
|
258
|
-
|
|
259
|
-
# ----------------------------------------------------------------------
|
|
260
|
-
# Proof for derived triple:
|
|
261
|
-
# :Dave :cousin :Grace .
|
|
262
|
-
# It holds because the following instance of the rule body is provable:
|
|
263
|
-
# :Dave :generation 2 .
|
|
264
|
-
# :Grace :generation 2 .
|
|
265
|
-
# :Dave :branch :b .
|
|
266
|
-
# :Grace :branch :c .
|
|
267
|
-
# :b :differentFrom :c .
|
|
268
|
-
# via the schematic forward rule:
|
|
269
|
-
# {
|
|
270
|
-
# ?X :generation ?G .
|
|
271
|
-
# ?Y :generation ?G .
|
|
272
|
-
# ?X :branch ?BX .
|
|
273
|
-
# ?Y :branch ?BY .
|
|
274
|
-
# ?BX :differentFrom ?BY .
|
|
275
|
-
# } => {
|
|
276
|
-
# ?X :cousin ?Y .
|
|
277
|
-
# } .
|
|
278
|
-
# with substitution (on rule variables):
|
|
279
|
-
# ?BX = :b
|
|
280
|
-
# ?BY = :c
|
|
281
|
-
# ?G = 2
|
|
282
|
-
# ?X = :Dave
|
|
283
|
-
# ?Y = :Grace
|
|
284
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
285
|
-
# ----------------------------------------------------------------------
|
|
286
|
-
|
|
287
14
|
:Dave :cousin :Grace .
|
|
288
|
-
|
|
289
|
-
# ----------------------------------------------------------------------
|
|
290
|
-
# Proof for derived triple:
|
|
291
|
-
# :Eve :cousin :Frank .
|
|
292
|
-
# It holds because the following instance of the rule body is provable:
|
|
293
|
-
# :Eve :generation 2 .
|
|
294
|
-
# :Frank :generation 2 .
|
|
295
|
-
# :Eve :branch :b .
|
|
296
|
-
# :Frank :branch :c .
|
|
297
|
-
# :b :differentFrom :c .
|
|
298
|
-
# via the schematic forward rule:
|
|
299
|
-
# {
|
|
300
|
-
# ?X :generation ?G .
|
|
301
|
-
# ?Y :generation ?G .
|
|
302
|
-
# ?X :branch ?BX .
|
|
303
|
-
# ?Y :branch ?BY .
|
|
304
|
-
# ?BX :differentFrom ?BY .
|
|
305
|
-
# } => {
|
|
306
|
-
# ?X :cousin ?Y .
|
|
307
|
-
# } .
|
|
308
|
-
# with substitution (on rule variables):
|
|
309
|
-
# ?BX = :b
|
|
310
|
-
# ?BY = :c
|
|
311
|
-
# ?G = 2
|
|
312
|
-
# ?X = :Eve
|
|
313
|
-
# ?Y = :Frank
|
|
314
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
315
|
-
# ----------------------------------------------------------------------
|
|
316
|
-
|
|
317
15
|
:Eve :cousin :Frank .
|
|
318
|
-
|
|
319
|
-
# ----------------------------------------------------------------------
|
|
320
|
-
# Proof for derived triple:
|
|
321
|
-
# :Eve :cousin :Grace .
|
|
322
|
-
# It holds because the following instance of the rule body is provable:
|
|
323
|
-
# :Eve :generation 2 .
|
|
324
|
-
# :Grace :generation 2 .
|
|
325
|
-
# :Eve :branch :b .
|
|
326
|
-
# :Grace :branch :c .
|
|
327
|
-
# :b :differentFrom :c .
|
|
328
|
-
# via the schematic forward rule:
|
|
329
|
-
# {
|
|
330
|
-
# ?X :generation ?G .
|
|
331
|
-
# ?Y :generation ?G .
|
|
332
|
-
# ?X :branch ?BX .
|
|
333
|
-
# ?Y :branch ?BY .
|
|
334
|
-
# ?BX :differentFrom ?BY .
|
|
335
|
-
# } => {
|
|
336
|
-
# ?X :cousin ?Y .
|
|
337
|
-
# } .
|
|
338
|
-
# with substitution (on rule variables):
|
|
339
|
-
# ?BX = :b
|
|
340
|
-
# ?BY = :c
|
|
341
|
-
# ?G = 2
|
|
342
|
-
# ?X = :Eve
|
|
343
|
-
# ?Y = :Grace
|
|
344
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
345
|
-
# ----------------------------------------------------------------------
|
|
346
|
-
|
|
347
16
|
:Eve :cousin :Grace .
|
|
348
|
-
|
|
349
|
-
# ----------------------------------------------------------------------
|
|
350
|
-
# Proof for derived triple:
|
|
351
|
-
# :Frank :cousin :Dave .
|
|
352
|
-
# It holds because the following instance of the rule body is provable:
|
|
353
|
-
# :Frank :generation 2 .
|
|
354
|
-
# :Dave :generation 2 .
|
|
355
|
-
# :Frank :branch :c .
|
|
356
|
-
# :Dave :branch :b .
|
|
357
|
-
# :c :differentFrom :b .
|
|
358
|
-
# via the schematic forward rule:
|
|
359
|
-
# {
|
|
360
|
-
# ?X :generation ?G .
|
|
361
|
-
# ?Y :generation ?G .
|
|
362
|
-
# ?X :branch ?BX .
|
|
363
|
-
# ?Y :branch ?BY .
|
|
364
|
-
# ?BX :differentFrom ?BY .
|
|
365
|
-
# } => {
|
|
366
|
-
# ?X :cousin ?Y .
|
|
367
|
-
# } .
|
|
368
|
-
# with substitution (on rule variables):
|
|
369
|
-
# ?BX = :c
|
|
370
|
-
# ?BY = :b
|
|
371
|
-
# ?G = 2
|
|
372
|
-
# ?X = :Frank
|
|
373
|
-
# ?Y = :Dave
|
|
374
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
375
|
-
# ----------------------------------------------------------------------
|
|
376
|
-
|
|
377
17
|
:Frank :cousin :Dave .
|
|
378
|
-
|
|
379
|
-
# ----------------------------------------------------------------------
|
|
380
|
-
# Proof for derived triple:
|
|
381
|
-
# :Frank :cousin :Eve .
|
|
382
|
-
# It holds because the following instance of the rule body is provable:
|
|
383
|
-
# :Frank :generation 2 .
|
|
384
|
-
# :Eve :generation 2 .
|
|
385
|
-
# :Frank :branch :c .
|
|
386
|
-
# :Eve :branch :b .
|
|
387
|
-
# :c :differentFrom :b .
|
|
388
|
-
# via the schematic forward rule:
|
|
389
|
-
# {
|
|
390
|
-
# ?X :generation ?G .
|
|
391
|
-
# ?Y :generation ?G .
|
|
392
|
-
# ?X :branch ?BX .
|
|
393
|
-
# ?Y :branch ?BY .
|
|
394
|
-
# ?BX :differentFrom ?BY .
|
|
395
|
-
# } => {
|
|
396
|
-
# ?X :cousin ?Y .
|
|
397
|
-
# } .
|
|
398
|
-
# with substitution (on rule variables):
|
|
399
|
-
# ?BX = :c
|
|
400
|
-
# ?BY = :b
|
|
401
|
-
# ?G = 2
|
|
402
|
-
# ?X = :Frank
|
|
403
|
-
# ?Y = :Eve
|
|
404
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
405
|
-
# ----------------------------------------------------------------------
|
|
406
|
-
|
|
407
18
|
:Frank :cousin :Eve .
|
|
408
|
-
|
|
409
|
-
# ----------------------------------------------------------------------
|
|
410
|
-
# Proof for derived triple:
|
|
411
|
-
# :Grace :cousin :Dave .
|
|
412
|
-
# It holds because the following instance of the rule body is provable:
|
|
413
|
-
# :Grace :generation 2 .
|
|
414
|
-
# :Dave :generation 2 .
|
|
415
|
-
# :Grace :branch :c .
|
|
416
|
-
# :Dave :branch :b .
|
|
417
|
-
# :c :differentFrom :b .
|
|
418
|
-
# via the schematic forward rule:
|
|
419
|
-
# {
|
|
420
|
-
# ?X :generation ?G .
|
|
421
|
-
# ?Y :generation ?G .
|
|
422
|
-
# ?X :branch ?BX .
|
|
423
|
-
# ?Y :branch ?BY .
|
|
424
|
-
# ?BX :differentFrom ?BY .
|
|
425
|
-
# } => {
|
|
426
|
-
# ?X :cousin ?Y .
|
|
427
|
-
# } .
|
|
428
|
-
# with substitution (on rule variables):
|
|
429
|
-
# ?BX = :c
|
|
430
|
-
# ?BY = :b
|
|
431
|
-
# ?G = 2
|
|
432
|
-
# ?X = :Grace
|
|
433
|
-
# ?Y = :Dave
|
|
434
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
435
|
-
# ----------------------------------------------------------------------
|
|
436
|
-
|
|
437
19
|
:Grace :cousin :Dave .
|
|
438
|
-
|
|
439
|
-
# ----------------------------------------------------------------------
|
|
440
|
-
# Proof for derived triple:
|
|
441
|
-
# :Grace :cousin :Eve .
|
|
442
|
-
# It holds because the following instance of the rule body is provable:
|
|
443
|
-
# :Grace :generation 2 .
|
|
444
|
-
# :Eve :generation 2 .
|
|
445
|
-
# :Grace :branch :c .
|
|
446
|
-
# :Eve :branch :b .
|
|
447
|
-
# :c :differentFrom :b .
|
|
448
|
-
# via the schematic forward rule:
|
|
449
|
-
# {
|
|
450
|
-
# ?X :generation ?G .
|
|
451
|
-
# ?Y :generation ?G .
|
|
452
|
-
# ?X :branch ?BX .
|
|
453
|
-
# ?Y :branch ?BY .
|
|
454
|
-
# ?BX :differentFrom ?BY .
|
|
455
|
-
# } => {
|
|
456
|
-
# ?X :cousin ?Y .
|
|
457
|
-
# } .
|
|
458
|
-
# with substitution (on rule variables):
|
|
459
|
-
# ?BX = :c
|
|
460
|
-
# ?BY = :b
|
|
461
|
-
# ?G = 2
|
|
462
|
-
# ?X = :Grace
|
|
463
|
-
# ?Y = :Eve
|
|
464
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
465
|
-
# ----------------------------------------------------------------------
|
|
466
|
-
|
|
467
20
|
:Grace :cousin :Eve .
|
|
468
|
-
|
|
469
|
-
# ----------------------------------------------------------------------
|
|
470
|
-
# Proof for derived triple:
|
|
471
|
-
# :Judy :generation 3 .
|
|
472
|
-
# It holds because the following instance of the rule body is provable:
|
|
473
|
-
# :Frank :parentOf :Judy .
|
|
474
|
-
# :Frank :generation 2 .
|
|
475
|
-
# (2 1) math:sum 3 .
|
|
476
|
-
# via the schematic forward rule:
|
|
477
|
-
# {
|
|
478
|
-
# ?P :parentOf ?C .
|
|
479
|
-
# ?P :generation ?G .
|
|
480
|
-
# (?G 1) math:sum ?G1 .
|
|
481
|
-
# } => {
|
|
482
|
-
# ?C :generation ?G1 .
|
|
483
|
-
# } .
|
|
484
|
-
# with substitution (on rule variables):
|
|
485
|
-
# ?C = :Judy
|
|
486
|
-
# ?G = 2
|
|
487
|
-
# ?G1 = 3
|
|
488
|
-
# ?P = :Frank
|
|
489
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
490
|
-
# ----------------------------------------------------------------------
|
|
491
|
-
|
|
492
21
|
:Judy :generation 3 .
|
|
493
|
-
|
|
494
|
-
# ----------------------------------------------------------------------
|
|
495
|
-
# Proof for derived triple:
|
|
496
|
-
# :Ivan :generation 3 .
|
|
497
|
-
# It holds because the following instance of the rule body is provable:
|
|
498
|
-
# :Eve :parentOf :Ivan .
|
|
499
|
-
# :Eve :generation 2 .
|
|
500
|
-
# (2 1) math:sum 3 .
|
|
501
|
-
# via the schematic forward rule:
|
|
502
|
-
# {
|
|
503
|
-
# ?P :parentOf ?C .
|
|
504
|
-
# ?P :generation ?G .
|
|
505
|
-
# (?G 1) math:sum ?G1 .
|
|
506
|
-
# } => {
|
|
507
|
-
# ?C :generation ?G1 .
|
|
508
|
-
# } .
|
|
509
|
-
# with substitution (on rule variables):
|
|
510
|
-
# ?C = :Ivan
|
|
511
|
-
# ?G = 2
|
|
512
|
-
# ?G1 = 3
|
|
513
|
-
# ?P = :Eve
|
|
514
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
515
|
-
# ----------------------------------------------------------------------
|
|
516
|
-
|
|
517
22
|
:Ivan :generation 3 .
|
|
518
|
-
|
|
519
|
-
# ----------------------------------------------------------------------
|
|
520
|
-
# Proof for derived triple:
|
|
521
|
-
# :Heidi :generation 3 .
|
|
522
|
-
# It holds because the following instance of the rule body is provable:
|
|
523
|
-
# :Dave :parentOf :Heidi .
|
|
524
|
-
# :Dave :generation 2 .
|
|
525
|
-
# (2 1) math:sum 3 .
|
|
526
|
-
# via the schematic forward rule:
|
|
527
|
-
# {
|
|
528
|
-
# ?P :parentOf ?C .
|
|
529
|
-
# ?P :generation ?G .
|
|
530
|
-
# (?G 1) math:sum ?G1 .
|
|
531
|
-
# } => {
|
|
532
|
-
# ?C :generation ?G1 .
|
|
533
|
-
# } .
|
|
534
|
-
# with substitution (on rule variables):
|
|
535
|
-
# ?C = :Heidi
|
|
536
|
-
# ?G = 2
|
|
537
|
-
# ?G1 = 3
|
|
538
|
-
# ?P = :Dave
|
|
539
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
540
|
-
# ----------------------------------------------------------------------
|
|
541
|
-
|
|
542
23
|
:Heidi :generation 3 .
|
|
543
|
-
|
|
544
|
-
# ----------------------------------------------------------------------
|
|
545
|
-
# Proof for derived triple:
|
|
546
|
-
# :Heidi :cousin :Judy .
|
|
547
|
-
# It holds because the following instance of the rule body is provable:
|
|
548
|
-
# :Heidi :generation 3 .
|
|
549
|
-
# :Judy :generation 3 .
|
|
550
|
-
# :Heidi :branch :b .
|
|
551
|
-
# :Judy :branch :c .
|
|
552
|
-
# :b :differentFrom :c .
|
|
553
|
-
# via the schematic forward rule:
|
|
554
|
-
# {
|
|
555
|
-
# ?X :generation ?G .
|
|
556
|
-
# ?Y :generation ?G .
|
|
557
|
-
# ?X :branch ?BX .
|
|
558
|
-
# ?Y :branch ?BY .
|
|
559
|
-
# ?BX :differentFrom ?BY .
|
|
560
|
-
# } => {
|
|
561
|
-
# ?X :cousin ?Y .
|
|
562
|
-
# } .
|
|
563
|
-
# with substitution (on rule variables):
|
|
564
|
-
# ?BX = :b
|
|
565
|
-
# ?BY = :c
|
|
566
|
-
# ?G = 3
|
|
567
|
-
# ?X = :Heidi
|
|
568
|
-
# ?Y = :Judy
|
|
569
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
570
|
-
# ----------------------------------------------------------------------
|
|
571
|
-
|
|
572
24
|
:Heidi :cousin :Judy .
|
|
573
|
-
|
|
574
|
-
# ----------------------------------------------------------------------
|
|
575
|
-
# Proof for derived triple:
|
|
576
|
-
# :Ivan :cousin :Judy .
|
|
577
|
-
# It holds because the following instance of the rule body is provable:
|
|
578
|
-
# :Ivan :generation 3 .
|
|
579
|
-
# :Judy :generation 3 .
|
|
580
|
-
# :Ivan :branch :b .
|
|
581
|
-
# :Judy :branch :c .
|
|
582
|
-
# :b :differentFrom :c .
|
|
583
|
-
# via the schematic forward rule:
|
|
584
|
-
# {
|
|
585
|
-
# ?X :generation ?G .
|
|
586
|
-
# ?Y :generation ?G .
|
|
587
|
-
# ?X :branch ?BX .
|
|
588
|
-
# ?Y :branch ?BY .
|
|
589
|
-
# ?BX :differentFrom ?BY .
|
|
590
|
-
# } => {
|
|
591
|
-
# ?X :cousin ?Y .
|
|
592
|
-
# } .
|
|
593
|
-
# with substitution (on rule variables):
|
|
594
|
-
# ?BX = :b
|
|
595
|
-
# ?BY = :c
|
|
596
|
-
# ?G = 3
|
|
597
|
-
# ?X = :Ivan
|
|
598
|
-
# ?Y = :Judy
|
|
599
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
600
|
-
# ----------------------------------------------------------------------
|
|
601
|
-
|
|
602
25
|
:Ivan :cousin :Judy .
|
|
603
|
-
|
|
604
|
-
# ----------------------------------------------------------------------
|
|
605
|
-
# Proof for derived triple:
|
|
606
|
-
# :Judy :cousin :Heidi .
|
|
607
|
-
# It holds because the following instance of the rule body is provable:
|
|
608
|
-
# :Judy :generation 3 .
|
|
609
|
-
# :Heidi :generation 3 .
|
|
610
|
-
# :Judy :branch :c .
|
|
611
|
-
# :Heidi :branch :b .
|
|
612
|
-
# :c :differentFrom :b .
|
|
613
|
-
# via the schematic forward rule:
|
|
614
|
-
# {
|
|
615
|
-
# ?X :generation ?G .
|
|
616
|
-
# ?Y :generation ?G .
|
|
617
|
-
# ?X :branch ?BX .
|
|
618
|
-
# ?Y :branch ?BY .
|
|
619
|
-
# ?BX :differentFrom ?BY .
|
|
620
|
-
# } => {
|
|
621
|
-
# ?X :cousin ?Y .
|
|
622
|
-
# } .
|
|
623
|
-
# with substitution (on rule variables):
|
|
624
|
-
# ?BX = :c
|
|
625
|
-
# ?BY = :b
|
|
626
|
-
# ?G = 3
|
|
627
|
-
# ?X = :Judy
|
|
628
|
-
# ?Y = :Heidi
|
|
629
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
630
|
-
# ----------------------------------------------------------------------
|
|
631
|
-
|
|
632
26
|
:Judy :cousin :Heidi .
|
|
633
|
-
|
|
634
|
-
# ----------------------------------------------------------------------
|
|
635
|
-
# Proof for derived triple:
|
|
636
|
-
# :Judy :cousin :Ivan .
|
|
637
|
-
# It holds because the following instance of the rule body is provable:
|
|
638
|
-
# :Judy :generation 3 .
|
|
639
|
-
# :Ivan :generation 3 .
|
|
640
|
-
# :Judy :branch :c .
|
|
641
|
-
# :Ivan :branch :b .
|
|
642
|
-
# :c :differentFrom :b .
|
|
643
|
-
# via the schematic forward rule:
|
|
644
|
-
# {
|
|
645
|
-
# ?X :generation ?G .
|
|
646
|
-
# ?Y :generation ?G .
|
|
647
|
-
# ?X :branch ?BX .
|
|
648
|
-
# ?Y :branch ?BY .
|
|
649
|
-
# ?BX :differentFrom ?BY .
|
|
650
|
-
# } => {
|
|
651
|
-
# ?X :cousin ?Y .
|
|
652
|
-
# } .
|
|
653
|
-
# with substitution (on rule variables):
|
|
654
|
-
# ?BX = :c
|
|
655
|
-
# ?BY = :b
|
|
656
|
-
# ?G = 3
|
|
657
|
-
# ?X = :Judy
|
|
658
|
-
# ?Y = :Ivan
|
|
659
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
660
|
-
# ----------------------------------------------------------------------
|
|
661
|
-
|
|
662
27
|
:Judy :cousin :Ivan .
|
|
663
|
-
|
|
@@ -1,44 +1,8 @@
|
|
|
1
1
|
@prefix : <https://eyereasoner.github.io/eye/reasoning#> .
|
|
2
2
|
|
|
3
|
-
# ----------------------------------------------------------------------
|
|
4
|
-
# Proof for derived triple:
|
|
5
|
-
# :test :is {
|
|
6
|
-
# 0 :fibonacci 0 .
|
|
7
|
-
# 1 :fibonacci 1 .
|
|
8
|
-
# 10 :fibonacci 55 .
|
|
9
|
-
# 100 :fibonacci 354224848179261915075 .
|
|
10
|
-
# } .
|
|
11
|
-
# It holds because the following instance of the rule body is provable:
|
|
12
|
-
# 0 :fibonacci 0 .
|
|
13
|
-
# 1 :fibonacci 1 .
|
|
14
|
-
# 10 :fibonacci 55 .
|
|
15
|
-
# 100 :fibonacci 354224848179261915075 .
|
|
16
|
-
# via the schematic forward rule:
|
|
17
|
-
# {
|
|
18
|
-
# 0 :fibonacci ?F0 .
|
|
19
|
-
# 1 :fibonacci ?F1 .
|
|
20
|
-
# 10 :fibonacci ?F10 .
|
|
21
|
-
# 100 :fibonacci ?F100 .
|
|
22
|
-
# } => {
|
|
23
|
-
# :test :is {
|
|
24
|
-
# 0 :fibonacci ?F0 .
|
|
25
|
-
# 1 :fibonacci ?F1 .
|
|
26
|
-
# 10 :fibonacci ?F10 .
|
|
27
|
-
# 100 :fibonacci ?F100 .
|
|
28
|
-
# } .
|
|
29
|
-
# } .
|
|
30
|
-
# with substitution (on rule variables):
|
|
31
|
-
# ?F0 = 0
|
|
32
|
-
# ?F1 = 1
|
|
33
|
-
# ?F10 = 55
|
|
34
|
-
# ?F100 = 354224848179261915075
|
|
35
|
-
# Therefore the derived triple above is entailed by the rules and facts.
|
|
36
|
-
# ----------------------------------------------------------------------
|
|
37
|
-
|
|
38
3
|
:test :is {
|
|
39
4
|
0 :fibonacci 0 .
|
|
40
5
|
1 :fibonacci 1 .
|
|
41
6
|
10 :fibonacci 55 .
|
|
42
7
|
100 :fibonacci 354224848179261915075 .
|
|
43
8
|
} .
|
|
44
|
-
|