@lobehub/chat 1.115.0 → 1.116.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (115) hide show
  1. package/.cursor/rules/add-provider-doc.mdc +183 -0
  2. package/.env.example +8 -0
  3. package/.github/workflows/claude.yml +1 -1
  4. package/.github/workflows/release.yml +3 -3
  5. package/.github/workflows/test.yml +3 -7
  6. package/CHANGELOG.md +42 -0
  7. package/CLAUDE.md +6 -6
  8. package/Dockerfile +5 -1
  9. package/Dockerfile.database +5 -1
  10. package/Dockerfile.pglite +5 -1
  11. package/changelog/v1.json +14 -0
  12. package/docs/development/basic/setup-development.mdx +10 -13
  13. package/docs/development/basic/setup-development.zh-CN.mdx +9 -12
  14. package/docs/development/database-schema.dbml +44 -0
  15. package/docs/self-hosting/environment-variables/model-provider.mdx +27 -2
  16. package/docs/self-hosting/environment-variables/model-provider.zh-CN.mdx +27 -2
  17. package/docs/usage/providers/bfl.mdx +68 -0
  18. package/docs/usage/providers/bfl.zh-CN.mdx +67 -0
  19. package/locales/ar/components.json +11 -0
  20. package/locales/ar/error.json +11 -0
  21. package/locales/ar/models.json +64 -4
  22. package/locales/ar/providers.json +3 -0
  23. package/locales/bg-BG/components.json +11 -0
  24. package/locales/bg-BG/error.json +11 -0
  25. package/locales/bg-BG/models.json +64 -4
  26. package/locales/bg-BG/providers.json +3 -0
  27. package/locales/de-DE/components.json +11 -0
  28. package/locales/de-DE/error.json +11 -12
  29. package/locales/de-DE/models.json +64 -4
  30. package/locales/de-DE/providers.json +3 -0
  31. package/locales/en-US/components.json +6 -0
  32. package/locales/en-US/error.json +11 -12
  33. package/locales/en-US/models.json +64 -4
  34. package/locales/en-US/providers.json +3 -0
  35. package/locales/es-ES/components.json +11 -0
  36. package/locales/es-ES/error.json +11 -0
  37. package/locales/es-ES/models.json +64 -6
  38. package/locales/es-ES/providers.json +3 -0
  39. package/locales/fa-IR/components.json +11 -0
  40. package/locales/fa-IR/error.json +11 -0
  41. package/locales/fa-IR/models.json +64 -4
  42. package/locales/fa-IR/providers.json +3 -0
  43. package/locales/fr-FR/components.json +11 -0
  44. package/locales/fr-FR/error.json +11 -12
  45. package/locales/fr-FR/models.json +64 -4
  46. package/locales/fr-FR/providers.json +3 -0
  47. package/locales/it-IT/components.json +11 -0
  48. package/locales/it-IT/error.json +11 -0
  49. package/locales/it-IT/models.json +64 -4
  50. package/locales/it-IT/providers.json +3 -0
  51. package/locales/ja-JP/components.json +11 -0
  52. package/locales/ja-JP/error.json +11 -12
  53. package/locales/ja-JP/models.json +64 -4
  54. package/locales/ja-JP/providers.json +3 -0
  55. package/locales/ko-KR/components.json +11 -0
  56. package/locales/ko-KR/error.json +11 -12
  57. package/locales/ko-KR/models.json +64 -6
  58. package/locales/ko-KR/providers.json +3 -0
  59. package/locales/nl-NL/components.json +11 -0
  60. package/locales/nl-NL/error.json +11 -0
  61. package/locales/nl-NL/models.json +62 -4
  62. package/locales/nl-NL/providers.json +3 -0
  63. package/locales/pl-PL/components.json +11 -0
  64. package/locales/pl-PL/error.json +11 -0
  65. package/locales/pl-PL/models.json +64 -4
  66. package/locales/pl-PL/providers.json +3 -0
  67. package/locales/pt-BR/components.json +11 -0
  68. package/locales/pt-BR/error.json +11 -0
  69. package/locales/pt-BR/models.json +64 -4
  70. package/locales/pt-BR/providers.json +3 -0
  71. package/locales/ru-RU/components.json +11 -0
  72. package/locales/ru-RU/error.json +11 -0
  73. package/locales/ru-RU/models.json +64 -4
  74. package/locales/ru-RU/providers.json +3 -0
  75. package/locales/tr-TR/components.json +11 -0
  76. package/locales/tr-TR/error.json +11 -0
  77. package/locales/tr-TR/models.json +64 -4
  78. package/locales/tr-TR/providers.json +3 -0
  79. package/locales/vi-VN/components.json +11 -0
  80. package/locales/vi-VN/error.json +11 -0
  81. package/locales/vi-VN/models.json +64 -4
  82. package/locales/vi-VN/providers.json +3 -0
  83. package/locales/zh-CN/components.json +6 -0
  84. package/locales/zh-CN/error.json +11 -0
  85. package/locales/zh-CN/models.json +64 -4
  86. package/locales/zh-CN/providers.json +3 -0
  87. package/locales/zh-TW/components.json +11 -0
  88. package/locales/zh-TW/error.json +11 -12
  89. package/locales/zh-TW/models.json +64 -6
  90. package/locales/zh-TW/providers.json +3 -0
  91. package/package.json +1 -1
  92. package/packages/database/migrations/0030_add_group_chat.sql +36 -0
  93. package/packages/database/migrations/meta/0030_snapshot.json +6417 -0
  94. package/packages/database/migrations/meta/_journal.json +7 -0
  95. package/packages/database/src/core/migrations.json +19 -0
  96. package/packages/database/src/models/__tests__/topic.test.ts +3 -1
  97. package/packages/database/src/repositories/tableViewer/index.test.ts +1 -1
  98. package/packages/database/src/schemas/chatGroup.ts +98 -0
  99. package/packages/database/src/schemas/index.ts +1 -0
  100. package/packages/database/src/schemas/message.ts +4 -1
  101. package/packages/database/src/schemas/relations.ts +26 -0
  102. package/packages/database/src/schemas/topic.ts +2 -0
  103. package/packages/database/src/types/chatGroup.ts +9 -0
  104. package/packages/database/src/utils/idGenerator.ts +1 -0
  105. package/packages/model-runtime/src/google/index.ts +3 -0
  106. package/packages/model-runtime/src/qwen/createImage.test.ts +0 -19
  107. package/packages/model-runtime/src/qwen/createImage.ts +1 -27
  108. package/packages/model-runtime/src/utils/modelParse.ts +17 -8
  109. package/packages/model-runtime/src/utils/streams/google-ai.ts +26 -14
  110. package/packages/types/src/aiModel.ts +2 -1
  111. package/src/config/aiModels/google.ts +22 -1
  112. package/src/config/aiModels/qwen.ts +2 -2
  113. package/src/config/aiModels/vertexai.ts +22 -0
  114. package/src/features/FileViewer/Renderer/PDF/index.tsx +2 -2
  115. package/.cursor/rules/debug.mdc +0 -193
@@ -332,12 +332,21 @@
332
332
  "Qwen/Qwen3-30B-A3B-Instruct-2507": {
333
333
  "description": "Qwen3-30B-A3B-Instruct-2507 is an updated version of the Qwen3-30B-A3B non-thinking mode. It is a Mixture of Experts (MoE) model with a total of 30.5 billion parameters and 3.3 billion active parameters. The model features key enhancements across multiple areas, including significant improvements in instruction following, logical reasoning, text comprehension, mathematics, science, coding, and tool usage. Additionally, it has made substantial progress in covering long-tail multilingual knowledge and better aligns with user preferences in subjective and open-ended tasks, enabling it to generate more helpful responses and higher-quality text. Furthermore, its long-text comprehension capability has been extended to 256K tokens. This model supports only the non-thinking mode and does not generate `<think></think>` tags in its output."
334
334
  },
335
+ "Qwen/Qwen3-30B-A3B-Thinking-2507": {
336
+ "description": "Qwen3-30B-A3B-Thinking-2507 is the latest “thinking” model in the Qwen3 series released by Alibaba’s Tongyi Qianwen team. As a mixture-of-experts (MoE) model with 30.5 billion total parameters and 3.3 billion active parameters, it is designed to improve capabilities for handling complex tasks. The model demonstrates significant performance gains on academic benchmarks requiring logical reasoning, mathematics, science, programming, and domain expertise. At the same time, its general abilities—such as instruction following, tool use, text generation, and alignment with human preferences—have been substantially enhanced. The model natively supports long-context understanding of 256K tokens and can scale up to 1 million tokens. This version is tailored for “thinking mode,” intended to solve highly complex problems through detailed step-by-step reasoning, and it also exhibits strong agent capabilities."
337
+ },
335
338
  "Qwen/Qwen3-32B": {
336
339
  "description": "Qwen3 is a next-generation model with significantly enhanced capabilities, achieving industry-leading levels in reasoning, general tasks, agent functions, and multilingual support, with a switchable thinking mode."
337
340
  },
338
341
  "Qwen/Qwen3-8B": {
339
342
  "description": "Qwen3 is a next-generation model with significantly enhanced capabilities, achieving industry-leading levels in reasoning, general tasks, agent functions, and multilingual support, with a switchable thinking mode."
340
343
  },
344
+ "Qwen/Qwen3-Coder-30B-A3B-Instruct": {
345
+ "description": "Qwen3-Coder-30B-A3B-Instruct is a code model in the Qwen3 series developed by Alibaba's Tongyi Qianwen team. As a streamlined and optimized model, it focuses on enhancing code-handling capabilities while maintaining high performance and efficiency. The model demonstrates notable advantages among open-source models on complex tasks such as agentic coding, automated browser operations, and tool invocation. It natively supports a long context of 256K tokens and can be extended up to 1M tokens, enabling better understanding and processing at the codebase level. Additionally, the model provides robust agentic coding support for platforms like Qwen Code and CLINE, and it employs a dedicated function-calling format."
346
+ },
347
+ "Qwen/Qwen3-Coder-480B-A35B-Instruct": {
348
+ "description": "Qwen3-Coder-480B-A35B-Instruct, released by Alibaba, is the most agentic code model to date. It is a mixture-of-experts (MoE) model with 480 billion total parameters and 35 billion active parameters, striking a balance between efficiency and performance. The model natively supports a 256K (~260k) token context window and can be extended to 1,000,000 tokens through extrapolation methods such as YaRN, enabling it to handle large codebases and complex programming tasks. Qwen3-Coder is designed for agent-style coding workflows: it not only generates code but can autonomously interact with development tools and environments to solve complex programming problems. On multiple benchmarks for coding and agent tasks, this model achieves top-tier results among open-source models, with performance comparable to leading models like Claude Sonnet 4."
349
+ },
341
350
  "Qwen2-72B-Instruct": {
342
351
  "description": "Qwen2 is the latest series of the Qwen model, supporting 128k context. Compared to the current best open-source models, Qwen2-72B significantly surpasses leading models in natural language understanding, knowledge, coding, mathematics, and multilingual capabilities."
343
352
  },
@@ -1103,12 +1112,27 @@
1103
1112
  "flux-dev": {
1104
1113
  "description": "FLUX.1 [dev] is an open-source weight and fine-tuned model for non-commercial applications. It maintains image quality and instruction-following capabilities close to the FLUX professional version while offering higher operational efficiency. Compared to standard models of the same size, it is more resource-efficient."
1105
1114
  },
1115
+ "flux-kontext-max": {
1116
+ "description": "State-of-the-art contextual image generation and editing — combining text and images for precise, coherent results."
1117
+ },
1118
+ "flux-kontext-pro": {
1119
+ "description": "State-of-the-art contextual image generation and editing — combining text and images for precise, coherent results."
1120
+ },
1106
1121
  "flux-kontext/dev": {
1107
1122
  "description": "FLUX.1 model focused on image editing tasks, supporting both text and image inputs."
1108
1123
  },
1109
1124
  "flux-merged": {
1110
1125
  "description": "The FLUX.1-merged model combines the deep features explored during the development phase of “DEV” with the high-speed execution advantages represented by “Schnell.” This integration not only pushes the model's performance boundaries but also broadens its application scope."
1111
1126
  },
1127
+ "flux-pro": {
1128
+ "description": "A top-tier commercial AI image generation model — delivering unparalleled image quality and a wide variety of outputs."
1129
+ },
1130
+ "flux-pro-1.1": {
1131
+ "description": "Upgraded professional-grade AI image generation model — delivers outstanding image quality and precise adherence to prompts."
1132
+ },
1133
+ "flux-pro-1.1-ultra": {
1134
+ "description": "Ultra-high-resolution AI image generation — supports up to 4-megapixel output, producing ultra-high-definition images in under 10 seconds."
1135
+ },
1112
1136
  "flux-pro/kontext": {
1113
1137
  "description": "FLUX.1 Kontext [pro] can process text and reference images as input, seamlessly enabling targeted local edits and complex overall scene transformations."
1114
1138
  },
@@ -1193,6 +1217,9 @@
1193
1217
  "gemini-2.5-flash": {
1194
1218
  "description": "Gemini 2.5 Flash is Google's most cost-effective model, offering comprehensive capabilities."
1195
1219
  },
1220
+ "gemini-2.5-flash-image-preview": {
1221
+ "description": "Gemini 2.5 Flash Image Preview is Google's newest, fastest, and most efficient native multimodal model, enabling you to generate and edit images through conversation."
1222
+ },
1196
1223
  "gemini-2.5-flash-lite": {
1197
1224
  "description": "Gemini 2.5 Flash-Lite is Google's smallest and most cost-effective model, designed for large-scale use."
1198
1225
  },
@@ -1295,6 +1322,9 @@
1295
1322
  "glm-4.5-x": {
1296
1323
  "description": "The high-speed version of GLM-4.5, combining strong performance with generation speeds up to 100 tokens per second."
1297
1324
  },
1325
+ "glm-4.5v": {
1326
+ "description": "Zhipu's next-generation visual reasoning model is built on a Mixture-of-Experts (MoE) architecture. With 106B total parameters and 12B activated parameters, it achieves state-of-the-art performance among open-source multimodal models of similar scale across various benchmarks, supporting common tasks such as image, video, document understanding, and GUI-related tasks."
1327
+ },
1298
1328
  "glm-4v": {
1299
1329
  "description": "GLM-4V provides strong image understanding and reasoning capabilities, supporting various visual tasks."
1300
1330
  },
@@ -1434,7 +1464,7 @@
1434
1464
  "description": "GPT-4.1 nano provides a balance of intelligence, speed, and cost, making it an appealing model for numerous applications."
1435
1465
  },
1436
1466
  "gpt-4.5-preview": {
1437
- "description": "The research preview of GPT-4.5, our largest and most powerful GPT model to date. It possesses extensive world knowledge and better understands user intent, excelling in creative tasks and autonomous planning. GPT-4.5 accepts both text and image inputs and generates text outputs (including structured outputs). It supports key developer features such as function calling, batch API, and streaming output. GPT-4.5 particularly shines in tasks that require creativity, open-ended thinking, and dialogue, such as writing, learning, or exploring new ideas. Knowledge cutoff date is October 2023."
1467
+ "description": "GPT-4.5-preview is the latest general-purpose model, offering extensive world knowledge and an improved understanding of user intent. It excels at creative tasks and agent-style planning. The model's knowledge cutoff is October 2023."
1438
1468
  },
1439
1469
  "gpt-4o": {
1440
1470
  "description": "ChatGPT-4o is a dynamic model that updates in real-time to stay current with the latest version. It combines powerful language understanding and generation capabilities, making it suitable for large-scale applications, including customer service, education, and technical support."
@@ -1637,9 +1667,18 @@
1637
1667
  "image-01-live": {
1638
1668
  "description": "An image generation model with delicate visual performance, supporting text-to-image generation and style setting."
1639
1669
  },
1670
+ "imagen-4.0-fast-generate-001": {
1671
+ "description": "Imagen 4th-generation text-to-image model, Fast version"
1672
+ },
1673
+ "imagen-4.0-generate-001": {
1674
+ "description": "Imagen 4th-generation text-to-image model series"
1675
+ },
1640
1676
  "imagen-4.0-generate-preview-06-06": {
1641
1677
  "description": "Imagen 4th generation text-to-image model series"
1642
1678
  },
1679
+ "imagen-4.0-ultra-generate-001": {
1680
+ "description": "Imagen 4th-generation text-to-image model, Ultra version"
1681
+ },
1643
1682
  "imagen-4.0-ultra-generate-preview-06-06": {
1644
1683
  "description": "Imagen 4th generation text-to-image model series Ultra version"
1645
1684
  },
@@ -1679,6 +1718,9 @@
1679
1718
  "kimi-k2-0711-preview": {
1680
1719
  "description": "kimi-k2 is a MoE architecture base model with powerful coding and agent capabilities, totaling 1 trillion parameters with 32 billion active parameters. In benchmark tests across general knowledge reasoning, programming, mathematics, and agent tasks, the K2 model outperforms other mainstream open-source models."
1681
1720
  },
1721
+ "kimi-k2-turbo-preview": {
1722
+ "description": "Kimi-K2 is a Mixture-of-Experts (MoE) foundation model with exceptional coding and agent capabilities, featuring 1T total parameters and 32B activated parameters. In benchmark evaluations across core categories — general knowledge reasoning, programming, mathematics, and agent tasks — the K2 model outperforms other leading open-source models."
1723
+ },
1682
1724
  "kimi-latest": {
1683
1725
  "description": "The Kimi Smart Assistant product uses the latest Kimi large model, which may include features that are not yet stable. It supports image understanding and will automatically select the 8k/32k/128k model as the billing model based on the length of the request context."
1684
1726
  },
@@ -1763,6 +1805,9 @@
1763
1805
  "llava:34b": {
1764
1806
  "description": "LLaVA is a multimodal model that combines a visual encoder with Vicuna for powerful visual and language understanding."
1765
1807
  },
1808
+ "magistral-medium-latest": {
1809
+ "description": "Magistral Medium 1.1 is a state-of-the-art inference model released by Mistral AI in July 2025."
1810
+ },
1766
1811
  "mathstral": {
1767
1812
  "description": "MathΣtral is designed for scientific research and mathematical reasoning, providing effective computational capabilities and result interpretation."
1768
1813
  },
@@ -2094,7 +2139,7 @@
2094
2139
  "description": "o1-mini is a fast and cost-effective reasoning model designed for programming, mathematics, and scientific applications. This model features a 128K context and has a knowledge cutoff date of October 2023."
2095
2140
  },
2096
2141
  "o1-preview": {
2097
- "description": "o1 is OpenAI's new reasoning model, suitable for complex tasks that require extensive general knowledge. This model features a 128K context and has a knowledge cutoff date of October 2023."
2142
+ "description": "Focused on advanced reasoning and solving complex problems, including mathematical and scientific tasks. Ideal for applications that require deep contextual understanding and autonomous workflows."
2098
2143
  },
2099
2144
  "o1-pro": {
2100
2145
  "description": "The o1 series models are trained with reinforcement learning to think before answering and perform complex reasoning tasks. The o1-pro model uses more computational resources for deeper thinking, consistently delivering higher-quality responses."
@@ -2213,8 +2258,14 @@
2213
2258
  "qwen-coder-turbo-latest": {
2214
2259
  "description": "The Tongyi Qianwen Coder model."
2215
2260
  },
2261
+ "qwen-flash": {
2262
+ "description": "The Tongyi Qianwen Flash series offers the fastest, most cost-effective models, suitable for simple tasks."
2263
+ },
2216
2264
  "qwen-image": {
2217
- "description": "A powerful raw image model from the Qwen team, featuring impressive Chinese text generation capabilities and diverse visual styles."
2265
+ "description": "Qwen-Image is a general-purpose image generation model that supports a wide range of artistic styles and is particularly adept at rendering complex text, especially Chinese and English. The model supports multi-line layouts, paragraph-level text generation, and fine-grained detail rendering, enabling complex mixed text-and-image layout designs."
2266
+ },
2267
+ "qwen-image-edit": {
2268
+ "description": "A professional image-editing model released by the Qwen team, supporting semantic editing and appearance editing. It can precisely edit Chinese and English text and perform high-quality image edits such as style transfer and object rotation."
2218
2269
  },
2219
2270
  "qwen-long": {
2220
2271
  "description": "Qwen is a large-scale language model that supports long text contexts and dialogue capabilities based on long documents and multiple documents."
@@ -2241,7 +2292,7 @@
2241
2292
  "description": "Qwen Plus is an enhanced large-scale language model supporting input in various languages including Chinese and English."
2242
2293
  },
2243
2294
  "qwen-turbo": {
2244
- "description": "Qwen Turbo is a large-scale language model supporting input in various languages including Chinese and English."
2295
+ "description": "Tongyi Qianwen Turbo will no longer receive updates; it is recommended to switch to Tongyi Qianwen Flash. Tongyi Qianwen is an ultra-large language model that supports input in Chinese, English, and other languages."
2245
2296
  },
2246
2297
  "qwen-vl-chat-v1": {
2247
2298
  "description": "Qwen VL supports flexible interaction methods, including multi-image, multi-turn Q&A, and creative capabilities."
@@ -2558,9 +2609,15 @@
2558
2609
  "step-2x-large": {
2559
2610
  "description": "Step Star next-generation image generation model, focusing on image generation tasks. It can generate high-quality images based on user-provided text descriptions. The new model produces more realistic textures and stronger Chinese and English text generation capabilities."
2560
2611
  },
2612
+ "step-3": {
2613
+ "description": "This model has powerful visual perception and advanced reasoning capabilities. It can accurately handle complex cross-domain knowledge comprehension, perform integrated analysis of mathematical and visual information, and solve a wide range of visual analysis tasks encountered in everyday life."
2614
+ },
2561
2615
  "step-r1-v-mini": {
2562
2616
  "description": "This model is a powerful reasoning model with strong image understanding capabilities, able to process both image and text information, generating text content after deep reasoning. It excels in visual reasoning while also possessing first-tier capabilities in mathematics, coding, and text reasoning. The context length is 100k."
2563
2617
  },
2618
+ "stepfun-ai/step3": {
2619
+ "description": "Step3 is a cutting-edge multimodal reasoning model released by StepFun. It is built on a mixture-of-experts (MoE) architecture with 321B total parameters and 38B active parameters. The model adopts an end-to-end design to minimize decoding cost while delivering top-tier performance in visual-language reasoning. Through the combined design of Multi-Matrix Factorized Attention (MFA) and Attention-FFN Decoupling (AFD), Step3 maintains exceptional efficiency on both high-end and low-end accelerators. During pretraining, Step3 processed over 20 trillion text tokens and 4 trillion image-text mixed tokens, covering more than a dozen languages. The model achieves leading performance among open-source models across benchmarks in mathematics, code, and multimodal tasks."
2620
+ },
2564
2621
  "taichu_llm": {
2565
2622
  "description": "The ZD Taichu language model possesses strong language understanding capabilities and excels in text creation, knowledge Q&A, code programming, mathematical calculations, logical reasoning, sentiment analysis, and text summarization. It innovatively combines large-scale pre-training with rich knowledge from multiple sources, continuously refining algorithmic techniques and absorbing new knowledge in vocabulary, structure, grammar, and semantics from vast text data, resulting in an evolving model performance. It provides users with more convenient information and services, as well as a more intelligent experience."
2566
2623
  },
@@ -2707,5 +2764,8 @@
2707
2764
  },
2708
2765
  "zai-org/GLM-4.5-Air": {
2709
2766
  "description": "GLM-4.5-Air is a foundational model designed specifically for agent applications, using a Mixture-of-Experts (MoE) architecture. It is deeply optimized for tool invocation, web browsing, software engineering, and front-end programming, supporting seamless integration with code agents like Claude Code and Roo Code. GLM-4.5 employs a hybrid inference mode, adaptable to complex reasoning and everyday use scenarios."
2767
+ },
2768
+ "zai-org/GLM-4.5V": {
2769
+ "description": "GLM-4.5V is the latest-generation vision-language model (VLM) released by Zhipu AI. It is built on the flagship text model GLM-4.5-Air, which has 106B total parameters and 12B active parameters, and adopts a Mixture-of-Experts (MoE) architecture to deliver outstanding performance at reduced inference cost. Technically, GLM-4.5V continues the trajectory of GLM-4.1V-Thinking and introduces innovations such as three-dimensional rotary position encoding (3D-RoPE), significantly improving perception and reasoning of three-dimensional spatial relationships. Through optimizations across pretraining, supervised fine-tuning, and reinforcement learning stages, the model can handle a wide range of visual content including images, video, and long documents, and has achieved top-tier performance among comparable open-source models across 41 public multimodal benchmarks. The model also adds a \"Thinking Mode\" toggle that lets users flexibly choose between fast responses and deep reasoning to balance efficiency and effectiveness."
2710
2770
  }
2711
2771
  }
@@ -26,6 +26,9 @@
26
26
  "bedrock": {
27
27
  "description": "Bedrock is a service provided by Amazon AWS, focusing on delivering advanced AI language and visual models for enterprises. Its model family includes Anthropic's Claude series, Meta's Llama 3.1 series, and more, offering a range of options from lightweight to high-performance, supporting tasks such as text generation, conversation, and image processing for businesses of varying scales and needs."
28
28
  },
29
+ "bfl": {
30
+ "description": "A leading, cutting-edge artificial intelligence research lab building the visual infrastructure of tomorrow."
31
+ },
29
32
  "cloudflare": {
30
33
  "description": "Run serverless GPU-powered machine learning models on Cloudflare's global network."
31
34
  },
@@ -1,4 +1,9 @@
1
1
  {
2
+ "ArgsInput": {
3
+ "addArgument": "Añadir argumento",
4
+ "argumentPlaceholder": "Argumento {{index}}",
5
+ "enterFirstArgument": "Introduce el primer argumento..."
6
+ },
2
7
  "DragUpload": {
3
8
  "dragDesc": "Arrastra los archivos aquí, se admite la carga de múltiples imágenes.",
4
9
  "dragFileDesc": "Arrastra imágenes y archivos aquí, se admite la carga de múltiples imágenes y archivos.",
@@ -125,6 +130,12 @@
125
130
  },
126
131
  "progress": {
127
132
  "uploadingWithCount": "{{completed}}/{{total}} subidas"
133
+ },
134
+ "validation": {
135
+ "fileSizeExceeded": "El tamaño del archivo supera el límite permitido",
136
+ "fileSizeExceededDetail": "{{fileName}} ({{actualSize}}) supera el tamaño máximo permitido de {{maxSize}}",
137
+ "fileSizeExceededMultiple": "{{count}} archivos superan el tamaño máximo permitido de {{maxSize}}: {{fileList}}",
138
+ "imageCountExceeded": "Se ha superado el límite de imágenes permitido"
128
139
  }
129
140
  },
130
141
  "OllamaSetupGuide": {
@@ -85,6 +85,17 @@
85
85
  "CreateMessageError": "Lo sentimos, el mensaje no se pudo enviar correctamente. Por favor, copia el contenido y vuelve a enviarlo. Después de actualizar la página, este mensaje no se conservará.",
86
86
  "ExceededContextWindow": "El contenido de la solicitud actual excede la longitud que el modelo puede procesar. Por favor, reduzca la cantidad de contenido y vuelva a intentarlo.",
87
87
  "FreePlanLimit": "Actualmente eres un usuario gratuito y no puedes utilizar esta función. Por favor, actualiza a un plan de pago para seguir utilizando.",
88
+ "GoogleAIBlockReason": {
89
+ "BLOCKLIST": "Su contenido contiene palabras prohibidas. Por favor, compruebe y modifique su entrada e inténtelo de nuevo.",
90
+ "IMAGE_SAFETY": "El contenido de la imagen generada ha sido bloqueado por motivos de seguridad. Intente modificar su solicitud de generación de imágenes.",
91
+ "LANGUAGE": "El idioma que está utilizando no es compatible por el momento. Intente volver a preguntar en inglés u otro idioma compatible.",
92
+ "OTHER": "El contenido ha sido bloqueado por una razón desconocida. Intente reformular su solicitud.",
93
+ "PROHIBITED_CONTENT": "Su solicitud puede contener contenido prohibido. Ajústela para garantizar que cumple las políticas de uso.",
94
+ "RECITATION": "Su contenido ha sido bloqueado porque podría implicar problemas de derechos de autor. Intente usar contenido original o reformular su solicitud.",
95
+ "SAFETY": "Su contenido ha sido bloqueado por las políticas de seguridad. Intente ajustar su solicitud para evitar contenidos potencialmente dañinos o inapropiados.",
96
+ "SPII": "Su contenido puede contener información personal sensible. Para proteger la privacidad, elimine la información sensible antes de intentar de nuevo.",
97
+ "default": "Contenido bloqueado: {{blockReason}}。请调整您的请求内容后重试。"
98
+ },
88
99
  "InsufficientQuota": "Lo sentimos, la cuota de esta clave ha alcanzado su límite. Por favor, verifique si el saldo de su cuenta es suficiente o aumente la cuota de la clave y vuelva a intentarlo.",
89
100
  "InvalidAccessCode": "La contraseña no es válida o está vacía. Por favor, introduce una contraseña de acceso válida o añade una clave API personalizada",
90
101
  "InvalidBedrockCredentials": "La autenticación de Bedrock no se ha completado con éxito, por favor, verifica AccessKeyId/SecretAccessKey e inténtalo de nuevo",
@@ -332,12 +332,21 @@
332
332
  "Qwen/Qwen3-30B-A3B-Instruct-2507": {
333
333
  "description": "Qwen3-30B-A3B-Instruct-2507 es una versión actualizada del modelo Qwen3-30B-A3B en modo no reflexivo. Es un modelo de expertos mixtos (MoE) con un total de 30.5 mil millones de parámetros y 3.3 mil millones de parámetros activados. El modelo ha mejorado significativamente en varios aspectos, incluyendo el seguimiento de instrucciones, razonamiento lógico, comprensión de texto, matemáticas, ciencias, codificación y uso de herramientas. Además, ha logrado avances sustanciales en la cobertura de conocimientos multilingües de cola larga y se alinea mejor con las preferencias del usuario en tareas subjetivas y abiertas, generando respuestas más útiles y textos de mayor calidad. También se ha mejorado la capacidad de comprensión de textos largos hasta 256K. Este modelo solo soporta el modo no reflexivo y no genera etiquetas `<think></think>` en su salida."
334
334
  },
335
+ "Qwen/Qwen3-30B-A3B-Thinking-2507": {
336
+ "description": "Qwen3-30B-A3B-Thinking-2507 es el último modelo de pensamiento de la serie Qwen3, publicado por el equipo Tongyi Qianwen de Alibaba. Como un modelo Mixture of Experts (MoE) con 30.500 millones de parámetros en total y 3.300 millones de parámetros activados, está enfocado en mejorar la capacidad de abordar tareas complejas. Este modelo muestra mejoras significativas en razonamiento lógico, matemáticas, ciencias, programación y en evaluaciones académicas que requieren conocimientos humanos especializados. Al mismo tiempo, presenta avances notables en capacidades generales como el cumplimiento de instrucciones, el uso de herramientas, la generación de texto y la alineación con las preferencias humanas. El modelo soporta de forma nativa la comprensión de contextos largos de 256K tokens y puede ampliarse hasta 1 millón de tokens. Esta versión está diseñada específicamente para el “modo de pensamiento”, con el objetivo de resolver tareas altamente complejas mediante razonamientos detallados y paso a paso; asimismo, sus capacidades como agente (Agent) también resultan sobresalientes."
337
+ },
335
338
  "Qwen/Qwen3-32B": {
336
339
  "description": "Qwen3 es un nuevo modelo de Tongyi Qianwen de próxima generación con capacidades significativamente mejoradas, alcanzando niveles líderes en la industria en razonamiento, general, agente y múltiples idiomas, y admite el cambio de modo de pensamiento."
337
340
  },
338
341
  "Qwen/Qwen3-8B": {
339
342
  "description": "Qwen3 es un nuevo modelo de Tongyi Qianwen de próxima generación con capacidades significativamente mejoradas, alcanzando niveles líderes en la industria en razonamiento, general, agente y múltiples idiomas, y admite el cambio de modo de pensamiento."
340
343
  },
344
+ "Qwen/Qwen3-Coder-30B-A3B-Instruct": {
345
+ "description": "Qwen3-Coder-30B-A3B-Instruct es un modelo de código de la serie Qwen3 desarrollado por el equipo Tongyi Qianwen (通义千问) de Alibaba. Como un modelo depurado y optimizado, mantiene un alto rendimiento y eficiencia a la vez que se centra en mejorar la capacidad de procesamiento de código. Este modelo muestra una ventaja de rendimiento notable frente a otros modelos de código abierto en tareas complejas como la programación agente (Agentic Coding), la automatización de operaciones en navegadores y la invocación de herramientas. Soporta de forma nativa contextos largos de 256K tokens y puede ampliarse hasta 1M tokens, lo que le permite entender y gestionar mejor repositorios de código a escala. Además, proporciona un sólido soporte de codificación por agentes para plataformas como Qwen Code y CLINE, y está diseñado con un formato específico para llamadas a funciones."
346
+ },
347
+ "Qwen/Qwen3-Coder-480B-A35B-Instruct": {
348
+ "description": "Qwen3-Coder-480B-A35B-Instruct es un modelo de código publicado por Alibaba, hasta la fecha el más capaz en términos de agencia (agentic). Es un modelo de expertos mixtos (MoE) con 480 000 millones de parámetros en total y 35 000 millones de parámetros de activación, que logra un equilibrio entre eficiencia y rendimiento. El modelo admite de forma nativa una longitud de contexto de 256K (aprox. 260 000) tokens y puede ampliarse hasta 1 000 000 tokens mediante métodos de extrapolación como YaRN, lo que le permite manejar bases de código a gran escala y tareas de programación complejas. Qwen3-Coder está diseñado para flujos de trabajo de codificación orientados a agentes: no solo genera código, sino que puede interactuar de forma autónoma con herramientas y entornos de desarrollo para resolver problemas de programación complejos. En múltiples pruebas de referencia de tareas de codificación y de agente, este modelo ha alcanzado un nivel superior entre los modelos de código abierto, y su rendimiento puede compararse con el de modelos líderes como Claude Sonnet 4."
349
+ },
341
350
  "Qwen2-72B-Instruct": {
342
351
  "description": "Qwen2 es la última serie del modelo Qwen, que admite un contexto de 128k. En comparación con los modelos de código abierto más óptimos actuales, Qwen2-72B supera significativamente a los modelos líderes actuales en comprensión del lenguaje natural, conocimiento, código, matemáticas y capacidades multilingües."
343
352
  },
@@ -1103,12 +1112,27 @@
1103
1112
  "flux-dev": {
1104
1113
  "description": "FLUX.1 [dev] es un modelo refinado y de pesos abiertos para aplicaciones no comerciales. Mantiene una calidad de imagen y capacidad de seguimiento de instrucciones similar a la versión profesional de FLUX, pero con mayor eficiencia operativa. En comparación con modelos estándar de tamaño similar, es más eficiente en el uso de recursos."
1105
1114
  },
1115
+ "flux-kontext-max": {
1116
+ "description": "Generación y edición de imágenes contextuales de vanguardia — combinando texto e imágenes para obtener resultados precisos y coherentes."
1117
+ },
1118
+ "flux-kontext-pro": {
1119
+ "description": "Generación y edición de imágenes contextuales de vanguardia: combina texto e imágenes para obtener resultados precisos y coherentes."
1120
+ },
1106
1121
  "flux-kontext/dev": {
1107
1122
  "description": "Modelo FLUX.1 centrado en tareas de edición de imágenes, compatible con entradas de texto e imagen."
1108
1123
  },
1109
1124
  "flux-merged": {
1110
1125
  "description": "El modelo FLUX.1-merged combina las características profundas exploradas durante la fase de desarrollo de “DEV” con las ventajas de ejecución rápida representadas por “Schnell”. Esta combinación no solo amplía los límites de rendimiento del modelo, sino que también amplía su rango de aplicaciones."
1111
1126
  },
1127
+ "flux-pro": {
1128
+ "description": "Modelo comercial de generación de imágenes por IA de primer nivel — calidad de imagen incomparable y gran diversidad de resultados."
1129
+ },
1130
+ "flux-pro-1.1": {
1131
+ "description": "Modelo profesional mejorado de generación de imágenes con IA — ofrece una calidad de imagen excepcional y una capacidad precisa para seguir las indicaciones."
1132
+ },
1133
+ "flux-pro-1.1-ultra": {
1134
+ "description": "Generación de imágenes por IA de ultra alta resolución — compatible con salida de 4 megapíxeles; genera imágenes en alta definición en menos de 10 segundos."
1135
+ },
1112
1136
  "flux-pro/kontext": {
1113
1137
  "description": "FLUX.1 Kontext [pro] puede procesar texto e imágenes de referencia como entrada, logrando sin problemas ediciones locales específicas y transformaciones complejas de escenas completas."
1114
1138
  },
@@ -1193,6 +1217,9 @@
1193
1217
  "gemini-2.5-flash": {
1194
1218
  "description": "Gemini 2.5 Flash es el modelo de mejor relación calidad-precio de Google, que ofrece funcionalidades completas."
1195
1219
  },
1220
+ "gemini-2.5-flash-image-preview": {
1221
+ "description": "Gemini 2.5 Flash Image Preview es el modelo multimodal nativo más reciente, rápido y eficiente de Google; le permite generar y editar imágenes a través de conversaciones."
1222
+ },
1196
1223
  "gemini-2.5-flash-lite": {
1197
1224
  "description": "Gemini 2.5 Flash-Lite es el modelo más pequeño y rentable de Google, diseñado para un uso a gran escala."
1198
1225
  },
@@ -1295,6 +1322,9 @@
1295
1322
  "glm-4.5-x": {
1296
1323
  "description": "Versión ultra rápida de GLM-4.5, que combina un rendimiento potente con una velocidad de generación de hasta 100 tokens por segundo."
1297
1324
  },
1325
+ "glm-4.5v": {
1326
+ "description": "La nueva generación del modelo de razonamiento visual de Zhipu, basada en la arquitectura MOE, cuenta con 106B de parámetros totales y 12B de parámetros de activación; alcanza el estado del arte (SOTA) entre los modelos multimodales de código abierto de la misma categoría a nivel mundial en diversas pruebas de referencia, y cubre tareas comunes como comprensión de imágenes, vídeo, documentos y tareas de interfaz gráfica de usuario (GUI)."
1327
+ },
1298
1328
  "glm-4v": {
1299
1329
  "description": "GLM-4V proporciona una poderosa capacidad de comprensión e inferencia de imágenes, soportando diversas tareas visuales."
1300
1330
  },
@@ -1433,9 +1463,7 @@
1433
1463
  "gpt-4.1-nano": {
1434
1464
  "description": "GPT-4.1 mini ofrece un equilibrio entre inteligencia, velocidad y costo, lo que lo convierte en un modelo atractivo para muchos casos de uso."
1435
1465
  },
1436
- "gpt-4.5-preview": {
1437
- "description": "Versión de investigación de GPT-4.5, que es nuestro modelo GPT más grande y potente hasta la fecha. Posee un amplio conocimiento del mundo y puede comprender mejor la intención del usuario, lo que lo hace destacar en tareas creativas y planificación autónoma. GPT-4.5 acepta entradas de texto e imagen y genera salidas de texto (incluidas salidas estructuradas). Soporta funciones clave para desarrolladores, como llamadas a funciones, API por lotes y salida en streaming. En tareas que requieren pensamiento creativo, abierto y diálogo (como escritura, aprendizaje o exploración de nuevas ideas), GPT-4.5 brilla especialmente. La fecha límite de conocimiento es octubre de 2023."
1438
- },
1466
+ "gpt-4.5-preview": "GPT-4.5-preview es el modelo de propósito general más reciente, con un profundo conocimiento del mundo y una mejor comprensión de las intenciones de los usuarios; destaca en tareas creativas y en la planificación de agentes. El conocimiento de este modelo está actualizado hasta octubre de 2023.",
1439
1467
  "gpt-4o": {
1440
1468
  "description": "ChatGPT-4o es un modelo dinámico que se actualiza en tiempo real para mantener la versión más actual. Combina una poderosa comprensión y generación de lenguaje, adecuado para aplicaciones a gran escala, incluyendo servicio al cliente, educación y soporte técnico."
1441
1469
  },
@@ -1637,9 +1665,18 @@
1637
1665
  "image-01-live": {
1638
1666
  "description": "Modelo de generación de imágenes con detalles finos, soporta generación a partir de texto y configuración de estilo artístico."
1639
1667
  },
1668
+ "imagen-4.0-fast-generate-001": {
1669
+ "description": "Versión Fast de la serie de modelos Imagen de texto a imagen de cuarta generación"
1670
+ },
1671
+ "imagen-4.0-generate-001": {
1672
+ "description": "Serie Imagen de cuarta generación para generar imágenes a partir de texto."
1673
+ },
1640
1674
  "imagen-4.0-generate-preview-06-06": {
1641
1675
  "description": "Serie de modelos de texto a imagen de cuarta generación de Imagen"
1642
1676
  },
1677
+ "imagen-4.0-ultra-generate-001": {
1678
+ "description": "Imagen, serie de modelos de texto a imagen de cuarta generación, versión Ultra"
1679
+ },
1643
1680
  "imagen-4.0-ultra-generate-preview-06-06": {
1644
1681
  "description": "Serie de modelos de texto a imagen de cuarta generación de Imagen, versión Ultra"
1645
1682
  },
@@ -1679,6 +1716,9 @@
1679
1716
  "kimi-k2-0711-preview": {
1680
1717
  "description": "kimi-k2 es un modelo base con arquitectura MoE que posee capacidades excepcionales en código y agentes, con un total de 1T parámetros y 32B parámetros activados. En pruebas de rendimiento en categorías principales como razonamiento general, programación, matemáticas y agentes, el modelo K2 supera a otros modelos de código abierto populares."
1681
1718
  },
1719
+ "kimi-k2-turbo-preview": {
1720
+ "description": "kimi-k2 es un modelo base con arquitectura MoE que ofrece potentes capacidades para código y agentes, con 1T parámetros totales y 32B parámetros activados. En las pruebas de referencia en categorías principales como razonamiento de conocimiento general, programación, matemáticas y agentes, el rendimiento del modelo K2 supera al de otros modelos de código abierto más extendidos."
1721
+ },
1682
1722
  "kimi-latest": {
1683
1723
  "description": "El producto asistente inteligente Kimi utiliza el último modelo grande de Kimi, que puede incluir características que aún no están estables. Soporta la comprensión de imágenes y seleccionará automáticamente el modelo de facturación de 8k/32k/128k según la longitud del contexto de la solicitud."
1684
1724
  },
@@ -1763,6 +1803,9 @@
1763
1803
  "llava:34b": {
1764
1804
  "description": "LLaVA es un modelo multimodal que combina un codificador visual y Vicuna, utilizado para una poderosa comprensión visual y lingüística."
1765
1805
  },
1806
+ "magistral-medium-latest": {
1807
+ "description": "Magistral Medium 1.1 es un modelo de inferencia de última generación lanzado por Mistral AI en julio de 2025."
1808
+ },
1766
1809
  "mathstral": {
1767
1810
  "description": "MathΣtral está diseñado para la investigación científica y el razonamiento matemático, proporcionando capacidades de cálculo efectivas y explicación de resultados."
1768
1811
  },
@@ -2094,7 +2137,7 @@
2094
2137
  "description": "o1-mini es un modelo de inferencia rápido y rentable diseñado para aplicaciones de programación, matemáticas y ciencias. Este modelo tiene un contexto de 128K y una fecha de corte de conocimiento en octubre de 2023."
2095
2138
  },
2096
2139
  "o1-preview": {
2097
- "description": "o1 es el nuevo modelo de inferencia de OpenAI, adecuado para tareas complejas que requieren un amplio conocimiento general. Este modelo tiene un contexto de 128K y una fecha de corte de conocimiento en octubre de 2023."
2140
+ "description": "Enfocado en el razonamiento avanzado y en la resolución de problemas complejos, incluidas tareas de matemáticas y de ciencias. Es ideal para aplicaciones que requieren una comprensión profunda del contexto y flujos de trabajo autónomos."
2098
2141
  },
2099
2142
  "o1-pro": {
2100
2143
  "description": "La serie o1 ha sido entrenada mediante aprendizaje reforzado para pensar antes de responder y ejecutar tareas de razonamiento complejas. El modelo o1-pro utiliza más recursos computacionales para un pensamiento más profundo, proporcionando respuestas de calidad superior de manera constante."
@@ -2213,8 +2256,14 @@
2213
2256
  "qwen-coder-turbo-latest": {
2214
2257
  "description": "El modelo de código Tongyi Qwen."
2215
2258
  },
2259
+ "qwen-flash": {
2260
+ "description": "La serie Tongyi Qianwen ofrece modelos de la mayor rapidez y de coste extremadamente bajo, adecuados para tareas sencillas."
2261
+ },
2216
2262
  "qwen-image": {
2217
- "description": "Potente modelo de imágenes en bruto del equipo Qwen, con impresionante capacidad para generar texto en chino y diversos estilos visuales de imágenes."
2263
+ "description": "Qwen-Image es un modelo de generación de imágenes de uso general que admite diversos estilos artísticos y destaca por su capacidad para renderizar textos complejos, especialmente textos en chino e inglés. El modelo soporta maquetación en varias líneas, generación de texto a nivel de párrafo y representación de detalles finos, lo que permite crear diseños complejos que combinan texto e imagen."
2264
+ },
2265
+ "qwen-image-edit": {
2266
+ "description": "Modelo profesional de edición de imágenes lanzado por el equipo Qwen. Admite edición semántica y de apariencia, puede editar con precisión texto en chino e inglés y realizar ediciones de alta calidad, como transferencia de estilo y rotación de objetos."
2218
2267
  },
2219
2268
  "qwen-long": {
2220
2269
  "description": "Qwen es un modelo de lenguaje a gran escala que admite contextos de texto largos y funciones de conversación basadas en documentos largos y múltiples."
@@ -2241,7 +2290,7 @@
2241
2290
  "description": "La versión mejorada del modelo de lenguaje a gran escala Qwen admite entradas en diferentes idiomas como chino e inglés."
2242
2291
  },
2243
2292
  "qwen-turbo": {
2244
- "description": "El modelo de lenguaje a gran escala Qwen-Turbo admite entradas en diferentes idiomas como chino e inglés."
2293
+ "description": "通义千问 Turbo dejará de recibir actualizaciones; se recomienda sustituirlo por 通义千问 Flash. 通义千问 es un modelo de lenguaje a gran escala que admite entradas en chino, inglés y otros idiomas."
2245
2294
  },
2246
2295
  "qwen-vl-chat-v1": {
2247
2296
  "description": "Qwen VL admite formas de interacción flexibles, incluyendo múltiples imágenes, preguntas y respuestas en múltiples rondas, y capacidades creativas."
@@ -2558,9 +2607,15 @@
2558
2607
  "step-2x-large": {
2559
2608
  "description": "Nueva generación del modelo Step Star para generación de imágenes, enfocado en tareas de generación basadas en texto, capaz de crear imágenes de alta calidad según descripciones proporcionadas por el usuario. El nuevo modelo produce imágenes con texturas más realistas y mejor capacidad para generar texto en chino e inglés."
2560
2609
  },
2610
+ "step-3": {
2611
+ "description": "Este modelo cuenta con una destacada capacidad de percepción visual y de razonamiento complejo. Es capaz de realizar con precisión la comprensión de conocimientos complejos entre distintos ámbitos, el análisis cruzado de información matemática y visual, así como una amplia variedad de problemas de análisis visual en la vida cotidiana."
2612
+ },
2561
2613
  "step-r1-v-mini": {
2562
2614
  "description": "Este modelo es un gran modelo de inferencia con una poderosa capacidad de comprensión de imágenes, capaz de procesar información de imágenes y texto, generando contenido textual tras un profundo razonamiento. Este modelo destaca en el campo del razonamiento visual, además de poseer capacidades de razonamiento matemático, de código y textual de primer nivel. La longitud del contexto es de 100k."
2563
2615
  },
2616
+ "stepfun-ai/step3": {
2617
+ "description": "Step3 es un modelo de inferencia multimodal de vanguardia publicado por 阶跃星辰 (StepFun), construido sobre una arquitectura Mixture-of-Experts (MoE) con 321B de parámetros totales y 38B de parámetros de activación. El modelo presenta un diseño de extremo a extremo orientado a minimizar el coste de decodificación, al tiempo que ofrece un rendimiento de primer nivel en razonamiento visual-lingüístico. Gracias al diseño sinérgico entre la atención por descomposición de múltiples matrices (MFA) y el desacoplamiento atención‑FFN (AFD), Step3 mantiene una eficiencia sobresaliente tanto en aceleradores de gama alta como de gama baja. En la fase de preentrenamiento, Step3 procesó más de 20T de tokens de texto y 4T de tokens mixtos imagen-texto, abarcando más de una decena de idiomas. El modelo ha alcanzado niveles líderes entre los modelos de código abierto en múltiples benchmarks, incluidos matemáticas, código y tareas multimodales."
2618
+ },
2564
2619
  "taichu_llm": {
2565
2620
  "description": "El modelo de lenguaje Taichu de Zīdōng tiene una poderosa capacidad de comprensión del lenguaje, así como habilidades en creación de textos, preguntas y respuestas, programación de código, cálculos matemáticos, razonamiento lógico, análisis de sentimientos y resúmenes de texto. Combina de manera innovadora el preentrenamiento con grandes datos y un conocimiento rico de múltiples fuentes, perfeccionando continuamente la tecnología algorítmica y absorbiendo nuevos conocimientos en vocabulario, estructura, gramática y semántica de grandes volúmenes de datos textuales, logrando una evolución constante del modelo. Proporciona a los usuarios información y servicios más convenientes, así como una experiencia más inteligente."
2566
2621
  },
@@ -2707,5 +2762,8 @@
2707
2762
  },
2708
2763
  "zai-org/GLM-4.5-Air": {
2709
2764
  "description": "GLM-4.5-Air es un modelo base diseñado para aplicaciones de agentes inteligentes, utilizando arquitectura Mixture-of-Experts (MoE). Está profundamente optimizado para llamadas a herramientas, navegación web, ingeniería de software y programación frontend, soportando integración fluida con agentes de código como Claude Code y Roo Code. GLM-4.5 emplea un modo de inferencia híbrido que se adapta a escenarios de razonamiento complejo y uso cotidiano."
2765
+ },
2766
+ "zai-org/GLM-4.5V": {
2767
+ "description": "GLM-4.5V es la última generación de modelo de lenguaje visual (VLM) publicada por Zhipu AI. Este modelo se basa en el modelo de texto insignia GLM-4.5-Air, que cuenta con 106.000 millones de parámetros totales y 12.000 millones de parámetros de activación, y emplea una arquitectura de expertos mixtos (MoE) para lograr un rendimiento excelente con un coste de inferencia reducido. Técnicamente, GLM-4.5V continúa la línea de GLM-4.1V-Thinking e introduce innovaciones como el codificado rotacional de posiciones en 3D (3D-RoPE), que mejora de forma notable la percepción y el razonamiento sobre las relaciones en el espacio tridimensional. Gracias a optimizaciones en preentrenamiento, ajuste supervisado y aprendizaje por refuerzo, este modelo es capaz de procesar diversos tipos de contenido visual, como imágenes, vídeo y documentos largos, y ha alcanzado niveles punteros entre los modelos open source de su categoría en 41 benchmarks multimodales públicos. Además, el modelo incorpora un interruptor de 'modo de pensamiento' que permite a los usuarios alternar entre respuestas rápidas y razonamiento profundo para equilibrar eficiencia y rendimiento."
2710
2768
  }
2711
2769
  }
@@ -26,6 +26,9 @@
26
26
  "bedrock": {
27
27
  "description": "Bedrock es un servicio proporcionado por Amazon AWS, enfocado en ofrecer modelos de lenguaje y visuales avanzados para empresas. Su familia de modelos incluye la serie Claude de Anthropic, la serie Llama 3.1 de Meta, entre otros, abarcando una variedad de opciones desde ligeras hasta de alto rendimiento, apoyando tareas como generación de texto, diálogos y procesamiento de imágenes, adecuadas para aplicaciones empresariales de diferentes escalas y necesidades."
28
28
  },
29
+ "bfl": {
30
+ "description": "Laboratorio líder en investigación de inteligencia artificial de vanguardia, construyendo la infraestructura visual del mañana."
31
+ },
29
32
  "cloudflare": {
30
33
  "description": "Ejecuta modelos de aprendizaje automático impulsados por GPU sin servidor en la red global de Cloudflare."
31
34
  },
@@ -1,4 +1,9 @@
1
1
  {
2
+ "ArgsInput": {
3
+ "addArgument": "افزودن پارامتر",
4
+ "argumentPlaceholder": "پارامتر {{index}}",
5
+ "enterFirstArgument": "اولین پارامتر را وارد کنید..."
6
+ },
2
7
  "DragUpload": {
3
8
  "dragDesc": "فایل‌ها را اینجا بکشید، امکان بارگذاری چندین تصویر وجود دارد.",
4
9
  "dragFileDesc": "تصاویر و فایل‌ها را اینجا بکشید، امکان بارگذاری چندین تصویر و فایل وجود دارد.",
@@ -125,6 +130,12 @@
125
130
  },
126
131
  "progress": {
127
132
  "uploadingWithCount": "{{completed}}/{{total}} بارگذاری شده"
133
+ },
134
+ "validation": {
135
+ "fileSizeExceeded": "اندازه فایل از حد مجاز فراتر رفته",
136
+ "fileSizeExceededDetail": "{{fileName}} ({{actualSize}}) از حداکثر اندازه مجاز {{maxSize}} فراتر رفته است",
137
+ "fileSizeExceededMultiple": "{{count}} فایل از حداکثر اندازه مجاز {{maxSize}} فراتر رفته‌اند: {{fileList}}",
138
+ "imageCountExceeded": "تعداد تصاویر از حد مجاز فراتر رفته"
128
139
  }
129
140
  },
130
141
  "OllamaSetupGuide": {
@@ -85,6 +85,17 @@
85
85
  "CreateMessageError": "متأسفیم، پیام نتوانست به درستی ارسال شود، لطفاً محتوا را کپی کرده و دوباره ارسال کنید، پس از تازه‌سازی صفحه، این پیام حفظ نخواهد شد",
86
86
  "ExceededContextWindow": "محتوای درخواست فعلی از طول قابل پردازش مدل فراتر رفته است، لطفاً حجم محتوا را کاهش داده و دوباره تلاش کنید",
87
87
  "FreePlanLimit": "شما در حال حاضر کاربر رایگان هستید و نمی‌توانید از این قابلیت استفاده کنید، لطفاً به یک طرح پولی ارتقا دهید تا ادامه دهید",
88
+ "GoogleAIBlockReason": {
89
+ "BLOCKLIST": "محتوای شما حاوی واژگان ممنوعه است. لطفاً ورودی خود را بررسی و اصلاح کرده و دوباره تلاش کنید.",
90
+ "IMAGE_SAFETY": "تولید تصویر به دلایل امنیتی مسدود شد. لطفاً درخواست تولید تصویر را ویرایش کرده و دوباره تلاش کنید.",
91
+ "LANGUAGE": "زبان مورد استفادهٔ شما در حال حاضر پشتیبانی نمی‌شود. لطفاً به انگلیسی یا یکی از زبان‌های پشتیبانی‌شده سؤال خود را مطرح کنید.",
92
+ "OTHER": "به‌خاطر یک مشکل نامشخص، محتوا مسدود شد. لطفاً درخواست خود را مجدداً بیان کنید.",
93
+ "PROHIBITED_CONTENT": "درخواست شما ممکن است شامل محتوای ممنوعه باشد. لطفاً درخواست خود را اصلاح کنید تا با ضوابط استفاده سازگار باشد.",
94
+ "RECITATION": "محتوای شما به‌خاطر احتمال نقض حق نشر مسدود شد. لطفاً از محتوای اصلی استفاده کنید یا درخواست خود را بازنویسی کنید.",
95
+ "SAFETY": "محتوای شما به‌خاطر سیاست‌های ایمنی مسدود شد. لطفاً درخواست خود را طوری تنظیم کنید که شامل محتوای مضر یا نامناسب نباشد.",
96
+ "SPII": "محتوای شما ممکن است شامل اطلاعات حساس هویتی شخصی باشد. برای حفاظت از حریم خصوصی، لطفاً اطلاعات حساس مرتبط را حذف کرده و دوباره تلاش کنید.",
97
+ "default": "محتوا مسدود شد: {{blockReason}}. لطفاً درخواست خود را اصلاح کرده و دوباره تلاش کنید."
98
+ },
88
99
  "InsufficientQuota": "متأسفیم، سهمیه این کلید به حداکثر رسیده است، لطفاً موجودی حساب خود را بررسی کرده یا سهمیه کلید را افزایش دهید و دوباره تلاش کنید",
89
100
  "InvalidAccessCode": "رمز عبور نادرست یا خالی است، لطفاً رمز عبور صحیح را وارد کنید یا API Key سفارشی اضافه کنید",
90
101
  "InvalidBedrockCredentials": "اعتبارسنجی Bedrock ناموفق بود، لطفاً AccessKeyId/SecretAccessKey را بررسی کرده و دوباره تلاش کنید",