@lobehub/chat 1.115.0 → 1.116.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (115) hide show
  1. package/.cursor/rules/add-provider-doc.mdc +183 -0
  2. package/.env.example +8 -0
  3. package/.github/workflows/claude.yml +1 -1
  4. package/.github/workflows/release.yml +3 -3
  5. package/.github/workflows/test.yml +3 -7
  6. package/CHANGELOG.md +42 -0
  7. package/CLAUDE.md +6 -6
  8. package/Dockerfile +5 -1
  9. package/Dockerfile.database +5 -1
  10. package/Dockerfile.pglite +5 -1
  11. package/changelog/v1.json +14 -0
  12. package/docs/development/basic/setup-development.mdx +10 -13
  13. package/docs/development/basic/setup-development.zh-CN.mdx +9 -12
  14. package/docs/development/database-schema.dbml +44 -0
  15. package/docs/self-hosting/environment-variables/model-provider.mdx +27 -2
  16. package/docs/self-hosting/environment-variables/model-provider.zh-CN.mdx +27 -2
  17. package/docs/usage/providers/bfl.mdx +68 -0
  18. package/docs/usage/providers/bfl.zh-CN.mdx +67 -0
  19. package/locales/ar/components.json +11 -0
  20. package/locales/ar/error.json +11 -0
  21. package/locales/ar/models.json +64 -4
  22. package/locales/ar/providers.json +3 -0
  23. package/locales/bg-BG/components.json +11 -0
  24. package/locales/bg-BG/error.json +11 -0
  25. package/locales/bg-BG/models.json +64 -4
  26. package/locales/bg-BG/providers.json +3 -0
  27. package/locales/de-DE/components.json +11 -0
  28. package/locales/de-DE/error.json +11 -12
  29. package/locales/de-DE/models.json +64 -4
  30. package/locales/de-DE/providers.json +3 -0
  31. package/locales/en-US/components.json +6 -0
  32. package/locales/en-US/error.json +11 -12
  33. package/locales/en-US/models.json +64 -4
  34. package/locales/en-US/providers.json +3 -0
  35. package/locales/es-ES/components.json +11 -0
  36. package/locales/es-ES/error.json +11 -0
  37. package/locales/es-ES/models.json +64 -6
  38. package/locales/es-ES/providers.json +3 -0
  39. package/locales/fa-IR/components.json +11 -0
  40. package/locales/fa-IR/error.json +11 -0
  41. package/locales/fa-IR/models.json +64 -4
  42. package/locales/fa-IR/providers.json +3 -0
  43. package/locales/fr-FR/components.json +11 -0
  44. package/locales/fr-FR/error.json +11 -12
  45. package/locales/fr-FR/models.json +64 -4
  46. package/locales/fr-FR/providers.json +3 -0
  47. package/locales/it-IT/components.json +11 -0
  48. package/locales/it-IT/error.json +11 -0
  49. package/locales/it-IT/models.json +64 -4
  50. package/locales/it-IT/providers.json +3 -0
  51. package/locales/ja-JP/components.json +11 -0
  52. package/locales/ja-JP/error.json +11 -12
  53. package/locales/ja-JP/models.json +64 -4
  54. package/locales/ja-JP/providers.json +3 -0
  55. package/locales/ko-KR/components.json +11 -0
  56. package/locales/ko-KR/error.json +11 -12
  57. package/locales/ko-KR/models.json +64 -6
  58. package/locales/ko-KR/providers.json +3 -0
  59. package/locales/nl-NL/components.json +11 -0
  60. package/locales/nl-NL/error.json +11 -0
  61. package/locales/nl-NL/models.json +62 -4
  62. package/locales/nl-NL/providers.json +3 -0
  63. package/locales/pl-PL/components.json +11 -0
  64. package/locales/pl-PL/error.json +11 -0
  65. package/locales/pl-PL/models.json +64 -4
  66. package/locales/pl-PL/providers.json +3 -0
  67. package/locales/pt-BR/components.json +11 -0
  68. package/locales/pt-BR/error.json +11 -0
  69. package/locales/pt-BR/models.json +64 -4
  70. package/locales/pt-BR/providers.json +3 -0
  71. package/locales/ru-RU/components.json +11 -0
  72. package/locales/ru-RU/error.json +11 -0
  73. package/locales/ru-RU/models.json +64 -4
  74. package/locales/ru-RU/providers.json +3 -0
  75. package/locales/tr-TR/components.json +11 -0
  76. package/locales/tr-TR/error.json +11 -0
  77. package/locales/tr-TR/models.json +64 -4
  78. package/locales/tr-TR/providers.json +3 -0
  79. package/locales/vi-VN/components.json +11 -0
  80. package/locales/vi-VN/error.json +11 -0
  81. package/locales/vi-VN/models.json +64 -4
  82. package/locales/vi-VN/providers.json +3 -0
  83. package/locales/zh-CN/components.json +6 -0
  84. package/locales/zh-CN/error.json +11 -0
  85. package/locales/zh-CN/models.json +64 -4
  86. package/locales/zh-CN/providers.json +3 -0
  87. package/locales/zh-TW/components.json +11 -0
  88. package/locales/zh-TW/error.json +11 -12
  89. package/locales/zh-TW/models.json +64 -6
  90. package/locales/zh-TW/providers.json +3 -0
  91. package/package.json +1 -1
  92. package/packages/database/migrations/0030_add_group_chat.sql +36 -0
  93. package/packages/database/migrations/meta/0030_snapshot.json +6417 -0
  94. package/packages/database/migrations/meta/_journal.json +7 -0
  95. package/packages/database/src/core/migrations.json +19 -0
  96. package/packages/database/src/models/__tests__/topic.test.ts +3 -1
  97. package/packages/database/src/repositories/tableViewer/index.test.ts +1 -1
  98. package/packages/database/src/schemas/chatGroup.ts +98 -0
  99. package/packages/database/src/schemas/index.ts +1 -0
  100. package/packages/database/src/schemas/message.ts +4 -1
  101. package/packages/database/src/schemas/relations.ts +26 -0
  102. package/packages/database/src/schemas/topic.ts +2 -0
  103. package/packages/database/src/types/chatGroup.ts +9 -0
  104. package/packages/database/src/utils/idGenerator.ts +1 -0
  105. package/packages/model-runtime/src/google/index.ts +3 -0
  106. package/packages/model-runtime/src/qwen/createImage.test.ts +0 -19
  107. package/packages/model-runtime/src/qwen/createImage.ts +1 -27
  108. package/packages/model-runtime/src/utils/modelParse.ts +17 -8
  109. package/packages/model-runtime/src/utils/streams/google-ai.ts +26 -14
  110. package/packages/types/src/aiModel.ts +2 -1
  111. package/src/config/aiModels/google.ts +22 -1
  112. package/src/config/aiModels/qwen.ts +2 -2
  113. package/src/config/aiModels/vertexai.ts +22 -0
  114. package/src/features/FileViewer/Renderer/PDF/index.tsx +2 -2
  115. package/.cursor/rules/debug.mdc +0 -193
@@ -332,12 +332,21 @@
332
332
  "Qwen/Qwen3-30B-A3B-Instruct-2507": {
333
333
  "description": "Qwen3-30B-A3B-Instruct-2507 to zaktualizowana wersja modelu Qwen3-30B-A3B w trybie bez myślenia. Jest to model ekspertowy mieszany (MoE) z 30,5 miliardami parametrów ogółem i 3,3 miliardami parametrów aktywacyjnych. Model został znacząco ulepszony pod wieloma względami, w tym w zakresie przestrzegania instrukcji, rozumowania logicznego, rozumienia tekstu, matematyki, nauki, kodowania oraz korzystania z narzędzi. Ponadto osiągnął istotny postęp w pokryciu wiedzy wielojęzycznej oraz lepsze dopasowanie do preferencji użytkowników w zadaniach subiektywnych i otwartych, co pozwala generować bardziej pomocne odpowiedzi i teksty wyższej jakości. Dodatkowo zdolność rozumienia długich tekstów została zwiększona do 256K. Model ten obsługuje wyłącznie tryb bez myślenia i nie generuje tagów `<think></think>` w swoich odpowiedziach."
334
334
  },
335
+ "Qwen/Qwen3-30B-A3B-Thinking-2507": {
336
+ "description": "Qwen3-30B-A3B-Thinking-2507 jest najnowszym modelem „Thinking” z serii Qwen3, wydanym przez zespół Tongyi Qianwen firmy Alibaba. Jako hybrydowy model ekspertów (MoE) z 30,5 mld parametrów łącznie i 3,3 mld parametrów aktywacji koncentruje się na zwiększaniu zdolności do obsługi złożonych zadań. Model wykazuje znaczące usprawnienia wydajności w benchmarkach akademickich obejmujących rozumowanie logiczne, matematykę, nauki ścisłe, programowanie oraz zadania wymagające wiedzy eksperckiej. Ponadto jego ogólne możliwości — takie jak zgodność z instrukcjami, korzystanie z narzędzi, generowanie tekstu i dostosowanie do preferencji użytkowników — zostały istotnie wzmocnione. Model natywnie obsługuje długi kontekst o długości 256K tokenów i można go skalować do 1 miliona tokenów. Ta wersja została zaprojektowana do 'trybu myślenia' i ma na celu rozwiązywanie wysoce złożonych zadań poprzez szczegółowe, krok po kroku rozumowanie; jego zdolności jako agenta także wypadają znakomicie."
337
+ },
335
338
  "Qwen/Qwen3-32B": {
336
339
  "description": "Qwen3 to nowa generacja modelu Qwen, która znacznie zwiększa zdolności w zakresie wnioskowania, ogólnych zadań, agentów i wielojęzyczności, osiągając wiodące w branży wyniki oraz wspierając przełączanie trybu myślenia."
337
340
  },
338
341
  "Qwen/Qwen3-8B": {
339
342
  "description": "Qwen3 to nowa generacja modelu Qwen, która znacznie zwiększa zdolności w zakresie wnioskowania, ogólnych zadań, agentów i wielojęzyczności, osiągając wiodące w branży wyniki oraz wspierając przełączanie trybu myślenia."
340
343
  },
344
+ "Qwen/Qwen3-Coder-30B-A3B-Instruct": {
345
+ "description": "Qwen3-Coder-30B-A3B-Instruct jest modelem kodowania z serii Qwen3 opracowanym przez zespół Tongyi Qianwen firmy Alibaba. Jako model poddany uproszczeniu i optymalizacji, przy zachowaniu wysokiej wydajności i efektywności, skupia się na udoskonaleniu zdolności przetwarzania kodu. Model wykazuje wyraźną przewagę wydajnościową wśród modeli open-source w złożonych zadaniach, takich jak programowanie agentowe (Agentic Coding), automatyzacja działań w przeglądarce oraz wywoływanie narzędzi. Natywnie obsługuje długi kontekst o długości 256K tokenów i można go rozszerzyć do 1M tokenów, co pozwala na lepsze rozumienie i przetwarzanie na poziomie repozytorium kodu. Ponadto model zapewnia silne wsparcie dla agentowego kodowania na platformach takich jak Qwen Code i CLINE oraz został zaprojektowany z dedykowanym formatem wywoływania funkcji."
346
+ },
347
+ "Qwen/Qwen3-Coder-480B-A35B-Instruct": {
348
+ "description": "Qwen3-Coder-480B-A35B-Instruct został wydany przez Alibaba i jest jak dotąd modelem kodowania o największych zdolnościach agentskich (agentic). Jest to model typu Mixture-of-Experts (MoE) z 480 miliardami parametrów ogółem i 35 miliardami parametrów aktywacyjnych, osiągający równowagę między wydajnością a efektywnością. Model natywnie obsługuje kontekst o długości 256K (około 260 tys.) tokenów i może być rozszerzony do 1 miliona tokenów za pomocą metod ekstrapolacji, takich jak YaRN, co pozwala mu przetwarzać duże repozytoria kodu i złożone zadania programistyczne. Qwen3-Coder został zaprojektowany pod kątem agentowego przepływu pracy kodowania — nie tylko generuje kod, ale również potrafi autonomicznie współdziałać z narzędziami i środowiskami deweloperskimi, aby rozwiązywać złożone problemy programistyczne. W wielu benchmarkach dotyczących zadań kodowania i agentowych model osiągnął czołowe wyniki wśród modeli open-source, a jego wydajność dorównuje wiodącym modelom, takim jak Claude Sonnet 4."
349
+ },
341
350
  "Qwen2-72B-Instruct": {
342
351
  "description": "Qwen2 to najnowsza seria modeli Qwen, obsługująca kontekst 128k. W porównaniu do obecnie najlepszych modeli open source, Qwen2-72B znacznie przewyższa w zakresie rozumienia języka naturalnego, wiedzy, kodowania, matematyki i wielu języków."
343
352
  },
@@ -1103,12 +1112,27 @@
1103
1112
  "flux-dev": {
1104
1113
  "description": "FLUX.1 [dev] to otwarty, dopracowany model o otwartych wagach przeznaczony do zastosowań niekomercyjnych. Zachowuje jakość obrazu i zdolność do przestrzegania instrukcji zbliżoną do wersji profesjonalnej FLUX, oferując jednocześnie wyższą efektywność działania. W porównaniu do standardowych modeli o podobnej wielkości jest bardziej efektywny w wykorzystaniu zasobów."
1105
1114
  },
1115
+ "flux-kontext-max": {
1116
+ "description": "Najnowocześniejsze generowanie i edycja obrazów kontekstowych — łączenie tekstu i obrazów, aby uzyskać precyzyjne i spójne rezultaty."
1117
+ },
1118
+ "flux-kontext-pro": {
1119
+ "description": "Najnowocześniejsze generowanie i edycja obrazów w kontekście — łączenie tekstu i obrazów w celu uzyskania precyzyjnych i spójnych rezultatów."
1120
+ },
1106
1121
  "flux-kontext/dev": {
1107
1122
  "description": "Model FLUX.1 skoncentrowany na zadaniach edycji obrazów, obsługujący wejścia tekstowe i graficzne."
1108
1123
  },
1109
1124
  "flux-merged": {
1110
1125
  "description": "Model FLUX.1-merged łączy głębokie cechy eksplorowane podczas fazy rozwojowej „DEV” z zaletami szybkiego wykonania reprezentowanymi przez „Schnell”. Dzięki temu FLUX.1-merged nie tylko przesuwa granice wydajności modelu, ale także rozszerza zakres jego zastosowań."
1111
1126
  },
1127
+ "flux-pro": {
1128
+ "description": "Wiodący komercyjny model AI do generowania obrazów — niezrównana jakość obrazów i różnorodność generowanych rezultatów."
1129
+ },
1130
+ "flux-pro-1.1": {
1131
+ "description": "Ulepszona, profesjonalna wersja modelu AI do generowania obrazów — zapewnia doskonałą jakość obrazów i precyzyjne realizowanie poleceń."
1132
+ },
1133
+ "flux-pro-1.1-ultra": {
1134
+ "description": "Generowanie obrazów AI o ultrawysokiej rozdzielczości — obsługa wyjścia 4 megapikseli, tworzy niezwykle wyraźne obrazy w ciągu 10 sekund."
1135
+ },
1112
1136
  "flux-pro/kontext": {
1113
1137
  "description": "FLUX.1 Kontext [pro] potrafi przetwarzać tekst i obrazy referencyjne jako dane wejściowe, umożliwiając płynną, celową edycję lokalną oraz złożone transformacje całych scen."
1114
1138
  },
@@ -1193,6 +1217,9 @@
1193
1217
  "gemini-2.5-flash": {
1194
1218
  "description": "Gemini 2.5 Flash to najbardziej opłacalny model Google, oferujący wszechstronne funkcje."
1195
1219
  },
1220
+ "gemini-2.5-flash-image-preview": {
1221
+ "description": "Gemini 2.5 Flash Image Preview to najnowszy, najszybszy i najbardziej wydajny natywny model multimodalny firmy Google. Umożliwia tworzenie i edycję obrazów podczas konwersacji."
1222
+ },
1196
1223
  "gemini-2.5-flash-lite": {
1197
1224
  "description": "Gemini 2.5 Flash-Lite to najmniejszy i najbardziej opłacalny model Google, zaprojektowany z myślą o szerokim zastosowaniu."
1198
1225
  },
@@ -1295,6 +1322,9 @@
1295
1322
  "glm-4.5-x": {
1296
1323
  "description": "Ekspresowa wersja GLM-4.5, łącząca wysoką wydajność z prędkością generowania do 100 tokenów na sekundę."
1297
1324
  },
1325
+ "glm-4.5v": {
1326
+ "description": "Nowa generacja modelu do wnioskowania wizualnego firmy Zhipu oparta na architekturze MOE. Przy łącznej liczbie parametrów 106B i 12B parametrów aktywacji osiąga wyniki SOTA wśród otwartoźródłowych modeli multimodalnych o porównywalnej skali na różnych benchmarkach, obejmując typowe zadania związane z analizą obrazów, wideo, rozumieniem dokumentów oraz zadaniami GUI."
1327
+ },
1298
1328
  "glm-4v": {
1299
1329
  "description": "GLM-4V oferuje potężne zdolności rozumienia i wnioskowania obrazów, obsługując różne zadania wizualne."
1300
1330
  },
@@ -1434,7 +1464,7 @@
1434
1464
  "description": "GPT-4.1 mini oferuje równowagę między inteligencją, szybkością a kosztami, co czyni go atrakcyjnym modelem w wielu zastosowaniach."
1435
1465
  },
1436
1466
  "gpt-4.5-preview": {
1437
- "description": "Wersja badawcza GPT-4.5, która jest naszym największym i najpotężniejszym modelem GPT do tej pory. Posiada szeroką wiedzę o świecie i lepiej rozumie intencje użytkowników, co sprawia, że doskonale radzi sobie w zadaniach kreatywnych i autonomicznym planowaniu. GPT-4.5 akceptuje tekstowe i graficzne wejścia oraz generuje wyjścia tekstowe (w tym wyjścia strukturalne). Wspiera kluczowe funkcje dla deweloperów, takie jak wywołania funkcji, API wsadowe i strumieniowe wyjścia. W zadaniach wymagających kreatywności, otwartego myślenia i dialogu (takich jak pisanie, nauka czy odkrywanie nowych pomysłów), GPT-4.5 sprawdza się szczególnie dobrze. Data graniczna wiedzy to październik 2023."
1467
+ "description": "GPT-4.5-preview to najnowszy model ogólnego przeznaczenia, dysponujący rozległą wiedzą o świecie i lepszym rozumieniem intencji użytkownika. Sprawdza się w zadaniach twórczych i planowaniu działań. Wiedza modelu jest aktualna na październik 2023 r."
1438
1468
  },
1439
1469
  "gpt-4o": {
1440
1470
  "description": "ChatGPT-4o to dynamiczny model, który jest na bieżąco aktualizowany, aby utrzymać najnowszą wersję. Łączy potężne zdolności rozumienia i generowania języka, co czyni go odpowiednim do zastosowań na dużą skalę, w tym obsługi klienta, edukacji i wsparcia technicznego."
@@ -1637,9 +1667,18 @@
1637
1667
  "image-01-live": {
1638
1668
  "description": "Model generowania obrazów o delikatnej jakości wizualnej, wspierający generację obrazów na podstawie tekstu z możliwością ustawienia stylu."
1639
1669
  },
1670
+ "imagen-4.0-fast-generate-001": {
1671
+ "description": "Imagen — czwarta generacja serii modeli tekst-na-obraz, wersja Fast"
1672
+ },
1673
+ "imagen-4.0-generate-001": {
1674
+ "description": "Seria modeli Imagen czwartej generacji do tworzenia obrazów na podstawie tekstu"
1675
+ },
1640
1676
  "imagen-4.0-generate-preview-06-06": {
1641
1677
  "description": "Seria modeli tekst-na-obraz Imagen czwartej generacji"
1642
1678
  },
1679
+ "imagen-4.0-ultra-generate-001": {
1680
+ "description": "Imagen — seria modeli przekształcających tekst w obraz czwartej generacji, wersja Ultra"
1681
+ },
1643
1682
  "imagen-4.0-ultra-generate-preview-06-06": {
1644
1683
  "description": "Seria modeli tekst-na-obraz Imagen czwartej generacji, wersja Ultra"
1645
1684
  },
@@ -1679,6 +1718,9 @@
1679
1718
  "kimi-k2-0711-preview": {
1680
1719
  "description": "kimi-k2 to podstawowy model architektury MoE o potężnych zdolnościach kodowania i agenta, z łączną liczbą parametrów 1T i 32B aktywowanych parametrów. W testach wydajności na benchmarkach obejmujących ogólne rozumowanie, programowanie, matematykę i agentów model K2 przewyższa inne popularne modele open source."
1681
1720
  },
1721
+ "kimi-k2-turbo-preview": {
1722
+ "description": "kimi-k2 to bazowy model z architekturą MoE, dysponujący wyjątkowymi możliwościami w zakresie kodowania i agentów, z łączną liczbą parametrów 1T oraz 32B parametrów aktywacyjnych. W standardowych testach wydajności (benchmarkach) dla głównych kategorii takich jak wnioskowanie z wiedzy ogólnej, programowanie, matematyka i agenty, model K2 przewyższa inne popularne otwarte modele."
1723
+ },
1682
1724
  "kimi-latest": {
1683
1725
  "description": "Produkt Kimi Smart Assistant korzysta z najnowszego modelu Kimi, który może zawierać cechy jeszcze niestabilne. Obsługuje zrozumienie obrazów i automatycznie wybiera model 8k/32k/128k jako model rozliczeniowy w zależności od długości kontekstu żądania."
1684
1726
  },
@@ -1763,6 +1805,9 @@
1763
1805
  "llava:34b": {
1764
1806
  "description": "LLaVA to multimodalny model łączący kodery wizualne i Vicunę, przeznaczony do silnego rozumienia wizualnego i językowego."
1765
1807
  },
1808
+ "magistral-medium-latest": {
1809
+ "description": "Magistral Medium 1.1 to model inferencyjny najnowszej generacji, wydany przez Mistral AI w lipcu 2025 roku."
1810
+ },
1766
1811
  "mathstral": {
1767
1812
  "description": "MathΣtral zaprojektowany do badań naukowych i wnioskowania matematycznego, oferujący efektywne możliwości obliczeniowe i interpretację wyników."
1768
1813
  },
@@ -2094,7 +2139,7 @@
2094
2139
  "description": "o1-mini to szybki i ekonomiczny model wnioskowania zaprojektowany z myślą o programowaniu, matematyce i zastosowaniach naukowych. Model ten ma kontekst 128K i datę graniczną wiedzy z października 2023 roku."
2095
2140
  },
2096
2141
  "o1-preview": {
2097
- "description": "o1 to nowy model wnioskowania OpenAI, odpowiedni do złożonych zadań wymagających szerokiej wiedzy ogólnej. Model ten ma kontekst 128K i datę graniczną wiedzy z października 2023 roku."
2142
+ "description": "Skoncentrowany na zaawansowanym wnioskowaniu i rozwiązywaniu złożonych problemów, w tym zadań matematycznych i naukowych. Doskonale nadaje się do zastosowań wymagających głębokiego zrozumienia kontekstu i autonomicznych przepływów pracy."
2098
2143
  },
2099
2144
  "o1-pro": {
2100
2145
  "description": "Modele z serii o1 są trenowane z wykorzystaniem uczenia ze wzmocnieniem, potrafią myśleć przed udzieleniem odpowiedzi i wykonywać złożone zadania rozumowania. Model o1-pro wykorzystuje więcej zasobów obliczeniowych, aby prowadzić głębsze rozważania i stale dostarczać lepsze odpowiedzi."
@@ -2213,8 +2258,14 @@
2213
2258
  "qwen-coder-turbo-latest": {
2214
2259
  "description": "Model kodowania Qwen."
2215
2260
  },
2261
+ "qwen-flash": {
2262
+ "description": "Seria Tongyi Qianwen to najszybsze i najtańsze modele, odpowiednie do prostych zadań."
2263
+ },
2216
2264
  "qwen-image": {
2217
- "description": "Potężny model generowania obrazów od zespołu Qwen, z imponującymi zdolnościami generowania tekstu w języku chińskim oraz różnorodnymi stylami wizualnymi obrazów."
2265
+ "description": "Qwen-Image jest uniwersalnym modelem generowania obrazów, obsługującym wiele stylów artystycznych, a w szczególności znakomicie radzącym sobie z renderowaniem złożonego tekstu, zwłaszcza tekstu w języku chińskim i angielskim. Model obsługuje układy wielowierszowe, generowanie tekstu na poziomie akapitu oraz odwzorowywanie drobnych detali, co pozwala na tworzenie złożonych projektów łączących obraz i tekst."
2266
+ },
2267
+ "qwen-image-edit": {
2268
+ "description": "Profesjonalny model edycji obrazów wydany przez zespół Qwen, obsługuje edycję semantyczną i edycję wyglądu, potrafi precyzyjnie edytować teksty w języku chińskim i angielskim oraz wykonywać wysokiej jakości operacje edycyjne, takie jak zmiana stylu czy obrót obiektów."
2218
2269
  },
2219
2270
  "qwen-long": {
2220
2271
  "description": "Qwen to ultra-duży model językowy, który obsługuje długie konteksty tekstowe oraz funkcje dialogowe oparte na długich dokumentach i wielu dokumentach."
@@ -2241,7 +2292,7 @@
2241
2292
  "description": "Qwen Plus to ulepszona wersja ogromnego modelu językowego, wspierająca różne języki, w tym chiński i angielski."
2242
2293
  },
2243
2294
  "qwen-turbo": {
2244
- "description": "Qwen Turbo to ogromny model językowy, który obsługuje różne języki, w tym chiński i angielski."
2295
+ "description": "通义千问 Turbo nie będzie już aktualizowany; zaleca się zastąpienie go modelem 通义千问 Flash. 通义千问 to model językowy o bardzo dużej skali, obsługujący wejścia w języku chińskim, angielskim i innych językach."
2245
2296
  },
2246
2297
  "qwen-vl-chat-v1": {
2247
2298
  "description": "Qwen VL obsługuje elastyczne interakcje, w tym wiele obrazów, wielokrotne pytania i odpowiedzi oraz zdolności twórcze."
@@ -2558,9 +2609,15 @@
2558
2609
  "step-2x-large": {
2559
2610
  "description": "Nowa generacja modelu Step Star, skoncentrowana na generowaniu obrazów na podstawie tekstu. Model tworzy obrazy o bardziej realistycznej fakturze i lepszych zdolnościach generowania tekstu w języku chińskim i angielskim."
2560
2611
  },
2612
+ "step-3": {
2613
+ "description": "Model posiada zaawansowane zdolności percepcji wzrokowej i złożonego wnioskowania. Potrafi z wysoką precyzją realizować międzydziedzinowe zrozumienie skomplikowanej wiedzy, przeprowadzać analizę łączącą informacje matematyczne i wizualne oraz rozwiązywać różnorodne problemy związane z analizą wizualną w życiu codziennym."
2614
+ },
2561
2615
  "step-r1-v-mini": {
2562
2616
  "description": "Model ten to potężny model wnioskowania z zdolnościami rozumienia obrazów, zdolny do przetwarzania informacji wizualnych i tekstowych, generując tekst po głębokim przemyśleniu. Model ten wyróżnia się w dziedzinie wnioskowania wizualnego, a także posiada pierwszorzędne zdolności wnioskowania matematycznego, kodowania i tekstu. Długość kontekstu wynosi 100k."
2563
2617
  },
2618
+ "stepfun-ai/step3": {
2619
+ "description": "Step3 to zaawansowany multimodalny model wnioskowania wydany przez StepFun (阶跃星辰). Został zbudowany na architekturze Mixture of Experts (MoE) z łączną liczbą 321 mld parametrów i 38 mld parametrów aktywacji. Model ma konstrukcję end-to-end, zaprojektowaną tak, aby minimalizować koszty dekodowania, jednocześnie zapewniając najwyższą wydajność w zadaniach wnioskowania wizualno-językowego. Dzięki współdziałaniu mechanizmów Multi-Matrix Factorized Attention (MFA) i Attention-FFN Decoupling (AFD), Step3 zachowuje znakomitą efektywność zarówno na akceleratorach klasy flagowej, jak i na urządzeniach o niższej wydajności. W fazie pretrenowania Step3 przetworzył ponad 20 bilionów tokenów tekstowych oraz 4 biliony tokenów mieszanych tekstowo-obrazowych, obejmujących ponad dziesięć języków. Model osiągnął czołowe wyniki wśród modeli open-source na wielu benchmarkach, w tym w zadaniach z zakresu matematyki, programowania i multimodalu."
2620
+ },
2564
2621
  "taichu_llm": {
2565
2622
  "description": "Model językowy TaiChu charakteryzuje się wyjątkową zdolnością rozumienia języka oraz umiejętnościami w zakresie tworzenia tekstów, odpowiadania na pytania, programowania, obliczeń matematycznych, wnioskowania logicznego, analizy emocji i streszczenia tekstu. Innowacyjnie łączy wstępne uczenie się na dużych zbiorach danych z bogatą wiedzą z wielu źródeł, stale doskonaląc technologię algorytmiczną i nieustannie przyswajając nową wiedzę z zakresu słownictwa, struktury, gramatyki i semantyki z ogromnych zbiorów danych tekstowych, co prowadzi do ciągłej ewolucji modelu. Umożliwia użytkownikom łatwiejszy dostęp do informacji i usług oraz bardziej inteligentne doświadczenia."
2566
2623
  },
@@ -2707,5 +2764,8 @@
2707
2764
  },
2708
2765
  "zai-org/GLM-4.5-Air": {
2709
2766
  "description": "GLM-4.5-Air to podstawowy model zaprojektowany specjalnie do zastosowań agentowych, wykorzystujący architekturę mieszanych ekspertów (Mixture-of-Experts). Model jest głęboko zoptymalizowany pod kątem wywoływania narzędzi, przeglądania stron internetowych, inżynierii oprogramowania i programowania frontendowego, wspierając bezproblemową integrację z inteligentnymi agentami kodu takimi jak Claude Code i Roo Code. GLM-4.5 stosuje hybrydowy tryb wnioskowania, dostosowując się do złożonych i codziennych scenariuszy użycia."
2767
+ },
2768
+ "zai-org/GLM-4.5V": {
2769
+ "description": "GLM-4.5V to najnowszej generacji model wizualno‑językowy (VLM) wydany przez Zhipu AI. Model zbudowano na flagowym modelu tekstowym GLM-4.5-Air, który dysponuje 106 mld parametrów łącznie oraz 12 mld parametrów aktywacyjnych. Wykorzystuje architekturę Mixture-of-Experts (MoE) i został zaprojektowany, by przy niższych kosztach inferencji osiągać znakomitą wydajność. GLM-4.5V technicznie kontynuuje podejście GLM-4.1V-Thinking i wprowadza innowacje takie jak trójwymiarowe obrotowe kodowanie pozycji (3D‑RoPE), co znacząco poprawia postrzeganie i wnioskowanie dotyczące relacji przestrzennych w 3D. Dzięki optymalizacjom w fazach pretrenowania, nadzorowanego dostrajania i uczenia przez wzmocnienie model potrafi przetwarzać obrazy, filmy i długie dokumenty, osiągając czołowe wyniki wśród otwartoźródłowych modeli w 41 publicznych benchmarkach multimodalnych. Dodatkowo model zyskał przełącznik „trybu myślenia”, który pozwala użytkownikom elastycznie wybierać między szybką odpowiedzią a głębokim rozumowaniem, aby zrównoważyć efektywność i skuteczność."
2710
2770
  }
2711
2771
  }
@@ -26,6 +26,9 @@
26
26
  "bedrock": {
27
27
  "description": "Bedrock to usługa oferowana przez Amazon AWS, skoncentrowana na dostarczaniu zaawansowanych modeli językowych i wizualnych dla przedsiębiorstw. Jej rodzina modeli obejmuje serię Claude od Anthropic, serię Llama 3.1 od Meta i inne, oferując różnorodne opcje od lekkich do wysokowydajnych, wspierając generowanie tekstu, dialogi, przetwarzanie obrazów i inne zadania, odpowiednie dla różnych skal i potrzeb aplikacji biznesowych."
28
28
  },
29
+ "bfl": {
30
+ "description": "Wiodące, przełomowe laboratorium badawcze sztucznej inteligencji, tworzące wizualną infrastrukturę jutra."
31
+ },
29
32
  "cloudflare": {
30
33
  "description": "Uruchamiaj modele uczenia maszynowego napędzane przez GPU w globalnej sieci Cloudflare."
31
34
  },
@@ -1,4 +1,9 @@
1
1
  {
2
+ "ArgsInput": {
3
+ "addArgument": "Adicionar argumento",
4
+ "argumentPlaceholder": "Argumento {{index}}",
5
+ "enterFirstArgument": "Digite o primeiro argumento..."
6
+ },
2
7
  "DragUpload": {
3
8
  "dragDesc": "Arraste os arquivos para cá, suportando o upload de várias imagens.",
4
9
  "dragFileDesc": "Arraste imagens e arquivos para cá, suportando o upload de várias imagens e arquivos.",
@@ -125,6 +130,12 @@
125
130
  },
126
131
  "progress": {
127
132
  "uploadingWithCount": "{{completed}}/{{total}} enviados"
133
+ },
134
+ "validation": {
135
+ "fileSizeExceeded": "Tamanho do arquivo excede o limite",
136
+ "fileSizeExceededDetail": "{{fileName}} ({{actualSize}}) excede o limite máximo de {{maxSize}}",
137
+ "fileSizeExceededMultiple": "{{count}} arquivos excedem o limite máximo de {{maxSize}}: {{fileList}}",
138
+ "imageCountExceeded": "Número de imagens excede o limite"
128
139
  }
129
140
  },
130
141
  "OllamaSetupGuide": {
@@ -85,6 +85,17 @@
85
85
  "CreateMessageError": "Desculpe, a mensagem não pôde ser enviada corretamente. Por favor, copie o conteúdo e tente enviar novamente. Após atualizar a página, esta mensagem não será mantida.",
86
86
  "ExceededContextWindow": "O conteúdo da solicitação atual excede o comprimento que o modelo pode processar. Por favor, reduza a quantidade de conteúdo e tente novamente.",
87
87
  "FreePlanLimit": "Atualmente, você é um usuário gratuito e não pode usar essa função. Por favor, faça upgrade para um plano pago para continuar usando.",
88
+ "GoogleAIBlockReason": {
89
+ "BLOCKLIST": "Seu conteúdo contém palavras proibidas. Verifique e modifique sua entrada e tente novamente.",
90
+ "IMAGE_SAFETY": "A geração da imagem foi bloqueada por motivos de segurança. Tente modificar sua solicitação de geração de imagem.",
91
+ "LANGUAGE": "O idioma que você está usando não é suportado no momento. Tente perguntar novamente em inglês ou em outro idioma suportado.",
92
+ "OTHER": "O conteúdo foi bloqueado por motivo desconhecido. Tente reformular sua solicitação.",
93
+ "PROHIBITED_CONTENT": "Sua solicitação pode conter conteúdo proibido. Ajuste seu pedido para garantir que esteja em conformidade com as diretrizes de uso.",
94
+ "RECITATION": "Seu conteúdo foi bloqueado por possível violação de direitos autorais. Tente usar conteúdo original ou reformular sua solicitação.",
95
+ "SAFETY": "Seu conteúdo foi bloqueado pelas regras de segurança. Tente ajustar sua solicitação, evitando conteúdo potencialmente nocivo ou inadequado.",
96
+ "SPII": "Seu conteúdo pode conter informações pessoais sensíveis (SPII). Para proteger a privacidade, remova as informações sensíveis e tente novamente.",
97
+ "default": "Conteúdo bloqueado: {{blockReason}}. Ajuste sua solicitação e tente novamente."
98
+ },
88
99
  "InsufficientQuota": "Desculpe, a cota dessa chave atingiu o limite. Verifique se o saldo da conta é suficiente ou aumente a cota da chave e tente novamente.",
89
100
  "InvalidAccessCode": "Senha de acesso inválida ou em branco. Por favor, insira a senha de acesso correta ou adicione uma Chave de API personalizada.",
90
101
  "InvalidBedrockCredentials": "Credenciais Bedrock inválidas, por favor, verifique AccessKeyId/SecretAccessKey e tente novamente",
@@ -332,12 +332,21 @@
332
332
  "Qwen/Qwen3-30B-A3B-Instruct-2507": {
333
333
  "description": "Qwen3-30B-A3B-Instruct-2507 é uma versão atualizada do Qwen3-30B-A3B no modo não reflexivo. Este é um modelo de especialista misto (MoE) com um total de 30,5 bilhões de parâmetros e 3,3 bilhões de parâmetros ativados. O modelo apresenta melhorias significativas em vários aspectos, incluindo um aumento notável na capacidade de seguir instruções, raciocínio lógico, compreensão de texto, matemática, ciências, codificação e uso de ferramentas. Além disso, alcança avanços substanciais na cobertura de conhecimento em múltiplos idiomas e melhor alinhamento com as preferências dos usuários em tarefas subjetivas e abertas, permitindo gerar respostas mais úteis e textos de maior qualidade. A capacidade de compreensão de textos longos também foi ampliada para 256K. Este modelo suporta apenas o modo não reflexivo e não gera tags `<think></think>` em sua saída."
334
334
  },
335
+ "Qwen/Qwen3-30B-A3B-Thinking-2507": {
336
+ "description": "Qwen3-30B-A3B-Thinking-2507 é o mais recente modelo de raciocínio da série Qwen3, lançado pela equipe Tongyi Qianwen da Alibaba. Como um modelo Mixture-of-Experts (MoE) com um total de 30,5 bilhões de parâmetros e 3,3 bilhões de parâmetros de ativação, ele foca em aprimorar a capacidade de lidar com tarefas complexas. O modelo apresenta melhorias de desempenho significativas em benchmarks acadêmicos de raciocínio lógico, matemática, ciências, programação e outras tarefas que exigem conhecimento especializado humano. Além disso, suas capacidades gerais — como cumprimento de instruções, uso de ferramentas, geração de texto e alinhamento com preferências humanas — também foram significativamente aprimoradas. O modelo oferece suporte nativo à compreensão de contexto longo de 256K tokens e pode ser expandido até 1 milhão de tokens. Esta versão foi projetada especificamente para o 'modo de pensamento', visando resolver tarefas altamente complexas por meio de um raciocínio passo a passo detalhado, e suas capacidades como agente (Agent) também se destacam."
337
+ },
335
338
  "Qwen/Qwen3-32B": {
336
339
  "description": "O Qwen3 é um novo modelo de grande escala da Tongyi Qianwen com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, tarefas gerais, agentes e multilinguismo, e suporta a alternância de modos de pensamento."
337
340
  },
338
341
  "Qwen/Qwen3-8B": {
339
342
  "description": "O Qwen3 é um novo modelo de grande escala da Tongyi Qianwen com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, tarefas gerais, agentes e multilinguismo, e suporta a alternância de modos de pensamento."
340
343
  },
344
+ "Qwen/Qwen3-Coder-30B-A3B-Instruct": {
345
+ "description": "Qwen3-Coder-30B-A3B-Instruct é um modelo de código da série Qwen3 desenvolvido pela equipe Tongyi Qianwen da Alibaba. Como um modelo enxuto e otimizado, ele mantém alto desempenho e eficiência, ao mesmo tempo em que se concentra em aprimorar a capacidade de processamento de código. Esse modelo demonstra vantagens de desempenho notáveis entre modelos de código aberto em tarefas complexas, como programação agente (Agentic Coding), automação de operações de navegador e chamadas de ferramentas. Ele suporta nativamente contexto longo de 256K tokens e pode ser expandido até 1M tokens, permitindo um entendimento e processamento mais aprofundados em nível de repositório de código. Além disso, o modelo oferece forte suporte a codificação por agentes em plataformas como Qwen Code e CLINE, e foi projetado com um formato dedicado para chamadas de função."
346
+ },
347
+ "Qwen/Qwen3-Coder-480B-A35B-Instruct": {
348
+ "description": "Qwen3-Coder-480B-A35B-Instruct é o modelo de código com maior capacidade agentic (de atuação autônoma) publicado pela Alibaba até o momento. É um modelo de especialistas mistos (MoE) com 480 bilhões de parâmetros totais e 35 bilhões de parâmetros ativados, que alcança um equilíbrio entre eficiência e desempenho. O modelo oferece suporte nativo a um comprimento de contexto de 256K (aproximadamente 260 mil) tokens e pode ser estendido até 1 milhão de tokens por meio de métodos de extrapolação como YaRN, permitindo lidar com grandes bases de código e tarefas de programação complexas. O Qwen3-Coder foi projetado para fluxos de trabalho de codificação baseados em agentes: além de gerar código, ele pode interagir de forma autônoma com ferramentas e ambientes de desenvolvimento para resolver problemas de programação complexos. Em diversos benchmarks de tarefas de codificação e de agentes, este modelo alcançou desempenho de ponta entre os modelos de código aberto, comparável a modelos líderes como o Claude Sonnet 4."
349
+ },
341
350
  "Qwen2-72B-Instruct": {
342
351
  "description": "Qwen2 é a mais recente série do modelo Qwen, suportando 128k de contexto. Em comparação com os melhores modelos de código aberto atuais, o Qwen2-72B supera significativamente os modelos líderes em várias capacidades, incluindo compreensão de linguagem natural, conhecimento, código, matemática e multilinguismo."
343
352
  },
@@ -1103,12 +1112,27 @@
1103
1112
  "flux-dev": {
1104
1113
  "description": "FLUX.1 [dev] é um modelo open source refinado e com pesos voltado para aplicações não comerciais. Mantém qualidade de imagem e capacidade de seguir instruções próximas à versão profissional FLUX, com maior eficiência operacional. Em comparação com modelos padrão de tamanho similar, é mais eficiente no uso de recursos."
1105
1114
  },
1115
+ "flux-kontext-max": {
1116
+ "description": "Geração e edição de imagens contextuais de ponta — combinando texto e imagens para obter resultados precisos e coerentes."
1117
+ },
1118
+ "flux-kontext-pro": {
1119
+ "description": "Geração e edição de imagens contextuais de ponta — combinando texto e imagens para obter resultados precisos e coerentes."
1120
+ },
1106
1121
  "flux-kontext/dev": {
1107
1122
  "description": "Modelo FLUX.1 focado em tarefas de edição de imagens, suportando entrada de texto e imagem."
1108
1123
  },
1109
1124
  "flux-merged": {
1110
1125
  "description": "O modelo FLUX.1-merged combina as características profundas exploradas na fase de desenvolvimento \"DEV\" com as vantagens de execução rápida representadas por \"Schnell\". Essa combinação não só eleva os limites de desempenho do modelo, como também amplia seu campo de aplicação."
1111
1126
  },
1127
+ "flux-pro": {
1128
+ "description": "Modelo de geração de imagens por IA de primeira linha para uso comercial — qualidade de imagem incomparável e resultados altamente diversificados."
1129
+ },
1130
+ "flux-pro-1.1": {
1131
+ "description": "Modelo profissional aprimorado de geração de imagens por IA — oferece qualidade de imagem excepcional e precisão no atendimento às instruções de prompt."
1132
+ },
1133
+ "flux-pro-1.1-ultra": {
1134
+ "description": "Geração de imagens por IA em altíssima resolução — suporta saída de 4 megapixels e gera imagens em alta definição em até 10 segundos."
1135
+ },
1112
1136
  "flux-pro/kontext": {
1113
1137
  "description": "FLUX.1 Kontext [pro] pode processar texto e imagens de referência como entrada, realizando edições locais direcionadas e transformações complexas de cenas inteiras de forma fluida."
1114
1138
  },
@@ -1193,6 +1217,9 @@
1193
1217
  "gemini-2.5-flash": {
1194
1218
  "description": "Gemini 2.5 Flash é o modelo com melhor custo-benefício do Google, oferecendo funcionalidades abrangentes."
1195
1219
  },
1220
+ "gemini-2.5-flash-image-preview": {
1221
+ "description": "Gemini 2.5 Flash Image Preview é o modelo multimodal nativo mais recente, mais rápido e mais eficiente do Google, que permite gerar e editar imagens por meio de conversas."
1222
+ },
1196
1223
  "gemini-2.5-flash-lite": {
1197
1224
  "description": "Gemini 2.5 Flash-Lite é o modelo mais compacto e com melhor custo-benefício do Google, projetado para uso em larga escala."
1198
1225
  },
@@ -1295,6 +1322,9 @@
1295
1322
  "glm-4.5-x": {
1296
1323
  "description": "Versão ultrarrápida do GLM-4.5, combinando alto desempenho com velocidade de geração de até 100 tokens por segundo."
1297
1324
  },
1325
+ "glm-4.5v": {
1326
+ "description": "A nova geração do modelo de raciocínio visual da Zhipu, baseada na arquitetura MOE, com 106B de parâmetros totais e 12B de parâmetros de ativação, alcança o estado da arte (SOTA) entre modelos multimodais de código aberto de nível semelhante em diversos benchmarks, abrangendo tarefas comuns como compreensão de imagens, vídeos, documentos e de interfaces gráficas (GUI)."
1327
+ },
1298
1328
  "glm-4v": {
1299
1329
  "description": "O GLM-4V oferece uma forte capacidade de compreensão e raciocínio de imagens, suportando várias tarefas visuais."
1300
1330
  },
@@ -1434,7 +1464,7 @@
1434
1464
  "description": "GPT-4.1 mini oferece um equilíbrio entre inteligência, velocidade e custo, tornando-se um modelo atraente para muitos casos de uso."
1435
1465
  },
1436
1466
  "gpt-4.5-preview": {
1437
- "description": "Versão de pesquisa do GPT-4.5, que é o nosso maior e mais poderoso modelo GPT até agora. Ele possui um amplo conhecimento sobre o mundo e consegue entender melhor a intenção do usuário, destacando-se em tarefas criativas e planejamento autônomo. O GPT-4.5 aceita entradas de texto e imagem, gerando saídas de texto (incluindo saídas estruturadas). Suporta recursos essenciais para desenvolvedores, como chamadas de função, API em lote e saída em fluxo. O GPT-4.5 se destaca especialmente em tarefas que requerem criatividade, pensamento aberto e diálogo (como escrita, aprendizado ou exploração de novas ideias). A data limite do conhecimento é outubro de 2023."
1467
+ "description": "GPT-4.5-preview é o modelo de uso geral mais recente, com amplo conhecimento do mundo e uma compreensão aprimorada das intenções dos usuários, sendo proficiente em tarefas criativas e no planejamento de agentes. A data de corte do conhecimento deste modelo é outubro de 2023."
1438
1468
  },
1439
1469
  "gpt-4o": {
1440
1470
  "description": "O ChatGPT-4o é um modelo dinâmico, atualizado em tempo real para manter a versão mais atual. Ele combina uma poderosa capacidade de compreensão e geração de linguagem, adequado para cenários de aplicação em larga escala, incluindo atendimento ao cliente, educação e suporte técnico."
@@ -1637,9 +1667,18 @@
1637
1667
  "image-01-live": {
1638
1668
  "description": "Modelo de geração de imagens com detalhes refinados, suportando geração a partir de texto e configuração de estilo visual."
1639
1669
  },
1670
+ "imagen-4.0-fast-generate-001": {
1671
+ "description": "Imagen, série de modelos texto para imagem de 4ª geração — versão Fast"
1672
+ },
1673
+ "imagen-4.0-generate-001": {
1674
+ "description": "Série de modelos Imagen de 4ª geração para gerar imagens a partir de texto"
1675
+ },
1640
1676
  "imagen-4.0-generate-preview-06-06": {
1641
1677
  "description": "Série de modelos de texto para imagem da 4ª geração Imagen"
1642
1678
  },
1679
+ "imagen-4.0-ultra-generate-001": {
1680
+ "description": "Imagen: modelo de geração de imagens a partir de texto de 4ª geração — versão Ultra"
1681
+ },
1643
1682
  "imagen-4.0-ultra-generate-preview-06-06": {
1644
1683
  "description": "Série de modelos de texto para imagem da 4ª geração Imagen, versão Ultra"
1645
1684
  },
@@ -1679,6 +1718,9 @@
1679
1718
  "kimi-k2-0711-preview": {
1680
1719
  "description": "kimi-k2 é um modelo base com arquitetura MoE, com capacidades excepcionais em código e agentes, totalizando 1T de parâmetros e 32B de parâmetros ativados. Nos principais benchmarks de raciocínio de conhecimento geral, programação, matemática e agentes, o modelo K2 supera outros modelos open source populares."
1681
1720
  },
1721
+ "kimi-k2-turbo-preview": {
1722
+ "description": "kimi-k2 é um modelo base com arquitetura MoE que oferece capacidades avançadas para programação e agentes, com 1T de parâmetros totais e 32B de parâmetros ativados. Em testes de benchmark nas principais categorias — raciocínio de conhecimento geral, programação, matemática e agentes — o desempenho do modelo K2 supera outros modelos de código aberto mais populares."
1723
+ },
1682
1724
  "kimi-latest": {
1683
1725
  "description": "O produto assistente inteligente Kimi utiliza o mais recente modelo Kimi, que pode conter recursos ainda não estáveis. Suporta compreensão de imagens e seleciona automaticamente o modelo de cobrança de 8k/32k/128k com base no comprimento do contexto da solicitação."
1684
1726
  },
@@ -1763,6 +1805,9 @@
1763
1805
  "llava:34b": {
1764
1806
  "description": "LLaVA é um modelo multimodal que combina um codificador visual e Vicuna, projetado para forte compreensão visual e linguística."
1765
1807
  },
1808
+ "magistral-medium-latest": {
1809
+ "description": "Magistral Medium 1.1 é um modelo de inferência de ponta lançado pela Mistral AI em julho de 2025."
1810
+ },
1766
1811
  "mathstral": {
1767
1812
  "description": "MathΣtral é projetado para pesquisa científica e raciocínio matemático, oferecendo capacidade de cálculo eficaz e interpretação de resultados."
1768
1813
  },
@@ -2094,7 +2139,7 @@
2094
2139
  "description": "o1-mini é um modelo de raciocínio rápido e econômico, projetado para cenários de programação, matemática e ciências. Este modelo possui um contexto de 128K e uma data limite de conhecimento em outubro de 2023."
2095
2140
  },
2096
2141
  "o1-preview": {
2097
- "description": "o1 é o novo modelo de raciocínio da OpenAI, adequado para tarefas complexas que exigem amplo conhecimento geral. Este modelo possui um contexto de 128K e uma data limite de conhecimento em outubro de 2023."
2142
+ "description": "Focado em raciocínio avançado e na resolução de problemas complexos, incluindo tarefas de matemática e ciências. Muito adequado para aplicações que exigem compreensão profunda do contexto e fluxos de trabalho autônomos."
2098
2143
  },
2099
2144
  "o1-pro": {
2100
2145
  "description": "A série o1 é treinada com aprendizado por reforço, capaz de pensar antes de responder e executar tarefas complexas de raciocínio. O modelo o1-pro utiliza mais recursos computacionais para um pensamento mais profundo, oferecendo respostas de qualidade superior continuamente."
@@ -2213,8 +2258,14 @@
2213
2258
  "qwen-coder-turbo-latest": {
2214
2259
  "description": "Modelo de código Qwen."
2215
2260
  },
2261
+ "qwen-flash": {
2262
+ "description": "A série Tongyi Qianwen oferece modelos com a maior velocidade e custo muito baixo, adequados para tarefas simples."
2263
+ },
2216
2264
  "qwen-image": {
2217
- "description": "Modelo poderoso de imagens brutas da equipe Qwen, com impressionante capacidade de geração de texto em chinês e diversos estilos visuais de imagens."
2265
+ "description": "Qwen-Image é um modelo de geração de imagens de uso geral que suporta diversos estilos artísticos. É especialmente eficaz na renderização de textos complexos, em particular na renderização de textos em chinês e inglês. O modelo oferece suporte a layouts de múltiplas linhas, geração de texto em nível de parágrafo e detalhamento de alta precisão, possibilitando a criação de designs complexos com layouts híbridos de imagem e texto."
2266
+ },
2267
+ "qwen-image-edit": {
2268
+ "description": "O modelo profissional de edição de imagens lançado pela equipe Qwen suporta edição semântica e de aparência, conseguindo editar com precisão textos em chinês e inglês e realizar transformações de estilo, rotação de objetos e outras edições de imagem de alta qualidade."
2218
2269
  },
2219
2270
  "qwen-long": {
2220
2271
  "description": "O Qwen é um modelo de linguagem em larga escala que suporta contextos de texto longos e funcionalidades de diálogo baseadas em documentos longos e múltiplos cenários."
@@ -2241,7 +2292,7 @@
2241
2292
  "description": "Versão aprimorada do modelo de linguagem em larga escala Qwen, que suporta entradas em diferentes idiomas, como português e inglês."
2242
2293
  },
2243
2294
  "qwen-turbo": {
2244
- "description": "O modelo de linguagem em larga escala Qwen suporta entradas em diferentes idiomas, como português e inglês."
2295
+ "description": "通义千问 Turbo não receberá mais atualizações; recomendamos substituí-lo pelo 通义千问 Flash. 通义千问 é um modelo de linguagem em larga escala que suporta entradas em chinês, inglês e outros idiomas."
2245
2296
  },
2246
2297
  "qwen-vl-chat-v1": {
2247
2298
  "description": "O Qwen VL suporta uma maneira de interação flexível, incluindo múltiplas imagens, perguntas e respostas em várias rodadas, e capacidades criativas."
@@ -2558,9 +2609,15 @@
2558
2609
  "step-2x-large": {
2559
2610
  "description": "Nova geração do modelo Xingchen Step, focado em geração de imagens, capaz de criar imagens de alta qualidade a partir de descrições textuais fornecidas pelo usuário. O novo modelo gera imagens com textura mais realista e melhor capacidade de geração de texto em chinês e inglês."
2560
2611
  },
2612
+ "step-3": {
2613
+ "description": "Este modelo possui forte percepção visual e capacidade de raciocínio complexo. Pode realizar com precisão a compreensão de conhecimentos complexos entre diferentes áreas, a análise cruzada entre informações matemáticas e visuais, além de resolver diversos tipos de problemas de análise visual do cotidiano."
2614
+ },
2561
2615
  "step-r1-v-mini": {
2562
2616
  "description": "Este modelo é um grande modelo de inferência com forte capacidade de compreensão de imagens, capaz de processar informações de imagem e texto, gerando conteúdo textual após um profundo raciocínio. O modelo se destaca no campo do raciocínio visual, além de possuir habilidades de raciocínio matemático, código e texto de primeira linha. O comprimento do contexto é de 100k."
2563
2617
  },
2618
+ "stepfun-ai/step3": {
2619
+ "description": "Step3 é um modelo avançado de raciocínio multimodal lançado pela StepFun, construído sobre uma arquitetura de mistura de especialistas (Mixture of Experts, MoE) com 321B de parâmetros totais e 38B de parâmetros de ativação. O modelo adota um design ponta a ponta, visando minimizar o custo de decodificação enquanto oferece desempenho de primeira linha em raciocínio visão-linguagem. Por meio do design cooperativo de Atenção por Decomposição em Múltiplas Matrizes (MFA) e do Desacoplamento Atenção-FFN (AFD), o Step3 mantém excelente eficiência tanto em aceleradores de alto desempenho quanto em aceleradores de baixo custo. Na fase de pré-treinamento, o Step3 processou mais de 20T tokens de texto e 4T tokens multimodais de imagem e texto, cobrindo mais de dez idiomas. O modelo alcançou posições de liderança entre modelos open-source em vários benchmarks, incluindo matemática, código e tarefas multimodais."
2620
+ },
2564
2621
  "taichu_llm": {
2565
2622
  "description": "O modelo de linguagem Taichu possui uma forte capacidade de compreensão de linguagem, além de habilidades em criação de texto, perguntas e respostas, programação de código, cálculos matemáticos, raciocínio lógico, análise de sentimentos e resumo de texto. Inova ao combinar pré-treinamento com grandes dados e conhecimento rico de múltiplas fontes, aprimorando continuamente a tecnologia de algoritmos e absorvendo novos conhecimentos de vocabulário, estrutura, gramática e semântica de grandes volumes de dados textuais, proporcionando aos usuários informações e serviços mais convenientes e uma experiência mais inteligente."
2566
2623
  },
@@ -2707,5 +2764,8 @@
2707
2764
  },
2708
2765
  "zai-org/GLM-4.5-Air": {
2709
2766
  "description": "GLM-4.5-Air é um modelo base projetado para aplicações de agentes inteligentes, utilizando arquitetura Mixture-of-Experts (MoE). Otimizado para chamadas de ferramentas, navegação web, engenharia de software e programação front-end, suporta integração perfeita com agentes de código como Claude Code e Roo Code. Adota modo de raciocínio híbrido, adaptando-se a cenários de raciocínio complexo e uso cotidiano."
2767
+ },
2768
+ "zai-org/GLM-4.5V": {
2769
+ "description": "GLM-4.5V é a mais recente geração de modelo de linguagem visual (VLM) lançada pela Zhipu AI (智谱 AI). O modelo é construído sobre o modelo de texto carro‑chefe GLM-4.5-Air, que possui 106 bilhões de parâmetros totais e 12 bilhões de parâmetros de ativação, adotando uma arquitetura de especialistas mistos (MoE) com o objetivo de oferecer desempenho de alto nível a um custo de inferência reduzido. Tecnicamente, o GLM-4.5V dá continuidade à linha do GLM-4.1V-Thinking e introduz inovações como a codificação de posição rotacional 3D (3D-RoPE), que aumentam significativamente a percepção e o raciocínio sobre relações espaciais tridimensionais. Por meio de otimizações nas fases de pré-treinamento, ajuste fino supervisionado e aprendizado por reforço, o modelo é capaz de processar diversos tipos de conteúdo visual — incluindo imagens, vídeos e longos documentos — e alcançou desempenho de ponta entre modelos open-source da mesma categoria em 41 benchmarks multimodais públicos. Além disso, o modelo inclui um interruptor de \"modo de pensamento\", que permite aos usuários alternar de forma flexível entre respostas rápidas e raciocínio aprofundado, equilibrando eficiência e eficácia."
2710
2770
  }
2711
2771
  }
@@ -26,6 +26,9 @@
26
26
  "bedrock": {
27
27
  "description": "Bedrock é um serviço oferecido pela Amazon AWS, focado em fornecer modelos de linguagem e visão de IA avançados para empresas. Sua família de modelos inclui a série Claude da Anthropic, a série Llama 3.1 da Meta, entre outros, abrangendo uma variedade de opções, desde modelos leves até de alto desempenho, suportando geração de texto, diálogos, processamento de imagens e outras tarefas, adequando-se a aplicações empresariais de diferentes escalas e necessidades."
28
28
  },
29
+ "bfl": {
30
+ "description": "Laboratório líder de pesquisa de ponta em inteligência artificial, construindo a infraestrutura visual do amanhã."
31
+ },
29
32
  "cloudflare": {
30
33
  "description": "Execute modelos de aprendizado de máquina impulsionados por GPU sem servidor na rede global da Cloudflare."
31
34
  },
@@ -1,4 +1,9 @@
1
1
  {
2
+ "ArgsInput": {
3
+ "addArgument": "Добавить параметр",
4
+ "argumentPlaceholder": "Параметр {{index}}",
5
+ "enterFirstArgument": "Введите первый параметр..."
6
+ },
2
7
  "DragUpload": {
3
8
  "dragDesc": "Перетащите файлы сюда, поддерживается загрузка нескольких изображений.",
4
9
  "dragFileDesc": "Перетащите изображения и файлы сюда, поддерживается загрузка нескольких изображений и файлов.",
@@ -125,6 +130,12 @@
125
130
  },
126
131
  "progress": {
127
132
  "uploadingWithCount": "{{completed}}/{{total}} загружено"
133
+ },
134
+ "validation": {
135
+ "fileSizeExceeded": "Превышен допустимый размер файла",
136
+ "fileSizeExceededDetail": "{{fileName}} ({{actualSize}}) превышает максимально допустимый размер {{maxSize}}",
137
+ "fileSizeExceededMultiple": "{{count}} файлов превышают максимально допустимый размер {{maxSize}}: {{fileList}}",
138
+ "imageCountExceeded": "Превышено допустимое количество изображений"
128
139
  }
129
140
  },
130
141
  "OllamaSetupGuide": {
@@ -85,6 +85,17 @@
85
85
  "CreateMessageError": "Извините, сообщение не удалось отправить. Пожалуйста, скопируйте содержимое и отправьте его снова. После обновления страницы это сообщение не будет сохранено.",
86
86
  "ExceededContextWindow": "Содержимое текущего запроса превышает длину, которую модель может обработать. Пожалуйста, уменьшите объем содержимого и попробуйте снова.",
87
87
  "FreePlanLimit": "Вы являетесь бесплатным пользователем и не можете использовать эту функцию. Пожалуйста, перейдите на платный план для продолжения использования.",
88
+ "GoogleAIBlockReason": {
89
+ "BLOCKLIST": "Ваше содержимое содержит запрещённые выражения. Пожалуйста, проверьте и исправьте ваш ввод, затем попробуйте снова.",
90
+ "IMAGE_SAFETY": "Создание изображения было заблокировано по соображениям безопасности. Попробуйте изменить запрос на генерацию изображения.",
91
+ "LANGUAGE": "Используемый вами язык пока не поддерживается. Пожалуйста, попробуйте задать вопрос на английском или другом поддерживаемом языке.",
92
+ "OTHER": "Содержимое было заблокировано по неизвестной причине. Попробуйте переформулировать ваш запрос.",
93
+ "PROHIBITED_CONTENT": "Ваш запрос может содержать запрещённый контент. Пожалуйста, измените запрос, чтобы он соответствовал правилам использования.",
94
+ "RECITATION": "Ваше содержимое было заблокировано из-за возможного нарушения авторских прав. Попробуйте использовать оригинальный материал или переформулировать запрос.",
95
+ "SAFETY": "Ваше содержимое было заблокировано в соответствии с политикой безопасности. Попробуйте изменить запрос, избегая потенциально вредоносного или неподобающего содержания.",
96
+ "SPII": "Ваше содержимое может содержать чувствительные персональные данные. Для защиты приватности удалите соответствующую информацию и повторите попытку.",
97
+ "default": "Содержимое заблокировано: {{blockReason}}. Пожалуйста, отредактируйте запрос и попробуйте снова."
98
+ },
88
99
  "InsufficientQuota": "Извините, квота для этого ключа достигла предела. Пожалуйста, проверьте, достаточно ли средств на вашем счете, или увеличьте квоту ключа и попробуйте снова.",
89
100
  "InvalidAccessCode": "Неверный код доступа: введите правильный код доступа или добавьте пользовательский ключ API",
90
101
  "InvalidBedrockCredentials": "Аутентификация Bedrock не прошла, пожалуйста, проверьте AccessKeyId/SecretAccessKey и повторите попытку",