@lobehub/chat 1.115.0 → 1.116.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (115) hide show
  1. package/.cursor/rules/add-provider-doc.mdc +183 -0
  2. package/.env.example +8 -0
  3. package/.github/workflows/claude.yml +1 -1
  4. package/.github/workflows/release.yml +3 -3
  5. package/.github/workflows/test.yml +3 -7
  6. package/CHANGELOG.md +42 -0
  7. package/CLAUDE.md +6 -6
  8. package/Dockerfile +5 -1
  9. package/Dockerfile.database +5 -1
  10. package/Dockerfile.pglite +5 -1
  11. package/changelog/v1.json +14 -0
  12. package/docs/development/basic/setup-development.mdx +10 -13
  13. package/docs/development/basic/setup-development.zh-CN.mdx +9 -12
  14. package/docs/development/database-schema.dbml +44 -0
  15. package/docs/self-hosting/environment-variables/model-provider.mdx +27 -2
  16. package/docs/self-hosting/environment-variables/model-provider.zh-CN.mdx +27 -2
  17. package/docs/usage/providers/bfl.mdx +68 -0
  18. package/docs/usage/providers/bfl.zh-CN.mdx +67 -0
  19. package/locales/ar/components.json +11 -0
  20. package/locales/ar/error.json +11 -0
  21. package/locales/ar/models.json +64 -4
  22. package/locales/ar/providers.json +3 -0
  23. package/locales/bg-BG/components.json +11 -0
  24. package/locales/bg-BG/error.json +11 -0
  25. package/locales/bg-BG/models.json +64 -4
  26. package/locales/bg-BG/providers.json +3 -0
  27. package/locales/de-DE/components.json +11 -0
  28. package/locales/de-DE/error.json +11 -12
  29. package/locales/de-DE/models.json +64 -4
  30. package/locales/de-DE/providers.json +3 -0
  31. package/locales/en-US/components.json +6 -0
  32. package/locales/en-US/error.json +11 -12
  33. package/locales/en-US/models.json +64 -4
  34. package/locales/en-US/providers.json +3 -0
  35. package/locales/es-ES/components.json +11 -0
  36. package/locales/es-ES/error.json +11 -0
  37. package/locales/es-ES/models.json +64 -6
  38. package/locales/es-ES/providers.json +3 -0
  39. package/locales/fa-IR/components.json +11 -0
  40. package/locales/fa-IR/error.json +11 -0
  41. package/locales/fa-IR/models.json +64 -4
  42. package/locales/fa-IR/providers.json +3 -0
  43. package/locales/fr-FR/components.json +11 -0
  44. package/locales/fr-FR/error.json +11 -12
  45. package/locales/fr-FR/models.json +64 -4
  46. package/locales/fr-FR/providers.json +3 -0
  47. package/locales/it-IT/components.json +11 -0
  48. package/locales/it-IT/error.json +11 -0
  49. package/locales/it-IT/models.json +64 -4
  50. package/locales/it-IT/providers.json +3 -0
  51. package/locales/ja-JP/components.json +11 -0
  52. package/locales/ja-JP/error.json +11 -12
  53. package/locales/ja-JP/models.json +64 -4
  54. package/locales/ja-JP/providers.json +3 -0
  55. package/locales/ko-KR/components.json +11 -0
  56. package/locales/ko-KR/error.json +11 -12
  57. package/locales/ko-KR/models.json +64 -6
  58. package/locales/ko-KR/providers.json +3 -0
  59. package/locales/nl-NL/components.json +11 -0
  60. package/locales/nl-NL/error.json +11 -0
  61. package/locales/nl-NL/models.json +62 -4
  62. package/locales/nl-NL/providers.json +3 -0
  63. package/locales/pl-PL/components.json +11 -0
  64. package/locales/pl-PL/error.json +11 -0
  65. package/locales/pl-PL/models.json +64 -4
  66. package/locales/pl-PL/providers.json +3 -0
  67. package/locales/pt-BR/components.json +11 -0
  68. package/locales/pt-BR/error.json +11 -0
  69. package/locales/pt-BR/models.json +64 -4
  70. package/locales/pt-BR/providers.json +3 -0
  71. package/locales/ru-RU/components.json +11 -0
  72. package/locales/ru-RU/error.json +11 -0
  73. package/locales/ru-RU/models.json +64 -4
  74. package/locales/ru-RU/providers.json +3 -0
  75. package/locales/tr-TR/components.json +11 -0
  76. package/locales/tr-TR/error.json +11 -0
  77. package/locales/tr-TR/models.json +64 -4
  78. package/locales/tr-TR/providers.json +3 -0
  79. package/locales/vi-VN/components.json +11 -0
  80. package/locales/vi-VN/error.json +11 -0
  81. package/locales/vi-VN/models.json +64 -4
  82. package/locales/vi-VN/providers.json +3 -0
  83. package/locales/zh-CN/components.json +6 -0
  84. package/locales/zh-CN/error.json +11 -0
  85. package/locales/zh-CN/models.json +64 -4
  86. package/locales/zh-CN/providers.json +3 -0
  87. package/locales/zh-TW/components.json +11 -0
  88. package/locales/zh-TW/error.json +11 -12
  89. package/locales/zh-TW/models.json +64 -6
  90. package/locales/zh-TW/providers.json +3 -0
  91. package/package.json +1 -1
  92. package/packages/database/migrations/0030_add_group_chat.sql +36 -0
  93. package/packages/database/migrations/meta/0030_snapshot.json +6417 -0
  94. package/packages/database/migrations/meta/_journal.json +7 -0
  95. package/packages/database/src/core/migrations.json +19 -0
  96. package/packages/database/src/models/__tests__/topic.test.ts +3 -1
  97. package/packages/database/src/repositories/tableViewer/index.test.ts +1 -1
  98. package/packages/database/src/schemas/chatGroup.ts +98 -0
  99. package/packages/database/src/schemas/index.ts +1 -0
  100. package/packages/database/src/schemas/message.ts +4 -1
  101. package/packages/database/src/schemas/relations.ts +26 -0
  102. package/packages/database/src/schemas/topic.ts +2 -0
  103. package/packages/database/src/types/chatGroup.ts +9 -0
  104. package/packages/database/src/utils/idGenerator.ts +1 -0
  105. package/packages/model-runtime/src/google/index.ts +3 -0
  106. package/packages/model-runtime/src/qwen/createImage.test.ts +0 -19
  107. package/packages/model-runtime/src/qwen/createImage.ts +1 -27
  108. package/packages/model-runtime/src/utils/modelParse.ts +17 -8
  109. package/packages/model-runtime/src/utils/streams/google-ai.ts +26 -14
  110. package/packages/types/src/aiModel.ts +2 -1
  111. package/src/config/aiModels/google.ts +22 -1
  112. package/src/config/aiModels/qwen.ts +2 -2
  113. package/src/config/aiModels/vertexai.ts +22 -0
  114. package/src/features/FileViewer/Renderer/PDF/index.tsx +2 -2
  115. package/.cursor/rules/debug.mdc +0 -193
@@ -332,12 +332,21 @@
332
332
  "Qwen/Qwen3-30B-A3B-Instruct-2507": {
333
333
  "description": "Qwen3-30B-A3B-Instruct-2507 è una versione aggiornata della modalità non pensante di Qwen3-30B-A3B. Si tratta di un modello esperto misto (MoE) con un totale di 30,5 miliardi di parametri e 3,3 miliardi di parametri attivi. Il modello presenta miglioramenti chiave in diversi ambiti, tra cui un significativo potenziamento nella capacità di seguire istruzioni, ragionamento logico, comprensione del testo, matematica, scienze, programmazione e utilizzo di strumenti. Inoltre, ha fatto progressi sostanziali nella copertura della conoscenza multilingue a coda lunga e si allinea meglio alle preferenze degli utenti in compiti soggettivi e aperti, permettendo di generare risposte più utili e testi di qualità superiore. La capacità di comprensione di testi lunghi è stata estesa fino a 256K. Questo modello supporta esclusivamente la modalità non pensante e non genera tag `<think></think>` nell'output."
334
334
  },
335
+ "Qwen/Qwen3-30B-A3B-Thinking-2507": {
336
+ "description": "Qwen3-30B-A3B-Thinking-2507 è l'ultimo modello dedicato al pensiero della serie Qwen3 pubblicato dal team Tongyi Qianwen di Alibaba. In qualità di modello Mixture-of-Experts (MoE) con 30,5 miliardi di parametri totali e 3,3 miliardi di parametri attivi, è progettato per migliorare la capacità di affrontare compiti complessi. Il modello mostra miglioramenti significativi in benchmark accademici che richiedono ragionamento logico, matematica, scienze, programmazione e competenze specialistiche umane. Allo stesso tempo, le capacità generali sono state sensibilmente potenziate in ambiti quali l'aderenza alle istruzioni, l'uso di strumenti, la generazione di testo e l'allineamento alle preferenze umane. Il modello supporta nativamente la comprensione di contesti lunghi fino a 256K e può essere esteso fino a 1.000.000 di token. Questa versione è progettata per la modalità di pensiero, mirata a risolvere compiti altamente complessi tramite un ragionamento passo dopo passo approfondito, e dimostra inoltre ottime capacità come agente."
337
+ },
335
338
  "Qwen/Qwen3-32B": {
336
339
  "description": "Qwen3 è un nuovo modello di Tongyi Qianwen con capacità notevolmente migliorate, raggiungendo livelli leader del settore in ragionamento, generico, agenti e multilingue, e supporta il passaggio della modalità di pensiero."
337
340
  },
338
341
  "Qwen/Qwen3-8B": {
339
342
  "description": "Qwen3 è un nuovo modello di Tongyi Qianwen con capacità notevolmente migliorate, raggiungendo livelli leader del settore in ragionamento, generico, agenti e multilingue, e supporta il passaggio della modalità di pensiero."
340
343
  },
344
+ "Qwen/Qwen3-Coder-30B-A3B-Instruct": {
345
+ "description": "Qwen3-Coder-30B-A3B-Instruct è un modello per codice della serie Qwen3 sviluppato dal team Tongyi Qianwen di Alibaba. Come modello snellito e ottimizzato, mantiene elevate prestazioni ed efficienza concentrandosi sul miglioramento delle capacità di elaborazione del codice. Questo modello mostra vantaggi prestazionali significativi rispetto ai modelli open source in compiti complessi quali programmazione agentica (Agentic Coding), automazione delle operazioni del browser e invocazione di strumenti. Supporta nativamente contesti lunghi fino a 256K token ed è estendibile fino a 1M token, consentendo una comprensione e una gestione migliori a livello di repository di codice. Inoltre, il modello offre un solido supporto per la codifica agentica su piattaforme come Qwen Code e CLINE ed è progettato con un formato dedicato per le chiamate di funzione."
346
+ },
347
+ "Qwen/Qwen3-Coder-480B-A35B-Instruct": {
348
+ "description": "Qwen3-Coder-480B-A35B-Instruct è un modello di codice rilasciato da Alibaba, finora il più dotato di capacità agentiche. Si tratta di un modello Mixture-of-Experts (MoE) con 480 miliardi di parametri totali e 35 miliardi di parametri attivi, che bilancia efficienza e prestazioni. Il modello supporta nativamente una lunghezza di contesto di 256K (circa 260.000) token e può essere esteso fino a 1 milione di token tramite metodi di estrapolazione come YaRN, permettendogli di gestire codebase di grandi dimensioni e compiti di programmazione complessi. Qwen3-Coder è progettato per flussi di lavoro di codifica basati su agenti: non solo genera codice, ma può anche interagire autonomamente con strumenti e ambienti di sviluppo per risolvere problemi di programmazione complessi. In diversi benchmark su compiti di codifica e agent, il modello si colloca ai vertici tra i modelli open source, con prestazioni comparabili a quelle di modelli di riferimento come Claude Sonnet 4."
349
+ },
341
350
  "Qwen2-72B-Instruct": {
342
351
  "description": "Qwen2 è l'ultima serie del modello Qwen, supporta un contesto di 128k, e rispetto ai modelli open source attualmente migliori, Qwen2-72B supera significativamente i modelli leader attuali in comprensione del linguaggio naturale, conoscenza, codice, matematica e capacità multilingue."
343
352
  },
@@ -1103,12 +1112,27 @@
1103
1112
  "flux-dev": {
1104
1113
  "description": "FLUX.1 [dev] è un modello open source raffinato e pesato per uso non commerciale. Mantiene qualità d'immagine e aderenza alle istruzioni simili alla versione professionale FLUX, ma con maggiore efficienza operativa. Rispetto a modelli standard di dimensioni simili, utilizza le risorse in modo più efficiente."
1105
1114
  },
1115
+ "flux-kontext-max": {
1116
+ "description": "All'avanguardia nella generazione e modifica di immagini contestuali — combina testo e immagini per risultati precisi e coerenti."
1117
+ },
1118
+ "flux-kontext-pro": {
1119
+ "description": "Generazione e modifica di immagini contestuali all'avanguardia — combina testo e immagini per ottenere risultati precisi e coerenti."
1120
+ },
1106
1121
  "flux-kontext/dev": {
1107
1122
  "description": "Modello FLUX.1 focalizzato su compiti di modifica delle immagini, supporta input di testo e immagini."
1108
1123
  },
1109
1124
  "flux-merged": {
1110
1125
  "description": "Il modello FLUX.1-merged combina le caratteristiche approfondite esplorate nella fase di sviluppo \"DEV\" con i vantaggi di esecuzione rapida rappresentati da \"Schnell\". Questa combinazione non solo estende i limiti di prestazione del modello, ma ne amplia anche l'ambito di applicazione."
1111
1126
  },
1127
+ "flux-pro": {
1128
+ "description": "Modello AI commerciale di generazione di immagini di prim'ordine — qualità delle immagini e varietà degli output senza eguali."
1129
+ },
1130
+ "flux-pro-1.1": {
1131
+ "description": "Versione avanzata del modello AI professionale per la generazione di immagini — offre qualità delle immagini superiore e una capacità precisa di attenersi ai prompt."
1132
+ },
1133
+ "flux-pro-1.1-ultra": {
1134
+ "description": "Generazione di immagini AI ad altissima risoluzione — supporta output fino a 4 megapixel, genera immagini in altissima definizione in meno di 10 secondi."
1135
+ },
1112
1136
  "flux-pro/kontext": {
1113
1137
  "description": "FLUX.1 Kontext [pro] è in grado di elaborare testo e immagini di riferimento come input, realizzando senza soluzione di continuità modifiche locali mirate e complesse trasformazioni dell'intera scena."
1114
1138
  },
@@ -1193,6 +1217,9 @@
1193
1217
  "gemini-2.5-flash": {
1194
1218
  "description": "Gemini 2.5 Flash è il modello Google con il miglior rapporto qualità-prezzo, offrendo funzionalità complete."
1195
1219
  },
1220
+ "gemini-2.5-flash-image-preview": {
1221
+ "description": "Gemini 2.5 Flash Image Preview è il modello multimodale nativo più recente, veloce ed efficiente di Google, che consente di generare e modificare immagini tramite conversazioni."
1222
+ },
1196
1223
  "gemini-2.5-flash-lite": {
1197
1224
  "description": "Gemini 2.5 Flash-Lite è il modello più piccolo e conveniente di Google, progettato per un utilizzo su larga scala."
1198
1225
  },
@@ -1295,6 +1322,9 @@
1295
1322
  "glm-4.5-x": {
1296
1323
  "description": "Versione ultra-veloce di GLM-4.5, con prestazioni potenti e velocità di generazione fino a 100 token al secondo."
1297
1324
  },
1325
+ "glm-4.5v": {
1326
+ "description": "Una nuova generazione di modello di ragionamento visivo basato sull'architettura MOE, con 106 miliardi di parametri totali e 12 miliardi di parametri di attivazione, che raggiunge lo SOTA tra i modelli multimodali open source della stessa fascia a livello globale in vari benchmark, coprendo attività comuni come la comprensione di immagini, video, documenti e compiti GUI."
1327
+ },
1298
1328
  "glm-4v": {
1299
1329
  "description": "GLM-4V offre potenti capacità di comprensione e ragionamento visivo, supportando vari compiti visivi."
1300
1330
  },
@@ -1434,7 +1464,7 @@
1434
1464
  "description": "GPT-4.1 mini offre un equilibrio tra intelligenza, velocità e costo, rendendolo un modello attraente per molti casi d'uso."
1435
1465
  },
1436
1466
  "gpt-4.5-preview": {
1437
- "description": "Anteprima di ricerca di GPT-4.5, il nostro modello GPT più grande e potente fino ad oggi. Possiede una vasta conoscenza del mondo e comprende meglio le intenzioni degli utenti, eccellendo in compiti creativi e nella pianificazione autonoma. GPT-4.5 accetta input testuali e visivi e genera output testuali (inclusi output strutturati). Supporta funzionalità chiave per gli sviluppatori, come chiamate di funzione, API in batch e output in streaming. GPT-4.5 si distingue particolarmente in compiti che richiedono pensiero creativo, aperto e dialogo (come scrittura, apprendimento o esplorazione di nuove idee). La data di scadenza delle conoscenze è ottobre 2023."
1467
+ "description": "GPT-4.5-preview è il modello più recente a uso generale, dotato di una solida conoscenza del mondo e di una migliore comprensione delle intenzioni degli utenti; è particolarmente abile nelle attività creative e nella pianificazione autonoma. Le conoscenze del modello sono aggiornate a ottobre 2023."
1438
1468
  },
1439
1469
  "gpt-4o": {
1440
1470
  "description": "ChatGPT-4o è un modello dinamico, aggiornato in tempo reale per mantenere la versione più recente. Combina una potente comprensione e generazione del linguaggio, adatta a scenari di applicazione su larga scala, inclusi servizi clienti, educazione e supporto tecnico."
@@ -1637,9 +1667,18 @@
1637
1667
  "image-01-live": {
1638
1668
  "description": "Modello di generazione immagini con resa dettagliata, supporta generazione da testo a immagine e impostazioni di stile."
1639
1669
  },
1670
+ "imagen-4.0-fast-generate-001": {
1671
+ "description": "Imagen, serie di modelli testo-immagine di quarta generazione — versione Fast"
1672
+ },
1673
+ "imagen-4.0-generate-001": {
1674
+ "description": "Serie di modelli Imagen di quarta generazione per la generazione di immagini da testo"
1675
+ },
1640
1676
  "imagen-4.0-generate-preview-06-06": {
1641
1677
  "description": "Serie di modelli di generazione di immagini da testo di quarta generazione Imagen"
1642
1678
  },
1679
+ "imagen-4.0-ultra-generate-001": {
1680
+ "description": "Imagen, serie di modelli testo-in-immagine di quarta generazione, versione Ultra"
1681
+ },
1643
1682
  "imagen-4.0-ultra-generate-preview-06-06": {
1644
1683
  "description": "Serie di modelli di generazione di immagini da testo di quarta generazione Imagen versione Ultra"
1645
1684
  },
@@ -1679,6 +1718,9 @@
1679
1718
  "kimi-k2-0711-preview": {
1680
1719
  "description": "kimi-k2 è un modello base con architettura MoE dotato di potenti capacità di codice e Agent, con un totale di 1T parametri e 32B parametri attivi. Nei test di benchmark per ragionamento generale, programmazione, matematica e Agent, il modello K2 supera altri modelli open source principali."
1681
1720
  },
1721
+ "kimi-k2-turbo-preview": {
1722
+ "description": "kimi-k2 è un modello di base con architettura MoE che offre potenti capacità di programmazione e di agent, con 1T di parametri totali e 32B di parametri attivi. Nei benchmark delle principali categorie — ragionamento su conoscenze generali, programmazione, matematica e agent — il modello K2 supera gli altri modelli open source più diffusi."
1723
+ },
1682
1724
  "kimi-latest": {
1683
1725
  "description": "Il prodotto Kimi Smart Assistant utilizza il più recente modello Kimi, che potrebbe includere funzionalità non ancora stabili. Supporta la comprensione delle immagini e selezionerà automaticamente il modello di fatturazione 8k/32k/128k in base alla lunghezza del contesto della richiesta."
1684
1726
  },
@@ -1763,6 +1805,9 @@
1763
1805
  "llava:34b": {
1764
1806
  "description": "LLaVA è un modello multimodale che combina un codificatore visivo e Vicuna, per una potente comprensione visiva e linguistica."
1765
1807
  },
1808
+ "magistral-medium-latest": {
1809
+ "description": "Magistral Medium 1.1 è un modello di inferenza all'avanguardia rilasciato da Mistral AI a luglio 2025."
1810
+ },
1766
1811
  "mathstral": {
1767
1812
  "description": "MathΣtral è progettato per la ricerca scientifica e il ragionamento matematico, offre capacità di calcolo efficaci e interpretazione dei risultati."
1768
1813
  },
@@ -2094,7 +2139,7 @@
2094
2139
  "description": "o1-mini è un modello di inferenza rapido ed economico progettato per applicazioni di programmazione, matematica e scienza. Questo modello ha un contesto di 128K e una data di cutoff della conoscenza di ottobre 2023."
2095
2140
  },
2096
2141
  "o1-preview": {
2097
- "description": "o1 è il nuovo modello di inferenza di OpenAI, adatto a compiti complessi che richiedono una vasta conoscenza generale. Questo modello ha un contesto di 128K e una data di cutoff della conoscenza di ottobre 2023."
2142
+ "description": "Si concentra sul ragionamento avanzato e sulla risoluzione di problemi complessi, inclusi compiti matematici e scientifici. È particolarmente adatto per applicazioni che richiedono una comprensione profonda del contesto e flussi di lavoro autonomi."
2098
2143
  },
2099
2144
  "o1-pro": {
2100
2145
  "description": "La serie di modelli o1 è stata addestrata con apprendimento rinforzato, in grado di riflettere prima di rispondere ed eseguire compiti di ragionamento complessi. Il modello o1-pro utilizza più risorse computazionali per un pensiero più approfondito, offrendo risposte di qualità superiore in modo continuo."
@@ -2213,8 +2258,14 @@
2213
2258
  "qwen-coder-turbo-latest": {
2214
2259
  "description": "Modello di codice Tongyi Qwen."
2215
2260
  },
2261
+ "qwen-flash": {
2262
+ "description": "I modelli della serie 通义千问 sono i più veloci e a costi estremamente ridotti, adatti a compiti semplici."
2263
+ },
2216
2264
  "qwen-image": {
2217
- "description": "Potente modello di immagini grezze del team Qwen, con impressionante capacità di generazione di testo in cinese e stili visivi di immagini diversificati."
2265
+ "description": "Qwen-Image è un modello universale per la generazione di immagini che supporta molteplici stili artistici ed è particolarmente efficace nel rendering di testi complessi, in particolare nella resa di testi in cinese e in inglese. Il modello supporta layout a più righe, generazione di testo a livello di paragrafo e rappresentazione di dettagli ad alta precisione, permettendo la realizzazione di layout misti e design complessi che integrano testo e immagini."
2266
+ },
2267
+ "qwen-image-edit": {
2268
+ "description": "Il team Qwen ha pubblicato un modello professionale per l'editing delle immagini, che supporta sia l'editing semantico sia quello dell'aspetto visivo; è in grado di modificare con precisione il testo in cinese e in inglese e di eseguire operazioni di alta qualità come la trasformazione di stile e la rotazione di oggetti."
2218
2269
  },
2219
2270
  "qwen-long": {
2220
2271
  "description": "Qwen è un modello di linguaggio su larga scala che supporta contesti di testo lunghi e funzionalità di dialogo basate su documenti lunghi e multipli."
@@ -2241,7 +2292,7 @@
2241
2292
  "description": "Qwen Plus è una versione potenziata del modello linguistico di grandi dimensioni, che supporta input in diverse lingue, tra cui cinese e inglese."
2242
2293
  },
2243
2294
  "qwen-turbo": {
2244
- "description": "Qwen è un modello linguistico di grandi dimensioni che supporta input in diverse lingue, tra cui cinese e inglese."
2295
+ "description": "La versione 通义千问 Turbo non sarà più aggiornata; si consiglia di passare a 通义千问 Flash. 通义千问 è un modello linguistico di grandissime dimensioni che supporta l'immissione di testi in cinese, inglese e altre lingue."
2245
2296
  },
2246
2297
  "qwen-vl-chat-v1": {
2247
2298
  "description": "Qwen VL supporta modalità di interazione flessibili, inclusi modelli di domande e risposte multipli e creativi."
@@ -2558,9 +2609,15 @@
2558
2609
  "step-2x-large": {
2559
2610
  "description": "Nuova generazione del modello Xingchen Step, focalizzato sulla generazione di immagini di alta qualità basate su descrizioni testuali fornite dall'utente. Il nuovo modello produce immagini con texture più realistiche e capacità migliorate nella generazione di testo in cinese e inglese."
2560
2611
  },
2612
+ "step-3": {
2613
+ "description": "Questo modello possiede potenti capacità di percezione visiva e di ragionamento complesso. È in grado di eseguire con accuratezza la comprensione di conoscenze complesse trasversali a più domini, l'analisi incrociata di informazioni matematiche e visive, e di affrontare varie tipologie di problemi di analisi visiva nella vita quotidiana."
2614
+ },
2561
2615
  "step-r1-v-mini": {
2562
2616
  "description": "Questo modello è un grande modello di inferenza con potenti capacità di comprensione delle immagini, in grado di gestire informazioni visive e testuali, producendo contenuti testuali dopo un profondo ragionamento. Questo modello si distingue nel campo del ragionamento visivo, mostrando anche capacità di ragionamento matematico, codice e testo di primo livello. La lunghezza del contesto è di 100k."
2563
2617
  },
2618
+ "stepfun-ai/step3": {
2619
+ "description": "Step3 è un modello di inferenza multimodale all'avanguardia rilasciato da StepFun (阶跃星辰). È costruito su un'architettura Mixture of Experts (MoE) con 321 miliardi di parametri totali e 38 miliardi di parametri di attivazione. Il modello adotta un design end-to-end, pensato per minimizzare i costi di decodifica e al contempo offrire prestazioni di primo livello nel ragionamento visivo-linguistico. Grazie al design sinergico che combina Multi-Matrix Factorized Attention (MFA) e il disaccoppiamento attenzione-FFN (AFD), Step3 mantiene un'elevata efficienza sia sui più potenti acceleratori flagship sia su quelli di fascia bassa. Durante la fase di pre-addestramento, Step3 ha elaborato oltre 20T di token testuali e 4T di token misti immagine-testo, coprendo più di dieci lingue. Il modello ha raggiunto livelli leader tra i modelli open source in numerosi benchmark, inclusi matematica, codice e scenari multimodali."
2620
+ },
2564
2621
  "taichu_llm": {
2565
2622
  "description": "Il modello linguistico Taichu di Zīdōng ha una straordinaria capacità di comprensione del linguaggio e abilità in creazione di testi, domande di conoscenza, programmazione, calcoli matematici, ragionamento logico, analisi del sentimento e sintesi di testi. Combina in modo innovativo il pre-addestramento su grandi dati con una ricca conoscenza multi-sorgente, affinando continuamente la tecnologia degli algoritmi e assorbendo costantemente nuove conoscenze da dati testuali massivi, migliorando continuamente le prestazioni del modello. Fornisce agli utenti informazioni e servizi più convenienti e un'esperienza più intelligente."
2566
2623
  },
@@ -2707,5 +2764,8 @@
2707
2764
  },
2708
2765
  "zai-org/GLM-4.5-Air": {
2709
2766
  "description": "GLM-4.5-Air è un modello base progettato per applicazioni agenti intelligenti, che utilizza un'architettura Mixture-of-Experts (MoE). Ottimizzato profondamente per chiamate a strumenti, navigazione web, ingegneria del software e programmazione frontend, supporta integrazioni fluide con agenti di codice come Claude Code e Roo Code. Adotta una modalità di inferenza ibrida per adattarsi a scenari di ragionamento complessi e uso quotidiano."
2767
+ },
2768
+ "zai-org/GLM-4.5V": {
2769
+ "description": "GLM-4.5V è l’ultima generazione di modelli visivo‑linguistici (VLM) rilasciata da Zhipu AI (智谱 AI). Il modello è costruito sul modello testuale di punta GLM-4.5‑Air, che dispone di 106 miliardi di parametri totali e 12 miliardi di parametri di attivazione, e adotta un’architettura mixture-of-experts (MoE) con l’obiettivo di offrire prestazioni eccellenti a un costo di inferenza ridotto. Dal punto di vista tecnico, GLM-4.5V prosegue la linea di GLM-4.1V‑Thinking e introduce innovazioni come il codificatore di posizione rotazionale tridimensionale (3D‑RoPE), migliorando in modo significativo la percezione e il ragionamento sulle relazioni spaziali 3D. Grazie all’ottimizzazione nelle fasi di pre‑addestramento, fine‑tuning supervisionato e apprendimento per rinforzo, il modello è in grado di gestire diversi tipi di contenuti visivi — immagini, video e documenti lunghi — e ha raggiunto livelli di eccellenza tra i modelli open source della stessa categoria in 41 benchmark multimodali pubblici. Inoltre, il modello introduce un interruttore per la “modalità pensiero” che consente all’utente di scegliere con flessibilità tra risposte rapide e ragionamenti approfonditi, bilanciando efficienza ed efficacia."
2710
2770
  }
2711
2771
  }
@@ -26,6 +26,9 @@
26
26
  "bedrock": {
27
27
  "description": "Bedrock è un servizio offerto da Amazon AWS, focalizzato sulla fornitura di modelli linguistici e visivi AI avanzati per le aziende. La sua famiglia di modelli include la serie Claude di Anthropic, la serie Llama 3.1 di Meta e altro, coprendo una varietà di opzioni da leggere a ad alte prestazioni, supportando generazione di testo, dialogo, elaborazione di immagini e altro, adatta a diverse applicazioni aziendali di varie dimensioni e necessità."
28
28
  },
29
+ "bfl": {
30
+ "description": "Laboratorio di ricerca all'avanguardia nell'intelligenza artificiale, che costruisce l'infrastruttura visiva del domani."
31
+ },
29
32
  "cloudflare": {
30
33
  "description": "Esegui modelli di machine learning alimentati da GPU serverless sulla rete globale di Cloudflare."
31
34
  },
@@ -1,4 +1,9 @@
1
1
  {
2
+ "ArgsInput": {
3
+ "addArgument": "引数を追加",
4
+ "argumentPlaceholder": "引数 {{index}}",
5
+ "enterFirstArgument": "最初の引数を入力してください..."
6
+ },
2
7
  "DragUpload": {
3
8
  "dragDesc": "ここにファイルをドラッグ&ドロップしてください。複数の画像のアップロードがサポートされています。",
4
9
  "dragFileDesc": "ここに画像やファイルをドラッグ&ドロップしてください。複数の画像やファイルのアップロードがサポートされています。",
@@ -125,6 +130,12 @@
125
130
  },
126
131
  "progress": {
127
132
  "uploadingWithCount": "{{completed}}/{{total}} アップロード済み"
133
+ },
134
+ "validation": {
135
+ "fileSizeExceeded": "ファイルサイズが上限を超えています",
136
+ "fileSizeExceededDetail": "{{fileName}}({{actualSize}})は最大サイズ {{maxSize}} を超えています",
137
+ "fileSizeExceededMultiple": "{{count}} 個のファイルが最大サイズ {{maxSize}} を超えています:{{fileList}}",
138
+ "imageCountExceeded": "画像の数が上限を超えています"
128
139
  }
129
140
  },
130
141
  "OllamaSetupGuide": {
@@ -85,6 +85,17 @@
85
85
  "CreateMessageError": "申し訳ありませんが、メッセージを正常に送信できませんでした。内容をコピーして再送信してください。このページを更新すると、このメッセージは保持されません。",
86
86
  "ExceededContextWindow": "現在のリクエスト内容がモデルが処理できる長さを超えています。内容量を減らして再試行してください。",
87
87
  "FreePlanLimit": "現在は無料ユーザーですので、この機能を使用することはできません。有料プランにアップグレードして継続してください。",
88
+ "GoogleAIBlockReason": {
89
+ "BLOCKLIST": "入力内容に禁止されている語句が含まれています。内容を確認して修正してから、もう一度お試しください。",
90
+ "IMAGE_SAFETY": "生成された画像の内容は安全上の理由によりブロックされました。画像生成のリクエストを修正してお試しください。",
91
+ "LANGUAGE": "ご使用の言語は現在サポートされていません。英語やサポートされている他の言語で再度お試しください。",
92
+ "OTHER": "不明な理由により内容がブロックされました。リクエストを言い換えてお試しください。",
93
+ "PROHIBITED_CONTENT": "リクエストに禁止されている可能性のある内容が含まれています。リクエストを調整し、利用規約に従っていることを確認してください。",
94
+ "RECITATION": "著作権に関わる可能性があるため、内容がブロックされました。オリジナルの内容を使用するか、リクエストを言い換えてください。",
95
+ "SAFETY": "安全ポリシーにより内容がブロックされました。潜在的に有害または不適切な内容を含まないようにリクエストを調整してお試しください。",
96
+ "SPII": "機微な個人情報が含まれている可能性があります。プライバシー保護のため、該当する機密情報を削除してから再度お試しください。",
97
+ "default": "コンテンツがブロックされました:{{blockReason}}。リクエスト内容を調整してからもう一度お試しください。"
98
+ },
88
99
  "InsufficientQuota": "申し訳ありませんが、そのキーのクォータが上限に達しました。アカウントの残高を確認するか、キーのクォータを増やしてから再試行してください。",
89
100
  "InvalidAccessCode": "パスワードが正しくないか空です。正しいアクセスパスワードを入力するか、カスタムAPIキーを追加してください",
90
101
  "InvalidBedrockCredentials": "Bedrockの認証に失敗しました。AccessKeyId/SecretAccessKeyを確認してから再試行してください。",
@@ -113,18 +124,6 @@
113
124
  "PluginServerError": "プラグインサーバーのリクエストエラーが発生しました。以下のエラーメッセージを参考に、プラグインのマニフェストファイル、設定、サーバー実装を確認してください",
114
125
  "PluginSettingsInvalid": "このプラグインを使用するには、正しい設定が必要です。設定が正しいかどうか確認してください",
115
126
  "ProviderBizError": "リクエスト {{provider}} サービスでエラーが発生しました。以下の情報を確認して再試行してください。",
116
-
117
- "GoogleAIBlockReason": {
118
- "BLOCKLIST": "コンテンツに禁止された用語が含まれています。入力内容を確認・修正してから再試行してください。",
119
- "IMAGE_SAFETY": "生成された画像コンテンツが安全上の理由でブロックされました。画像生成リクエストを修正して再試行してください。",
120
- "LANGUAGE": "使用された言語はサポートされていません。英語またはその他のサポートされている言語で再質問してください。",
121
- "OTHER": "不明な理由でコンテンツがブロックされました。リクエストを言い換えるか、テクニカルサポートにお問い合わせください。",
122
- "PROHIBITED_CONTENT": "コンテンツに禁止されたコンテンツタイプが含まれている可能性があります。使用ガイドラインに準拠するようリクエストを調整してください。",
123
- "RECITATION": "著作権問題の可能性によりコンテンツがブロックされました。オリジナルコンテンツの使用またはリクエストの言い換えを試してください。",
124
- "SAFETY": "安全ポリシーによりコンテンツがブロックされました。有害または不適切な内容を避けるようリクエストを調整してください。",
125
- "SPII": "コンテンツに機密個人識別情報が含まれている可能性があります。プライバシー保護のため、関連する機密情報を削除してから再試行してください。",
126
- "default": "コンテンツがブロックされました:{{blockReason}}。リクエスト内容を調整してから再試行してください。"
127
- },
128
127
  "QuotaLimitReached": "申し訳ありませんが、現在のトークン使用量またはリクエスト回数がこのキーのクォータ上限に達しました。キーのクォータを増やすか、後でもう一度お試しください。",
129
128
  "StreamChunkError": "ストリーミングリクエストのメッセージブロック解析エラーです。現在のAPIインターフェースが標準仕様に準拠しているか確認するか、APIプロバイダーにお問い合わせください。",
130
129
  "SubscriptionKeyMismatch": "申し訳ありませんが、システムの一時的な障害により、現在のサブスクリプションの使用量が一時的に無効になっています。下のボタンをクリックしてサブスクリプションを復元するか、サポートを受けるためにメールでお問い合わせください。",
@@ -332,12 +332,21 @@
332
332
  "Qwen/Qwen3-30B-A3B-Instruct-2507": {
333
333
  "description": "Qwen3-30B-A3B-Instruct-2507は、Qwen3-30B-A3Bの非思考モードのアップデート版です。これは総パラメータ数305億、活性化パラメータ数33億の混合エキスパート(MoE)モデルです。本モデルは指示遵守、論理推論、テキスト理解、数学、科学、コーディング、ツール使用などの汎用能力を大幅に強化しました。また、多言語のロングテール知識カバレッジに実質的な進展を遂げ、主観的かつオープンなタスクにおけるユーザーの好みにより良く適合し、より有用な応答と高品質なテキストを生成できます。さらに、本モデルの長文理解能力は256Kにまで強化されています。本モデルは非思考モードのみをサポートし、出力に`<think></think>`タグは生成されません。"
334
334
  },
335
+ "Qwen/Qwen3-30B-A3B-Thinking-2507": {
336
+ "description": "Qwen3-30B-A3B-Thinking-2507 はアリババ(Alibaba)の通義千問チームが公開した Qwen3 シリーズの最新の思考モデルです。総パラメータ数305億、アクティベーションパラメータ33億を有する混合エキスパート(MoE)モデルとして、複雑なタスクの処理能力の向上に特化しています。本モデルは論理推論、数学、科学、プログラミング、そして人間の専門知識を要する学術ベンチマークにおいて顕著な性能向上を示しています。同時に、指示の遵守、ツールの利用、テキスト生成、人間の嗜好との整合といった汎用能力も大幅に強化されています。モデルはネイティブで256Kの長文コンテキスト理解をサポートし、最大100万トークンまで拡張可能です。このバージョンは「思考モード」向けに設計されており、詳細なステップごとの推論を通じて高度に複雑なタスクを解決することを目的としており、エージェント機能も優れています。"
337
+ },
335
338
  "Qwen/Qwen3-32B": {
336
339
  "description": "Qwen3は、能力が大幅に向上した新世代の通義千問大モデルであり、推論、一般、エージェント、多言語などの複数のコア能力で業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
337
340
  },
338
341
  "Qwen/Qwen3-8B": {
339
342
  "description": "Qwen3は、能力が大幅に向上した新世代の通義千問大モデルであり、推論、一般、エージェント、多言語などの複数のコア能力で業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
340
343
  },
344
+ "Qwen/Qwen3-Coder-30B-A3B-Instruct": {
345
+ "description": "Qwen3-Coder-30B-A3B-Instruct はアリババの通義千問チームが開発した Qwen3 シリーズのコードモデルです。精練・最適化されたモデルとして、高い性能と効率を維持しつつ、コード処理能力の向上に注力しています。本モデルはエージェント型コーディング(Agentic Coding)、自動化ブラウザ操作、ツール呼び出しなどの複雑なタスクにおいて、オープンソースモデルの中で顕著な性能優位を示します。ネイティブで256Kトークンの長文コンテキストをサポートし、最大1Mトークンまで拡張可能であるため、コードベースレベルの理解と処理をより適切に行えます。さらに、本モデルは Qwen Code や CLINE などのプラットフォームに対して強力なエージェントコーディング支援を提供し、専用の関数呼び出しフォーマットを設計しています。"
346
+ },
347
+ "Qwen/Qwen3-Coder-480B-A35B-Instruct": {
348
+ "description": "Qwen3-Coder-480B-A35B-Instruct はアリババが公開した、これまでで最もエージェント(Agentic)能力に優れたコードモデルです。合計4,800億の総パラメータと350億のアクティベーションパラメータを持つ混合エキスパート(MoE)モデルで、効率性と性能のバランスを実現しています。本モデルはネイティブに256K(約26万)トークンのコンテキスト長をサポートし、YaRNなどの外挿手法により最大100万トークンまで拡張可能で、大規模なコードベースや複雑なプログラミングタスクの処理が可能です。Qwen3-Coderはエージェント型のコーディングワークフロー向けに設計されており、コードを生成するだけでなく、開発ツールや環境と自律的に相互作用して複雑なプログラミング課題を解決します。複数のコーディングおよびエージェントタスクのベンチマークにおいて、本モデルはオープンソースモデルの中でトップクラスの性能を示しており、その性能はClaude Sonnet 4などの先進モデルと比肩するものです。"
349
+ },
341
350
  "Qwen2-72B-Instruct": {
342
351
  "description": "Qwen2はQwenモデルの最新シリーズで、128kのコンテキストをサポートしています。現在の最適なオープンソースモデルと比較して、Qwen2-72Bは自然言語理解、知識、コード、数学、そして多言語などの能力において、現在のリーディングモデルを大幅に上回っています。"
343
352
  },
@@ -1103,12 +1112,27 @@
1103
1112
  "flux-dev": {
1104
1113
  "description": "FLUX.1 [dev]は非商用用途向けのオープンソースの重み付き精錬モデルで、FLUXプロフェッショナル版に近い画像品質と指示遵守能力を維持しつつ、より高い実行効率を実現。標準モデルと同サイズながらリソース利用効率が向上しています。"
1105
1114
  },
1115
+ "flux-kontext-max": {
1116
+ "description": "最先端のコンテキスト対応画像生成および編集 — テキストと画像を組み合わせ、精密かつ一貫した結果を実現します。"
1117
+ },
1118
+ "flux-kontext-pro": {
1119
+ "description": "最先端の文脈に基づく画像生成と編集 — テキストと画像を組み合わせ、高精度で一貫した結果を実現します。"
1120
+ },
1106
1121
  "flux-kontext/dev": {
1107
1122
  "description": "画像編集タスクに特化したFLUX.1モデルで、テキストと画像の入力に対応しています。"
1108
1123
  },
1109
1124
  "flux-merged": {
1110
1125
  "description": "FLUX.1-mergedモデルは、開発段階で探索された「DEV」の深層特性と「Schnell」が示す高速実行の利点を組み合わせています。この取り組みにより、FLUX.1-mergedはモデルの性能限界を押し上げ、応用範囲を拡大しました。"
1111
1126
  },
1127
+ "flux-pro": {
1128
+ "description": "トップクラスの商用AI画像生成モデル — 比類なき画像品質と多様な出力を実現。"
1129
+ },
1130
+ "flux-pro-1.1": {
1131
+ "description": "アップグレード版のプロフェッショナル向けAI画像生成モデル — 卓越した画像品質とプロンプトの指示に正確に従う能力を提供します。"
1132
+ },
1133
+ "flux-pro-1.1-ultra": {
1134
+ "description": "超高解像度のAI画像生成 — 最大4兆ピクセルの出力に対応し、10秒以内に超高精細な画像を生成します。"
1135
+ },
1112
1136
  "flux-pro/kontext": {
1113
1137
  "description": "FLUX.1 Kontext [pro] はテキストと参照画像を入力として処理し、目的に応じた局所編集や複雑な全体シーンの変換をシームレスに実現します。"
1114
1138
  },
@@ -1193,6 +1217,9 @@
1193
1217
  "gemini-2.5-flash": {
1194
1218
  "description": "Gemini 2.5 FlashはGoogleのコストパフォーマンスに優れたモデルで、包括的な機能を提供します。"
1195
1219
  },
1220
+ "gemini-2.5-flash-image-preview": {
1221
+ "description": "Gemini 2.5 Flash Image Preview は Google の最新かつ最速で最も効率的なネイティブなマルチモーダルモデルであり、対話を通じて画像を生成・編集することを可能にします。"
1222
+ },
1196
1223
  "gemini-2.5-flash-lite": {
1197
1224
  "description": "Gemini 2.5 Flash-Lite は、Google の中で最も小さく、コストパフォーマンスに優れたモデルであり、大規模な利用を目的に設計されています。"
1198
1225
  },
@@ -1295,6 +1322,9 @@
1295
1322
  "glm-4.5-x": {
1296
1323
  "description": "GLM-4.5の高速版で、強力な性能を持ちながら、生成速度は100トークン/秒に達します。"
1297
1324
  },
1325
+ "glm-4.5v": {
1326
+ "description": "智谱の次世代MOEアーキテクチャに基づく視覚推論モデルで、総パラメータ数106Bおよびアクティベーションパラメータ12Bを有し、各種ベンチマークにおいて同等クラスのオープンソース多モーダルモデルで世界的なSOTA(最先端)を達成しています。画像、動画、ドキュメント理解、GUIタスクなどの一般的なタスクを網羅します。"
1327
+ },
1298
1328
  "glm-4v": {
1299
1329
  "description": "GLM-4Vは強力な画像理解と推論能力を提供し、さまざまな視覚タスクをサポートします。"
1300
1330
  },
@@ -1434,7 +1464,7 @@
1434
1464
  "description": "GPT-4.1 miniは、知性、速度、コストのバランスを提供し、多くのユースケースにおいて魅力的なモデルとなっています。"
1435
1465
  },
1436
1466
  "gpt-4.5-preview": {
1437
- "description": "GPT-4.5の研究プレビュー版で、これまでで最大かつ最強のGPTモデルです。広範な世界知識を持ち、ユーザーの意図をよりよく理解することができるため、創造的なタスクや自律的な計画において優れたパフォーマンスを発揮します。GPT-4.5はテキストと画像の入力を受け付け、テキスト出力(構造化出力を含む)を生成します。関数呼び出し、バッチAPI、ストリーミング出力など、重要な開発者機能をサポートしています。創造的でオープンな思考や対話が求められるタスク(執筆、学習、新しいアイデアの探求など)において、GPT-4.5は特に優れた性能を発揮します。知識のカットオフ日は2023年10月です。"
1467
+ "description": "GPT-4.5-preview は最新の汎用モデルで、豊富な世界知識とユーザーの意図をより的確に理解する能力を備えており、創造的なタスクやエージェントの計画立案に優れています。このモデルの知識は2023年10月時点のものです。"
1438
1468
  },
1439
1469
  "gpt-4o": {
1440
1470
  "description": "ChatGPT-4oは、リアルタイムで更新される動的モデルで、常に最新のバージョンを維持します。強力な言語理解と生成能力を組み合わせており、顧客サービス、教育、技術サポートなどの大規模なアプリケーションシナリオに適しています。"
@@ -1637,9 +1667,18 @@
1637
1667
  "image-01-live": {
1638
1668
  "description": "画像生成モデルで、繊細な画質を持ち、テキストから画像生成と画風設定をサポートします。"
1639
1669
  },
1670
+ "imagen-4.0-fast-generate-001": {
1671
+ "description": "Imagen 第4世代のテキスト→画像生成モデル(Fast版)"
1672
+ },
1673
+ "imagen-4.0-generate-001": {
1674
+ "description": "Imagen 第4世代のテキストから画像への生成モデルシリーズ"
1675
+ },
1640
1676
  "imagen-4.0-generate-preview-06-06": {
1641
1677
  "description": "Imagen 第4世代テキストから画像へのモデルシリーズ"
1642
1678
  },
1679
+ "imagen-4.0-ultra-generate-001": {
1680
+ "description": "Imagen 第4世代 テキスト→画像生成モデルシリーズ(Ultra版)"
1681
+ },
1643
1682
  "imagen-4.0-ultra-generate-preview-06-06": {
1644
1683
  "description": "Imagen 第4世代テキストから画像へのモデルシリーズ ウルトラバージョン"
1645
1684
  },
@@ -1679,6 +1718,9 @@
1679
1718
  "kimi-k2-0711-preview": {
1680
1719
  "description": "kimi-k2は強力なコードおよびエージェント能力を備えたMoEアーキテクチャの基盤モデルで、総パラメータ数は1兆、活性化パラメータは320億です。一般知識推論、プログラミング、数学、エージェントなどの主要カテゴリのベンチマーク性能テストで、K2モデルは他の主流オープンソースモデルを上回る性能を示しています。"
1681
1720
  },
1721
+ "kimi-k2-turbo-preview": {
1722
+ "description": "kimi-k2 は高度なコード処理能力とエージェント機能を備えた MoE(Mixture of Experts)アーキテクチャの基盤モデルで、総パラメータ数は1T、アクティブパラメータは32Bです。一般的な知識推論、プログラミング、数学、エージェントなどの主要カテゴリにおけるベンチマークで、K2モデルは他の主要なオープンソースモデルを上回る性能を示しています。"
1723
+ },
1682
1724
  "kimi-latest": {
1683
1725
  "description": "Kimi スマートアシスタント製品は最新の Kimi 大モデルを使用しており、まだ安定していない機能が含まれている可能性があります。画像理解をサポートし、リクエストのコンテキストの長さに応じて 8k/32k/128k モデルを請求モデルとして自動的に選択します。"
1684
1726
  },
@@ -1763,6 +1805,9 @@
1763
1805
  "llava:34b": {
1764
1806
  "description": "LLaVAは、視覚エンコーダーとVicunaを組み合わせたマルチモーダルモデルであり、強力な視覚と言語理解を提供します。"
1765
1807
  },
1808
+ "magistral-medium-latest": {
1809
+ "description": "Magistral Medium 1.1 は Mistral AI が2025年7月に発表した最先端の推論モデルです。"
1810
+ },
1766
1811
  "mathstral": {
1767
1812
  "description": "MathΣtralは、科学研究と数学推論のために設計されており、効果的な計算能力と結果の解釈を提供します。"
1768
1813
  },
@@ -2094,7 +2139,7 @@
2094
2139
  "description": "o1-miniは、プログラミング、数学、科学のアプリケーションシーンに特化して設計された迅速で経済的な推論モデルです。このモデルは128Kのコンテキストを持ち、2023年10月の知識のカットオフがあります。"
2095
2140
  },
2096
2141
  "o1-preview": {
2097
- "description": "o1はOpenAIの新しい推論モデルで、広範な一般知識を必要とする複雑なタスクに適しています。このモデルは128Kのコンテキストを持ち、2023年10月の知識のカットオフがあります。"
2142
+ "description": "高度な推論と複雑な問題の解決に注力しており、数学や科学の課題にも対応します。深い文脈理解と自律的なワークフローを必要とするアプリケーションに非常に適しています。"
2098
2143
  },
2099
2144
  "o1-pro": {
2100
2145
  "description": "o1 シリーズモデルは強化学習により訓練されており、回答前に思考を行い、複雑な推論タスクを実行できます。o1-pro モデルはより多くの計算資源を使用してより深い思考を行い、継続的に高品質な回答を提供します。"
@@ -2213,8 +2258,14 @@
2213
2258
  "qwen-coder-turbo-latest": {
2214
2259
  "description": "通義千問のコードモデルです。"
2215
2260
  },
2261
+ "qwen-flash": {
2262
+ "description": "通義千問シリーズの中で最も高速で、コストが極めて低いモデルで、簡単なタスクに適しています。"
2263
+ },
2216
2264
  "qwen-image": {
2217
- "description": "Qwenチームによる強力な生画像モデルで、印象的な中国語テキスト生成能力と多様な画像ビジュアルスタイルを備えています。"
2265
+ "description": "Qwen-Image は汎用の画像生成モデルで、さまざまなアートスタイルに対応します。とりわけ複雑なテキストのレンダリング、特に中国語と英語のテキストレンダリングに優れています。モデルは複数行レイアウトや段落レベルのテキスト生成、細かなディテール表現をサポートし、複雑な画像とテキストの混在したレイアウト設計を実現します。"
2266
+ },
2267
+ "qwen-image-edit": {
2268
+ "description": "Qwenチームが発表したプロフェッショナル向けの画像編集モデルで、セマンティック編集や外観編集に対応し、中国語や英語の文字を正確に編集でき、スタイル変換やオブジェクトの回転などの高品質な画像編集を実現します。"
2218
2269
  },
2219
2270
  "qwen-long": {
2220
2271
  "description": "通義千問超大規模言語モデルで、長文コンテキストや長文書、複数文書に基づく対話機能をサポートしています。"
@@ -2241,7 +2292,7 @@
2241
2292
  "description": "通義千問の超大規模言語モデルの強化版で、中国語、英語などさまざまな言語の入力をサポートしています。"
2242
2293
  },
2243
2294
  "qwen-turbo": {
2244
- "description": "通義千問の超大規模言語モデルで、中国語、英語などさまざまな言語の入力をサポートしています。"
2295
+ "description": "通义千问 Turbo は今後更新されません。通义千问 Flash への置き換えを推奨します。通义千问は超大規模な言語モデルで、中国語、英語などのさまざまな言語の入力に対応しています。"
2245
2296
  },
2246
2297
  "qwen-vl-chat-v1": {
2247
2298
  "description": "通義千問VLは、複数の画像、多段階の質問応答、創作などの柔軟なインタラクション方式をサポートするモデルです。"
@@ -2558,9 +2609,15 @@
2558
2609
  "step-2x-large": {
2559
2610
  "description": "階躍星辰の新世代画像生成モデルで、画像生成タスクに特化し、ユーザーが提供したテキスト記述に基づき高品質な画像を生成します。新モデルは画像の質感がよりリアルで、中英両言語の文字生成能力が強化されています。"
2560
2611
  },
2612
+ "step-3": {
2613
+ "description": "このモデルは強力な視覚認識と高度な推論能力を備えています。異分野にまたがる複雑な知識の理解や、数学的情報と視覚情報の相互解析、さらには日常生活におけるさまざまな視覚分析の課題を正確に遂行できます。"
2614
+ },
2561
2615
  "step-r1-v-mini": {
2562
2616
  "description": "このモデルは強力な画像理解能力を持つ推論大モデルで、画像とテキスト情報を処理し、深い思考の後にテキストを生成します。このモデルは視覚推論分野で優れたパフォーマンスを発揮し、数学、コード、テキスト推論能力も第一級です。コンテキスト長は100kです。"
2563
2617
  },
2618
+ "stepfun-ai/step3": {
2619
+ "description": "Step3 は階跃星辰(StepFun)が公開した最先端のマルチモーダル推論モデルで、総パラメータ数321B、活性化パラメータ38Bを持つエキスパートミックス(MoE)アーキテクチャに基づいて構築されています。本モデルはエンドツーエンド設計を採用し、デコードコストの最小化を図りながら視覚言語推論においてトップクラスの性能を提供します。多行列分解注意(MFA)と注意-FFNのデカップリング(AFD)という協調設計により、Step3 はフラッグシップ級からローエンドのアクセラレータまで一貫して高い効率を維持します。事前学習段階では、Step3 は20Tを超えるテキストトークンと4Tの画像・テキスト混合トークンを処理し、十数言語をカバーしました。このモデルは数学、コード、多モーダルなど複数のベンチマークにおいてオープンソースモデルの中でトップレベルの成績を達成しています。"
2620
+ },
2564
2621
  "taichu_llm": {
2565
2622
  "description": "紫東太初言語大モデルは、強力な言語理解能力とテキスト創作、知識問答、コードプログラミング、数学計算、論理推論、感情分析、テキスト要約などの能力を備えています。革新的に大データの事前学習と多源の豊富な知識を組み合わせ、アルゴリズム技術を継続的に磨き、膨大なテキストデータから語彙、構造、文法、意味などの新しい知識を吸収し、モデルの効果を進化させています。ユーザーにより便利な情報とサービス、よりインテリジェントな体験を提供します。"
2566
2623
  },
@@ -2707,5 +2764,8 @@
2707
2764
  },
2708
2765
  "zai-org/GLM-4.5-Air": {
2709
2766
  "description": "GLM-4.5-Airはエージェントアプリケーション向けに設計された基盤モデルで、混合専門家(Mixture-of-Experts)アーキテクチャを採用。ツール呼び出し、ウェブブラウジング、ソフトウェア工学、フロントエンドプログラミング分野で深く最適化され、Claude CodeやRoo Codeなどのコードエージェントへのシームレスな統合をサポートします。混合推論モードを採用し、複雑な推論や日常利用など多様なシナリオに適応可能です。"
2767
+ },
2768
+ "zai-org/GLM-4.5V": {
2769
+ "description": "GLM-4.5Vは智譜AI(Zhipu AI)が公開した最新世代の視覚言語モデル(VLM)です。本モデルは総パラメータ数106B、アクティベーションパラメータ12Bを有するフラッグシップのテキストモデルGLM-4.5-Airを基盤に構築され、混合エキスパート(MoE)アーキテクチャを採用することで、より低い推論コストで卓越した性能を実現することを目的としています。GLM-4.5Vは技術的にGLM-4.1V-Thinkingの路線を継承し、三次元回転位置エンコーディング(3D-RoPE)などの革新を導入することで三次元空間関係の認識と推論能力を大幅に強化しました。事前学習、教師あり微調整、強化学習の各段階での最適化により、本モデルは画像、動画、長文ドキュメントなど多様な視覚コンテンツを処理する能力を備え、41件の公開マルチモーダルベンチマークにおいて同クラスのオープンソースモデルのトップレベルに到達しています。さらに、モデルには「思考モード」スイッチが追加されており、迅速な応答と深い推論の間で柔軟に選択して効率と効果のバランスを取ることが可能です。"
2710
2770
  }
2711
2771
  }
@@ -26,6 +26,9 @@
26
26
  "bedrock": {
27
27
  "description": "Bedrockは、Amazon AWSが提供するサービスで、企業に先進的なAI言語モデルと視覚モデルを提供することに特化しています。そのモデルファミリーには、AnthropicのClaudeシリーズやMetaのLlama 3.1シリーズなどが含まれ、軽量から高性能までのさまざまな選択肢を提供し、テキスト生成、対話、画像処理などの多様なタスクをサポートし、異なる規模とニーズの企業アプリケーションに適しています。"
28
28
  },
29
+ "bfl": {
30
+ "description": "最先端の人工知能研究ラボで、次世代の視覚インフラを構築します。"
31
+ },
29
32
  "cloudflare": {
30
33
  "description": "Cloudflareのグローバルネットワーク上で、サーバーレスGPUによって駆動される機械学習モデルを実行します。"
31
34
  },
@@ -1,4 +1,9 @@
1
1
  {
2
+ "ArgsInput": {
3
+ "addArgument": "매개변수 추가",
4
+ "argumentPlaceholder": "매개변수 {{index}}",
5
+ "enterFirstArgument": "첫 번째 매개변수를 입력하세요..."
6
+ },
2
7
  "DragUpload": {
3
8
  "dragDesc": "여기에 파일을 드래그하여 여러 이미지를 업로드할 수 있습니다.",
4
9
  "dragFileDesc": "여기에 이미지와 파일을 드래그하여 여러 이미지와 파일을 업로드할 수 있습니다.",
@@ -125,6 +130,12 @@
125
130
  },
126
131
  "progress": {
127
132
  "uploadingWithCount": "{{completed}}/{{total}} 업로드 완료"
133
+ },
134
+ "validation": {
135
+ "fileSizeExceeded": "파일 용량이 허용된 최대 크기를 초과했습니다",
136
+ "fileSizeExceededDetail": "{{fileName}} ({{actualSize}})이(가) 허용된 최대 크기 {{maxSize}}를 초과했습니다",
137
+ "fileSizeExceededMultiple": "{{count}}개의 파일이 허용된 최대 크기 {{maxSize}}를 초과합니다: {{fileList}}",
138
+ "imageCountExceeded": "이미지 수가 허용된 한도를 초과했습니다"
128
139
  }
129
140
  },
130
141
  "OllamaSetupGuide": {
@@ -85,6 +85,17 @@
85
85
  "CreateMessageError": "죄송합니다. 메시지를 정상적으로 전송할 수 없습니다. 내용을 복사한 후 다시 전송해 주시고, 페이지를 새로 고치면 이 메시지는 보존되지 않습니다.",
86
86
  "ExceededContextWindow": "현재 요청 내용이 모델이 처리할 수 있는 길이를 초과했습니다. 내용량을 줄인 후 다시 시도해 주십시오.",
87
87
  "FreePlanLimit": "현재 무료 사용자이므로이 기능을 사용할 수 없습니다. 유료 요금제로 업그레이드 한 후 계속 사용하십시오.",
88
+ "GoogleAIBlockReason": {
89
+ "BLOCKLIST": "귀하의 콘텐츠에 금지된 단어가 포함되어 있습니다. 입력 내용을 확인하고 수정한 뒤 다시 시도해 주세요.",
90
+ "IMAGE_SAFETY": "생성된 이미지 내용이 안전상의 이유로 차단되었습니다. 이미지 생성 요청을 수정해 보세요.",
91
+ "LANGUAGE": "사용하신 언어는 현재 지원되지 않습니다. 영어 또는 지원되는 다른 언어로 다시 시도해 주세요.",
92
+ "OTHER": "내용이 알 수 없는 이유로 차단되었습니다. 요청을 다시 표현해 보세요.",
93
+ "PROHIBITED_CONTENT": "요청에 금지된 내용이 포함되어 있을 수 있습니다. 요청을 조정하여 사용 규정을 준수해 주세요.",
94
+ "RECITATION": "귀하의 내용은 저작권 문제와 관련될 수 있어 차단되었습니다. 원본 콘텐츠를 사용하거나 요청을 새로 표현해 보세요.",
95
+ "SAFETY": "귀하의 내용은 안전 정책에 따라 차단되었습니다. 요청 내용을 조정하여 유해하거나 부적절할 수 있는 요소를 피해 보세요.",
96
+ "SPII": "귀하의 내용에 민감한 개인 식별 정보가 포함되었을 수 있습니다. 개인정보 보호를 위해 해당 민감 정보를 제거한 뒤 다시 시도해 주세요.",
97
+ "default": "내용이 차단되었습니다: {{blockReason}}. 요청 내용을 조정한 뒤 다시 시도해 주세요."
98
+ },
88
99
  "InsufficientQuota": "죄송합니다. 해당 키의 할당량이 초과되었습니다. 계좌 잔액이 충분한지 확인하거나 키 할당량을 늘린 후 다시 시도해 주십시오.",
89
100
  "InvalidAccessCode": "액세스 코드가 잘못되었거나 비어 있습니다. 올바른 액세스 코드를 입력하거나 사용자 지정 API 키를 추가하십시오.",
90
101
  "InvalidBedrockCredentials": "Bedrock 인증에 실패했습니다. AccessKeyId/SecretAccessKey를 확인한 후 다시 시도하십시오.",
@@ -113,18 +124,6 @@
113
124
  "PluginServerError": "플러그인 서버 요청이 오류로 반환되었습니다. 플러그인 설명 파일, 플러그인 구성 또는 서버 구현을 확인해주세요.",
114
125
  "PluginSettingsInvalid": "플러그인을 사용하려면 올바른 구성이 필요합니다. 구성이 올바른지 확인해주세요.",
115
126
  "ProviderBizError": "요청한 {{provider}} 서비스에서 오류가 발생했습니다. 아래 정보를 확인하고 다시 시도해주세요.",
116
-
117
- "GoogleAIBlockReason": {
118
- "BLOCKLIST": "콘텐츠에 금지된 용어가 포함되어 있습니다. 입력 내용을 확인하고 수정한 후 다시 시도해주세요.",
119
- "IMAGE_SAFETY": "생성된 이미지 콘텐츠가 안전상의 이유로 차단되었습니다. 이미지 생성 요청을 수정하여 다시 시도해주세요.",
120
- "LANGUAGE": "사용하신 언어는 지원되지 않습니다. 영어나 기타 지원되는 언어로 다시 질문해주세요.",
121
- "OTHER": "알 수 없는 이유로 콘텐츠가 차단되었습니다. 요청을 다시 표현하거나 기술 지원에 문의해주세요.",
122
- "PROHIBITED_CONTENT": "콘텐츠에 금지된 콘텐츠 유형이 포함되어 있을 수 있습니다. 사용 가이드라인에 맞도록 요청을 조정해주세요.",
123
- "RECITATION": "저작권 문제 가능성으로 인해 콘텐츠가 차단되었습니다. 원본 콘텐츠를 사용하거나 요청을 다시 표현해보세요.",
124
- "SAFETY": "안전 정책으로 인해 콘텐츠가 차단되었습니다. 유해하거나 부적절한 내용을 피하도록 요청을 조정해주세요.",
125
- "SPII": "콘텐츠에 민감한 개인 식별 정보가 포함되어 있을 수 있습니다. 개인정보 보호를 위해 관련 민감 정보를 제거한 후 다시 시도해주세요.",
126
- "default": "콘텐츠가 차단되었습니다: {{blockReason}}. 요청 내용을 조정한 후 다시 시도해주세요."
127
- },
128
127
  "QuotaLimitReached": "죄송합니다. 현재 토큰 사용량 또는 요청 횟수가 해당 키의 할당량 한도에 도달했습니다. 해당 키의 할당량을 늘리거나 나중에 다시 시도해 주십시오.",
129
128
  "StreamChunkError": "스트리밍 요청의 메시지 블록 구문 분석 오류입니다. 현재 API 인터페이스가 표준 규격에 부합하는지 확인하거나 API 공급자에게 문의하십시오.",
130
129
  "SubscriptionKeyMismatch": "죄송합니다. 시스템의 일시적인 오류로 인해 현재 구독 사용량이 일시적으로 비활성화되었습니다. 아래 버튼을 클릭하여 구독을 복구하시거나, 이메일로 저희에게 지원을 요청해 주시기 바랍니다.",