@lobehub/chat 1.115.0 → 1.116.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.cursor/rules/add-provider-doc.mdc +183 -0
- package/.env.example +8 -0
- package/.github/workflows/claude.yml +1 -1
- package/.github/workflows/release.yml +3 -3
- package/.github/workflows/test.yml +3 -7
- package/CHANGELOG.md +42 -0
- package/CLAUDE.md +6 -6
- package/Dockerfile +5 -1
- package/Dockerfile.database +5 -1
- package/Dockerfile.pglite +5 -1
- package/changelog/v1.json +14 -0
- package/docs/development/basic/setup-development.mdx +10 -13
- package/docs/development/basic/setup-development.zh-CN.mdx +9 -12
- package/docs/development/database-schema.dbml +44 -0
- package/docs/self-hosting/environment-variables/model-provider.mdx +27 -2
- package/docs/self-hosting/environment-variables/model-provider.zh-CN.mdx +27 -2
- package/docs/usage/providers/bfl.mdx +68 -0
- package/docs/usage/providers/bfl.zh-CN.mdx +67 -0
- package/locales/ar/components.json +11 -0
- package/locales/ar/error.json +11 -0
- package/locales/ar/models.json +64 -4
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/components.json +11 -0
- package/locales/bg-BG/error.json +11 -0
- package/locales/bg-BG/models.json +64 -4
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/components.json +11 -0
- package/locales/de-DE/error.json +11 -12
- package/locales/de-DE/models.json +64 -4
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/components.json +6 -0
- package/locales/en-US/error.json +11 -12
- package/locales/en-US/models.json +64 -4
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/components.json +11 -0
- package/locales/es-ES/error.json +11 -0
- package/locales/es-ES/models.json +64 -6
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/components.json +11 -0
- package/locales/fa-IR/error.json +11 -0
- package/locales/fa-IR/models.json +64 -4
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/components.json +11 -0
- package/locales/fr-FR/error.json +11 -12
- package/locales/fr-FR/models.json +64 -4
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/components.json +11 -0
- package/locales/it-IT/error.json +11 -0
- package/locales/it-IT/models.json +64 -4
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/components.json +11 -0
- package/locales/ja-JP/error.json +11 -12
- package/locales/ja-JP/models.json +64 -4
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/components.json +11 -0
- package/locales/ko-KR/error.json +11 -12
- package/locales/ko-KR/models.json +64 -6
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/components.json +11 -0
- package/locales/nl-NL/error.json +11 -0
- package/locales/nl-NL/models.json +62 -4
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/components.json +11 -0
- package/locales/pl-PL/error.json +11 -0
- package/locales/pl-PL/models.json +64 -4
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/components.json +11 -0
- package/locales/pt-BR/error.json +11 -0
- package/locales/pt-BR/models.json +64 -4
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/components.json +11 -0
- package/locales/ru-RU/error.json +11 -0
- package/locales/ru-RU/models.json +64 -4
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/components.json +11 -0
- package/locales/tr-TR/error.json +11 -0
- package/locales/tr-TR/models.json +64 -4
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/components.json +11 -0
- package/locales/vi-VN/error.json +11 -0
- package/locales/vi-VN/models.json +64 -4
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/components.json +6 -0
- package/locales/zh-CN/error.json +11 -0
- package/locales/zh-CN/models.json +64 -4
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/components.json +11 -0
- package/locales/zh-TW/error.json +11 -12
- package/locales/zh-TW/models.json +64 -6
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +1 -1
- package/packages/database/migrations/0030_add_group_chat.sql +36 -0
- package/packages/database/migrations/meta/0030_snapshot.json +6417 -0
- package/packages/database/migrations/meta/_journal.json +7 -0
- package/packages/database/src/core/migrations.json +19 -0
- package/packages/database/src/models/__tests__/topic.test.ts +3 -1
- package/packages/database/src/repositories/tableViewer/index.test.ts +1 -1
- package/packages/database/src/schemas/chatGroup.ts +98 -0
- package/packages/database/src/schemas/index.ts +1 -0
- package/packages/database/src/schemas/message.ts +4 -1
- package/packages/database/src/schemas/relations.ts +26 -0
- package/packages/database/src/schemas/topic.ts +2 -0
- package/packages/database/src/types/chatGroup.ts +9 -0
- package/packages/database/src/utils/idGenerator.ts +1 -0
- package/packages/model-runtime/src/google/index.ts +3 -0
- package/packages/model-runtime/src/qwen/createImage.test.ts +0 -19
- package/packages/model-runtime/src/qwen/createImage.ts +1 -27
- package/packages/model-runtime/src/utils/modelParse.ts +17 -8
- package/packages/model-runtime/src/utils/streams/google-ai.ts +26 -14
- package/packages/types/src/aiModel.ts +2 -1
- package/src/config/aiModels/google.ts +22 -1
- package/src/config/aiModels/qwen.ts +2 -2
- package/src/config/aiModels/vertexai.ts +22 -0
- package/src/features/FileViewer/Renderer/PDF/index.tsx +2 -2
- package/.cursor/rules/debug.mdc +0 -193
@@ -332,12 +332,21 @@
|
|
332
332
|
"Qwen/Qwen3-30B-A3B-Instruct-2507": {
|
333
333
|
"description": "Qwen3-30B-A3B-Instruct-2507은 Qwen3-30B-A3B 비사고 모드의 업데이트 버전입니다. 이 모델은 총 305억 개의 파라미터와 33억 개의 활성화 파라미터를 가진 혼합 전문가(MoE) 모델입니다. 이 모델은 지침 준수, 논리 추론, 텍스트 이해, 수학, 과학, 코딩 및 도구 사용 등 여러 측면에서 중요한 향상을 이루었습니다. 또한 다국어 장기 지식 커버리지에서 실질적인 진전을 이루었으며, 주관적이고 개방형 작업에서 사용자 선호도에 더 잘 맞춰져 더 유용한 응답과 높은 품질의 텍스트를 생성할 수 있습니다. 아울러 이 모델의 장문 이해 능력도 256K로 강화되었습니다. 이 모델은 비사고 모드만 지원하며 출력에 `<think></think>` 태그를 생성하지 않습니다."
|
334
334
|
},
|
335
|
+
"Qwen/Qwen3-30B-A3B-Thinking-2507": {
|
336
|
+
"description": "Qwen3-30B-A3B-Thinking-2507은 알리바바 통의천문 팀이 발표한 Qwen3 시리즈의 최신 사고 모델입니다. 총 305억 개의 파라미터와 33억 개의 활성 파라미터를 보유한 혼합 전문가(MoE) 모델로서, 복잡한 작업 처리 능력 향상에 주력합니다. 이 모델은 논리 추론, 수학, 과학, 프로그래밍 및 인간의 전문 지식이 요구되는 학술 벤치마크에서 현저한 성능 향상을 보였습니다. 동시에 지시 준수, 도구 사용, 텍스트 생성 및 인간 선호도 정렬 등 범용 능력도 크게 강화되었습니다. 모델은 기본적으로 256K의 장문맥 이해를 지원하며 최대 100만 토큰까지 확장될 수 있습니다. 본 버전은 '사고 모드'로 설계되어 상세한 단계별 추론을 통해 고도로 복잡한 과제를 해결하도록 최적화되었으며, 에이전트(Agent) 기능 또한 우수합니다."
|
337
|
+
},
|
335
338
|
"Qwen/Qwen3-32B": {
|
336
339
|
"description": "Qwen3는 능력이 크게 향상된 차세대 통의천문 대모델로, 추론, 일반, 에이전트 및 다국어 등 여러 핵심 능력에서 업계 선두 수준에 도달하며 사고 모드 전환을 지원합니다."
|
337
340
|
},
|
338
341
|
"Qwen/Qwen3-8B": {
|
339
342
|
"description": "Qwen3는 능력이 크게 향상된 차세대 통의천문 대모델로, 추론, 일반, 에이전트 및 다국어 등 여러 핵심 능력에서 업계 선두 수준에 도달하며 사고 모드 전환을 지원합니다."
|
340
343
|
},
|
344
|
+
"Qwen/Qwen3-Coder-30B-A3B-Instruct": {
|
345
|
+
"description": "Qwen3-Coder-30B-A3B-Instruct는 알리바바 통의천문(通义千问) 팀이 개발한 Qwen3 시리즈의 코드 모델입니다. 정제되어 최적화된 본 모델은 높은 성능과 효율을 유지하면서 코드 처리 능력 향상에 중점을 두고 있습니다. 에이전트형 코딩(Agentic Coding), 자동화된 브라우저 조작, 도구 호출 등 복잡한 작업에서 오픈소스 모델들 대비 뚜렷한 성능 우위를 보입니다. 기본적으로 256K 토큰의 장기 문맥을 지원하며 최대 1M 토큰까지 확장 가능해 코드베이스 수준의 이해와 처리를 보다 효과적으로 수행할 수 있습니다. 또한 Qwen Code, CLINE 등 플랫폼에 강력한 에이전트 코딩 지원을 제공하고, 전용 함수 호출 포맷을 설계했습니다."
|
346
|
+
},
|
347
|
+
"Qwen/Qwen3-Coder-480B-A35B-Instruct": {
|
348
|
+
"description": "Qwen3-Coder-480B-A35B-Instruct는 알리바바가 발표한, 현재까지 에이전트(Agentic) 역량이 가장 뛰어난 코드 모델입니다. 이 모델은 총 4,800억 개의 파라미터와 350억 개의 활성 파라미터를 갖춘 혼합 전문가(MoE) 모델로서 효율성과 성능 사이의 균형을 이루고 있습니다. 기본적으로 256K(약 26만) 토큰의 컨텍스트 길이를 지원하며 YaRN 등의 외삽 기법을 통해 최대 100만 토큰까지 확장할 수 있어 대규모 코드베이스와 복잡한 프로그래밍 과제를 처리할 수 있습니다. Qwen3-Coder는 에이전트형 코딩 워크플로우를 위해 설계되어 코드 생성뿐만 아니라 개발 도구 및 환경과 스스로 상호작용하여 복잡한 문제를 해결할 수 있습니다. 여러 코딩 및 에이전트 과제의 벤치마크에서 이 모델은 오픈소스 모델 중 최상위권 성능을 보였으며, 그 성능은 Claude Sonnet 4 등 선도 모델과 견줄 만합니다."
|
349
|
+
},
|
341
350
|
"Qwen2-72B-Instruct": {
|
342
351
|
"description": "Qwen2는 Qwen 모델의 최신 시리즈로, 128k 컨텍스트를 지원합니다. 현재 최상의 오픈 소스 모델과 비교할 때, Qwen2-72B는 자연어 이해, 지식, 코드, 수학 및 다국어 등 여러 능력에서 현재 선도하는 모델을 현저히 초월합니다."
|
343
352
|
},
|
@@ -1103,12 +1112,27 @@
|
|
1103
1112
|
"flux-dev": {
|
1104
1113
|
"description": "FLUX.1 [dev]는 비상업적 용도를 위한 오픈 소스 가중치 및 정제 모델입니다. FLUX.1 [dev]는 FLUX 전문판과 유사한 이미지 품질과 명령 준수 능력을 유지하면서도 더 높은 실행 효율성을 갖추고 있습니다. 동일 크기 표준 모델 대비 자원 활용이 더 효율적입니다."
|
1105
1114
|
},
|
1115
|
+
"flux-kontext-max": {
|
1116
|
+
"description": "최첨단 컨텍스트 이미지 생성 및 편집 — 텍스트와 이미지를 결합하여 정밀하고 일관된 결과를 제공합니다."
|
1117
|
+
},
|
1118
|
+
"flux-kontext-pro": {
|
1119
|
+
"description": "최첨단 맥락 기반 이미지 생성 및 편집 — 텍스트와 이미지를 결합하여 정확하고 일관된 결과를 제공합니다."
|
1120
|
+
},
|
1106
1121
|
"flux-kontext/dev": {
|
1107
1122
|
"description": "이미지 편집 작업에 특화된 FLUX.1 모델로, 텍스트와 이미지 입력을 지원합니다."
|
1108
1123
|
},
|
1109
1124
|
"flux-merged": {
|
1110
1125
|
"description": "FLUX.1-merged 모델은 개발 단계에서 탐색된 \"DEV\"의 심층 특성과 \"Schnell\"이 대표하는 고속 실행 장점을 결합했습니다. 이를 통해 FLUX.1-merged는 모델 성능 한계를 높이고 적용 범위를 확장했습니다."
|
1111
1126
|
},
|
1127
|
+
"flux-pro": {
|
1128
|
+
"description": "최첨단 상업용 AI 이미지 생성 모델 — 비할 데 없는 이미지 품질과 다양한 출력 성능을 제공합니다."
|
1129
|
+
},
|
1130
|
+
"flux-pro-1.1": {
|
1131
|
+
"description": "업그레이드된 프로페셔널급 AI 이미지 생성 모델 — 탁월한 이미지 품질과 정교한 프롬프트 준수 능력을 제공합니다."
|
1132
|
+
},
|
1133
|
+
"flux-pro-1.1-ultra": {
|
1134
|
+
"description": "초고해상도 AI 이미지 생성 — 최대 4메가픽셀 출력 지원, 10초 이내에 초고화질 이미지를 생성합니다."
|
1135
|
+
},
|
1112
1136
|
"flux-pro/kontext": {
|
1113
1137
|
"description": "FLUX.1 Kontext [pro]는 텍스트와 참조 이미지를 입력으로 처리하여 목표 지향적인 부분 편집과 복잡한 전체 장면 변환을 원활하게 수행할 수 있습니다."
|
1114
1138
|
},
|
@@ -1193,6 +1217,9 @@
|
|
1193
1217
|
"gemini-2.5-flash": {
|
1194
1218
|
"description": "Gemini 2.5 Flash는 구글에서 가장 가성비가 뛰어난 모델로, 포괄적인 기능을 제공합니다."
|
1195
1219
|
},
|
1220
|
+
"gemini-2.5-flash-image-preview": {
|
1221
|
+
"description": "Gemini 2.5 Flash Image Preview는 Google의 최신이자 가장 빠르고 효율적인 네이티브 멀티모달 모델로, 대화를 통해 이미지를 생성하고 편집할 수 있게 해줍니다."
|
1222
|
+
},
|
1196
1223
|
"gemini-2.5-flash-lite": {
|
1197
1224
|
"description": "Gemini 2.5 Flash-Lite는 Google의 가장 작고 가성비가 뛰어난 모델로, 대규모 사용을 위해 설계되었습니다."
|
1198
1225
|
},
|
@@ -1295,6 +1322,9 @@
|
|
1295
1322
|
"glm-4.5-x": {
|
1296
1323
|
"description": "GLM-4.5의 초고속 버전으로, 강력한 성능과 함께 최대 100 tokens/초의 생성 속도를 자랑합니다."
|
1297
1324
|
},
|
1325
|
+
"glm-4.5v": {
|
1326
|
+
"description": "智谱(Zhipu)의 차세대 MOE 아키텍처 기반 시각 추론 모델로, 총 파라미터 수 106B 및 활성화 파라미터 12B를 갖추어 각종 벤치마크에서 동급의 전 세계 오픈소스 멀티모달 모델들 가운데 SOTA를 달성하며, 이미지·비디오·문서 이해 및 GUI 작업 등 다양한 일반 과제를 포괄합니다."
|
1327
|
+
},
|
1298
1328
|
"glm-4v": {
|
1299
1329
|
"description": "GLM-4V는 강력한 이미지 이해 및 추론 능력을 제공하며, 다양한 시각적 작업을 지원합니다."
|
1300
1330
|
},
|
@@ -1433,9 +1463,7 @@
|
|
1433
1463
|
"gpt-4.1-nano": {
|
1434
1464
|
"description": "GPT-4.1 mini는 지능, 속도 및 비용 간의 균형을 제공하여 많은 사용 사례에서 매력적인 모델이 됩니다."
|
1435
1465
|
},
|
1436
|
-
"gpt-4.5-preview":
|
1437
|
-
"description": "GPT-4.5 연구 미리보기 버전으로, 지금까지 우리가 만든 가장 크고 강력한 GPT 모델입니다. 광범위한 세계 지식을 보유하고 있으며 사용자 의도를 더 잘 이해하여 창의적인 작업과 자율 계획에서 뛰어난 성능을 발휘합니다. GPT-4.5는 텍스트와 이미지 입력을 수용하고 텍스트 출력을 생성합니다(구조화된 출력 포함). 함수 호출, 배치 API 및 스트리밍 출력을 포함한 주요 개발자 기능을 지원합니다. 창의적이고 개방적인 사고 및 대화가 필요한 작업(예: 글쓰기, 학습 또는 새로운 아이디어 탐색)에서 특히 뛰어난 성능을 보입니다. 지식 기준일은 2023년 10월입니다."
|
1438
|
-
},
|
1466
|
+
"gpt-4.5-preview": "GPT-4.5-preview는 최신 범용 모델로, 폭넓은 세계 지식과 사용자 의도에 대한 향상된 이해를 갖추고 있어 창의적 과제와 에이전트 계획에 능숙합니다. 이 모델의 지식은 2023년 10월까지입니다.",
|
1439
1467
|
"gpt-4o": {
|
1440
1468
|
"description": "ChatGPT-4o는 동적 모델로, 최신 버전을 유지하기 위해 실시간으로 업데이트됩니다. 강력한 언어 이해 및 생성 능력을 결합하여 고객 서비스, 교육 및 기술 지원을 포함한 대규모 응용 프로그램에 적합합니다."
|
1441
1469
|
},
|
@@ -1637,9 +1665,18 @@
|
|
1637
1665
|
"image-01-live": {
|
1638
1666
|
"description": "이미지 생성 모델로, 섬세한 화질을 제공하며 텍스트-이미지 생성과 화풍 설정을 지원합니다."
|
1639
1667
|
},
|
1668
|
+
"imagen-4.0-fast-generate-001": {
|
1669
|
+
"description": "Imagen 4세대 텍스트-투-이미지 모델 시리즈 Fast 버전"
|
1670
|
+
},
|
1671
|
+
"imagen-4.0-generate-001": {
|
1672
|
+
"description": "Imagen 4세대 텍스트-이미지 모델 시리즈"
|
1673
|
+
},
|
1640
1674
|
"imagen-4.0-generate-preview-06-06": {
|
1641
1675
|
"description": "Imagen 4세대 텍스트-이미지 모델 시리즈"
|
1642
1676
|
},
|
1677
|
+
"imagen-4.0-ultra-generate-001": {
|
1678
|
+
"description": "Imagen 4세대 텍스트 기반 이미지 생성 모델 시리즈 Ultra 버전"
|
1679
|
+
},
|
1643
1680
|
"imagen-4.0-ultra-generate-preview-06-06": {
|
1644
1681
|
"description": "Imagen 4세대 텍스트-이미지 모델 시리즈 울트라 버전"
|
1645
1682
|
},
|
@@ -1679,6 +1716,9 @@
|
|
1679
1716
|
"kimi-k2-0711-preview": {
|
1680
1717
|
"description": "kimi-k2는 강력한 코드 및 에이전트 기능을 갖춘 MoE 아키텍처 기반 모델로, 총 파라미터 1조, 활성화 파라미터 320억을 보유하고 있습니다. 일반 지식 추론, 프로그래밍, 수학, 에이전트 등 주요 분야 벤치마크 성능 테스트에서 K2 모델은 다른 주요 오픈소스 모델을 능가하는 성능을 보여줍니다."
|
1681
1718
|
},
|
1719
|
+
"kimi-k2-turbo-preview": {
|
1720
|
+
"description": "kimi-k2는 강력한 코드 처리 및 에이전트(Agent) 기능을 갖춘 MoE(혼합 전문가) 아키텍처 기반 모델로, 총 파라미터 수는 1T(1조), 활성화 파라미터는 32B(320억)입니다. 일반 지식 추론, 프로그래밍, 수학, 에이전트 등 주요 분야의 벤치마크 성능 테스트에서 K2 모델은 다른 주요 오픈 소스 모델들을 능가합니다."
|
1721
|
+
},
|
1682
1722
|
"kimi-latest": {
|
1683
1723
|
"description": "Kimi 스마트 어시스턴트 제품은 최신 Kimi 대형 모델을 사용하며, 아직 안정되지 않은 기능이 포함될 수 있습니다. 이미지 이해를 지원하며, 요청의 맥락 길이에 따라 8k/32k/128k 모델을 청구 모델로 자동 선택합니다."
|
1684
1724
|
},
|
@@ -1763,6 +1803,9 @@
|
|
1763
1803
|
"llava:34b": {
|
1764
1804
|
"description": "LLaVA는 시각 인코더와 Vicuna를 결합한 다중 모달 모델로, 강력한 시각 및 언어 이해를 제공합니다."
|
1765
1805
|
},
|
1806
|
+
"magistral-medium-latest": {
|
1807
|
+
"description": "Magistral Medium 1.1은 Mistral AI가 2025년 7월에 공개한 최첨단 추론 모델입니다."
|
1808
|
+
},
|
1766
1809
|
"mathstral": {
|
1767
1810
|
"description": "MathΣtral은 과학 연구 및 수학 추론을 위해 설계되었으며, 효과적인 계산 능력과 결과 해석을 제공합니다."
|
1768
1811
|
},
|
@@ -2094,7 +2137,7 @@
|
|
2094
2137
|
"description": "o1-mini는 프로그래밍, 수학 및 과학 응용 프로그램을 위해 설계된 빠르고 경제적인 추론 모델입니다. 이 모델은 128K의 컨텍스트와 2023년 10월의 지식 기준일을 가지고 있습니다."
|
2095
2138
|
},
|
2096
2139
|
"o1-preview": {
|
2097
|
-
"description": "
|
2140
|
+
"description": "고급 추론과 복잡한 문제 해결(수학 및 과학 과제 포함)에 중점을 둡니다. 깊은 맥락 이해와 자율적 워크플로를 필요로 하는 애플리케이션에 매우 적합합니다."
|
2098
2141
|
},
|
2099
2142
|
"o1-pro": {
|
2100
2143
|
"description": "o1 시리즈 모델은 강화 학습을 통해 훈련되어 답변 전에 사고를 진행하고 복잡한 추론 작업을 수행할 수 있습니다. o1-pro 모델은 더 많은 계산 자원을 사용하여 더 깊이 사고함으로써 지속적으로 더 우수한 답변을 제공합니다."
|
@@ -2213,8 +2256,14 @@
|
|
2213
2256
|
"qwen-coder-turbo-latest": {
|
2214
2257
|
"description": "통의 천문 코드 모델입니다."
|
2215
2258
|
},
|
2259
|
+
"qwen-flash": {
|
2260
|
+
"description": "Tongyi Qianwen(通义千问) 시리즈는 속도가 가장 빠르고 비용이 매우 낮은 모델로 간단한 작업에 적합합니다."
|
2261
|
+
},
|
2216
2262
|
"qwen-image": {
|
2217
|
-
"description": "Qwen
|
2263
|
+
"description": "Qwen-Image는 범용 이미지 생성 모델로, 다양한 예술적 스타일을 지원하며 특히 복잡한 텍스트 렌더링, 그중에서도 중국어와 영어 텍스트 렌더링에 뛰어납니다. 모델은 다중 행 레이아웃, 문단 단위 텍스트 생성 및 세밀한 디테일 묘사를 지원하여 복잡한 이미지-텍스트 혼합 레이아웃 디자인을 구현할 수 있습니다."
|
2264
|
+
},
|
2265
|
+
"qwen-image-edit": {
|
2266
|
+
"description": "Qwen 팀이 발표한 전문 이미지 편집 모델로, 의미 편집과 외관 편집을 지원하며 중국어 및 영어 텍스트를 정밀하게 편집하고 스타일 변환, 객체 회전 등 고품질 이미지 편집을 구현합니다."
|
2218
2267
|
},
|
2219
2268
|
"qwen-long": {
|
2220
2269
|
"description": "통의천문 초대규모 언어 모델로, 긴 텍스트 컨텍스트를 지원하며, 긴 문서 및 다수의 문서에 기반한 대화 기능을 제공합니다."
|
@@ -2241,7 +2290,7 @@
|
|
2241
2290
|
"description": "통의천문 초대형 언어 모델의 강화 버전으로, 중국어, 영어 등 다양한 언어 입력을 지원합니다."
|
2242
2291
|
},
|
2243
2292
|
"qwen-turbo": {
|
2244
|
-
"description": "
|
2293
|
+
"description": "通义千问 Turbo는 더 이상 업데이트되지 않으므로 通义千问 Flash로 교체할 것을 권장합니다. 通义千问은 초대규모 언어 모델로 중국어, 영어 등 다양한 언어의 입력을 지원합니다."
|
2245
2294
|
},
|
2246
2295
|
"qwen-vl-chat-v1": {
|
2247
2296
|
"description": "통의천문 VL은 다중 이미지, 다중 회차 질문 응답, 창작 등 유연한 상호작용 방식을 지원하는 모델입니다."
|
@@ -2558,9 +2607,15 @@
|
|
2558
2607
|
"step-2x-large": {
|
2559
2608
|
"description": "계단별 신성(阶跃星辰) 차세대 이미지 생성 모델로, 텍스트 설명에 따라 고품질 이미지를 생성하는 데 특화되어 있습니다. 새 모델은 이미지 질감이 더욱 사실적이며, 중영문 텍스트 생성 능력이 강화되었습니다."
|
2560
2609
|
},
|
2610
|
+
"step-3": {
|
2611
|
+
"description": "이 모델은 강력한 시각 인식 능력과 복잡한 추론 능력을 갖추고 있습니다. 분야를 넘나드는 복잡한 지식 이해, 수학과 시각 정보의 교차 분석, 그리고 일상 생활에서의 다양한 시각 분석 문제를 정확하게 수행할 수 있습니다."
|
2612
|
+
},
|
2561
2613
|
"step-r1-v-mini": {
|
2562
2614
|
"description": "이 모델은 강력한 이미지 이해 능력을 갖춘 추론 대모델로, 이미지와 텍스트 정보를 처리하며, 깊은 사고 후 텍스트를 생성합니다. 이 모델은 시각적 추론 분야에서 두드러진 성능을 보이며, 1차 대열의 수학, 코드, 텍스트 추론 능력을 갖추고 있습니다. 문맥 길이는 100k입니다."
|
2563
2615
|
},
|
2616
|
+
"stepfun-ai/step3": {
|
2617
|
+
"description": "Step3은 StepFun(중국명: 阶跃星辰)이 발표한 최첨단 멀티모달 추론 모델로, 총 321B의 파라미터와 38B의 활성화 파라미터를 가진 전문가 혼합(MoE) 아키텍처를 기반으로 합니다. 이 모델은 엔드투엔드 설계를 채택해 디코딩 비용을 최소화하는 동시에 시각-언어 추론에서 최상급 성능을 제공합니다. 다중 행렬 분해 어텐션(MFA)과 어텐션-FFN 디커플링(AFD)의 결합 설계를 통해 Step3은 플래그십급 및 저사양 가속기 모두에서 탁월한 효율을 유지합니다. 사전학습 단계에서 Step3은 20조개 이상의 텍스트 토큰(20T)과 4조개 이상의 이미지-텍스트 혼합 토큰(4T)을 처리했으며, 10여 개 언어를 포괄합니다. 이 모델은 수학, 코드 및 멀티모달을 포함한 여러 벤치마크에서 오픈소스 모델 중 선도적인 수준의 성능을 달성했습니다."
|
2618
|
+
},
|
2564
2619
|
"taichu_llm": {
|
2565
2620
|
"description": "자이동 태초 언어 대모델은 뛰어난 언어 이해 능력과 텍스트 창작, 지식 질문 응답, 코드 프로그래밍, 수학 계산, 논리 추론, 감정 분석, 텍스트 요약 등의 능력을 갖추고 있습니다. 혁신적으로 대규모 데이터 사전 훈련과 다원적 풍부한 지식을 결합하여 알고리즘 기술을 지속적으로 다듬고, 방대한 텍스트 데이터에서 어휘, 구조, 문법, 의미 등의 새로운 지식을 지속적으로 흡수하여 모델 성능을 지속적으로 진화시킵니다. 사용자에게 보다 편리한 정보와 서비스, 그리고 더 지능적인 경험을 제공합니다."
|
2566
2621
|
},
|
@@ -2707,5 +2762,8 @@
|
|
2707
2762
|
},
|
2708
2763
|
"zai-org/GLM-4.5-Air": {
|
2709
2764
|
"description": "GLM-4.5-Air는 에이전트 애플리케이션을 위해 설계된 기본 모델로, 혼합 전문가(Mixture-of-Experts) 아키텍처를 사용합니다. 도구 호출, 웹 브라우징, 소프트웨어 엔지니어링, 프론트엔드 프로그래밍 분야에서 깊이 최적화되었으며, Claude Code, Roo Code 등 코드 에이전트에 원활히 통합될 수 있습니다. GLM-4.5는 혼합 추론 모드를 채택하여 복잡한 추론과 일상 사용 등 다양한 응용 시나리오에 적응할 수 있습니다."
|
2765
|
+
},
|
2766
|
+
"zai-org/GLM-4.5V": {
|
2767
|
+
"description": "GLM-4.5V는 Zhipu AI(智谱 AI)가 발표한 최신 세대의 비전-언어 모델(VLM)입니다. 이 모델은 총 106B 파라미터와 12B 활성 파라미터를 보유한 플래그십 텍스트 모델 GLM-4.5-Air를 기반으로 구축되었으며, 혼합 전문가(MoE) 아키텍처를 채택해 더 낮은 추론 비용으로 우수한 성능을 달성하는 것을 목표로 합니다. GLM-4.5V는 기술적으로 GLM-4.1V-Thinking의 노선을 계승하면서 3차원 회전 위치 인코딩(3D-RoPE) 등 혁신을 도입하여 3차원 공간 관계에 대한 인식 및 추론 능력을 크게 향상시켰습니다. 사전 학습, 감독 미세조정, 강화학습 단계에서의 최적화를 통해 이 모델은 이미지, 비디오, 장문 문서 등 다양한 시각 콘텐츠를 처리할 수 있으며, 41개의 공개 멀티모달 벤치마크에서 동급 오픈소스 모델 중 최상위 수준의 성능을 기록했습니다. 또한 모델에는 '사고 모드' 스위치가 추가되어 사용자가 빠른 응답과 심층 추론 사이에서 유연하게 선택해 효율성과 효과를 균형 있게 조절할 수 있습니다."
|
2710
2768
|
}
|
2711
2769
|
}
|
@@ -26,6 +26,9 @@
|
|
26
26
|
"bedrock": {
|
27
27
|
"description": "Bedrock은 아마존 AWS가 제공하는 서비스로, 기업에 고급 AI 언어 모델과 비주얼 모델을 제공합니다. 그 모델 가족에는 Anthropic의 Claude 시리즈, Meta의 Llama 3.1 시리즈 등이 포함되어 있으며, 경량형부터 고성능까지 다양한 선택지를 제공하고 텍스트 생성, 대화, 이미지 처리 등 여러 작업을 지원하여 다양한 규모와 요구의 기업 응용 프로그램에 적합합니다."
|
28
28
|
},
|
29
|
+
"bfl": {
|
30
|
+
"description": "선도적인 최첨단 인공지능 연구소로서 미래의 시각 인프라를 구축합니다."
|
31
|
+
},
|
29
32
|
"cloudflare": {
|
30
33
|
"description": "Cloudflare의 글로벌 네트워크에서 서버리스 GPU로 구동되는 머신러닝 모델을 실행합니다."
|
31
34
|
},
|
@@ -1,4 +1,9 @@
|
|
1
1
|
{
|
2
|
+
"ArgsInput": {
|
3
|
+
"addArgument": "Argument toevoegen",
|
4
|
+
"argumentPlaceholder": "Argument {{index}}",
|
5
|
+
"enterFirstArgument": "Voer het eerste argument in..."
|
6
|
+
},
|
2
7
|
"DragUpload": {
|
3
8
|
"dragDesc": "Sleep bestanden hierheen om meerdere afbeeldingen te uploaden.",
|
4
9
|
"dragFileDesc": "Sleep afbeeldingen en bestanden hierheen om meerdere afbeeldingen en bestanden te uploaden.",
|
@@ -125,6 +130,12 @@
|
|
125
130
|
},
|
126
131
|
"progress": {
|
127
132
|
"uploadingWithCount": "{{completed}}/{{total}} geüpload"
|
133
|
+
},
|
134
|
+
"validation": {
|
135
|
+
"fileSizeExceeded": "Bestandsgrootte overschrijdt de limiet",
|
136
|
+
"fileSizeExceededDetail": "{{fileName}} ({{actualSize}}) overschrijdt de maximale grootte van {{maxSize}}",
|
137
|
+
"fileSizeExceededMultiple": "{{count}} bestanden overschrijden de maximale grootte van {{maxSize}}: {{fileList}}",
|
138
|
+
"imageCountExceeded": "Het aantal afbeeldingen overschrijdt de limiet"
|
128
139
|
}
|
129
140
|
},
|
130
141
|
"OllamaSetupGuide": {
|
package/locales/nl-NL/error.json
CHANGED
@@ -85,6 +85,17 @@
|
|
85
85
|
"CreateMessageError": "Het spijt ons, het bericht kon niet correct worden verzonden. Kopieer de inhoud en probeer het opnieuw. Na het vernieuwen van de pagina gaat dit bericht verloren.",
|
86
86
|
"ExceededContextWindow": "De inhoud van de huidige aanvraag overschrijdt de lengte die het model kan verwerken. Verminder de hoeveelheid inhoud en probeer het opnieuw.",
|
87
87
|
"FreePlanLimit": "U bent momenteel een gratis gebruiker en kunt deze functie niet gebruiken. Upgrade naar een betaald plan om door te gaan met gebruiken.",
|
88
|
+
"GoogleAIBlockReason": {
|
89
|
+
"BLOCKLIST": "Uw inhoud bevat verboden woorden. Controleer en pas uw invoer aan en probeer het opnieuw.",
|
90
|
+
"IMAGE_SAFETY": "De gegenereerde afbeelding is om veiligheidsredenen geblokkeerd. Probeer uw aanvraag voor afbeeldingsgeneratie aan te passen.",
|
91
|
+
"LANGUAGE": "De door u gebruikte taal wordt momenteel niet ondersteund. Probeer het opnieuw in het Engels of een andere ondersteunde taal.",
|
92
|
+
"OTHER": "De inhoud is om onbekende redenen geblokkeerd. Probeer uw verzoek anders te formuleren.",
|
93
|
+
"PROHIBITED_CONTENT": "Uw verzoek kan verboden inhoud bevatten. Pas uw verzoek aan zodat het voldoet aan de gebruiksregels.",
|
94
|
+
"RECITATION": "Uw inhoud is mogelijk geblokkeerd vanwege auteursrechtelijke kwesties. Gebruik originele inhoud of formuleer uw verzoek opnieuw.",
|
95
|
+
"SAFETY": "Uw inhoud is geblokkeerd door het veiligheidsbeleid. Pas uw verzoek aan en vermijd mogelijk schadelijke of ongepaste inhoud.",
|
96
|
+
"SPII": "Uw inhoud kan gevoelige persoonsgegevens bevatten. Verwijder de betreffende informatie ter bescherming van de privacy en probeer het opnieuw.",
|
97
|
+
"default": "Inhoud geblokkeerd: {{blockReason}}。请调整您的请求内容后重试。"
|
98
|
+
},
|
88
99
|
"InsufficientQuota": "Het spijt ons, de quotum van deze sleutel is bereikt. Controleer of uw account voldoende saldo heeft of vergroot het sleutelquotum en probeer het opnieuw.",
|
89
100
|
"InvalidAccessCode": "Ongeldige toegangscode: het wachtwoord is onjuist of leeg. Voer de juiste toegangscode in of voeg een aangepaste API-sleutel toe.",
|
90
101
|
"InvalidBedrockCredentials": "Bedrock authentication failed, please check AccessKeyId/SecretAccessKey and retry",
|
@@ -332,12 +332,21 @@
|
|
332
332
|
"Qwen/Qwen3-30B-A3B-Instruct-2507": {
|
333
333
|
"description": "Qwen3-30B-A3B-Instruct-2507 is een bijgewerkte versie van Qwen3-30B-A3B zonder denkmodus. Dit is een hybride expert (MoE) model met in totaal 30,5 miljard parameters en 3,3 miljard actieve parameters. Het model heeft belangrijke verbeteringen ondergaan op meerdere gebieden, waaronder een aanzienlijke verbetering van het volgen van instructies, logisch redeneren, tekstbegrip, wiskunde, wetenschap, codering en het gebruik van tools. Tegelijkertijd heeft het substantiële vooruitgang geboekt in de dekking van meertalige long-tail kennis en kan het beter afstemmen op de voorkeuren van gebruikers bij subjectieve en open taken, waardoor het nuttigere antwoorden en tekst van hogere kwaliteit kan genereren. Bovendien is het vermogen van het model om lange teksten te begrijpen uitgebreid tot 256K. Dit model ondersteunt alleen de niet-denkmodus en genereert geen `<think></think>` tags in de output."
|
334
334
|
},
|
335
|
+
"Qwen/Qwen3-30B-A3B-Thinking-2507": {
|
336
|
+
"description": "Qwen3-30B-A3B-Thinking-2507 is het nieuwste Thinking-model uit de Qwen3-serie, uitgebracht door het Tongyi Qianwen-team van Alibaba. Als een Mixture of Experts (MoE)-model met in totaal 30,5 miljard parameters en 3,3 miljard activatieparameters, is het gericht op het verbeteren van de verwerking van complexe taken. Het model toont aanzienlijke prestatieverbeteringen op academische benchmarks voor logisch redeneren, wiskunde, wetenschap, programmeren en andere gebieden die menselijke expertise vereisen. Tegelijkertijd zijn algemene capaciteiten zoals het opvolgen van instructies, het gebruik van tools, tekstgeneratie en afstemming op menselijke voorkeuren ook sterk verbeterd. Het model ondersteunt van nature lange contexten tot 256K tokens en is uitbreidbaar tot 1 miljoen tokens. Deze versie is speciaal ontworpen voor de 'Thinking'-modus, met als doel zeer complexe taken op te lossen door middel van gedetailleerde stapsgewijze redenering; ook de Agent-capaciteiten presteren uitstekend."
|
337
|
+
},
|
335
338
|
"Qwen/Qwen3-32B": {
|
336
339
|
"description": "Qwen3 is een nieuwe generatie Qwen-model met aanzienlijk verbeterde capaciteiten, die op het gebied van redenering, algemeen gebruik, agent en meertaligheid op een leidende positie in de industrie staat, en ondersteunt de schakel tussen denkmodi."
|
337
340
|
},
|
338
341
|
"Qwen/Qwen3-8B": {
|
339
342
|
"description": "Qwen3 is een nieuwe generatie Qwen-model met aanzienlijk verbeterde capaciteiten, die op het gebied van redenering, algemeen gebruik, agent en meertaligheid op een leidende positie in de industrie staat, en ondersteunt de schakel tussen denkmodi."
|
340
343
|
},
|
344
|
+
"Qwen/Qwen3-Coder-30B-A3B-Instruct": {
|
345
|
+
"description": "Qwen3-Coder-30B-A3B-Instruct is een codemodel uit de Qwen3-serie, ontwikkeld door het Tongyi Qianwen-team van Alibaba. Als een verfijnd en geoptimaliseerd model richt het zich op het verbeteren van codeverwerking, terwijl het hoge prestaties en efficiëntie behoudt. Dit model laat opvallende prestatievoordelen zien ten opzichte van open-source modellen bij complexe taken zoals agent-achtige programmering (Agentic Coding), geautomatiseerde browserbesturing en het aanroepen van tools. Het ondersteunt van nature lange contexten van 256K tokens en is uitbreidbaar tot 1M tokens, waardoor het beter in staat is codebases op schaal te begrijpen en te verwerken. Bovendien biedt dit model krachtige ondersteuning voor agent-gebaseerde codering op platforms zoals Qwen Code en CLINE, en is er een specifiek formaat voor functieaanroepen ontworpen."
|
346
|
+
},
|
347
|
+
"Qwen/Qwen3-Coder-480B-A35B-Instruct": {
|
348
|
+
"description": "Qwen3-Coder-480B-A35B-Instruct is uitgebracht door Alibaba en beschikt tot nu toe over de meest geavanceerde agentische mogelijkheden van alle codemodellen. Het is een Mixture-of-Experts (MoE)-model met 480 miljard totale parameters en 35 miljard actieve parameters, dat een balans vindt tussen efficiëntie en prestaties. Het model ondersteunt van nature een contextlengte van 256K (ongeveer 260.000) tokens en kan via extrapolatiemethoden zoals YaRN worden opgeschaald tot 1 miljoen tokens, waardoor het omvangrijke codebases en complexe programmeertaken aankan. Qwen3-Coder is ontworpen voor agentachtige codeerworkflows: het kan niet alleen code genereren, maar ook autonoom interacteren met ontwikkeltools en -omgevingen om complexe programmeerproblemen op te lossen. In diverse benchmarks voor codering en agenttaken behaalt dit model topresultaten onder open-source modellen en zijn de prestaties vergelijkbaar met toonaangevende modellen zoals Claude Sonnet 4."
|
349
|
+
},
|
341
350
|
"Qwen2-72B-Instruct": {
|
342
351
|
"description": "Qwen2 is de nieuwste serie van het Qwen-model, dat 128k context ondersteunt. In vergelijking met de huidige beste open-source modellen, overtreft Qwen2-72B op het gebied van natuurlijke taalbegrip, kennis, code, wiskunde en meertaligheid aanzienlijk de huidige toonaangevende modellen."
|
343
352
|
},
|
@@ -1103,12 +1112,27 @@
|
|
1103
1112
|
"flux-dev": {
|
1104
1113
|
"description": "FLUX.1 [dev] is een open-source gewicht en verfijnd model voor niet-commercieel gebruik. Het behoudt een beeldkwaliteit en instructienaleving vergelijkbaar met de professionele versie van FLUX, maar met een hogere operationele efficiëntie. Vergeleken met standaardmodellen van dezelfde grootte is het efficiënter in het gebruik van middelen."
|
1105
1114
|
},
|
1115
|
+
"flux-kontext-max": {
|
1116
|
+
"description": "De meest geavanceerde contextuele beeldgeneratie en -bewerking — tekst en afbeeldingen combineren voor nauwkeurige, samenhangende resultaten."
|
1117
|
+
},
|
1118
|
+
"flux-kontext-pro": {
|
1119
|
+
"description": "Geavanceerde contextuele beeldgeneratie en -bewerking — tekst en afbeeldingen combineren voor nauwkeurige, samenhangende resultaten."
|
1120
|
+
},
|
1106
1121
|
"flux-kontext/dev": {
|
1107
1122
|
"description": "FLUX.1-model gericht op beeldbewerkingsopdrachten, ondersteunt tekst- en beeldinvoer."
|
1108
1123
|
},
|
1109
1124
|
"flux-merged": {
|
1110
1125
|
"description": "Het FLUX.1-merged model combineert de diepgaande kenmerken verkend tijdens de ontwikkelingsfase van \"DEV\" met de hoge uitvoeringssnelheid van \"Schnell\". Deze combinatie verhoogt niet alleen de prestatiegrenzen van het model, maar breidt ook het toepassingsgebied uit."
|
1111
1126
|
},
|
1127
|
+
"flux-pro": {
|
1128
|
+
"description": "Topklasse commercieel AI-beeldgeneratiemodel — ongeëvenaarde beeldkwaliteit en veelzijdige output."
|
1129
|
+
},
|
1130
|
+
"flux-pro-1.1": {
|
1131
|
+
"description": "Verbeterd professioneel AI-beeldgeneratiemodel — biedt uitstekende beeldkwaliteit en nauwkeurige opvolging van promptinstructies."
|
1132
|
+
},
|
1133
|
+
"flux-pro-1.1-ultra": {
|
1134
|
+
"description": "Ultrahoge resolutie AI-beeldgeneratie — ondersteunt output tot 4 megapixels en genereert binnen 10 seconden Ultra‑HD-afbeeldingen."
|
1135
|
+
},
|
1112
1136
|
"flux-pro/kontext": {
|
1113
1137
|
"description": "FLUX.1 Kontext [pro] kan tekst en referentieafbeeldingen als invoer verwerken, waardoor doelgerichte lokale bewerkingen en complexe algehele scèneveranderingen naadloos mogelijk zijn."
|
1114
1138
|
},
|
@@ -1193,6 +1217,9 @@
|
|
1193
1217
|
"gemini-2.5-flash": {
|
1194
1218
|
"description": "Gemini 2.5 Flash is het meest kosteneffectieve model van Google en biedt uitgebreide functionaliteiten."
|
1195
1219
|
},
|
1220
|
+
"gemini-2.5-flash-image-preview": {
|
1221
|
+
"description": "Gemini 2.5 Flash Image Preview is Google's nieuwste, snelste en meest efficiënte native multimodale model. Het stelt u in staat om via gesprekken afbeeldingen te genereren en te bewerken."
|
1222
|
+
},
|
1196
1223
|
"gemini-2.5-flash-lite": {
|
1197
1224
|
"description": "Gemini 2.5 Flash-Lite is het kleinste en meest kosteneffectieve model van Google, speciaal ontworpen voor grootschalig gebruik."
|
1198
1225
|
},
|
@@ -1295,6 +1322,9 @@
|
|
1295
1322
|
"glm-4.5-x": {
|
1296
1323
|
"description": "De snelle versie van GLM-4.5, met krachtige prestaties en een generatie snelheid tot 100 tokens per seconde."
|
1297
1324
|
},
|
1325
|
+
"glm-4.5v": {
|
1326
|
+
"description": "Zhipu's nieuwe generatie visueel redeneermodel, gebaseerd op een MOE-architectuur, beschikt over in totaal 106 miljard parameters en 12 miljard activatieparameters, en behaalt op diverse benchmarks state-of-the-art (SOTA)-prestaties onder open-source multimodale modellen van vergelijkbaar internationaal niveau. Het dekt veelvoorkomende taken zoals beeld-, video- en documentbegrip en GUI-taken."
|
1327
|
+
},
|
1298
1328
|
"glm-4v": {
|
1299
1329
|
"description": "GLM-4V biedt krachtige beeldbegrip- en redeneercapaciteiten, ondersteunt verschillende visuele taken."
|
1300
1330
|
},
|
@@ -1434,7 +1464,7 @@
|
|
1434
1464
|
"description": "GPT-4.1 mini biedt een balans tussen intelligentie, snelheid en kosten, waardoor het een aantrekkelijk model is voor veel gebruikssituaties."
|
1435
1465
|
},
|
1436
1466
|
"gpt-4.5-preview": {
|
1437
|
-
"description": "
|
1467
|
+
"description": "GPT-4.5-preview is het nieuwste generieke model, met diepgaande wereldkennis en een beter begrip van de intenties van gebruikers. Het blinkt uit in creatieve taken en bij het plannen van agenten. De kennis van dit model is actueel tot oktober 2023."
|
1438
1468
|
},
|
1439
1469
|
"gpt-4o": {
|
1440
1470
|
"description": "ChatGPT-4o is een dynamisch model dat in realtime wordt bijgewerkt om de meest actuele versie te behouden. Het combineert krachtige taalbegrip- en generatiecapaciteiten, geschikt voor grootschalige toepassingsscenario's, waaronder klantenservice, onderwijs en technische ondersteuning."
|
@@ -1637,9 +1667,18 @@
|
|
1637
1667
|
"image-01-live": {
|
1638
1668
|
"description": "Beeldgeneratiemodel met fijne beeldweergave, ondersteunt tekst-naar-beeld en stijlinstellingen."
|
1639
1669
|
},
|
1670
|
+
"imagen-4.0-fast-generate-001": {
|
1671
|
+
"description": "Imagen vierde generatie tekst-naar-beeldmodelserie, snelle versie"
|
1672
|
+
},
|
1673
|
+
"imagen-4.0-generate-001": {
|
1674
|
+
"description": "Imagen 4e generatie tekst-naar-beeldmodelserie"
|
1675
|
+
},
|
1640
1676
|
"imagen-4.0-generate-preview-06-06": {
|
1641
1677
|
"description": "Imagen 4e generatie tekst-naar-beeld modelserie"
|
1642
1678
|
},
|
1679
|
+
"imagen-4.0-ultra-generate-001": {
|
1680
|
+
"description": "Imagen 4e generatie tekst-naar-beeldmodelserie, Ultra-versie"
|
1681
|
+
},
|
1643
1682
|
"imagen-4.0-ultra-generate-preview-06-06": {
|
1644
1683
|
"description": "Imagen 4e generatie tekst-naar-beeld modelserie Ultra versie"
|
1645
1684
|
},
|
@@ -1679,6 +1718,9 @@
|
|
1679
1718
|
"kimi-k2-0711-preview": {
|
1680
1719
|
"description": "kimi-k2 is een MoE-architectuurbasis model met krachtige codeer- en agentcapaciteiten, met in totaal 1 biljoen parameters en 32 miljard geactiveerde parameters. In benchmarktests voor algemene kennisredenering, programmeren, wiskunde en agenttaken overtreft het K2-model andere toonaangevende open-source modellen."
|
1681
1720
|
},
|
1721
|
+
"kimi-k2-turbo-preview": {
|
1722
|
+
"description": "kimi-k2 is een basismodel met een MoE-architectuur dat beschikt over zeer sterke codeer- en agentcapaciteiten. Het heeft in totaal 1T parameters en 32B actieve parameters. In benchmarktests op belangrijke categorieën zoals algemene kennisredenering, programmeren, wiskunde en agenttaken overtreft het K2-model de prestaties van andere gangbare open-sourcemodellen."
|
1723
|
+
},
|
1682
1724
|
"kimi-latest": {
|
1683
1725
|
"description": "Kimi slimme assistent product maakt gebruik van het nieuwste Kimi grote model, dat mogelijk nog niet stabiele functies bevat. Ondersteunt beeldbegrip en kiest automatisch het 8k/32k/128k model als factureringsmodel op basis van de lengte van de context van het verzoek."
|
1684
1726
|
},
|
@@ -1763,6 +1805,9 @@
|
|
1763
1805
|
"llava:34b": {
|
1764
1806
|
"description": "LLaVA is een multimodaal model dat visuele encoder en Vicuna combineert, voor krachtige visuele en taalbegrip."
|
1765
1807
|
},
|
1808
|
+
"magistral-medium-latest": {
|
1809
|
+
"description": "Magistral Medium 1.1 is een toonaangevend inferentiemodel dat door Mistral AI in juli 2025 is uitgebracht."
|
1810
|
+
},
|
1766
1811
|
"mathstral": {
|
1767
1812
|
"description": "MathΣtral is ontworpen voor wetenschappelijk onderzoek en wiskundige inferentie, biedt effectieve rekencapaciteiten en resultaatinterpretatie."
|
1768
1813
|
},
|
@@ -2094,7 +2139,7 @@
|
|
2094
2139
|
"description": "o1-mini is een snel en kosteneffectief redeneermodel dat is ontworpen voor programmeer-, wiskunde- en wetenschappelijke toepassingen. Dit model heeft een context van 128K en een kennisafkapdatum van oktober 2023."
|
2095
2140
|
},
|
2096
2141
|
"o1-preview": {
|
2097
|
-
"description": "
|
2142
|
+
"description": "Gespecialiseerd in geavanceerde redenering en het oplossen van complexe problemen, waaronder wiskundige en wetenschappelijke taken. Zeer geschikt voor toepassingen die een diepgaand begrip van context en autonome workflows vereisen."
|
2098
2143
|
},
|
2099
2144
|
"o1-pro": {
|
2100
2145
|
"description": "De o1-serie modellen zijn getraind met versterkend leren, kunnen nadenken voordat ze antwoorden en complexe redeneertaken uitvoeren. Het o1-pro model gebruikt meer rekenkracht voor diepgaander denken, waardoor het continu betere antwoorden levert."
|
@@ -2213,8 +2258,14 @@
|
|
2213
2258
|
"qwen-coder-turbo-latest": {
|
2214
2259
|
"description": "Het Tongyi Qianwen codeermodel."
|
2215
2260
|
},
|
2261
|
+
"qwen-flash": {
|
2262
|
+
"description": "De Tongyi Qianwen-serie biedt de snelste en uiterst kostenefficiënte modellen, geschikt voor eenvoudige taken."
|
2263
|
+
},
|
2216
2264
|
"qwen-image": {
|
2217
|
-
"description": "
|
2265
|
+
"description": "Qwen-Image is een veelzijdig beeldgeneratiemodel dat meerdere kunststijlen ondersteunt en uitblinkt in het renderen van complexe tekst, met name het weergeven van Chinese en Engelse tekst. Het model ondersteunt meerregelige lay-outs, tekstgeneratie op paragraafniveau en fijne detaillering, en maakt complexe gemengde tekst-beeldlay-outs mogelijk."
|
2266
|
+
},
|
2267
|
+
"qwen-image-edit": {
|
2268
|
+
"description": "Het Qwen-team heeft een professioneel model voor beeldbewerking uitgebracht dat semantische bewerkingen en visuele aanpassingen ondersteunt. Het kan Chinese en Engelse tekst nauwkeurig bewerken en realiseert hoogwaardige beeldbewerking, zoals stijltransformaties en het roteren van objecten."
|
2218
2269
|
},
|
2219
2270
|
"qwen-long": {
|
2220
2271
|
"description": "Qwen is een grootschalig taalmodel dat lange tekstcontexten ondersteunt, evenals dialoogfunctionaliteit op basis van lange documenten en meerdere documenten."
|
@@ -2241,7 +2292,7 @@
|
|
2241
2292
|
"description": "Qwen is een verbeterde versie van het grootschalige taalmodel dat ondersteuning biedt voor verschillende taalinputs zoals Chinees en Engels."
|
2242
2293
|
},
|
2243
2294
|
"qwen-turbo": {
|
2244
|
-
"description": "
|
2295
|
+
"description": "通义千问 Turbo wordt voortaan niet meer bijgewerkt. We raden aan om over te schakelen naar 通义千问 Flash. 通义千问 is een extreem grootschalig taalmodel dat invoer in het Chinees, Engels en andere talen ondersteunt."
|
2245
2296
|
},
|
2246
2297
|
"qwen-vl-chat-v1": {
|
2247
2298
|
"description": "Qwen VL ondersteunt flexibele interactiemethoden, inclusief meerdere afbeeldingen, meerdere rondes van vraag en antwoord, en creatiecapaciteiten."
|
@@ -2558,9 +2609,13 @@
|
|
2558
2609
|
"step-2x-large": {
|
2559
2610
|
"description": "De nieuwe generatie Step Star beeldgeneratiemodel, gespecialiseerd in beeldgeneratie. Het kan op basis van door gebruikers aangeleverde tekstbeschrijvingen hoogwaardige beelden genereren. Het nieuwe model produceert realistischere texturen en heeft sterkere Chinese en Engelse tekstgeneratiecapaciteiten."
|
2560
2611
|
},
|
2612
|
+
"step-3": {
|
2613
|
+
"description": "Dit model beschikt over een krachtige visuele perceptie en geavanceerde redeneervaardigheden. Het kan nauwkeurig complexe, domeinoverstijgende kennis begrijpen, interdisciplinaire analyses uitvoeren tussen wiskundige en visuele informatie, en diverse visuele analyseproblemen uit het dagelijks leven oplossen."
|
2614
|
+
},
|
2561
2615
|
"step-r1-v-mini": {
|
2562
2616
|
"description": "Dit model is een krachtig redeneringsmodel met sterke beeldbegripcapaciteiten, in staat om beeld- en tekstinformatie te verwerken en tekstinhoud te genereren na diep nadenken. Dit model presteert uitstekend in visuele redenering en heeft eersteklas wiskundige, code- en tekstredeneringscapaciteiten. De contextlengte is 100k."
|
2563
2617
|
},
|
2618
|
+
"stepfun-ai/step3": "Step3 is een geavanceerd multimodaal redeneermodel uitgebracht door StepFun (阶跃星辰). Het is gebouwd op een Mixture-of-Experts (MoE)-architectuur met in totaal 321 miljard (321B) parameters en 38 miljard (38B) actieve parameters. Het model heeft een end-to-end ontwerp dat gericht is op het minimaliseren van decodeerkosten, terwijl het topniveau-prestaties levert bij vision-language redenering. Dankzij de synergie tussen Multi-Matrix Factorized Attention (MFA) en Attention-FFN Decoupling (AFD) behoudt Step3 uitstekende efficiëntie zowel op high-end als low-end accelerators. Tijdens de voortraining verwerkte Step3 meer dan 20 biljoen (20T) teksttokens en 4 biljoen (4T) gecombineerde beeld-tekst-tokens, en bestrijkt daarmee meer dan tien talen. Het model behaalt leidende resultaten onder open-sourcemodellen op verschillende benchmarks, waaronder wiskunde, code en multimodaal.",
|
2564
2619
|
"taichu_llm": {
|
2565
2620
|
"description": "Het Zido Tai Chu-taalmodel heeft een sterke taalbegripcapaciteit en kan tekstcreatie, kennisvragen, codeprogrammering, wiskundige berekeningen, logische redenering, sentimentanalyse, tekstsamenvattingen en meer aan. Het combineert innovatief grote data voortraining met rijke kennis uit meerdere bronnen, door algoritmische technologie continu te verfijnen en voortdurend nieuwe kennis op te nemen uit enorme tekstdata op het gebied van vocabulaire, structuur, grammatica en semantiek, waardoor de modelprestaties voortdurend evolueren. Het biedt gebruikers gemakkelijkere informatie en diensten en een meer intelligente ervaring."
|
2566
2621
|
},
|
@@ -2707,5 +2762,8 @@
|
|
2707
2762
|
},
|
2708
2763
|
"zai-org/GLM-4.5-Air": {
|
2709
2764
|
"description": "GLM-4.5-Air is een basis model speciaal ontworpen voor agenttoepassingen, gebruikmakend van een Mixture-of-Experts (MoE) architectuur. Het is diep geoptimaliseerd voor toolaanroepen, web browsing, software engineering en frontend programmeren, en ondersteunt naadloze integratie met code-agents zoals Claude Code en Roo Code. GLM-4.5 gebruikt een hybride redeneermodus en is geschikt voor complexe redenering en dagelijks gebruik."
|
2765
|
+
},
|
2766
|
+
"zai-org/GLM-4.5V": {
|
2767
|
+
"description": "GLM-4.5V is de nieuwste generatie visueel-taalmodel (VLM) uitgebracht door Zhipu AI (智谱 AI). Het model is gebouwd op het vlaggenschip-tekstmodel GLM-4.5-Air, dat beschikt over in totaal 106 miljard parameters en 12 miljard activatieparameters, en maakt gebruik van een mixture-of-experts (MoE)-architectuur, met als doel uitstekende prestaties te leveren tegen lagere inferentie-kosten. Technisch bouwt GLM-4.5V voort op de lijn van GLM-4.1V-Thinking en introduceert innovaties zoals driedimensionale roterende positiecodering (3D-RoPE), wat het vermogen om driedimensionale ruimtelijke relaties waar te nemen en te redeneren aanzienlijk versterkt. Door optimalisaties tijdens pretraining, gecontroleerde fine-tuning en reinforcement learning is het model in staat om diverse visuele inhoud te verwerken, waaronder afbeeldingen, video's en lange documenten, en behaalde het in 41 openbare multimodale benchmarks topprestaties vergeleken met gelijkwaardige open-sourcemodellen. Daarnaast bevat het model een nieuwe 'denkmodus'-schakelaar waarmee gebruikers flexibel kunnen kiezen tussen snelle respons en diepgaande redenering om efficiëntie en effectiviteit in balans te brengen."
|
2710
2768
|
}
|
2711
2769
|
}
|
@@ -26,6 +26,9 @@
|
|
26
26
|
"bedrock": {
|
27
27
|
"description": "Bedrock is een dienst van Amazon AWS die zich richt op het bieden van geavanceerde AI-taalmodellen en visuele modellen voor bedrijven. De modellenfamilie omvat de Claude-serie van Anthropic, de Llama 3.1-serie van Meta, en meer, met opties variërend van lichtgewicht tot hoge prestaties, en ondersteunt tekstgeneratie, dialogen, beeldverwerking en meer, geschikt voor bedrijfsapplicaties van verschillende schalen en behoeften."
|
28
28
|
},
|
29
|
+
"bfl": {
|
30
|
+
"description": "Een toonaangevend, grensverleggend onderzoeksinstituut voor kunstmatige intelligentie dat de visuele infrastructuur van morgen bouwt."
|
31
|
+
},
|
29
32
|
"cloudflare": {
|
30
33
|
"description": "Voer machine learning-modellen aan, aangedreven door serverloze GPU's, uit op het wereldwijde netwerk van Cloudflare."
|
31
34
|
},
|
@@ -1,4 +1,9 @@
|
|
1
1
|
{
|
2
|
+
"ArgsInput": {
|
3
|
+
"addArgument": "Dodaj parametr",
|
4
|
+
"argumentPlaceholder": "Parametr {{index}}",
|
5
|
+
"enterFirstArgument": "Wprowadź pierwszy parametr..."
|
6
|
+
},
|
2
7
|
"DragUpload": {
|
3
8
|
"dragDesc": "Przeciągnij pliki tutaj, aby przesłać wiele obrazów.",
|
4
9
|
"dragFileDesc": "Przeciągnij obrazy i pliki tutaj, aby przesłać wiele obrazów i plików.",
|
@@ -125,6 +130,12 @@
|
|
125
130
|
},
|
126
131
|
"progress": {
|
127
132
|
"uploadingWithCount": "{{completed}}/{{total}} przesłano"
|
133
|
+
},
|
134
|
+
"validation": {
|
135
|
+
"fileSizeExceeded": "Przekroczono limit rozmiaru pliku",
|
136
|
+
"fileSizeExceededDetail": "{{fileName}} ({{actualSize}}) przekracza maksymalny dozwolony rozmiar {{maxSize}}",
|
137
|
+
"fileSizeExceededMultiple": "{{count}} plików przekracza maksymalny dozwolony rozmiar {{maxSize}}: {{fileList}}",
|
138
|
+
"imageCountExceeded": "Przekroczono dopuszczalną liczbę obrazów"
|
128
139
|
}
|
129
140
|
},
|
130
141
|
"OllamaSetupGuide": {
|
package/locales/pl-PL/error.json
CHANGED
@@ -85,6 +85,17 @@
|
|
85
85
|
"CreateMessageError": "Przykro nam, wiadomość nie została wysłana poprawnie. Proszę skopiować treść i spróbować ponownie, po odświeżeniu strony ta wiadomość nie zostanie zachowana.",
|
86
86
|
"ExceededContextWindow": "Aktualna zawartość żądania przekracza długość, którą model może przetworzyć. Proszę zmniejszyć ilość treści i spróbować ponownie.",
|
87
87
|
"FreePlanLimit": "Jesteś obecnie użytkownikiem darmowej wersji, nie możesz korzystać z tej funkcji. Proszę uaktualnić do planu płatnego, aby kontynuować korzystanie.",
|
88
|
+
"GoogleAIBlockReason": {
|
89
|
+
"BLOCKLIST": "Twoja treść zawiera zabronione słowa. Sprawdź i popraw wprowadzone dane, a następnie spróbuj ponownie.",
|
90
|
+
"IMAGE_SAFETY": "Wygenerowana zawartość obrazu została zablokowana ze względów bezpieczeństwa. Spróbuj zmodyfikować żądanie generowania obrazu.",
|
91
|
+
"LANGUAGE": "Używany język nie jest obecnie obsługiwany. Spróbuj ponownie, używając angielskiego lub innego obsługiwanego języka.",
|
92
|
+
"OTHER": "Treść została zablokowana z nieznanych powodów. Spróbuj sformułować zapytanie inaczej.",
|
93
|
+
"PROHIBITED_CONTENT": "Twoje żądanie może zawierać zabronioną treść. Dostosuj proszę zapytanie, aby było zgodne z zasadami korzystania.",
|
94
|
+
"RECITATION": "Twoja treść została zablokowana z powodu możliwych naruszeń praw autorskich. Spróbuj użyć oryginalnej treści lub sformułować zapytanie inaczej.",
|
95
|
+
"SAFETY": "Twoja treść została zablokowana ze względu na zasady bezpieczeństwa. Spróbuj zmienić treść zapytania, unikając potencjalnie szkodliwych lub nieodpowiednich elementów.",
|
96
|
+
"SPII": "Twoja treść może zawierać wrażliwe dane osobowe. Aby chronić prywatność, usuń powiązane informacje i spróbuj ponownie.",
|
97
|
+
"default": "Treść została zablokowana: {{blockReason}}. Proszę dostosować treść żądania i spróbować ponownie."
|
98
|
+
},
|
88
99
|
"InsufficientQuota": "Przykro nam, limit dla tego klucza został osiągnięty. Proszę sprawdzić saldo konta lub zwiększyć limit klucza i spróbować ponownie.",
|
89
100
|
"InvalidAccessCode": "Nieprawidłowy kod dostępu: Hasło jest nieprawidłowe lub puste. Proszę wprowadzić poprawne hasło dostępu lub dodać niestandardowy klucz API.",
|
90
101
|
"InvalidBedrockCredentials": "Uwierzytelnienie Bedrock nie powiodło się, prosimy sprawdzić AccessKeyId/SecretAccessKey i spróbować ponownie.",
|