@lobehub/chat 1.115.0 → 1.116.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (115) hide show
  1. package/.cursor/rules/add-provider-doc.mdc +183 -0
  2. package/.env.example +8 -0
  3. package/.github/workflows/claude.yml +1 -1
  4. package/.github/workflows/release.yml +3 -3
  5. package/.github/workflows/test.yml +3 -7
  6. package/CHANGELOG.md +42 -0
  7. package/CLAUDE.md +6 -6
  8. package/Dockerfile +5 -1
  9. package/Dockerfile.database +5 -1
  10. package/Dockerfile.pglite +5 -1
  11. package/changelog/v1.json +14 -0
  12. package/docs/development/basic/setup-development.mdx +10 -13
  13. package/docs/development/basic/setup-development.zh-CN.mdx +9 -12
  14. package/docs/development/database-schema.dbml +44 -0
  15. package/docs/self-hosting/environment-variables/model-provider.mdx +27 -2
  16. package/docs/self-hosting/environment-variables/model-provider.zh-CN.mdx +27 -2
  17. package/docs/usage/providers/bfl.mdx +68 -0
  18. package/docs/usage/providers/bfl.zh-CN.mdx +67 -0
  19. package/locales/ar/components.json +11 -0
  20. package/locales/ar/error.json +11 -0
  21. package/locales/ar/models.json +64 -4
  22. package/locales/ar/providers.json +3 -0
  23. package/locales/bg-BG/components.json +11 -0
  24. package/locales/bg-BG/error.json +11 -0
  25. package/locales/bg-BG/models.json +64 -4
  26. package/locales/bg-BG/providers.json +3 -0
  27. package/locales/de-DE/components.json +11 -0
  28. package/locales/de-DE/error.json +11 -12
  29. package/locales/de-DE/models.json +64 -4
  30. package/locales/de-DE/providers.json +3 -0
  31. package/locales/en-US/components.json +6 -0
  32. package/locales/en-US/error.json +11 -12
  33. package/locales/en-US/models.json +64 -4
  34. package/locales/en-US/providers.json +3 -0
  35. package/locales/es-ES/components.json +11 -0
  36. package/locales/es-ES/error.json +11 -0
  37. package/locales/es-ES/models.json +64 -6
  38. package/locales/es-ES/providers.json +3 -0
  39. package/locales/fa-IR/components.json +11 -0
  40. package/locales/fa-IR/error.json +11 -0
  41. package/locales/fa-IR/models.json +64 -4
  42. package/locales/fa-IR/providers.json +3 -0
  43. package/locales/fr-FR/components.json +11 -0
  44. package/locales/fr-FR/error.json +11 -12
  45. package/locales/fr-FR/models.json +64 -4
  46. package/locales/fr-FR/providers.json +3 -0
  47. package/locales/it-IT/components.json +11 -0
  48. package/locales/it-IT/error.json +11 -0
  49. package/locales/it-IT/models.json +64 -4
  50. package/locales/it-IT/providers.json +3 -0
  51. package/locales/ja-JP/components.json +11 -0
  52. package/locales/ja-JP/error.json +11 -12
  53. package/locales/ja-JP/models.json +64 -4
  54. package/locales/ja-JP/providers.json +3 -0
  55. package/locales/ko-KR/components.json +11 -0
  56. package/locales/ko-KR/error.json +11 -12
  57. package/locales/ko-KR/models.json +64 -6
  58. package/locales/ko-KR/providers.json +3 -0
  59. package/locales/nl-NL/components.json +11 -0
  60. package/locales/nl-NL/error.json +11 -0
  61. package/locales/nl-NL/models.json +62 -4
  62. package/locales/nl-NL/providers.json +3 -0
  63. package/locales/pl-PL/components.json +11 -0
  64. package/locales/pl-PL/error.json +11 -0
  65. package/locales/pl-PL/models.json +64 -4
  66. package/locales/pl-PL/providers.json +3 -0
  67. package/locales/pt-BR/components.json +11 -0
  68. package/locales/pt-BR/error.json +11 -0
  69. package/locales/pt-BR/models.json +64 -4
  70. package/locales/pt-BR/providers.json +3 -0
  71. package/locales/ru-RU/components.json +11 -0
  72. package/locales/ru-RU/error.json +11 -0
  73. package/locales/ru-RU/models.json +64 -4
  74. package/locales/ru-RU/providers.json +3 -0
  75. package/locales/tr-TR/components.json +11 -0
  76. package/locales/tr-TR/error.json +11 -0
  77. package/locales/tr-TR/models.json +64 -4
  78. package/locales/tr-TR/providers.json +3 -0
  79. package/locales/vi-VN/components.json +11 -0
  80. package/locales/vi-VN/error.json +11 -0
  81. package/locales/vi-VN/models.json +64 -4
  82. package/locales/vi-VN/providers.json +3 -0
  83. package/locales/zh-CN/components.json +6 -0
  84. package/locales/zh-CN/error.json +11 -0
  85. package/locales/zh-CN/models.json +64 -4
  86. package/locales/zh-CN/providers.json +3 -0
  87. package/locales/zh-TW/components.json +11 -0
  88. package/locales/zh-TW/error.json +11 -12
  89. package/locales/zh-TW/models.json +64 -6
  90. package/locales/zh-TW/providers.json +3 -0
  91. package/package.json +1 -1
  92. package/packages/database/migrations/0030_add_group_chat.sql +36 -0
  93. package/packages/database/migrations/meta/0030_snapshot.json +6417 -0
  94. package/packages/database/migrations/meta/_journal.json +7 -0
  95. package/packages/database/src/core/migrations.json +19 -0
  96. package/packages/database/src/models/__tests__/topic.test.ts +3 -1
  97. package/packages/database/src/repositories/tableViewer/index.test.ts +1 -1
  98. package/packages/database/src/schemas/chatGroup.ts +98 -0
  99. package/packages/database/src/schemas/index.ts +1 -0
  100. package/packages/database/src/schemas/message.ts +4 -1
  101. package/packages/database/src/schemas/relations.ts +26 -0
  102. package/packages/database/src/schemas/topic.ts +2 -0
  103. package/packages/database/src/types/chatGroup.ts +9 -0
  104. package/packages/database/src/utils/idGenerator.ts +1 -0
  105. package/packages/model-runtime/src/google/index.ts +3 -0
  106. package/packages/model-runtime/src/qwen/createImage.test.ts +0 -19
  107. package/packages/model-runtime/src/qwen/createImage.ts +1 -27
  108. package/packages/model-runtime/src/utils/modelParse.ts +17 -8
  109. package/packages/model-runtime/src/utils/streams/google-ai.ts +26 -14
  110. package/packages/types/src/aiModel.ts +2 -1
  111. package/src/config/aiModels/google.ts +22 -1
  112. package/src/config/aiModels/qwen.ts +2 -2
  113. package/src/config/aiModels/vertexai.ts +22 -0
  114. package/src/features/FileViewer/Renderer/PDF/index.tsx +2 -2
  115. package/.cursor/rules/debug.mdc +0 -193
@@ -332,12 +332,21 @@
332
332
  "Qwen/Qwen3-30B-A3B-Instruct-2507": {
333
333
  "description": "Qwen3-30B-A3B-Instruct-2507 — это обновленная версия модели Qwen3-30B-A3B в режиме без размышлений. Это модель с гибридными экспертами (MoE), имеющая в общей сложности 30,5 миллиарда параметров и 3,3 миллиарда активных параметров. Модель получила ключевые улучшения во многих аспектах, включая значительное повышение способности следовать инструкциям, логического мышления, понимания текста, математики, науки, программирования и использования инструментов. Кроме того, она достигла существенного прогресса в покрытии многоязычных редких знаний и лучше согласуется с предпочтениями пользователей в субъективных и открытых задачах, что позволяет генерировать более полезные ответы и тексты высокого качества. Также улучшена способность к пониманию длинных текстов — теперь до 256K. Эта модель поддерживает только режим без размышлений и не генерирует теги `<think></think>` в выводе."
334
334
  },
335
+ "Qwen/Qwen3-30B-A3B-Thinking-2507": {
336
+ "description": "Qwen3-30B-A3B-Thinking-2507 — это новейшая модель «мышления» в серии Qwen3, выпущенная командой Tongyi Qianwen компании Alibaba. Будучи гибридной экспертной (MoE) моделью с общим числом параметров 30,5 млрд и 3,3 млрд активных параметров, она ориентирована на повышение способности решать сложные задачи. Модель демонстрирует заметное улучшение результатов по академическим бенчмаркам в областях логического рассуждения, математики, естественных наук, программирования и задач, требующих человеческой экспертизы. Также существенно усилены её универсальные способности: следование инструкциям, использование инструментов, генерация текста и согласование с человеческими предпочтениями. Модель изначально поддерживает понимание длинного контекста до 256K токенов и может масштабироваться до 1 млн токенов. Эта версия специально разработана в «режиме мышления» для решения крайне сложных задач посредством подробного пошагового рассуждения; её возможности в роли агента также находятся на высоком уровне."
337
+ },
335
338
  "Qwen/Qwen3-32B": {
336
339
  "description": "Qwen3 — это новая генерация модели Qwen с значительно улучшенными возможностями, достигнувшими ведущих позиций в отрасли по нескольким ключевым направлениям, включая рассуждение, общие задачи, агентские функции и многоязычность, а также поддерживающей переключение режимов размышления."
337
340
  },
338
341
  "Qwen/Qwen3-8B": {
339
342
  "description": "Qwen3 — это новая генерация модели Qwen с значительно улучшенными возможностями, достигнувшими ведущих позиций в отрасли по нескольким ключевым направлениям, включая рассуждение, общие задачи, агентские функции и многоязычность, а также поддерживающей переключение режимов размышления."
340
343
  },
344
+ "Qwen/Qwen3-Coder-30B-A3B-Instruct": {
345
+ "description": "Qwen3-Coder-30B-A3B-Instruct — это модель для работы с кодом из серии Qwen3, разработанная командой Tongyi Qianwen компании Alibaba. Являясь оптимизированной и облегчённой моделью, она сохраняет высокую производительность и эффективность, при этом ориентирована на улучшение обработки кода. Модель демонстрирует заметные преимущества среди открытых моделей в решении сложных задач, таких как агентное программирование (Agentic Coding), автоматизация действий в браузере и вызовы внешних инструментов. Она изначально поддерживает длинный контекст до 256K токенов и может масштабироваться до 1M токенов, что позволяет лучше понимать и обрабатывать кодовые базы. Кроме того, модель обеспечивает мощную поддержку агентного кодирования для платформ вроде Qwen Code и CLINE и включает специализированный формат вызова функций."
346
+ },
347
+ "Qwen/Qwen3-Coder-480B-A35B-Instruct": {
348
+ "description": "Qwen3-Coder-480B-A35B-Instruct — модель для работы с кодом, выпущенная Alibaba, обладающая на сегодняшний день одними из самых выраженных агентных (agentic) возможностей. Это модель смешанных экспертов (Mixture-of-Experts, MoE) с суммарно 4800亿 параметров и 350亿 активных параметров (приблизительно 480 млрд и 35 млрд соответственно), обеспечивающая баланс между эффективностью и производительностью. Модель изначально поддерживает длину контекста 256K (≈260 000) токенов и может быть расширена до 1 000 000 токенов с помощью методов экстраполяции, таких как YaRN, что позволяет ей работать с крупными репозиториями кода и решать сложные программные задачи. Qwen3-Coder спроектирована для агентных рабочих процессов кодирования: она не только генерирует код, но и способна автономно взаимодействовать с инструментами и средами разработки для решения сложных задач. В ряде бенчмарков по кодированию и агентным задачам модель демонстрирует ведущие результаты среди открытых моделей, а её производительность сопоставима с такими передовыми решениями, как Claude Sonnet 4."
349
+ },
341
350
  "Qwen2-72B-Instruct": {
342
351
  "description": "Qwen2 — это последняя серия моделей Qwen, поддерживающая контекст до 128k. По сравнению с текущими лучшими открытыми моделями, Qwen2-72B значительно превосходит ведущие модели по многим аспектам, включая понимание естественного языка, знания, код, математику и многоязычность."
343
352
  },
@@ -1103,12 +1112,27 @@
1103
1112
  "flux-dev": {
1104
1113
  "description": "FLUX.1 [dev] — открытая модель с весами и оптимизациями для некоммерческого использования. Обеспечивает качество изображений и следование инструкциям, близкие к профессиональной версии FLUX, при более высокой эффективности работы и лучшем использовании ресурсов по сравнению с моделями того же размера."
1105
1114
  },
1115
+ "flux-kontext-max": {
1116
+ "description": "Передовая генерация и редактирование изображений с учётом контекста — сочетание текста и изображений для получения точных и согласованных результатов."
1117
+ },
1118
+ "flux-kontext-pro": {
1119
+ "description": "Передовая контекстная генерация и редактирование изображений — объединение текста и изображений для получения точных и последовательных результатов."
1120
+ },
1106
1121
  "flux-kontext/dev": {
1107
1122
  "description": "Модель FLUX.1, ориентированная на задачи редактирования изображений, поддерживает ввод текста и изображений."
1108
1123
  },
1109
1124
  "flux-merged": {
1110
1125
  "description": "Модель FLUX.1-merged объединяет глубокие особенности, исследованные в фазе разработки \"DEV\", и преимущества высокой скорости исполнения, представленные в \"Schnell\". Это позволяет расширить границы производительности модели и увеличить её применимость."
1111
1126
  },
1127
+ "flux-pro": {
1128
+ "description": "Премиальная коммерческая модель ИИ для генерации изображений — непревзойдённое качество изображений и разнообразие выходных результатов."
1129
+ },
1130
+ "flux-pro-1.1": {
1131
+ "description": "Усовершенствованная профессиональная модель ИИ для генерации изображений — обеспечивает превосходное качество изображений и точное следование подсказкам."
1132
+ },
1133
+ "flux-pro-1.1-ultra": {
1134
+ "description": "Генерация изображений ИИ ультравысокого разрешения — поддерживает вывод 4 мегапикселей, генерирует сверхчёткие изображения менее чем за 10 секунд."
1135
+ },
1112
1136
  "flux-pro/kontext": {
1113
1137
  "description": "FLUX.1 Kontext [pro] способен обрабатывать текст и эталонные изображения в качестве входных данных, обеспечивая бесшовное целенаправленное локальное редактирование и сложные преобразования всей сцены."
1114
1138
  },
@@ -1193,6 +1217,9 @@
1193
1217
  "gemini-2.5-flash": {
1194
1218
  "description": "Gemini 2.5 Flash — самая экономичная модель Google, предоставляющая полный набор функций."
1195
1219
  },
1220
+ "gemini-2.5-flash-image-preview": {
1221
+ "description": "Gemini 2.5 Flash Image Preview — новейшая, самая быстрая и наиболее эффективная нативная мультимодальная модель Google, которая позволяет генерировать и редактировать изображения в диалоге."
1222
+ },
1196
1223
  "gemini-2.5-flash-lite": {
1197
1224
  "description": "Gemini 2.5 Flash-Lite — это самая компактная и экономичная модель от Google, разработанная для масштабного использования."
1198
1225
  },
@@ -1295,6 +1322,9 @@
1295
1322
  "glm-4.5-x": {
1296
1323
  "description": "Ускоренная версия GLM-4.5 с высокой производительностью и скоростью генерации до 100 токенов в секунду."
1297
1324
  },
1325
+ "glm-4.5v": {
1326
+ "description": "Zhipu нового поколения — модель визуального вывода на основе архитектуры MOE. При общем объёме параметров 106B и 12B активируемых параметров она достигает SOTA среди открытых мультимодальных моделей сопоставимого уровня в различных бенчмарках, охватывая такие распространённые задачи, как понимание изображений, видео, документов и задачи графического интерфейса (GUI)."
1327
+ },
1298
1328
  "glm-4v": {
1299
1329
  "description": "GLM-4V предлагает мощные способности понимания и вывода изображений, поддерживает множество визуальных задач."
1300
1330
  },
@@ -1434,7 +1464,7 @@
1434
1464
  "description": "GPT-4.1 mini предлагает баланс между интеллектом, скоростью и стоимостью, что делает его привлекательной моделью для многих случаев использования."
1435
1465
  },
1436
1466
  "gpt-4.5-preview": {
1437
- "description": "Предварительная версия исследования GPT-4.5, это наша самая большая и мощная модель GPT на сегодняшний день. Она обладает обширными знаниями о мире и лучше понимает намерения пользователей, что делает её выдающейся в творческих задачах и автономном планировании. GPT-4.5 принимает текстовые и графические входные данные и генерирует текстовый вывод (включая структурированный вывод). Поддерживает ключевые функции для разработчиков, такие как вызовы функций, пакетный API и потоковый вывод. В задачах, требующих креативного, открытого мышления и диалога (таких как написание, обучение или исследование новых идей), GPT-4.5 особенно эффективен. Дата окончания знаний - октябрь 2023 года."
1467
+ "description": "GPT-4.5-preview новейшая универсальная модель, обладающая глубокими знаниями о мире и лучшим пониманием намерений пользователей; отлично подходит для творческих задач и агентного планирования. Знания этой модели актуальны на октябрь 2023 года."
1438
1468
  },
1439
1469
  "gpt-4o": {
1440
1470
  "description": "ChatGPT-4o — это динамическая модель, которая обновляется в реальном времени, чтобы оставаться актуальной. Она сочетает в себе мощное понимание языка и генерацию, подходя для масштабных приложений, включая обслуживание клиентов, образование и техническую поддержку."
@@ -1637,9 +1667,18 @@
1637
1667
  "image-01-live": {
1638
1668
  "description": "Модель генерации изображений с детальной прорисовкой, поддерживающая генерацию из текста и настройку стиля изображения."
1639
1669
  },
1670
+ "imagen-4.0-fast-generate-001": {
1671
+ "description": "Imagen — серия моделей преобразования текста в изображение 4-го поколения, быстрая версия"
1672
+ },
1673
+ "imagen-4.0-generate-001": {
1674
+ "description": "Серия моделей Imagen четвёртого поколения для преобразования текста в изображение"
1675
+ },
1640
1676
  "imagen-4.0-generate-preview-06-06": {
1641
1677
  "description": "Серия моделей Imagen 4-го поколения для преобразования текста в изображение"
1642
1678
  },
1679
+ "imagen-4.0-ultra-generate-001": {
1680
+ "description": "Серия моделей Imagen четвёртого поколения для преобразования текста в изображение, версия Ultra."
1681
+ },
1643
1682
  "imagen-4.0-ultra-generate-preview-06-06": {
1644
1683
  "description": "Ультра-версия серии моделей Imagen 4-го поколения для преобразования текста в изображение"
1645
1684
  },
@@ -1679,6 +1718,9 @@
1679
1718
  "kimi-k2-0711-preview": {
1680
1719
  "description": "kimi-k2 — базовая модель с архитектурой MoE, обладающая мощными возможностями кода и агента, с общим числом параметров 1 триллион и 32 миллиарда активных параметров. В тестах производительности по основным категориям, таким как универсальное знание, программирование, математика и агенты, модель K2 превосходит другие ведущие открытые модели."
1681
1720
  },
1721
+ "kimi-k2-turbo-preview": {
1722
+ "description": "kimi-k2 — это базовая модель архитектуры MoE с выдающимися возможностями в области программирования и агентов. Общий объём параметров — 1 трлн, активируемые параметры — 32 млрд. В бенчмарках по основным категориям (общее знание и рассуждение, программирование, математика, агенты и пр.) модель K2 демонстрирует результаты выше, чем у других ведущих открытых моделей."
1723
+ },
1682
1724
  "kimi-latest": {
1683
1725
  "description": "Продукт Kimi Smart Assistant использует последнюю модель Kimi, которая может содержать нестабильные функции. Поддерживает понимание изображений и автоматически выбирает модель 8k/32k/128k в качестве модели для выставления счетов в зависимости от длины контекста запроса."
1684
1726
  },
@@ -1763,6 +1805,9 @@
1763
1805
  "llava:34b": {
1764
1806
  "description": "LLaVA — это многомодальная модель, объединяющая визуальный кодировщик и Vicuna, предназначенная для мощного понимания визуальной и языковой информации."
1765
1807
  },
1808
+ "magistral-medium-latest": {
1809
+ "description": "Magistral Medium 1.1 — передовая модель для инференса, выпущенная Mistral AI в июле 2025 года."
1810
+ },
1766
1811
  "mathstral": {
1767
1812
  "description": "MathΣtral специально разработан для научных исследований и математического вывода, обеспечивая эффективные вычислительные возможности и интерпретацию результатов."
1768
1813
  },
@@ -2094,7 +2139,7 @@
2094
2139
  "description": "o1-mini — это быстрое и экономичное модель вывода, разработанная для программирования, математики и научных приложений. Модель имеет контекст 128K и срок знания до октября 2023 года."
2095
2140
  },
2096
2141
  "o1-preview": {
2097
- "description": "o1 это новая модель вывода от OpenAI, подходящая для сложных задач, требующих обширных общих знаний. Модель имеет контекст 128K и срок знания до октября 2023 года."
2142
+ "description": "Сосредоточен на продвинутом рассуждении и решении сложных задач, включая задачи по математике и естественным наукам. Отлично подходит для приложений, которым требуется глубокое понимание контекста и автономные рабочие процессы."
2098
2143
  },
2099
2144
  "o1-pro": {
2100
2145
  "description": "Модели серии o1 обучены с использованием обучения с подкреплением, способны размышлять перед ответом и выполнять сложные задачи рассуждения. Модель o1-pro использует больше вычислительных ресурсов для более глубокого мышления, обеспечивая постоянно высокое качество ответов."
@@ -2213,8 +2258,14 @@
2213
2258
  "qwen-coder-turbo-latest": {
2214
2259
  "description": "Модель кода Tongyi Qwen."
2215
2260
  },
2261
+ "qwen-flash": {
2262
+ "description": "Серия моделей «通义千问» обладает наибольшей скоростью и чрезвычайно низкой стоимостью, подходит для простых задач."
2263
+ },
2216
2264
  "qwen-image": {
2217
- "description": "Мощная модель генерации изображений от команды Qwen с впечатляющими возможностями генерации китайского текста и разнообразными визуальными стилями."
2265
+ "description": "Qwen-Image — это универсальная модель генерации изображений, поддерживающая различные художественные стили. Она особенно хорошо справляется с рендерингом сложного текста, в частности с отображением китайских и английских надписей. Модель поддерживает многострочную верстку, генерацию текста на уровне абзацев и тонкую проработку деталей, что позволяет создавать сложные комбинированные макеты с изображениями и текстом."
2266
+ },
2267
+ "qwen-image-edit": {
2268
+ "description": "Профессиональная модель редактирования изображений от команды Qwen, поддерживающая семантическое и визуальное редактирование. Позволяет точно редактировать тексты на китайском и английском языках, выполнять преобразование стиля, поворот объектов и другие операции для высококачественной обработки изображений."
2218
2269
  },
2219
2270
  "qwen-long": {
2220
2271
  "description": "Qwen — это сверхмасштабная языковая модель, поддерживающая длинный контекст текста и диалоговые функции на основе длинных документов и нескольких документов."
@@ -2241,7 +2292,7 @@
2241
2292
  "description": "Улучшенная версия Qwen-Turbo, поддерживающая входные данные на разных языках, включая китайский и английский."
2242
2293
  },
2243
2294
  "qwen-turbo": {
2244
- "description": "Qwen-Turbo — это крупная языковая модель, поддерживающая входные данные на разных языках, включая китайский и английский."
2295
+ "description": "Модель Tongyi Qianwen Turbo впредь не будет обновляться; рекомендуется заменить её на Tongyi Qianwen Flash. Tongyi Qianwen масштабная языковая модель, поддерживающая ввод на китайском, английском и других языках."
2245
2296
  },
2246
2297
  "qwen-vl-chat-v1": {
2247
2298
  "description": "Qwen VL поддерживает гибкие способы взаимодействия, включая многократные изображения, многократные вопросы и ответы, а также творческие способности."
@@ -2558,9 +2609,15 @@
2558
2609
  "step-2x-large": {
2559
2610
  "description": "Новая модель Step Star следующего поколения, ориентированная на генерацию изображений. Модель способна создавать высококачественные изображения на основе текстовых описаний пользователя. Новая версия обеспечивает более реалистичную текстуру изображений и улучшенные возможности генерации текста на китайском и английском языках."
2560
2611
  },
2612
+ "step-3": {
2613
+ "description": "Эта модель обладает мощными возможностями визуального восприятия и сложного рассуждения. Она способна с высокой точностью обеспечивать междисциплинарное понимание сложных знаний, перекрёстный анализ математической и визуальной информации, а также решать различные задачи визуального анализа в повседневной жизни."
2614
+ },
2561
2615
  "step-r1-v-mini": {
2562
2616
  "description": "Эта модель является мощной моделью вывода с сильными способностями к пониманию изображений, способной обрабатывать информацию из изображений и текста, выводя текст после глубокого размышления. Эта модель демонстрирует выдающиеся результаты в области визуального вывода, а также обладает первоклассными способностями в математике, коде и текстовом выводе. Длина контекста составляет 100k."
2563
2617
  },
2618
+ "stepfun-ai/step3": {
2619
+ "description": "Step3 — передовая мультимодальная модель рассуждения, выпущенная компанией StepFun. Она построена на архитектуре mixture-of-experts (MoE) с общим числом параметров 321 млрд и 38 млрд активных параметров. Модель реализована по энд‑ту‑энд схеме и нацелена на минимизацию затрат на декодирование при обеспечении высочайшей производительности в задачах визуально‑языкового рассуждения. Благодаря совместному дизайну многоматричного разложения внимания (MFA) и декуплинга внимания и FFN (AFD), Step3 демонстрирует отличную эффективность как на флагманских, так и на бюджетных ускорителях. На этапе предобучения модель обработала более 20 трлн текстовых токенов и 4 трлн смешанных токенов «текст+изображение», охватив более десяти языков. Step3 показывает лидирующие результаты среди открытых моделей по множеству бенчмарков, включая задачи по математике, коду и мультимодальные задачи."
2620
+ },
2564
2621
  "taichu_llm": {
2565
2622
  "description": "Модель языка TaiChu обладает выдающимися способностями к пониманию языка, а также к созданию текстов, ответам на вопросы, программированию, математическим вычислениям, логическому выводу, анализу эмоций и резюмированию текстов. Инновационно сочетает предобучение на больших данных с богатством многопоточных знаний, постоянно совершенствуя алгоритмические технологии и поглощая новые знания о словах, структуре, грамматике и семантике из огромных объемов текстовых данных, обеспечивая пользователям более удобную информацию и услуги, а также более интеллектуальный опыт."
2566
2623
  },
@@ -2707,5 +2764,8 @@
2707
2764
  },
2708
2765
  "zai-org/GLM-4.5-Air": {
2709
2766
  "description": "GLM-4.5-Air — базовая модель, специально созданная для приложений с агентами, использующая архитектуру смешанных экспертов (Mixture-of-Experts). Модель глубоко оптимизирована для вызова инструментов, веб-браузинга, программной инженерии и фронтенд-разработки, поддерживает бесшовную интеграцию с кодовыми агентами, такими как Claude Code и Roo Code. GLM-4.5 использует смешанный режим вывода, адаптируясь к сложным рассуждениям и повседневным задачам."
2767
+ },
2768
+ "zai-org/GLM-4.5V": {
2769
+ "description": "GLM-4.5V — это новое поколение визуально-языковой модели (VLM), выпущенной Zhipu AI (智谱 AI). Модель построена на флагманской текстовой модели GLM-4.5-Air с общим числом параметров 106B и 12B активных параметров, использует архитектуру смешанных экспертов (MoE) и призвана обеспечивать выдающуюся производительность при более низкой стоимости вывода. Технически GLM-4.5V продолжает линию GLM-4.1V-Thinking и вводит такие новшества, как трёхмерная вращательная позиционная кодировка (3D-RoPE), значительно усиливающие восприятие и выводы о трёхмерных пространственных отношениях. Благодаря оптимизациям на этапах предобучения, контролируемой донастройки и обучения с подкреплением модель способна обрабатывать различные визуальные данные — изображения, видео и длинные документы — и в 41 открытом мультимодальном бенчмарке достигла уровня лучших в своём классе открытых моделей. Кроме того, в модели добавлен переключатель «режим размышления», позволяющий пользователю гибко выбирать между быстрой отдачей и глубокой аналитикой, балансируя эффективность и качество."
2710
2770
  }
2711
2771
  }
@@ -26,6 +26,9 @@
26
26
  "bedrock": {
27
27
  "description": "Bedrock — это сервис, предоставляемый Amazon AWS, сосредоточенный на предоставлении предприятиям передовых AI-языковых и визуальных моделей. Его семейство моделей включает серию Claude от Anthropic, серию Llama 3.1 от Meta и другие, охватывающие широкий спектр от легковесных до высокопроизводительных решений, поддерживающих текстовую генерацию, диалоги, обработку изображений и другие задачи, подходящие для предприятий различного масштаба и потребностей."
28
28
  },
29
+ "bfl": {
30
+ "description": "Ведущая лаборатория передовых исследований в области искусственного интеллекта, создающая визуальную инфраструктуру будущего."
31
+ },
29
32
  "cloudflare": {
30
33
  "description": "Запуск моделей машинного обучения на базе серверов GPU в глобальной сети Cloudflare."
31
34
  },
@@ -1,4 +1,9 @@
1
1
  {
2
+ "ArgsInput": {
3
+ "addArgument": "Argüman ekle",
4
+ "argumentPlaceholder": "Argüman {{index}}",
5
+ "enterFirstArgument": "İlk argümanı girin..."
6
+ },
2
7
  "DragUpload": {
3
8
  "dragDesc": "Dosyaları buraya sürükleyin, birden fazla resim yüklemeyi destekler.",
4
9
  "dragFileDesc": "Resimleri ve dosyaları buraya sürükleyin, birden fazla resim ve dosya yüklemeyi destekler.",
@@ -125,6 +130,12 @@
125
130
  },
126
131
  "progress": {
127
132
  "uploadingWithCount": "{{completed}}/{{total}} yüklendi"
133
+ },
134
+ "validation": {
135
+ "fileSizeExceeded": "Dosya boyutu sınırı aşıldı",
136
+ "fileSizeExceededDetail": "{{fileName}} ({{actualSize}}), izin verilen maksimum boyut olan {{maxSize}}'ı aşıyor",
137
+ "fileSizeExceededMultiple": "{{count}} dosya, izin verilen maksimum boyut olan {{maxSize}}'ı aşıyor: {{fileList}}",
138
+ "imageCountExceeded": "Resim sayısı sınırı aşıldı"
128
139
  }
129
140
  },
130
141
  "OllamaSetupGuide": {
@@ -85,6 +85,17 @@
85
85
  "CreateMessageError": "Üzgünüm, mesaj düzgün bir şekilde gönderilemedi. Lütfen içeriği kopyalayın ve yeniden gönderin, sayfayı yeniledikten sonra bu mesaj kaydedilmeyecek.",
86
86
  "ExceededContextWindow": "Mevcut istek içeriği modelin işleyebileceği uzunluğu aşıyor, lütfen içerik miktarını azaltıp tekrar deneyin",
87
87
  "FreePlanLimit": "Şu anda ücretsiz bir kullanıcısınız, bu özelliği kullanamazsınız. Lütfen devam etmek için bir ücretli plana yükseltin.",
88
+ "GoogleAIBlockReason": {
89
+ "BLOCKLIST": "İçeriğiniz yasaklı kelimeler içeriyor. Lütfen girdinizi kontrol edip düzenledikten sonra tekrar deneyin.",
90
+ "IMAGE_SAFETY": "Oluşturulan görüntü içeriği güvenlik nedeniyle engellendi. Lütfen görüntü oluşturma isteğinizi değiştirerek tekrar deneyin.",
91
+ "LANGUAGE": "Kullandığınız dil şu anda desteklenmiyor. Lütfen İngilizce veya desteklenen diğer dilleri kullanarak tekrar deneyin.",
92
+ "OTHER": "İçerik bilinmeyen bir nedenle engellendi. Lütfen isteğinizi tekrar ifade etmeyi deneyin.",
93
+ "PROHIBITED_CONTENT": "İsteğiniz yasaklı içerik içerebilir. Lütfen isteğinizi düzenleyin ve kullanım kurallarına uygun olduğundan emin olun.",
94
+ "RECITATION": "İçeriğiniz olası telif hakkı sorunları nedeniyle engellendi. Lütfen orijinal içerik kullanmayı veya isteğinizi yeniden ifade etmeyi deneyin.",
95
+ "SAFETY": "İçeriğiniz güvenlik politikası nedeniyle engellendi. Lütfen isteğinizi, olası zararlı veya uygunsuz içerik içermeyecek şekilde düzenleyin.",
96
+ "SPII": "İçeriğiniz hassas kişisel kimlik bilgileri içerebilir. Gizliliği korumak için ilgili hassas bilgileri kaldırıp tekrar deneyin.",
97
+ "default": "İçerik engellendi: {{blockReason}}. Lütfen isteğinizi düzenledikten sonra tekrar deneyin."
98
+ },
88
99
  "InsufficientQuota": "Üzgünüm, bu anahtarın kotası (quota) dolmuş durumda, lütfen hesap bakiyenizi kontrol edin veya anahtar kotasını artırdıktan sonra tekrar deneyin",
89
100
  "InvalidAccessCode": "Geçersiz Erişim Kodu: Geçersiz veya boş bir şifre girdiniz. Lütfen doğru erişim şifresini girin veya özel API Anahtarı ekleyin.",
90
101
  "InvalidBedrockCredentials": "Bedrock kimlik doğrulaması geçersiz, lütfen AccessKeyId/SecretAccessKey bilgilerinizi kontrol edip tekrar deneyin",
@@ -332,12 +332,21 @@
332
332
  "Qwen/Qwen3-30B-A3B-Instruct-2507": {
333
333
  "description": "Qwen3-30B-A3B-Instruct-2507, Qwen3-30B-A3B'nin düşünme modu olmayan güncellenmiş bir versiyonudur. Bu, toplam 30,5 milyar parametre ve 3,3 milyar aktif parametreye sahip bir Hibrit Uzman (MoE) modelidir. Model, talimat takibi, mantıksal akıl yürütme, metin anlama, matematik, bilim, kodlama ve araç kullanımı gibi genel yeteneklerde önemli geliştirmeler içermektedir. Ayrıca, çok dilli uzun kuyruk bilgi kapsamı açısından kayda değer ilerlemeler kaydetmiş ve kullanıcıların öznel ve açık uçlu görevlerdeki tercihlerine daha iyi uyum sağlayarak daha faydalı yanıtlar ve daha yüksek kaliteli metinler üretebilmektedir. Buna ek olarak, modelin uzun metin anlama kapasitesi 256K'ya kadar artırılmıştır. Bu model yalnızca düşünme modu dışındadır ve çıktılarında `<think></think>` etiketleri oluşturmaz."
334
334
  },
335
+ "Qwen/Qwen3-30B-A3B-Thinking-2507": {
336
+ "description": "Qwen3-30B-A3B-Thinking-2507, Alibaba'nın Tongyi Qianwen ekibi tarafından yayımlanan Qwen3 serisinin en yeni düşünme modelidir. Toplam 30,5 milyar parametreye ve 3,3 milyar aktif parametreye sahip bir melez uzman (MoE) modeli olarak karmaşık görevleri ele alma yeteneğini artırmaya odaklanır. Bu model mantıksal akıl yürütme, matematik, bilim, programlama ve insan uzmanlığı gerektiren akademik kıyaslama testlerinde belirgin performans artışları göstermektedir. Aynı zamanda talimatlara uyum, araç kullanımı, metin üretimi ve insan tercihlerine hizalanma gibi genel yeteneklerde de önemli ölçüde geliştirilmiştir. Model yerel olarak 256K uzun bağlam anlama yeteneğini destekler ve 1 milyona kadar token'a genişletilebilir. Bu sürüm, ayrıntılı adım adım akıl yürütmeyle yüksek derecede karmaşık görevleri çözmeyi amaçlayan \"düşünme modu\" için özel olarak tasarlanmıştır; ajan yetenekleri de öne çıkmaktadır."
337
+ },
335
338
  "Qwen/Qwen3-32B": {
336
339
  "description": "Qwen3, akıl yürütme, genel, Ajan ve çok dilli gibi birçok temel yetenekte önemli ölçüde geliştirilmiş yeni nesil Tongyi Qianwen büyük modelidir ve düşünme modu geçişini destekler."
337
340
  },
338
341
  "Qwen/Qwen3-8B": {
339
342
  "description": "Qwen3, akıl yürütme, genel, Ajan ve çok dilli gibi birçok temel yetenekte önemli ölçüde geliştirilmiş yeni nesil Tongyi Qianwen büyük modelidir ve düşünme modu geçişini destekler."
340
343
  },
344
+ "Qwen/Qwen3-Coder-30B-A3B-Instruct": {
345
+ "description": "Qwen3-Coder-30B-A3B-Instruct, Alibaba'nın Tongyi Qianwen ekibi tarafından geliştirilen Qwen3 serisindeki bir kod modelidir. Optimize edilmiş ve sadeleştirilmiş bir model olarak, yüksek performans ve verimliliği korurken özellikle kod işleme yeteneklerini artırmaya odaklanır. Bu model, ajan programlama (Agentic Coding), otomatik tarayıcı işlemleri ve araç çağırma gibi karmaşık görevlerde açık kaynak modeller içinde belirgin bir performans avantajı gösterir. Yerel olarak 256K token uzunluğunda bağlamı destekler ve 1M token'a kadar genişletilebilir; bu sayede kod tabanı düzeyinde anlama ve işleme kapasitesi artar. Ayrıca model, Qwen Code ve CLINE gibi platformlara güçlü ajan kodlama desteği sağlar ve özel bir fonksiyon çağırma formatı için tasarlanmıştır."
346
+ },
347
+ "Qwen/Qwen3-Coder-480B-A35B-Instruct": {
348
+ "description": "Qwen3-Coder-480B-A35B-Instruct, Alibaba tarafından yayımlanan ve şimdiye kadar en gelişmiş ajan (Agentic) yeteneklerine sahip kod modelidir. Bu model, toplam 480 milyar parametre ve 35 milyar aktifleşen parametreye sahip bir Mixture-of-Experts (MoE, karışık uzman) modelidir ve verimlilik ile performans arasında bir denge sağlar. Model, yerel olarak 256K (yaklaşık 260.000) token bağlam uzunluğunu destekler ve YaRN gibi dışa genelleme yöntemleriyle 1.000.000 token seviyesine kadar genişletilebilerek büyük ölçekli kod tabanları ve karmaşık programlama görevleriyle başa çıkabilir. Qwen3-Coder, ajan tabanlı kodlama iş akışları için tasarlanmış olup yalnızca kod üretmez; aynı zamanda geliştirme araçları ve ortamlarla bağımsız şekilde etkileşime girerek karmaşık programlama problemlerini çözer. Birçok kodlama ve ajan görevindeki kıyaslama testlerinde bu model, açık kaynak modeller arasında en üst düzey performansı göstermiş ve performansı Claude Sonnet 4 gibi önde gelen modellerle kıyaslanabilir düzeydedir."
349
+ },
341
350
  "Qwen2-72B-Instruct": {
342
351
  "description": "Qwen2, Qwen modelinin en yeni serisidir ve 128k bağlamı destekler. Mevcut en iyi açık kaynak modellerle karşılaştırıldığında, Qwen2-72B doğal dil anlama, bilgi, kod, matematik ve çok dilli yetenekler açısından mevcut lider modelleri önemli ölçüde aşmaktadır."
343
352
  },
@@ -1103,12 +1112,27 @@
1103
1112
  "flux-dev": {
1104
1113
  "description": "FLUX.1 [dev], ticari olmayan uygulamalar için açık kaynaklı ağırlık ve rafine modeldir. FLUX.1 [dev], FLUX profesyonel sürümüne yakın görüntü kalitesi ve talimat uyumu sağlarken daha yüksek çalışma verimliliğine sahiptir. Aynı boyuttaki standart modellere kıyasla kaynak kullanımı açısından daha etkilidir."
1105
1114
  },
1115
+ "flux-kontext-max": {
1116
+ "description": "En gelişmiş bağlamsal görsel oluşturma ve düzenleme — metin ve görselleri birleştirerek hassas ve tutarlı sonuçlar sunar."
1117
+ },
1118
+ "flux-kontext-pro": {
1119
+ "description": "Metin ve görüntüleri birleştirerek hassas ve tutarlı sonuçlar elde etmek için en gelişmiş bağlamsal görüntü oluşturma ve düzenleme."
1120
+ },
1106
1121
  "flux-kontext/dev": {
1107
1122
  "description": "Metin ve görsel girdileri destekleyen, görüntü düzenleme görevlerine odaklanan FLUX.1 modeli."
1108
1123
  },
1109
1124
  "flux-merged": {
1110
1125
  "description": "FLUX.1-merged modeli, geliştirme aşamasında \"DEV\" tarafından keşfedilen derin özellikler ile \"Schnell\" in yüksek hızlı yürütme avantajlarını birleştirir. Bu sayede model performans sınırlarını artırır ve uygulama alanlarını genişletir."
1111
1126
  },
1127
+ "flux-pro": {
1128
+ "description": "En üst düzey ticari yapay zeka görüntü oluşturma modeli — eşsiz görüntü kalitesi ve çok çeşitli çıktı yetenekleri."
1129
+ },
1130
+ "flux-pro-1.1": {
1131
+ "description": "Geliştirilmiş profesyonel düzeyde yapay zeka görüntü oluşturma modeli — üstün görüntü kalitesi ve verilen promptlara/komutlara hassas uyum sağlama yeteneği sunar."
1132
+ },
1133
+ "flux-pro-1.1-ultra": {
1134
+ "description": "Ultra yüksek çözünürlüklü yapay zeka ile görüntü üretimi — 4 megapiksel çıktı desteği; 10 saniye içinde ultra net görseller oluşturur."
1135
+ },
1112
1136
  "flux-pro/kontext": {
1113
1137
  "description": "FLUX.1 Kontext [pro], metin ve referans görüntüleri girdi olarak işleyebilir, hedefe yönelik yerel düzenlemeler ve karmaşık genel sahne dönüşümlerini sorunsuz bir şekilde gerçekleştirebilir."
1114
1138
  },
@@ -1193,6 +1217,9 @@
1193
1217
  "gemini-2.5-flash": {
1194
1218
  "description": "Gemini 2.5 Flash, Google'ın en yüksek maliyet-performans modelidir ve kapsamlı özellikler sunar."
1195
1219
  },
1220
+ "gemini-2.5-flash-image-preview": {
1221
+ "description": "Gemini 2.5 Flash Image Preview, Google'ın en yeni, en hızlı ve en verimli yerel çok modlu modelidir; sohbet yoluyla görüntü oluşturmanıza ve düzenlemenize olanak tanır."
1222
+ },
1196
1223
  "gemini-2.5-flash-lite": {
1197
1224
  "description": "Gemini 2.5 Flash-Lite, Google'ın en küçük ve en uygun maliyetli modeli olup, geniş çaplı kullanım için tasarlanmıştır."
1198
1225
  },
@@ -1295,6 +1322,9 @@
1295
1322
  "glm-4.5-x": {
1296
1323
  "description": "GLM-4.5'in ultra hızlı versiyonu olup güçlü performansla birlikte saniyede 100 token üretim hızına ulaşır."
1297
1324
  },
1325
+ "glm-4.5v": {
1326
+ "description": "Zhipu'nun MOE mimarisine dayanan yeni nesil görsel akıl yürütme modeli; 106B toplam parametreye ve 12B aktif parametreye sahip olup çeşitli kıyaslama testlerinde aynı seviyedeki açık kaynaklı çok modlu modeller arasında dünya çapında SOTA'ya ulaşır; görüntü, video, belge anlama ve GUI görevleri gibi yaygın görevleri kapsar."
1327
+ },
1298
1328
  "glm-4v": {
1299
1329
  "description": "GLM-4V, güçlü görüntü anlama ve akıl yürütme yetenekleri sunar, çeşitli görsel görevleri destekler."
1300
1330
  },
@@ -1434,7 +1464,7 @@
1434
1464
  "description": "GPT-4.1 mini, zeka, hız ve maliyet arasında bir denge sunarak birçok kullanım durumu için çekici bir model haline getirir."
1435
1465
  },
1436
1466
  "gpt-4.5-preview": {
1437
- "description": "GPT-4.5'in araştırma önizleme sürümü, şimdiye kadar geliştirdiğimiz en büyük ve en güçlü GPT modelidir. Geniş bir dünya bilgisine sahip olup, kullanıcı niyetlerini daha iyi anlayarak yaratıcı görevler ve bağımsız planlama konularında mükemmel bir performans sergilemektedir. GPT-4.5, metin ve görsel girdi alabilir ve metin çıktısı (yapılandırılmış çıktı dahil) üretebilir. Fonksiyon çağrıları, toplu API ve akış çıktısı gibi önemli geliştirici özelliklerini destekler. Yaratıcılık, açık düşünme ve diyalog gerektiren görevlerde (örneğin yazma, öğrenme veya yeni fikirler keşfetme) GPT-4.5 özellikle başarılıdır. Bilgi kesim tarihi Ekim 2023'tür."
1467
+ "description": "GPT-4.5-preview, kapsamlı dünya bilgisine ve kullanıcı niyetlerini daha iyi anlama yeteneğine sahip en yeni genel amaçlı modeldir; yaratıcı görevler ve ajan planlaması konusunda uzmandır. Modelin bilgi kesiti Ekim 2023'tür."
1438
1468
  },
1439
1469
  "gpt-4o": {
1440
1470
  "description": "ChatGPT-4o, güncel versiyonunu korumak için gerçek zamanlı olarak güncellenen dinamik bir modeldir. Güçlü dil anlama ve üretme yeteneklerini birleştirir, müşteri hizmetleri, eğitim ve teknik destek gibi geniş ölçekli uygulama senaryoları için uygundur."
@@ -1637,9 +1667,18 @@
1637
1667
  "image-01-live": {
1638
1668
  "description": "Görüntü oluşturma modeli, ince detaylı görseller sunar; metinden görüntü oluşturmayı ve stil ayarlarını destekler."
1639
1669
  },
1670
+ "imagen-4.0-fast-generate-001": {
1671
+ "description": "Imagen 4. nesil metinden görsele model serisi — Hızlı sürüm"
1672
+ },
1673
+ "imagen-4.0-generate-001": {
1674
+ "description": "Imagen 4. nesil metinden görüntüye model serisi"
1675
+ },
1640
1676
  "imagen-4.0-generate-preview-06-06": {
1641
1677
  "description": "Imagen 4. nesil metinden görüntüye model serisi"
1642
1678
  },
1679
+ "imagen-4.0-ultra-generate-001": {
1680
+ "description": "Imagen 4. nesil metinden-görüntüye model serisi, Ultra sürümü"
1681
+ },
1643
1682
  "imagen-4.0-ultra-generate-preview-06-06": {
1644
1683
  "description": "Imagen 4. nesil metinden görüntüye model serisi Ultra versiyonu"
1645
1684
  },
@@ -1679,6 +1718,9 @@
1679
1718
  "kimi-k2-0711-preview": {
1680
1719
  "description": "kimi-k2, son derece güçlü kodlama ve Agent yeteneklerine sahip MoE mimarili temel bir modeldir. Toplam parametre sayısı 1T, aktif parametre sayısı 32B'dir. Genel bilgi çıkarımı, programlama, matematik, Agent gibi ana kategorilerde yapılan kıyaslama testlerinde K2 modeli, diğer önde gelen açık kaynak modelleri geride bırakmıştır."
1681
1720
  },
1721
+ "kimi-k2-turbo-preview": {
1722
+ "description": "kimi-k2, son derece güçlü kod yazma ve Agent yeteneklerine sahip MoE mimarisine dayanan bir temel modeldir; toplam parametre sayısı 1T, aktif (etkin) parametre sayısı 32B. Genel bilgi çıkarımı, programlama, matematik ve Agent gibi ana kategorilerde yapılan karşılaştırmalı performans testlerinde K2 modelinin performansı diğer önde gelen açık kaynak modellerinin üzerindedir."
1723
+ },
1682
1724
  "kimi-latest": {
1683
1725
  "description": "Kimi akıllı asistan ürünü, en son Kimi büyük modelini kullanır ve henüz kararlı olmayan özellikler içerebilir. Görüntü anlayışını desteklerken, isteğin bağlam uzunluğuna göre 8k/32k/128k modelini faturalama modeli olarak otomatik olarak seçecektir."
1684
1726
  },
@@ -1763,6 +1805,9 @@
1763
1805
  "llava:34b": {
1764
1806
  "description": "LLaVA, görsel kodlayıcı ve Vicuna'yı birleştiren çok modlu bir modeldir, güçlü görsel ve dil anlama yetenekleri sunar."
1765
1807
  },
1808
+ "magistral-medium-latest": {
1809
+ "description": "Magistral Medium 1.1, Mistral AI tarafından Temmuz 2025'te yayımlanan ileri düzey bir çıkarım modelidir."
1810
+ },
1766
1811
  "mathstral": {
1767
1812
  "description": "MathΣtral, bilimsel araştırma ve matematik akıl yürütme için tasarlanmış, etkili hesaplama yetenekleri ve sonuç açıklamaları sunar."
1768
1813
  },
@@ -2094,7 +2139,7 @@
2094
2139
  "description": "o1-mini, programlama, matematik ve bilim uygulama senaryoları için tasarlanmış hızlı ve ekonomik bir akıl yürütme modelidir. Bu model, 128K bağlam ve Ekim 2023 bilgi kesim tarihi ile donatılmıştır."
2095
2140
  },
2096
2141
  "o1-preview": {
2097
- "description": "o1, OpenAI'nin geniş genel bilgiye ihtiyaç duyan karmaşık görevler için uygun yeni bir akıl yürütme modelidir. Bu model, 128K bağlam ve Ekim 2023 bilgi kesim tarihi ile donatılmıştır."
2142
+ "description": "İleri düzey muhakeme ve matematik ile fen görevleri dahil olmak üzere karmaşık sorunların çözümüne odaklanır. Derin bağlam anlayışı ve özerk akışları gerektiren uygulamalar için son derece uygundur."
2098
2143
  },
2099
2144
  "o1-pro": {
2100
2145
  "description": "o1 serisi modeller, yanıtlamadan önce düşünme yapabilen ve karmaşık akıl yürütme görevlerini yerine getirebilen pekiştirmeli öğrenme ile eğitilmiştir. o1-pro modeli, daha derin düşünme için daha fazla hesaplama kaynağı kullanır ve böylece sürekli olarak daha kaliteli yanıtlar sunar."
@@ -2213,8 +2258,14 @@
2213
2258
  "qwen-coder-turbo-latest": {
2214
2259
  "description": "Tongyi Qianwen kodlama modeli."
2215
2260
  },
2261
+ "qwen-flash": {
2262
+ "description": "Tongyi Qianwen serisi, en hızlı ve maliyeti son derece düşük modeller sunar; basit görevler için uygundur."
2263
+ },
2216
2264
  "qwen-image": {
2217
- "description": "Qwen ekibinin güçlü ham görüntü modeli, etkileyici Çince metin üretme yeteneği ve çeşitli görsel stil seçenekleri sunar."
2265
+ "description": "Qwen-Image, çeşitli sanat stillerini destekleyen genel amaçlı bir görsel oluşturma modelidir; karmaşık metin renderleme konusunda, özellikle Çince ve İngilizce metinlerin renderlenmesinde uzmandır. Model çok satırlı düzenleri, paragraf düzeyinde metin üretimini ve ince ayrıntıların işlenmesini destekler; karmaşık görsel-metin karışık düzen tasarımlarının oluşturulmasına olanak tanır."
2266
+ },
2267
+ "qwen-image-edit": {
2268
+ "description": "Qwen ekibi tarafından yayımlanan profesyonel görüntü düzenleme modeli, anlamsal düzenleme ve görünüm düzenlemeyi destekler; Çince ve İngilizce metinleri hassas şekilde düzenleyebilir ve stil dönüşümü, nesne döndürme gibi yüksek kaliteli görüntü düzenlemeleri gerçekleştirir."
2218
2269
  },
2219
2270
  "qwen-long": {
2220
2271
  "description": "Tongyi Qianwen, uzun metin bağlamını destekleyen ve uzun belgeler, çoklu belgeler gibi çeşitli senaryolar için diyalog işlevselliği sunan büyük ölçekli bir dil modelidir."
@@ -2241,7 +2292,7 @@
2241
2292
  "description": "Tongyi Qianwen, Çince, İngilizce gibi farklı dil girişlerini destekleyen geliştirilmiş büyük ölçekli bir dil modelidir."
2242
2293
  },
2243
2294
  "qwen-turbo": {
2244
- "description": "Tongyi Qianwen, Çince, İngilizce gibi farklı dil girişlerini destekleyen büyük ölçekli bir dil modelidir."
2295
+ "description": "Tongyi Qianwen Turbo bundan sonra güncellenmeyecektir; yerine Tongyi Qianwen Flash kullanılması önerilir. Tongyi Qianwen, çok büyük ölçekli bir dil modelidir ve Çince, İngilizce gibi farklı dillerde girişleri destekler."
2245
2296
  },
2246
2297
  "qwen-vl-chat-v1": {
2247
2298
  "description": "Tongyi Qianwen VL, çoklu görüntü, çok turlu soru-cevap, yaratım gibi esnek etkileşim yöntemlerini destekleyen bir modeldir."
@@ -2558,9 +2609,15 @@
2558
2609
  "step-2x-large": {
2559
2610
  "description": "Jieyue Xingchen'in yeni nesil görüntü oluşturma modelidir. Model, kullanıcı tarafından sağlanan metin açıklamalarına göre yüksek kaliteli görüntüler oluşturur. Yeni model, daha gerçekçi doku ve hem Çince hem İngilizce metin oluşturma yeteneklerinde gelişmiş performans sunar."
2560
2611
  },
2612
+ "step-3": {
2613
+ "description": "Bu model güçlü görsel algılama ve karmaşık akıl yürütme yeteneklerine sahiptir. Disiplinlerarası karmaşık bilgi anlayışını, matematiksel ve görsel verilerin çapraz analizini ve günlük hayattaki çeşitli görsel analiz gereksinimlerini doğru ve tutarlı şekilde yerine getirebilir."
2614
+ },
2561
2615
  "step-r1-v-mini": {
2562
2616
  "description": "Bu model, güçlü görüntü anlama yeteneğine sahip bir çıkarım büyük modelidir, görüntü ve metin bilgilerini işleyebilir, derin düşünme sonrası metin oluşturma çıktısı verebilir. Bu model, görsel çıkarım alanında öne çıkarken, birinci sınıf matematik, kod ve metin çıkarım yeteneklerine de sahiptir. Bağlam uzunluğu 100k'dır."
2563
2617
  },
2618
+ "stepfun-ai/step3": {
2619
+ "description": "Step3, StepFun tarafından yayımlanan öncü çok modlu çıkarım modelidir; 321 milyar toplam ve 38 milyar aktif parametreye sahip Uzman Karışımı (MoE) mimarisi üzerine inşa edilmiştir. Model uçtan uca bir tasarımla kod çözme maliyetlerini en aza indirmeyi hedeflerken görsel-dilsel çıkarımda üst düzey performans sunar. Çoklu matris faktorizasyonlu dikkat (MFA) ile dikkat-FFN ayrıştırmasının (AFD) uyumlu tasarımı sayesinde Step3, hem üst düzey hem de düşük kapasiteli hızlandırıcılarda yüksek verimliliğini korur. Ön eğitim aşamasında Step3, 20 trilyondan fazla metin tokeni ve 4 trilyon görsel-metin tokeni işlemiş olup on'dan fazla dili kapsar. Model, matematik, kodlama ve çok modlu görevler gibi çeşitli kıyaslama testlerinde açık kaynak modeller arasında lider düzeye ulaşmıştır."
2620
+ },
2564
2621
  "taichu_llm": {
2565
2622
  "description": "Zidong Taichu dil büyük modeli, güçlü dil anlama yeteneği ile metin oluşturma, bilgi sorgulama, kod programlama, matematik hesaplama, mantıksal akıl yürütme, duygu analizi, metin özeti gibi yeteneklere sahiptir. Yenilikçi bir şekilde büyük veri ön eğitimi ile çok kaynaklı zengin bilgiyi birleştirir, algoritma teknolojisini sürekli olarak geliştirir ve büyük metin verilerinden kelime, yapı, dil bilgisi, anlam gibi yeni bilgileri sürekli olarak edinir, modelin performansını sürekli olarak evrimleştirir. Kullanıcılara daha kolay bilgi ve hizmetler sunar ve daha akıllı bir deneyim sağlar."
2566
2623
  },
@@ -2707,5 +2764,8 @@
2707
2764
  },
2708
2765
  "zai-org/GLM-4.5-Air": {
2709
2766
  "description": "GLM-4.5-Air, akıllı ajan uygulamaları için tasarlanmış temel modeldir ve Mixture-of-Experts (MoE) mimarisi kullanır. Araç çağrısı, web tarama, yazılım mühendisliği ve ön uç programlama alanlarında derin optimizasyonlar içerir. Claude Code, Roo Code gibi kod ajanlarına sorunsuz entegrasyon destekler. GLM-4.5, karmaşık çıkarım ve günlük kullanım gibi çeşitli senaryolara uyum sağlayan hibrit çıkarım moduna sahiptir."
2767
+ },
2768
+ "zai-org/GLM-4.5V": {
2769
+ "description": "GLM-4.5V, Zhipu AI(智谱 AI) tarafından yayımlanan en son nesil görsel-dil modeli (VLM)'dir. Bu model, 106 milyar toplam parametre ve 12 milyar aktivasyon parametresine sahip amiral gemisi metin modeli GLM-4.5-Air üzerine inşa edilmiş olup, karma uzman (Mixture-of-Experts, MoE) mimarisini kullanır ve daha düşük çıkarım maliyetiyle üstün performans sağlamayı hedefler. GLM-4.5V teknik olarak GLM-4.1V-Thinking hattını sürdürürken üç boyutlu döndürmeli pozisyon kodlaması (3D-RoPE) gibi yenilikleri de getirerek üç boyutlu uzaysal ilişkilerin algılanması ve çıkarımı yeteneğini önemli ölçüde güçlendirir. Ön eğitme, denetimli ince ayar ve pekiştirmeli öğrenme aşamalarında yapılan optimizasyonlar sayesinde model; görüntü, video ve uzun belgeler gibi çeşitli görsel içerikleri işleyebilir ve 41 açık çok modlu kıyaslama testinde aynı seviyedeki açık kaynak modeller arasında en üst düzey performansa ulaşmıştır. Ayrıca modele eklenen \"düşünme modu\" anahtarı, kullanıcıların hızlı yanıt ile derin çıkarım arasında esnekçe tercih yaparak verim ile etki arasında denge kurmasına olanak tanır."
2710
2770
  }
2711
2771
  }
@@ -26,6 +26,9 @@
26
26
  "bedrock": {
27
27
  "description": "Bedrock, Amazon AWS tarafından sunulan bir hizmettir ve işletmelere gelişmiş yapay zeka dil modelleri ve görsel modeller sağlamaya odaklanmaktadır. Model ailesi, Anthropic'in Claude serisi, Meta'nın Llama 3.1 serisi gibi seçenekleri içermekte olup, metin üretimi, diyalog, görüntü işleme gibi çeşitli görevleri desteklemektedir. Farklı ölçek ve ihtiyaçlara uygun kurumsal uygulamalar için geniş bir yelpaze sunmaktadır."
28
28
  },
29
+ "bfl": {
30
+ "description": "Önde gelen bir ileri düzey yapay zeka araştırma laboratuvarı; yarının görsel altyapısını inşa ediyor."
31
+ },
29
32
  "cloudflare": {
30
33
  "description": "Cloudflare'ın küresel ağı üzerinde sunucusuz GPU destekli makine öğrenimi modelleri çalıştırın."
31
34
  },
@@ -1,4 +1,9 @@
1
1
  {
2
+ "ArgsInput": {
3
+ "addArgument": "Thêm tham số",
4
+ "argumentPlaceholder": "Tham số {{index}}",
5
+ "enterFirstArgument": "Nhập tham số đầu tiên..."
6
+ },
2
7
  "DragUpload": {
3
8
  "dragDesc": "Kéo và thả tệp vào đây, hỗ trợ tải lên nhiều hình ảnh.",
4
9
  "dragFileDesc": "Kéo và thả hình ảnh và tệp vào đây, hỗ trợ tải lên nhiều hình ảnh và tệp.",
@@ -125,6 +130,12 @@
125
130
  },
126
131
  "progress": {
127
132
  "uploadingWithCount": "Đã tải lên {{completed}}/{{total}}"
133
+ },
134
+ "validation": {
135
+ "fileSizeExceeded": "Kích thước tệp vượt quá giới hạn",
136
+ "fileSizeExceededDetail": "{{fileName}} ({{actualSize}}) vượt quá kích thước tối đa cho phép là {{maxSize}}",
137
+ "fileSizeExceededMultiple": "{{count}} tệp vượt quá kích thước tối đa cho phép là {{maxSize}}: {{fileList}}",
138
+ "imageCountExceeded": "Số lượng hình ảnh vượt quá giới hạn"
128
139
  }
129
140
  },
130
141
  "OllamaSetupGuide": {
@@ -85,6 +85,17 @@
85
85
  "CreateMessageError": "Xin lỗi, tin nhắn không thể được gửi đi bình thường, vui lòng sao chép nội dung và gửi lại, tin nhắn này sẽ không được lưu lại sau khi làm mới trang.",
86
86
  "ExceededContextWindow": "Nội dung yêu cầu hiện tại vượt quá độ dài mà mô hình có thể xử lý, vui lòng giảm khối lượng nội dung và thử lại",
87
87
  "FreePlanLimit": "Hiện tại bạn đang sử dụng tài khoản miễn phí, không thể sử dụng tính năng này. Vui lòng nâng cấp lên gói trả phí để tiếp tục sử dụng.",
88
+ "GoogleAIBlockReason": {
89
+ "BLOCKLIST": "Nội dung của bạn chứa các từ bị cấm. Vui lòng kiểm tra và chỉnh sửa nội dung rồi thử lại.",
90
+ "IMAGE_SAFETY": "Nội dung hình ảnh được tạo đã bị chặn vì lý do an toàn. Vui lòng thử chỉnh sửa yêu cầu tạo ảnh.",
91
+ "LANGUAGE": "Ngôn ngữ bạn đang sử dụng hiện chưa được hỗ trợ. Vui lòng thử dùng tiếng Anh hoặc ngôn ngữ khác được hỗ trợ để hỏi lại.",
92
+ "OTHER": "Nội dung đã bị chặn vì lý do không rõ. Vui lòng thử diễn đạt lại yêu cầu.",
93
+ "PROHIBITED_CONTENT": "Yêu cầu của bạn có thể chứa nội dung bị cấm. Vui lòng điều chỉnh yêu cầu để đảm bảo tuân thủ quy định sử dụng.",
94
+ "RECITATION": "Nội dung của bạn có thể vi phạm bản quyền và đã bị chặn. Vui lòng thử sử dụng nội dung nguyên bản hoặc diễn đạt lại yêu cầu.",
95
+ "SAFETY": "Nội dung của bạn đã bị chặn do chính sách an toàn. Vui lòng điều chỉnh yêu cầu, tránh chứa nội dung có thể gây hại hoặc không phù hợp.",
96
+ "SPII": "Nội dung của bạn có thể chứa thông tin cá nhân nhạy cảm. Để bảo vệ quyền riêng tư, vui lòng loại bỏ các thông tin nhạy cảm rồi thử lại.",
97
+ "default": "Nội dung bị chặn: {{blockReason}}. Vui lòng điều chỉnh yêu cầu rồi thử lại."
98
+ },
88
99
  "InsufficientQuota": "Xin lỗi, hạn mức của khóa này đã đạt giới hạn, vui lòng kiểm tra số dư tài khoản của bạn hoặc tăng hạn mức khóa trước khi thử lại",
89
100
  "InvalidAccessCode": "Mật khẩu truy cập không hợp lệ hoặc trống, vui lòng nhập mật khẩu truy cập đúng hoặc thêm Khóa API tùy chỉnh",
90
101
  "InvalidBedrockCredentials": "Xác thực Bedrock không thành công, vui lòng kiểm tra AccessKeyId/SecretAccessKey và thử lại",