@lobehub/chat 1.115.0 → 1.116.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.cursor/rules/add-provider-doc.mdc +183 -0
- package/.env.example +8 -0
- package/.github/workflows/claude.yml +1 -1
- package/.github/workflows/release.yml +3 -3
- package/.github/workflows/test.yml +3 -7
- package/CHANGELOG.md +42 -0
- package/CLAUDE.md +6 -6
- package/Dockerfile +5 -1
- package/Dockerfile.database +5 -1
- package/Dockerfile.pglite +5 -1
- package/changelog/v1.json +14 -0
- package/docs/development/basic/setup-development.mdx +10 -13
- package/docs/development/basic/setup-development.zh-CN.mdx +9 -12
- package/docs/development/database-schema.dbml +44 -0
- package/docs/self-hosting/environment-variables/model-provider.mdx +27 -2
- package/docs/self-hosting/environment-variables/model-provider.zh-CN.mdx +27 -2
- package/docs/usage/providers/bfl.mdx +68 -0
- package/docs/usage/providers/bfl.zh-CN.mdx +67 -0
- package/locales/ar/components.json +11 -0
- package/locales/ar/error.json +11 -0
- package/locales/ar/models.json +64 -4
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/components.json +11 -0
- package/locales/bg-BG/error.json +11 -0
- package/locales/bg-BG/models.json +64 -4
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/components.json +11 -0
- package/locales/de-DE/error.json +11 -12
- package/locales/de-DE/models.json +64 -4
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/components.json +6 -0
- package/locales/en-US/error.json +11 -12
- package/locales/en-US/models.json +64 -4
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/components.json +11 -0
- package/locales/es-ES/error.json +11 -0
- package/locales/es-ES/models.json +64 -6
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/components.json +11 -0
- package/locales/fa-IR/error.json +11 -0
- package/locales/fa-IR/models.json +64 -4
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/components.json +11 -0
- package/locales/fr-FR/error.json +11 -12
- package/locales/fr-FR/models.json +64 -4
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/components.json +11 -0
- package/locales/it-IT/error.json +11 -0
- package/locales/it-IT/models.json +64 -4
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/components.json +11 -0
- package/locales/ja-JP/error.json +11 -12
- package/locales/ja-JP/models.json +64 -4
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/components.json +11 -0
- package/locales/ko-KR/error.json +11 -12
- package/locales/ko-KR/models.json +64 -6
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/components.json +11 -0
- package/locales/nl-NL/error.json +11 -0
- package/locales/nl-NL/models.json +62 -4
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/components.json +11 -0
- package/locales/pl-PL/error.json +11 -0
- package/locales/pl-PL/models.json +64 -4
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/components.json +11 -0
- package/locales/pt-BR/error.json +11 -0
- package/locales/pt-BR/models.json +64 -4
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/components.json +11 -0
- package/locales/ru-RU/error.json +11 -0
- package/locales/ru-RU/models.json +64 -4
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/components.json +11 -0
- package/locales/tr-TR/error.json +11 -0
- package/locales/tr-TR/models.json +64 -4
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/components.json +11 -0
- package/locales/vi-VN/error.json +11 -0
- package/locales/vi-VN/models.json +64 -4
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/components.json +6 -0
- package/locales/zh-CN/error.json +11 -0
- package/locales/zh-CN/models.json +64 -4
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/components.json +11 -0
- package/locales/zh-TW/error.json +11 -12
- package/locales/zh-TW/models.json +64 -6
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +1 -1
- package/packages/database/migrations/0030_add_group_chat.sql +36 -0
- package/packages/database/migrations/meta/0030_snapshot.json +6417 -0
- package/packages/database/migrations/meta/_journal.json +7 -0
- package/packages/database/src/core/migrations.json +19 -0
- package/packages/database/src/models/__tests__/topic.test.ts +3 -1
- package/packages/database/src/repositories/tableViewer/index.test.ts +1 -1
- package/packages/database/src/schemas/chatGroup.ts +98 -0
- package/packages/database/src/schemas/index.ts +1 -0
- package/packages/database/src/schemas/message.ts +4 -1
- package/packages/database/src/schemas/relations.ts +26 -0
- package/packages/database/src/schemas/topic.ts +2 -0
- package/packages/database/src/types/chatGroup.ts +9 -0
- package/packages/database/src/utils/idGenerator.ts +1 -0
- package/packages/model-runtime/src/google/index.ts +3 -0
- package/packages/model-runtime/src/qwen/createImage.test.ts +0 -19
- package/packages/model-runtime/src/qwen/createImage.ts +1 -27
- package/packages/model-runtime/src/utils/modelParse.ts +17 -8
- package/packages/model-runtime/src/utils/streams/google-ai.ts +26 -14
- package/packages/types/src/aiModel.ts +2 -1
- package/src/config/aiModels/google.ts +22 -1
- package/src/config/aiModels/qwen.ts +2 -2
- package/src/config/aiModels/vertexai.ts +22 -0
- package/src/features/FileViewer/Renderer/PDF/index.tsx +2 -2
- package/.cursor/rules/debug.mdc +0 -193
@@ -332,12 +332,21 @@
|
|
332
332
|
"Qwen/Qwen3-30B-A3B-Instruct-2507": {
|
333
333
|
"description": "Qwen3-30B-A3B-Instruct-2507 نسخه بهروزرسانی شده مدل غیرتفکری Qwen3-30B-A3B است. این یک مدل متخصص ترکیبی (MoE) با مجموع ۳۰.۵ میلیارد پارامتر و ۳.۳ میلیارد پارامتر فعال است. این مدل در جنبههای مختلف بهبودهای کلیدی داشته است، از جمله افزایش قابل توجه در پیروی از دستورالعملها، استدلال منطقی، درک متن، ریاضیات، علوم، برنامهنویسی و استفاده از ابزارها. همچنین، پیشرفت قابل توجهی در پوشش دانش چندزبانه و تطابق بهتر با ترجیحات کاربران در وظایف ذهنی و باز دارد، که منجر به تولید پاسخهای مفیدتر و متون با کیفیت بالاتر میشود. علاوه بر این، توانایی درک متنهای بلند این مدل تا ۲۵۶ هزار توکن افزایش یافته است. این مدل فقط از حالت غیرتفکری پشتیبانی میکند و خروجی آن شامل برچسبهای `<think></think>` نخواهد بود."
|
334
334
|
},
|
335
|
+
"Qwen/Qwen3-30B-A3B-Thinking-2507": {
|
336
|
+
"description": "Qwen3-30B-A3B-Thinking-2507 توسط تیم Tongyi Qianwen شرکت علیبابا بهعنوان جدیدترین مدل «تفکر» از سری Qwen3 منتشر شده است. این مدل که یک مدل ترکیبی از متخصصان (MoE) با مجموع 30.5 میلیارد پارامتر و 3.3 میلیارد پارامتر فعالشونده است، بر ارتقای توانایی پردازش وظایف پیچیده تمرکز دارد. این مدل در معیارهای علمی نیازمند تخصص انسانی—از جمله استدلال منطقی، ریاضیات، علوم و برنامهنویسی—بهبود قابلتوجهی در عملکرد نشان داده است. همچنین توانمندیهای عمومی آن در پیروی از دستورالعملها، استفاده از ابزارها، تولید متن و همسویی با ترجیحهای انسانی نیز بهسرعت تقویت شدهاند. مدل بهطور ذاتی از درک بافتهای طولانی تا 256K پشتیبانی میکند و قابل گسترش تا 1,000,000 توکن است. این نسخه بهطور ویژه برای «حالت تفکر» طراحی شده است تا از طریق استدلال گامبهگام دقیق مسائل بسیار پیچیده را حل کند و قابلیتهای عامل (Agent) آن نیز درخشان است."
|
337
|
+
},
|
335
338
|
"Qwen/Qwen3-32B": {
|
336
339
|
"description": "Qwen3 یک مدل بزرگ جدید با تواناییهای بهبود یافته است که در استدلال، عمومی، نمایندگی و چند زبانی به سطح پیشرفته صنعت دست یافته و از تغییر حالت تفکر پشتیبانی میکند."
|
337
340
|
},
|
338
341
|
"Qwen/Qwen3-8B": {
|
339
342
|
"description": "Qwen3 یک مدل بزرگ جدید با تواناییهای بهبود یافته است که در استدلال، عمومی، نمایندگی و چند زبانی به سطح پیشرفته صنعت دست یافته و از تغییر حالت تفکر پشتیبانی میکند."
|
340
343
|
},
|
344
|
+
"Qwen/Qwen3-Coder-30B-A3B-Instruct": {
|
345
|
+
"description": "Qwen3-Coder-30B-A3B-Instruct یک مدل کدنویسی از مجموعه Qwen3 است که توسط تیم Tongyi Qianwen شرکت علیبابا توسعه یافته است. بهعنوان یک مدل پالایششده و بهینهشده، این مدل در حالی که عملکرد و کارایی بالایی را حفظ میکند، بر بهبود توانمندیهای پردازش کد متمرکز شده است. این مدل در وظایف پیچیدهای مانند برنامهنویسی عاملمحور (Agentic Coding)، خودکارسازی عملیات مرورگر و فراخوانی ابزارها، نسبت به مدلهای متنباز مزایای عملکرد چشمگیری از خود نشان میدهد. این مدل بهصورت بومی از زمینههای متنی طولانی تا 256K توکن پشتیبانی میکند و قابل گسترش تا 1M توکن است، که امکان درک و پردازش در سطح مخازن کد را بهبود میبخشد. علاوه بر این، این مدل پشتیبانی قدرتمندی برای کدنویسی عاملی در پلتفرمهایی مانند Qwen Code و CLINE فراهم میآورد و فرمت ویژهای برای فراخوانی توابع طراحی شده است."
|
346
|
+
},
|
347
|
+
"Qwen/Qwen3-Coder-480B-A35B-Instruct": {
|
348
|
+
"description": "Qwen3-Coder-480B-A35B-Instruct مدلی برای برنامهنویسی است که توسط علیبابا منتشر شده و تا کنون بیشترین قابلیتهای عاملمحور (Agentic) را داراست. این مدل یک مدل ترکیب متخصصان (Mixture of Experts - MoE) با حدود 480 میلیارد پارامتر کل و 35 میلیارد پارامتر فعال است که تعادلی میان کارایی و عملکرد برقرار میکند. این مدل بهصورت بومی از طول زمینه 256K (حدود 260 هزار) توکن پشتیبانی میکند و با استفاده از روشهای برونیابی مانند YaRN میتواند تا 1,000,000 توکن گسترش یابد، که آن را قادر میسازد مخازن کد بزرگ و وظایف پیچیده برنامهنویسی را پردازش کند. Qwen3-Coder برای جریانهای کاری کدنویسی عاملمحور طراحی شده است؛ نه تنها میتواند کد تولید کند، بلکه قادر است بهصورت خودکار با ابزارها و محیطهای توسعه تعامل نماید تا مسائل پیچیده برنامهنویسی را حل کند. در چندین بنچمارک مربوط به کدنویسی و وظایف عامل، این مدل در میان مدلهای متنباز در سطح برتر قرار گرفته و عملکرد آن با مدلهای پیشرو مانند Claude Sonnet 4 قابل مقایسه است."
|
349
|
+
},
|
341
350
|
"Qwen2-72B-Instruct": {
|
342
351
|
"description": "Qwen2 جدیدترین سری مدلهای Qwen است که از 128k زمینه پشتیبانی میکند. در مقایسه با بهترین مدلهای متنباز فعلی، Qwen2-72B در درک زبان طبیعی، دانش، کد، ریاضی و چندزبانگی به طور قابل توجهی از مدلهای پیشرو فعلی فراتر رفته است."
|
343
352
|
},
|
@@ -1103,12 +1112,27 @@
|
|
1103
1112
|
"flux-dev": {
|
1104
1113
|
"description": "FLUX.1 [dev] یک مدل وزن باز و پالایش شده متنباز برای کاربردهای غیرتجاری است. این مدل کیفیت تصویر و پیروی از دستورالعمل را نزدیک به نسخه حرفهای FLUX حفظ کرده و در عین حال کارایی اجرایی بالاتری دارد. نسبت به مدلهای استاندارد با اندازه مشابه، بهرهوری منابع بهتری دارد."
|
1105
1114
|
},
|
1115
|
+
"flux-kontext-max": {
|
1116
|
+
"description": "پیشرفتهترین فناوری تولید و ویرایش تصاویر مبتنی بر زمینه — ترکیب متن و تصویر برای دستیابی به نتایجی دقیق و منسجم."
|
1117
|
+
},
|
1118
|
+
"flux-kontext-pro": {
|
1119
|
+
"description": "پیشرفتهترین تولید و ویرایش تصاویر زمینهای — ترکیب متن و تصویر برای بهدست آوردن نتایجی دقیق و منسجم."
|
1120
|
+
},
|
1106
1121
|
"flux-kontext/dev": {
|
1107
1122
|
"description": "مدل FLUX.1 متمرکز بر وظایف ویرایش تصویر، با پشتیبانی از ورودیهای متنی و تصویری."
|
1108
1123
|
},
|
1109
1124
|
"flux-merged": {
|
1110
1125
|
"description": "مدل FLUX.1-merged ترکیبی از ویژگیهای عمیق کشف شده در مرحله توسعه \"DEV\" و مزایای اجرای سریع \"Schnell\" است. این اقدام باعث افزایش مرزهای عملکرد مدل و گسترش دامنه کاربردهای آن شده است."
|
1111
1126
|
},
|
1127
|
+
"flux-pro": {
|
1128
|
+
"description": "پیشرفتهترین مدل تولید تصاویر مبتنی بر هوش مصنوعی برای مصارف تجاری — کیفیت تصویر بینظیر و تنوع خروجی چشمگیر."
|
1129
|
+
},
|
1130
|
+
"flux-pro-1.1": {
|
1131
|
+
"description": "نسخهٔ ارتقاء یافتهٔ مدل تولید تصویر حرفهای مبتنی بر هوش مصنوعی — کیفیت تصویر برجسته و توانایی دقیق در پیروی از پرومپتها را ارائه میدهد."
|
1132
|
+
},
|
1133
|
+
"flux-pro-1.1-ultra": {
|
1134
|
+
"description": "تولید تصاویر هوش مصنوعی با رزولوشن فوقالعاده — پشتیبانی از خروجی ۴ مگاپیکسلی و تولید تصاویر با وضوح بالا در کمتر از ۱۰ ثانیه."
|
1135
|
+
},
|
1112
1136
|
"flux-pro/kontext": {
|
1113
1137
|
"description": "FLUX.1 Kontext [pro] قادر است متن و تصاویر مرجع را به عنوان ورودی پردازش کند و ویرایشهای موضعی هدفمند و تغییرات پیچیده در کل صحنه را بهصورت یکپارچه انجام دهد."
|
1114
1138
|
},
|
@@ -1193,6 +1217,9 @@
|
|
1193
1217
|
"gemini-2.5-flash": {
|
1194
1218
|
"description": "Gemini 2.5 Flash مدل با بهترین نسبت قیمت به کارایی گوگل است که امکانات جامع را ارائه میدهد."
|
1195
1219
|
},
|
1220
|
+
"gemini-2.5-flash-image-preview": {
|
1221
|
+
"description": "Gemini 2.5 Flash Image Preview آخرین، سریعترین و کارآمدترین مدل چندمودالی بومی گوگل است که به شما امکان میدهد از طریق گفتگو تصاویر را تولید و ویرایش کنید."
|
1222
|
+
},
|
1196
1223
|
"gemini-2.5-flash-lite": {
|
1197
1224
|
"description": "Gemini 2.5 Flash-Lite کوچکترین و مقرونبهصرفهترین مدل گوگل است که برای استفاده در مقیاس وسیع طراحی شده است."
|
1198
1225
|
},
|
@@ -1295,6 +1322,9 @@
|
|
1295
1322
|
"glm-4.5-x": {
|
1296
1323
|
"description": "نسخه فوقالعاده سریع GLM-4.5 که در کنار قدرت عملکرد، سرعت تولید تا 100 توکن در ثانیه را ارائه میدهد."
|
1297
1324
|
},
|
1325
|
+
"glm-4.5v": {
|
1326
|
+
"description": "نسل جدید مدل استنتاج بصری Zhipu مبتنی بر معماری MOE، با مجموع 106B پارامتر و 12B پارامتر فعال، در انواع بنچمارکها به SOTA در میان مدلهای چندمودال متنباز همرده در سطح جهانی دست یافته است و وظایف متداولی مانند درک تصویر، ویدئو، اسناد و تعامل با رابطهای گرافیکی (GUI) را پوشش میدهد."
|
1327
|
+
},
|
1298
1328
|
"glm-4v": {
|
1299
1329
|
"description": "GLM-4V قابلیتهای قدرتمندی در درک و استدلال تصویری ارائه میدهد و از وظایف مختلف بصری پشتیبانی میکند."
|
1300
1330
|
},
|
@@ -1434,7 +1464,7 @@
|
|
1434
1464
|
"description": "GPT-4.1 mini تعادلی بین هوش، سرعت و هزینه ارائه میدهد و آن را به مدلی جذاب در بسیاری از موارد استفاده تبدیل میکند."
|
1435
1465
|
},
|
1436
1466
|
"gpt-4.5-preview": {
|
1437
|
-
"description": "
|
1467
|
+
"description": "GPT-4.5-preview یک مدل عمومی و جدید است که دانش گستردهای از جهان دارد و درک عمیقتری از نیت کاربران ارائه میدهد؛ در انجام وظایف خلاقانه و برنامهریزی بهعنوان عامل (agent planning) توانمند است. دانش این مدل تا اکتبر ۲۰۲۳ بهروز است."
|
1438
1468
|
},
|
1439
1469
|
"gpt-4o": {
|
1440
1470
|
"description": "پیشرفتهترین مدل چندوجهی در سری GPT-4 OpenAI که میتواند ورودیهای متنی و تصویری را پردازش کند."
|
@@ -1637,9 +1667,18 @@
|
|
1637
1667
|
"image-01-live": {
|
1638
1668
|
"description": "مدل تولید تصویر با نمایش ظریف که از تولید تصویر از متن پشتیبانی میکند و امکان تنظیم سبک نقاشی را دارد."
|
1639
1669
|
},
|
1670
|
+
"imagen-4.0-fast-generate-001": {
|
1671
|
+
"description": "سری مدلهای متنبهتصویر Imagen، نسل چهارم، نسخهٔ سریع"
|
1672
|
+
},
|
1673
|
+
"imagen-4.0-generate-001": {
|
1674
|
+
"description": "سری مدلهای Imagen نسل چهارم برای تولید تصویر از متن"
|
1675
|
+
},
|
1640
1676
|
"imagen-4.0-generate-preview-06-06": {
|
1641
1677
|
"description": "سری مدل متن به تصویر نسل چهارم Imagen"
|
1642
1678
|
},
|
1679
|
+
"imagen-4.0-ultra-generate-001": {
|
1680
|
+
"description": "نسخهٔ اولترا از مجموعهٔ مدلهای متنبهتصویر Imagen نسل چهارم"
|
1681
|
+
},
|
1643
1682
|
"imagen-4.0-ultra-generate-preview-06-06": {
|
1644
1683
|
"description": "نسخه اولترا سری مدل متن به تصویر نسل چهارم Imagen"
|
1645
1684
|
},
|
@@ -1679,6 +1718,9 @@
|
|
1679
1718
|
"kimi-k2-0711-preview": {
|
1680
1719
|
"description": "kimi-k2 یک مدل پایه با معماری MoE است که دارای تواناییهای بسیار قوی در کدنویسی و عاملسازی است، با مجموع یک تریلیون پارامتر و 32 میلیارد پارامتر فعال. در تستهای معیار عملکرد در حوزههای دانش عمومی، برنامهنویسی، ریاضیات و عاملها، مدل K2 عملکردی فراتر از سایر مدلهای متنباز اصلی دارد."
|
1681
1720
|
},
|
1721
|
+
"kimi-k2-turbo-preview": {
|
1722
|
+
"description": "kimi-k2 یک مدل پایه با معماری MoE است که دارای توانمندیهای بسیار قوی در حوزهٔ برنامهنویسی و عاملها (Agent) میباشد. مجموع پارامترها 1T و پارامترهای فعالشده 32B است. در آزمونهای بنچمارک در دستههای اصلی مانند استدلال دانش عمومی، برنامهنویسی، ریاضیات و Agent، عملکرد مدل K2 از سایر مدلهای متنباز مرسوم پیشی گرفته است."
|
1723
|
+
},
|
1682
1724
|
"kimi-latest": {
|
1683
1725
|
"description": "محصول دستیار هوشمند کیمی از جدیدترین مدل بزرگ کیمی استفاده میکند و ممکن است شامل ویژگیهای ناپایدار باشد. از درک تصویر پشتیبانی میکند و بهطور خودکار بر اساس طول متن درخواست، مدلهای 8k/32k/128k را بهعنوان مدل محاسبه انتخاب میکند."
|
1684
1726
|
},
|
@@ -1763,6 +1805,9 @@
|
|
1763
1805
|
"llava:34b": {
|
1764
1806
|
"description": "LLaVA یک مدل چندوجهی است که رمزگذار بصری و Vicuna را برای درک قدرتمند زبان و تصویر ترکیب میکند."
|
1765
1807
|
},
|
1808
|
+
"magistral-medium-latest": {
|
1809
|
+
"description": "Magistral Medium 1.1 یک مدل استنتاج پیشرفته است که توسط Mistral AI در ژوئیهٔ ۲۰۲۵ منتشر شد."
|
1810
|
+
},
|
1766
1811
|
"mathstral": {
|
1767
1812
|
"description": "MathΣtral بهطور ویژه برای تحقیقات علمی و استدلالهای ریاضی طراحی شده است و توانایی محاسباتی مؤثر و تفسیر نتایج را ارائه میدهد."
|
1768
1813
|
},
|
@@ -2094,7 +2139,7 @@
|
|
2094
2139
|
"description": "کوچکتر و سریعتر از o1-preview، با ۸۰٪ هزینه کمتر، و عملکرد خوب در تولید کد و عملیات با زمینههای کوچک."
|
2095
2140
|
},
|
2096
2141
|
"o1-preview": {
|
2097
|
-
"description": "
|
2142
|
+
"description": "متمرکز بر استدلال پیشرفته و حل مسائل پیچیده، از جمله مسائل ریاضی و علمی. بسیار مناسب برای برنامههایی که نیاز به درک عمیقِ زمینه و جریانهای کاری خودگردان دارند."
|
2098
2143
|
},
|
2099
2144
|
"o1-pro": {
|
2100
2145
|
"description": "مدلهای سری o1 با آموزش تقویت یادگیری قادرند پیش از پاسخدهی تفکر کنند و وظایف استدلال پیچیده را انجام دهند. مدل o1-pro از منابع محاسباتی بیشتری استفاده میکند تا تفکر عمیقتری داشته باشد و پاسخهای با کیفیتتری ارائه دهد."
|
@@ -2213,8 +2258,14 @@
|
|
2213
2258
|
"qwen-coder-turbo-latest": {
|
2214
2259
|
"description": "مدل کدنویسی تونگی چیانون."
|
2215
2260
|
},
|
2261
|
+
"qwen-flash": {
|
2262
|
+
"description": "مدلهای سری «通义千问» با سریعترین پاسخدهی و هزینهای بسیار پایین، مناسب برای وظایف ساده."
|
2263
|
+
},
|
2216
2264
|
"qwen-image": {
|
2217
|
-
"description": "مدل
|
2265
|
+
"description": "Qwen-Image یک مدل عمومی تولید تصویر است که از سبکهای هنری متنوعی پشتیبانی میکند و بهویژه در رندر متنهای پیچیده تبحر دارد، بهخصوص رندر متنهای چینی و انگلیسی. این مدل از چینش چندخطی، تولید متن در سطح پاراگراف و بازنمایی جزئیات ریز پشتیبانی میکند و قادر است طراحیهای پیچیده ترکیبی متن و تصویر را تحقق بخشد."
|
2266
|
+
},
|
2267
|
+
"qwen-image-edit": {
|
2268
|
+
"description": "مدل ویرایش تصویر حرفهای منتشرشده توسط تیم Qwen که از ویرایش معنایی و ویرایش ظاهر پشتیبانی میکند، قادر به ویرایش دقیق متنهای چینی و انگلیسی بوده و امکان تبدیل سبک، چرخش اشیاء و دیگر ویرایشهای تصویری با کیفیت بالا را فراهم میآورد."
|
2218
2269
|
},
|
2219
2270
|
"qwen-long": {
|
2220
2271
|
"description": "مدل زبانی بسیار بزرگ Tongyi Qianwen که از متنهای طولانی و همچنین قابلیت مکالمه در چندین سناریو مانند اسناد طولانی و چندین سند پشتیبانی میکند."
|
@@ -2241,7 +2292,7 @@
|
|
2241
2292
|
"description": "مدل زبان بسیار بزرگ Qwen در نسخه تقویت شده، از ورودی زبانهای مختلف مانند چینی و انگلیسی پشتیبانی میکند."
|
2242
2293
|
},
|
2243
2294
|
"qwen-turbo": {
|
2244
|
-
"description": "مدل
|
2295
|
+
"description": "نسخهٔ Turbo مدل «通义千问» از این پس بهروزرسانی نخواهد شد؛ پیشنهاد میشود آن را با «通义千问 Flash» جایگزین کنید. 通义千问 یک مدل زبانی فوقالعاده بزرگ است که از ورودیهایی به زبانهای چینی، انگلیسی و دیگر زبانها پشتیبانی میکند."
|
2245
2296
|
},
|
2246
2297
|
"qwen-vl-chat-v1": {
|
2247
2298
|
"description": "مدل Qwen-VL از روشهای تعاملی انعطافپذیر پشتیبانی میکند، از جمله قابلیتهای چندتصویری، پرسش و پاسخ چندمرحلهای و خلاقیت."
|
@@ -2558,9 +2609,15 @@
|
|
2558
2609
|
"step-2x-large": {
|
2559
2610
|
"description": "مدل نسل جدید Step Star برای تولید تصویر است که بر تولید تصویر بر اساس توصیف متنی کاربر تمرکز دارد و تصاویر با کیفیت بالا تولید میکند. مدل جدید تصاویر با بافت واقعیتر و توانایی تولید متنهای چینی و انگلیسی قویتر دارد."
|
2560
2611
|
},
|
2612
|
+
"step-3": {
|
2613
|
+
"description": "این مدل از تواناییهای قوی در ادراک بصری و استدلال پیچیده برخوردار است. میتواند بهدقت مفاهیم پیچیده میانرشتهای را درک کند، تحلیلهای تقاطعی اطلاعات ریاضی و بصری را انجام دهد و به انواع مسائل تحلیل بصری در زندگی روزمره پاسخ دهد."
|
2614
|
+
},
|
2561
2615
|
"step-r1-v-mini": {
|
2562
2616
|
"description": "این مدل یک مدل استدلال بزرگ با تواناییهای قوی در درک تصویر است که میتواند اطلاعات تصویری و متنی را پردازش کند و پس از تفکر عمیق، متن تولید کند. این مدل در زمینه استدلال بصری عملکرد برجستهای دارد و همچنین دارای تواناییهای ریاضی، کدنویسی و استدلال متنی در سطح اول است. طول متن زمینهای 100k است."
|
2563
2617
|
},
|
2618
|
+
"stepfun-ai/step3": {
|
2619
|
+
"description": "Step3 یک مدل استنتاج چندمودالی پیشرفته است که توسط شرکت StepFun منتشر شده است. این مدل بر پایهٔ معماری مخلوط متخصصان (MoE) با مجموع 321 میلیارد پارامتر و 38 میلیارد پارامتر فعال ساخته شده است. طراحی آن انتهابهانتها است و هدفش کمینهسازی هزینهٔ رمزگشایی در حالیست که در استدلال بینایی-زبانی عملکردی در سطح برتر ارائه میدهد. از طریق طراحی همافزا مبتنی بر توجه چند-ماتریسی تجزیهشده (MFA) و جداسازی توجه و FFN (AFD)، Step3 قادر است کارایی برجستهای را هم روی شتابدهندههای ردهپرچمدار و هم روی شتابدهندههای سطح پایین حفظ کند. در مرحلهٔ پیشآموزش، Step3 بیش از 20T توکن متنی و 4T توکن ترکیبی تصویر-متن را پردازش کرده و بیش از ده زبان را پوشش داده است. این مدل در بنچمارکهای متعددی از جمله ریاضیات، کدنویسی و چندمودال در میان مدلهای متنباز در جایگاه پیشرو قرار گرفته است."
|
2620
|
+
},
|
2564
2621
|
"taichu_llm": {
|
2565
2622
|
"description": "Taichu 2.0 بر اساس حجم زیادی از دادههای با کیفیت بالا آموزش دیده است و دارای تواناییهای قویتری در درک متن، تولید محتوا، پرسش و پاسخ در مکالمه و غیره میباشد."
|
2566
2623
|
},
|
@@ -2707,5 +2764,8 @@
|
|
2707
2764
|
},
|
2708
2765
|
"zai-org/GLM-4.5-Air": {
|
2709
2766
|
"description": "GLM-4.5-Air یک مدل پایه طراحی شده برای کاربردهای عامل هوشمند است که از معماری Mixture-of-Experts استفاده میکند. این مدل در زمینههای فراخوانی ابزار، مرور وب، مهندسی نرمافزار و برنامهنویسی فرانتاند بهینهسازی عمیق شده و از ادغام بیوقفه با عاملهای کد مانند Claude Code و Roo Code پشتیبانی میکند. GLM-4.5 از حالت استدلال ترکیبی بهره میبرد و میتواند در سناریوهای استدلال پیچیده و استفاده روزمره به خوبی عمل کند."
|
2767
|
+
},
|
2768
|
+
"zai-org/GLM-4.5V": {
|
2769
|
+
"description": "GLM-4.5V نسل جدیدی از مدلهای زبان-بینایی (VLM) است که توسط Zhipu AI (智谱 AI) منتشر شده. این مدل بر پایهٔ مدل متنی پرچمدار GLM-4.5-Air ساخته شده که دارای 106 میلیارد پارامتر کل و 12 میلیارد پارامتر فعالسازی است؛ از معماری متخصصان ترکیبی (MoE) بهره میبرد و هدفش ارائهٔ عملکرد برجسته با هزینهٔ استدلال کمتر است. از منظر فناوری، GLM-4.5V راهبرد GLM-4.1V-Thinking را ادامه میدهد و نوآوریهایی مانند کدگذاری موقعیت چرخشی سهبعدی (3D-RoPE) را معرفی کرده که بهطور چشمگیری درک و استدلال نسبتهای فضایی سهبعدی را تقویت میکند. با بهینهسازی در مراحل پیشآموزش، ریزتنظیم نظارتی و یادگیری تقویتی، این مدل قادر به پردازش انواع محتواهای بصری از جمله تصویر، ویدیو و اسناد بلند شده و در 41 معیار چندوجهی عمومی به سطح برتر مدلهای متنباز همرده دست یافته است. علاوه بر این، یک سوئیچ «حالت تفکر» به مدل افزوده شده که به کاربران اجازه میدهد بین پاسخدهی سریع و استدلال عمیق بهصورت انعطافپذیر انتخاب کنند تا تعادل بین کارایی و کیفیت برقرار شود."
|
2710
2770
|
}
|
2711
2771
|
}
|
@@ -26,6 +26,9 @@
|
|
26
26
|
"bedrock": {
|
27
27
|
"description": "Bedrock یک سرویس ارائه شده توسط آمازون AWS است که بر ارائه مدلهای پیشرفته زبان AI و مدلهای بصری برای شرکتها تمرکز دارد. خانواده مدلهای آن شامل سری Claude از Anthropic، سری Llama 3.1 از Meta و غیره است که از مدلهای سبک تا مدلهای با عملکرد بالا را پوشش میدهد و از وظایفی مانند تولید متن، مکالمه و پردازش تصویر پشتیبانی میکند. این سرویس برای برنامههای شرکتی با مقیاسها و نیازهای مختلف مناسب است."
|
28
28
|
},
|
29
|
+
"bfl": {
|
30
|
+
"description": "آزمایشگاهی پیشرو در پژوهشهای پیشرفتهٔ هوش مصنوعی که زیرساختهای بصریِ فردا را میسازد."
|
31
|
+
},
|
29
32
|
"cloudflare": {
|
30
33
|
"description": "مدلهای یادگیری ماشین مبتنی بر GPU بدون سرور را در شبکه جهانی Cloudflare اجرا کنید."
|
31
34
|
},
|
@@ -1,4 +1,9 @@
|
|
1
1
|
{
|
2
|
+
"ArgsInput": {
|
3
|
+
"addArgument": "Ajouter un paramètre",
|
4
|
+
"argumentPlaceholder": "Paramètre {{index}}",
|
5
|
+
"enterFirstArgument": "Saisissez le premier paramètre..."
|
6
|
+
},
|
2
7
|
"DragUpload": {
|
3
8
|
"dragDesc": "Faites glisser des fichiers ici, plusieurs images peuvent être téléchargées.",
|
4
9
|
"dragFileDesc": "Faites glisser des images et des fichiers ici, plusieurs images et fichiers peuvent être téléchargés.",
|
@@ -125,6 +130,12 @@
|
|
125
130
|
},
|
126
131
|
"progress": {
|
127
132
|
"uploadingWithCount": "{{completed}}/{{total}} téléchargées"
|
133
|
+
},
|
134
|
+
"validation": {
|
135
|
+
"fileSizeExceeded": "Taille du fichier dépassée",
|
136
|
+
"fileSizeExceededDetail": "{{fileName}} ({{actualSize}}) dépasse la taille maximale autorisée de {{maxSize}}",
|
137
|
+
"fileSizeExceededMultiple": "{{count}} fichiers dépassent la taille maximale autorisée de {{maxSize}} : {{fileList}}",
|
138
|
+
"imageCountExceeded": "Limite du nombre d'images dépassée"
|
128
139
|
}
|
129
140
|
},
|
130
141
|
"OllamaSetupGuide": {
|
package/locales/fr-FR/error.json
CHANGED
@@ -85,6 +85,17 @@
|
|
85
85
|
"CreateMessageError": "Désolé, le message n'a pas pu être envoyé correctement. Veuillez copier le contenu et le renvoyer. Ce message ne sera pas conservé après le rafraîchissement de la page.",
|
86
86
|
"ExceededContextWindow": "Le contenu de la demande actuelle dépasse la longueur que le modèle peut traiter. Veuillez réduire la quantité de contenu et réessayer.",
|
87
87
|
"FreePlanLimit": "Vous êtes actuellement un utilisateur gratuit et ne pouvez pas utiliser cette fonction. Veuillez passer à un plan payant pour continuer à l'utiliser.",
|
88
|
+
"GoogleAIBlockReason": {
|
89
|
+
"BLOCKLIST": "Votre contenu contient des termes interdits. Veuillez vérifier et modifier votre saisie, puis réessayez.",
|
90
|
+
"IMAGE_SAFETY": "La génération de l'image a été bloquée pour des raisons de sécurité. Veuillez modifier votre requête de génération d'image et réessayer.",
|
91
|
+
"LANGUAGE": "La langue que vous utilisez n'est pas prise en charge pour le moment. Veuillez réessayer en anglais ou dans une autre langue prise en charge.",
|
92
|
+
"OTHER": "Le contenu a été bloqué pour une raison inconnue. Veuillez reformuler votre demande et réessayer.",
|
93
|
+
"PROHIBITED_CONTENT": "Votre requête pourrait contenir du contenu prohibé. Veuillez ajuster votre demande pour qu'elle respecte les règles d'utilisation.",
|
94
|
+
"RECITATION": "Votre contenu a été bloqué car il pourrait enfreindre des droits d'auteur. Veuillez utiliser du contenu original ou reformuler votre demande.",
|
95
|
+
"SAFETY": "Votre contenu a été bloqué en raison des règles de sécurité. Veuillez modifier votre demande pour éviter tout contenu potentiellement dangereux ou inapproprié.",
|
96
|
+
"SPII": "Votre contenu pourrait contenir des informations personnelles sensibles. Pour protéger la confidentialité, supprimez ces informations sensibles puis réessayez.",
|
97
|
+
"default": "Contenu bloqué : {{blockReason}}。请调整您的请求内容后重试。"
|
98
|
+
},
|
88
99
|
"InsufficientQuota": "Désolé, le quota de cette clé a atteint sa limite. Veuillez vérifier si le solde de votre compte est suffisant ou augmenter le quota de la clé avant de réessayer.",
|
89
100
|
"InvalidAccessCode": "Le mot de passe est incorrect ou vide. Veuillez saisir le mot de passe d'accès correct ou ajouter une clé API personnalisée.",
|
90
101
|
"InvalidBedrockCredentials": "L'authentification Bedrock a échoué, veuillez vérifier AccessKeyId/SecretAccessKey et réessayer",
|
@@ -113,18 +124,6 @@
|
|
113
124
|
"PluginServerError": "Erreur de réponse du serveur du plugin. Veuillez vérifier le fichier de description du plugin, la configuration du plugin ou la mise en œuvre côté serveur en fonction des informations d'erreur ci-dessous",
|
114
125
|
"PluginSettingsInvalid": "Ce plugin doit être correctement configuré avant de pouvoir être utilisé. Veuillez vérifier votre configuration",
|
115
126
|
"ProviderBizError": "Erreur de service {{provider}}. Veuillez vérifier les informations suivantes ou réessayer.",
|
116
|
-
|
117
|
-
"GoogleAIBlockReason": {
|
118
|
-
"BLOCKLIST": "Votre contenu contient des termes interdits. Veuillez vérifier et modifier votre saisie avant de réessayer.",
|
119
|
-
"IMAGE_SAFETY": "Le contenu d'image généré a été bloqué pour des raisons de sécurité. Veuillez essayer de modifier votre demande de génération d'image.",
|
120
|
-
"LANGUAGE": "La langue que vous avez utilisée n'est pas supportée. Veuillez essayer d'utiliser l'anglais ou d'autres langues supportées.",
|
121
|
-
"OTHER": "Le contenu a été bloqué pour des raisons inconnues. Veuillez essayer de reformuler votre demande ou contacter le support technique.",
|
122
|
-
"PROHIBITED_CONTENT": "Votre contenu peut contenir des types de contenu interdits. Veuillez ajuster votre demande pour vous assurer qu'elle respecte les directives d'utilisation.",
|
123
|
-
"RECITATION": "Votre contenu a été bloqué en raison de problèmes potentiels de droits d'auteur. Veuillez essayer d'utiliser du contenu original ou de reformuler votre demande.",
|
124
|
-
"SAFETY": "Votre contenu a été bloqué en raison des politiques de sécurité. Veuillez essayer d'ajuster votre demande pour éviter du contenu potentiellement nuisible ou inapproprié.",
|
125
|
-
"SPII": "Votre contenu peut contenir des informations personnelles identifiables sensibles. Pour la protection de la vie privée, veuillez supprimer les informations sensibles pertinentes avant de réessayer.",
|
126
|
-
"default": "Contenu bloqué : {{blockReason}}. Veuillez ajuster le contenu de votre demande et réessayer."
|
127
|
-
},
|
128
127
|
"QuotaLimitReached": "Désolé, l'utilisation actuelle des tokens ou le nombre de requêtes a atteint la limite de quota de cette clé. Veuillez augmenter le quota de cette clé ou réessayer plus tard.",
|
129
128
|
"StreamChunkError": "Erreur de parsing du bloc de message de la requête en streaming. Veuillez vérifier si l'API actuelle respecte les normes ou contacter votre fournisseur d'API pour des conseils.",
|
130
129
|
"SubscriptionKeyMismatch": "Nous sommes désolés, en raison d'une défaillance système occasionnelle, l'utilisation actuelle de l'abonnement est temporairement inactive. Veuillez cliquer sur le bouton ci-dessous pour rétablir votre abonnement ou nous contacter par e-mail pour obtenir de l'aide.",
|
@@ -332,12 +332,21 @@
|
|
332
332
|
"Qwen/Qwen3-30B-A3B-Instruct-2507": {
|
333
333
|
"description": "Qwen3-30B-A3B-Instruct-2507 est une version mise à jour du modèle non réflexif Qwen3-30B-A3B. Il s'agit d'un modèle d'experts mixtes (MoE) avec un total de 30,5 milliards de paramètres et 3,3 milliards de paramètres activés. Ce modèle présente des améliorations clés dans plusieurs domaines, notamment une amélioration significative de la conformité aux instructions, du raisonnement logique, de la compréhension du texte, des mathématiques, des sciences, du codage et de l'utilisation des outils. Par ailleurs, il réalise des progrès substantiels dans la couverture des connaissances multilingues à longue traîne et s'aligne mieux avec les préférences des utilisateurs dans les tâches subjectives et ouvertes, ce qui lui permet de générer des réponses plus utiles et des textes de meilleure qualité. De plus, sa capacité de compréhension des textes longs a été étendue à 256K. Ce modèle ne prend en charge que le mode non réflexif et ne génère pas de balises `<think></think>` dans ses sorties."
|
334
334
|
},
|
335
|
+
"Qwen/Qwen3-30B-A3B-Thinking-2507": {
|
336
|
+
"description": "Qwen3-30B-A3B-Thinking-2507 est le dernier modèle de « réflexion » de la série Qwen3 publié par l'équipe Tongyi Qianwen d'Alibaba. En tant que modèle Mixture-of-Experts (MoE) comptant 30,5 milliards de paramètres au total et 3,3 milliards de paramètres d'activation, il est axé sur l'amélioration des capacités de traitement des tâches complexes. Le modèle présente des gains de performance significatifs sur des benchmarks académiques en raisonnement logique, mathématiques, sciences, programmation et autres tâches requérant une expertise humaine. Parallèlement, ses capacités générales — respect des instructions, utilisation d'outils, génération de texte et alignement sur les préférences humaines — ont été nettement renforcées. Il prend nativement en charge une compréhension de contextes longs de 256K tokens, extensible jusqu'à 1 million de tokens. Cette version, conçue pour le « mode réflexion », vise à résoudre des tâches hautement complexes via un raisonnement détaillé pas à pas ; ses capacités d'agent sont également remarquables."
|
337
|
+
},
|
335
338
|
"Qwen/Qwen3-32B": {
|
336
339
|
"description": "Qwen3 est un nouveau modèle de Tongyi Qianwen avec des capacités considérablement améliorées, atteignant des niveaux de pointe dans plusieurs compétences clés telles que le raisonnement, l'agent et le multilingue, et prenant en charge le changement de mode de pensée."
|
337
340
|
},
|
338
341
|
"Qwen/Qwen3-8B": {
|
339
342
|
"description": "Qwen3 est un nouveau modèle de Tongyi Qianwen avec des capacités considérablement améliorées, atteignant des niveaux de pointe dans plusieurs compétences clés telles que le raisonnement, l'agent et le multilingue, et prenant en charge le changement de mode de pensée."
|
340
343
|
},
|
344
|
+
"Qwen/Qwen3-Coder-30B-A3B-Instruct": {
|
345
|
+
"description": "Qwen3-Coder-30B-A3B-Instruct est un modèle de code de la série Qwen3 développé par l'équipe Tongyi Qianwen d'Alibaba. En tant que modèle épuré et optimisé, il se concentre sur l'amélioration des capacités de traitement du code tout en conservant des performances et une grande efficacité. Ce modèle affiche un avantage de performance notable parmi les modèles open source pour des tâches complexes telles que la programmation agentique (Agentic Coding), l'automatisation de navigateurs et l'appel d'outils. Il prend en charge nativement un contexte long de 256K tokens et peut être étendu jusqu'à 1M tokens, permettant une meilleure compréhension et gestion des bases de code à l'échelle du dépôt. De plus, ce modèle fournit un solide support d'encodage par agents pour des plateformes comme Qwen Code et CLINE, et intègre un format dédié d'appel de fonctions."
|
346
|
+
},
|
347
|
+
"Qwen/Qwen3-Coder-480B-A35B-Instruct": {
|
348
|
+
"description": "Qwen3-Coder-480B-A35B-Instruct est un modèle de code publié par Alibaba, et à ce jour le plus avancé en termes de capacités d'agent (agentic). Il s'agit d'un modèle MoE (Mixture-of-Experts) disposant de 480 milliards de paramètres au total et de 35 milliards de paramètres activés, offrant un équilibre entre efficacité et performance. Le modèle prend en charge nativement une longueur de contexte de 256K (environ 260 000) tokens et peut être étendu jusqu'à 1 million de tokens via des méthodes d'extrapolation telles que YaRN, ce qui lui permet de traiter de vastes bases de code et des tâches de programmation complexes. Qwen3-Coder a été conçu pour des flux de travail de codage pilotés par des agents : il ne se contente pas de générer du code, il peut aussi interagir de manière autonome avec les outils et environnements de développement pour résoudre des problèmes de programmation complexes. Sur plusieurs benchmarks de codage et de tâches agent, ce modèle atteint un niveau de premier plan parmi les modèles open source, ses performances rivalisant avec celles de modèles de pointe comme Claude Sonnet 4."
|
349
|
+
},
|
341
350
|
"Qwen2-72B-Instruct": {
|
342
351
|
"description": "Qwen2 est la dernière série du modèle Qwen, prenant en charge un contexte de 128k. Comparé aux meilleurs modèles open source actuels, Qwen2-72B surpasse de manière significative les modèles leaders dans des domaines tels que la compréhension du langage naturel, les connaissances, le code, les mathématiques et le multilinguisme."
|
343
352
|
},
|
@@ -1103,12 +1112,27 @@
|
|
1103
1112
|
"flux-dev": {
|
1104
1113
|
"description": "FLUX.1 [dev] est un modèle open source affiné destiné à un usage non commercial. Il maintient une qualité d'image et une adhérence aux instructions proches de la version professionnelle FLUX, tout en offrant une efficacité d'exécution supérieure. Par rapport aux modèles standards de même taille, il est plus efficace en termes d'utilisation des ressources."
|
1105
1114
|
},
|
1115
|
+
"flux-kontext-max": {
|
1116
|
+
"description": "Génération et édition d’images contextuelles de pointe — combinant texte et image pour des résultats précis et cohérents."
|
1117
|
+
},
|
1118
|
+
"flux-kontext-pro": {
|
1119
|
+
"description": "Génération et édition d'images contextuelles de pointe — alliant texte et image pour des résultats précis et cohérents."
|
1120
|
+
},
|
1106
1121
|
"flux-kontext/dev": {
|
1107
1122
|
"description": "Modèle FLUX.1 spécialisé dans les tâches d'édition d'images, prenant en charge les entrées texte et image."
|
1108
1123
|
},
|
1109
1124
|
"flux-merged": {
|
1110
1125
|
"description": "Le modèle FLUX.1-merged combine les caractéristiques approfondies explorées durant la phase de développement « DEV » et les avantages d'exécution rapide représentés par « Schnell ». Cette fusion améliore non seulement les performances du modèle mais étend également son champ d'application."
|
1111
1126
|
},
|
1127
|
+
"flux-pro": {
|
1128
|
+
"description": "Modèle d'IA commercial de génération d'images de premier ordre — qualité d'image inégalée et grande diversité de rendus."
|
1129
|
+
},
|
1130
|
+
"flux-pro-1.1": {
|
1131
|
+
"description": "Modèle professionnel amélioré de génération d'images par IA — offrant une qualité d'image exceptionnelle et une grande fidélité aux instructions de prompt."
|
1132
|
+
},
|
1133
|
+
"flux-pro-1.1-ultra": {
|
1134
|
+
"description": "Génération d'images IA en ultra haute résolution — prise en charge d'une sortie jusqu'à 4 mégapixels, création d'images ultra-nettes en moins de 10 secondes."
|
1135
|
+
},
|
1112
1136
|
"flux-pro/kontext": {
|
1113
1137
|
"description": "FLUX.1 Kontext [pro] peut traiter du texte et des images de référence en entrée, réalisant de manière fluide des modifications locales ciblées ainsi que des transformations complexes de scènes globales."
|
1114
1138
|
},
|
@@ -1193,6 +1217,9 @@
|
|
1193
1217
|
"gemini-2.5-flash": {
|
1194
1218
|
"description": "Gemini 2.5 Flash est le modèle le plus rentable de Google, offrant des fonctionnalités complètes."
|
1195
1219
|
},
|
1220
|
+
"gemini-2.5-flash-image-preview": {
|
1221
|
+
"description": "Gemini 2.5 Flash Image Preview est le modèle multimodal natif le plus récent, le plus rapide et le plus performant de Google. Il vous permet de générer et d’éditer des images via des échanges conversationnels."
|
1222
|
+
},
|
1196
1223
|
"gemini-2.5-flash-lite": {
|
1197
1224
|
"description": "Gemini 2.5 Flash-Lite est le modèle le plus petit et le plus rentable de Google, conçu pour une utilisation à grande échelle."
|
1198
1225
|
},
|
@@ -1295,6 +1322,9 @@
|
|
1295
1322
|
"glm-4.5-x": {
|
1296
1323
|
"description": "Version ultra-rapide de GLM-4.5, combinant une forte performance avec une vitesse de génération atteignant 100 tokens par seconde."
|
1297
1324
|
},
|
1325
|
+
"glm-4.5v": {
|
1326
|
+
"description": "La nouvelle génération de modèle d'inférence visuelle de Zhipu, basée sur l'architecture MOE (Mixture-of-Experts), avec un total de 106 milliards de paramètres et 12 milliards de paramètres d'activation, atteint l'état de l'art (SOTA) parmi les modèles multimodaux open source de même niveau au niveau mondial sur divers benchmarks, couvrant les tâches courantes telles que la compréhension d'images, de vidéos, de documents et d'interfaces graphiques (GUI)."
|
1327
|
+
},
|
1298
1328
|
"glm-4v": {
|
1299
1329
|
"description": "GLM-4V offre de puissantes capacités de compréhension et de raisonnement d'image, prenant en charge diverses tâches visuelles."
|
1300
1330
|
},
|
@@ -1434,7 +1464,7 @@
|
|
1434
1464
|
"description": "GPT-4.1 mini offre un équilibre entre intelligence, rapidité et coût, ce qui en fait un modèle attrayant pour de nombreux cas d'utilisation."
|
1435
1465
|
},
|
1436
1466
|
"gpt-4.5-preview": {
|
1437
|
-
"description": "
|
1467
|
+
"description": "GPT-4.5-preview est le modèle général le plus récent, doté d'une vaste connaissance du monde et d'une meilleure compréhension des intentions des utilisateurs ; il excelle dans les tâches créatives et la planification d'agents. Les connaissances de ce modèle sont à jour jusqu'en octobre 2023."
|
1438
1468
|
},
|
1439
1469
|
"gpt-4o": {
|
1440
1470
|
"description": "ChatGPT-4o est un modèle dynamique, mis à jour en temps réel pour rester à jour avec la dernière version. Il combine une compréhension et une génération de langage puissantes, adapté à des scénarios d'application à grande échelle, y compris le service client, l'éducation et le support technique."
|
@@ -1637,9 +1667,18 @@
|
|
1637
1667
|
"image-01-live": {
|
1638
1668
|
"description": "Modèle de génération d'images avec rendu détaillé, supportant la génération d'images à partir de texte avec réglage du style artistique."
|
1639
1669
|
},
|
1670
|
+
"imagen-4.0-fast-generate-001": {
|
1671
|
+
"description": "Imagen, série de modèles de 4e génération pour la création d'images à partir de texte — version Fast"
|
1672
|
+
},
|
1673
|
+
"imagen-4.0-generate-001": {
|
1674
|
+
"description": "Série de modèles Imagen de 4ᵉ génération pour la génération d'images à partir de texte"
|
1675
|
+
},
|
1640
1676
|
"imagen-4.0-generate-preview-06-06": {
|
1641
1677
|
"description": "Série de modèles de génération d'images à partir de texte Imagen 4e génération"
|
1642
1678
|
},
|
1679
|
+
"imagen-4.0-ultra-generate-001": {
|
1680
|
+
"description": "Série de modèles Imagen 4e génération pour la génération d'images à partir de texte — version Ultra"
|
1681
|
+
},
|
1643
1682
|
"imagen-4.0-ultra-generate-preview-06-06": {
|
1644
1683
|
"description": "Série de modèles de génération d'images à partir de texte Imagen 4e génération version Ultra"
|
1645
1684
|
},
|
@@ -1679,6 +1718,9 @@
|
|
1679
1718
|
"kimi-k2-0711-preview": {
|
1680
1719
|
"description": "kimi-k2 est un modèle de base à architecture MoE doté de capacités exceptionnelles en code et Agent, avec un total de 1T de paramètres et 32B de paramètres activés. Dans les tests de performance sur les principales catégories telles que le raisonnement général, la programmation, les mathématiques et les Agents, le modèle K2 surpasse les autres modèles open source majeurs."
|
1681
1720
|
},
|
1721
|
+
"kimi-k2-turbo-preview": {
|
1722
|
+
"description": "kimi-k2 est un modèle de base à architecture MoE doté de capacités remarquables en programmation et en agents autonomes, avec 1T de paramètres au total et 32B de paramètres activés. Dans les principaux tests de référence couvrant le raisonnement général, la programmation, les mathématiques et les agents, le modèle K2 surpasse les autres modèles open source majeurs."
|
1723
|
+
},
|
1682
1724
|
"kimi-latest": {
|
1683
1725
|
"description": "Le produit d'assistant intelligent Kimi utilise le dernier modèle Kimi, qui peut inclure des fonctionnalités encore instables. Il prend en charge la compréhension des images et choisit automatiquement le modèle de facturation 8k/32k/128k en fonction de la longueur du contexte de la demande."
|
1684
1726
|
},
|
@@ -1763,6 +1805,9 @@
|
|
1763
1805
|
"llava:34b": {
|
1764
1806
|
"description": "LLaVA est un modèle multimodal combinant un encodeur visuel et Vicuna, utilisé pour une compréhension puissante du visuel et du langage."
|
1765
1807
|
},
|
1808
|
+
"magistral-medium-latest": {
|
1809
|
+
"description": "Magistral Medium 1.1 est un modèle d'inférence de pointe publié par Mistral AI en juillet 2025."
|
1810
|
+
},
|
1766
1811
|
"mathstral": {
|
1767
1812
|
"description": "MathΣtral est conçu pour la recherche scientifique et le raisonnement mathématique, offrant des capacités de calcul efficaces et des interprétations de résultats."
|
1768
1813
|
},
|
@@ -2094,7 +2139,7 @@
|
|
2094
2139
|
"description": "o1-mini est un modèle de raisonnement rapide et économique conçu pour les applications de programmation, de mathématiques et de sciences. Ce modèle dispose d'un contexte de 128K et d'une date limite de connaissance en octobre 2023."
|
2095
2140
|
},
|
2096
2141
|
"o1-preview": {
|
2097
|
-
"description": "
|
2142
|
+
"description": "Axé sur le raisonnement avancé et la résolution de problèmes complexes, y compris des tâches mathématiques et scientifiques. Particulièrement adapté aux applications nécessitant une compréhension approfondie du contexte et des flux de travail autonomes."
|
2098
2143
|
},
|
2099
2144
|
"o1-pro": {
|
2100
2145
|
"description": "La série de modèles o1 est entraînée par apprentissage par renforcement, capable de réfléchir avant de répondre et d'exécuter des tâches de raisonnement complexes. Le modèle o1-pro utilise plus de ressources de calcul pour une réflexion plus approfondie, fournissant ainsi des réponses de qualité supérieure de manière continue."
|
@@ -2213,8 +2258,14 @@
|
|
2213
2258
|
"qwen-coder-turbo-latest": {
|
2214
2259
|
"description": "Le modèle de code Tongyi Qwen."
|
2215
2260
|
},
|
2261
|
+
"qwen-flash": {
|
2262
|
+
"description": "La série Tongyi Qianwen propose les modèles les plus rapides et les plus économiques, adaptés aux tâches simples."
|
2263
|
+
},
|
2216
2264
|
"qwen-image": {
|
2217
|
-
"description": "
|
2265
|
+
"description": "Qwen-Image est un modèle polyvalent de génération d'images, prenant en charge de nombreux styles artistiques et excelling particulièrement dans le rendu de textes complexes, notamment en chinois et en anglais. Le modèle gère les mises en page multi‑lignes, la génération de texte au niveau des paragraphes et le rendu de détails fins, permettant de créer des compositions complexes mêlant texte et image."
|
2266
|
+
},
|
2267
|
+
"qwen-image-edit": {
|
2268
|
+
"description": "Un modèle professionnel d'édition d'images publié par l'équipe Qwen, prenant en charge l'édition sémantique et l'édition de l'apparence, capable d'éditer avec précision les textes en chinois et en anglais, et permettant la conversion de styles, la rotation d'objets et d'autres opérations d'édition d'images de haute qualité."
|
2218
2269
|
},
|
2219
2270
|
"qwen-long": {
|
2220
2271
|
"description": "Qwen est un modèle de langage à grande échelle, prenant en charge un contexte de texte long, ainsi que des fonctionnalités de dialogue basées sur des documents longs et multiples."
|
@@ -2241,7 +2292,7 @@
|
|
2241
2292
|
"description": "Version améliorée du modèle de langage à grande échelle Qwen, prenant en charge des entrées dans différentes langues telles que le chinois et l'anglais."
|
2242
2293
|
},
|
2243
2294
|
"qwen-turbo": {
|
2244
|
-
"description": "Le modèle de langage à grande échelle
|
2295
|
+
"description": "Le modèle 通义千问 Turbo ne sera plus mis à jour ; il est recommandé de le remplacer par 通义千问 Flash. 通义千问 est un modèle de langage à très grande échelle, prenant en charge des entrées en chinois, en anglais et dans d'autres langues."
|
2245
2296
|
},
|
2246
2297
|
"qwen-vl-chat-v1": {
|
2247
2298
|
"description": "Qwen VL prend en charge des modes d'interaction flexibles, y compris la capacité de poser des questions à plusieurs images, des dialogues multi-tours, et plus encore."
|
@@ -2558,9 +2609,15 @@
|
|
2558
2609
|
"step-2x-large": {
|
2559
2610
|
"description": "Modèle de nouvelle génération Step Star, spécialisé dans la génération d'images, capable de créer des images de haute qualité à partir de descriptions textuelles fournies par l'utilisateur. Le nouveau modèle produit des images avec une texture plus réaliste et une meilleure capacité de génération de texte en chinois et en anglais."
|
2560
2611
|
},
|
2612
|
+
"step-3": {
|
2613
|
+
"description": "Ce modèle dispose d'une puissante perception visuelle et d'une capacité de raisonnement complexe. Il peut accomplir avec précision la compréhension de connaissances complexes inter-domaines, l'analyse croisée d'informations mathématiques et visuelles, ainsi que divers problèmes d'analyse visuelle rencontrés dans la vie quotidienne."
|
2614
|
+
},
|
2561
2615
|
"step-r1-v-mini": {
|
2562
2616
|
"description": "Ce modèle est un grand modèle de raisonnement avec de puissantes capacités de compréhension d'image, capable de traiter des informations visuelles et textuelles, produisant du texte après une réflexion approfondie. Ce modèle se distingue dans le domaine du raisonnement visuel, tout en possédant des capacités de raisonnement mathématique, de code et de texte de premier plan. La longueur du contexte est de 100k."
|
2563
2617
|
},
|
2618
|
+
"stepfun-ai/step3": {
|
2619
|
+
"description": "Step3 est un modèle de raisonnement multimodal de pointe publié par StepFun (阶跃星辰). Il est construit sur une architecture Mixture-of-Experts (MoE) comportant 321 milliards de paramètres au total et 38 milliards de paramètres d'activation. Le modèle adopte une conception bout en bout visant à minimiser le coût de décodage tout en offrant des performances de premier plan en raisonnement visuel et linguistique. Grâce à la conception synergique de l'attention par décomposition multi-matrice (MFA) et du découplage attention‑FFN (AFD), Step3 conserve une grande efficacité aussi bien sur des accélérateurs haut de gamme que sur des accélérateurs d'entrée de gamme. Lors de la pré‑entraînement, Step3 a traité plus de 20 000 milliards de tokens textuels et 4 000 milliards de tokens mixtes image‑texte, couvrant une dizaine de langues. Le modèle atteint des niveaux de référence parmi les meilleurs des modèles open source sur plusieurs benchmarks, notamment en mathématiques, en code et en multimodalité."
|
2620
|
+
},
|
2564
2621
|
"taichu_llm": {
|
2565
2622
|
"description": "Le modèle de langage Taichu Zidong possède une forte capacité de compréhension linguistique ainsi que des compétences en création de texte, questions-réponses, programmation, calcul mathématique, raisonnement logique, analyse des sentiments, et résumé de texte. Il combine de manière innovante le pré-entraînement sur de grandes données avec des connaissances riches provenant de multiples sources, en perfectionnant continuellement la technologie algorithmique et en intégrant de nouvelles connaissances sur le vocabulaire, la structure, la grammaire et le sens à partir de vastes ensembles de données textuelles, offrant aux utilisateurs des informations et des services plus pratiques ainsi qu'une expérience plus intelligente."
|
2566
2623
|
},
|
@@ -2707,5 +2764,8 @@
|
|
2707
2764
|
},
|
2708
2765
|
"zai-org/GLM-4.5-Air": {
|
2709
2766
|
"description": "GLM-4.5-Air est un modèle de base conçu pour les applications d'agents intelligents, utilisant une architecture Mixture-of-Experts (MoE). Il est profondément optimisé pour l'appel d'outils, la navigation web, l'ingénierie logicielle et la programmation front-end, supportant une intégration transparente avec des agents de code tels que Claude Code et Roo Code. GLM-4.5 utilise un mode d'inférence hybride, adapté à des scénarios variés allant du raisonnement complexe à l'usage quotidien."
|
2767
|
+
},
|
2768
|
+
"zai-org/GLM-4.5V": {
|
2769
|
+
"description": "GLM-4.5V est la dernière génération de modèle langage-visuel (VLM) publiée par Zhipu AI. Ce modèle est construit sur le modèle texte phare GLM-4.5-Air, qui compte 106 milliards de paramètres au total et 12 milliards de paramètres d'activation, et adopte une architecture de mixture d'experts (MoE) afin d'obtenir des performances excellentes à un coût d'inférence réduit. Sur le plan technique, GLM-4.5V prolonge la lignée de GLM-4.1V-Thinking et introduit des innovations telles que l'encodage de position rotatif en 3D (3D-RoPE), renforçant de façon significative la perception et le raisonnement des relations spatiales tridimensionnelles. Grâce aux optimisations apportées lors des phases de pré-entraînement, d'affinage supervisé et d'apprentissage par renforcement, ce modèle est capable de traiter divers contenus visuels, notamment des images, des vidéos et des documents longs, et atteint un niveau de pointe parmi les modèles open source de la même catégorie sur 41 benchmarks multimodaux publics. De plus, le modèle intègre un interrupteur « mode réflexion » permettant aux utilisateurs de choisir de manière flexible entre réponses rapides et raisonnement approfondi, pour équilibrer efficacité et qualité."
|
2710
2770
|
}
|
2711
2771
|
}
|
@@ -26,6 +26,9 @@
|
|
26
26
|
"bedrock": {
|
27
27
|
"description": "Bedrock est un service proposé par Amazon AWS, axé sur la fourniture de modèles linguistiques et visuels avancés pour les entreprises. Sa famille de modèles comprend la série Claude d'Anthropic, la série Llama 3.1 de Meta, etc., offrant une variété d'options allant des modèles légers aux modèles haute performance, prenant en charge des tâches telles que la génération de texte, les dialogues et le traitement d'images, adaptées aux applications d'entreprise de différentes tailles et besoins."
|
28
28
|
},
|
29
|
+
"bfl": {
|
30
|
+
"description": "Un laboratoire de recherche en intelligence artificielle à la pointe, construisant l'infrastructure visuelle de demain."
|
31
|
+
},
|
29
32
|
"cloudflare": {
|
30
33
|
"description": "Exécutez des modèles d'apprentissage automatique alimentés par GPU sans serveur sur le réseau mondial de Cloudflare."
|
31
34
|
},
|
@@ -1,4 +1,9 @@
|
|
1
1
|
{
|
2
|
+
"ArgsInput": {
|
3
|
+
"addArgument": "Aggiungi parametro",
|
4
|
+
"argumentPlaceholder": "Parametro {{index}}",
|
5
|
+
"enterFirstArgument": "Inserisci il primo parametro..."
|
6
|
+
},
|
2
7
|
"DragUpload": {
|
3
8
|
"dragDesc": "Trascina i file qui, supporta il caricamento di più immagini.",
|
4
9
|
"dragFileDesc": "Trascina immagini e file qui, supporta il caricamento di più immagini e file.",
|
@@ -125,6 +130,12 @@
|
|
125
130
|
},
|
126
131
|
"progress": {
|
127
132
|
"uploadingWithCount": "{{completed}}/{{total}} caricati"
|
133
|
+
},
|
134
|
+
"validation": {
|
135
|
+
"fileSizeExceeded": "Dimensione del file superiore al limite consentito",
|
136
|
+
"fileSizeExceededDetail": "{{fileName}} ({{actualSize}}) supera la dimensione massima consentita di {{maxSize}}",
|
137
|
+
"fileSizeExceededMultiple": "{{count}} file superano la dimensione massima consentita di {{maxSize}}: {{fileList}}",
|
138
|
+
"imageCountExceeded": "Numero di immagini superiore al limite consentito"
|
128
139
|
}
|
129
140
|
},
|
130
141
|
"OllamaSetupGuide": {
|
package/locales/it-IT/error.json
CHANGED
@@ -85,6 +85,17 @@
|
|
85
85
|
"CreateMessageError": "Ci dispiace, il messaggio non è stato inviato correttamente. Si prega di copiare il contenuto e inviarlo nuovamente. Dopo aver aggiornato la pagina, questo messaggio non verrà conservato.",
|
86
86
|
"ExceededContextWindow": "Il contenuto della richiesta attuale supera la lunghezza che il modello può gestire. Si prega di ridurre la quantità di contenuto e riprovare.",
|
87
87
|
"FreePlanLimit": "Attualmente sei un utente gratuito e non puoi utilizzare questa funzione. Per favore, passa a un piano a pagamento per continuare.",
|
88
|
+
"GoogleAIBlockReason": {
|
89
|
+
"BLOCKLIST": "Il tuo contenuto contiene termini proibiti. Controlla e modifica l'input, quindi riprova.",
|
90
|
+
"IMAGE_SAFETY": "La generazione dell'immagine è stata bloccata per motivi di sicurezza. Prova a modificare la richiesta di generazione dell'immagine.",
|
91
|
+
"LANGUAGE": "La lingua utilizzata non è attualmente supportata. Prova a ripetere la richiesta in inglese o in un'altra lingua supportata.",
|
92
|
+
"OTHER": "Il contenuto è stato bloccato per un motivo non specificato. Prova a riformulare la tua richiesta.",
|
93
|
+
"PROHIBITED_CONTENT": "La tua richiesta potrebbe contenere contenuti vietati. Modifica la richiesta per assicurarti che rispetti le norme d'uso.",
|
94
|
+
"RECITATION": "Il contenuto è stato bloccato perché potrebbe coinvolgere questioni di copyright. Prova a utilizzare contenuti originali o a riformulare la richiesta.",
|
95
|
+
"SAFETY": "Il contenuto è stato bloccato per motivi di sicurezza. Modifica la richiesta evitando contenuti potenzialmente dannosi o inappropriati.",
|
96
|
+
"SPII": "Il tuo contenuto potrebbe contenere informazioni personali sensibili. Per proteggere la privacy, rimuovi tali informazioni e riprova.",
|
97
|
+
"default": "Contenuto bloccato: {{blockReason}}. Modifica la tua richiesta e riprova."
|
98
|
+
},
|
88
99
|
"InsufficientQuota": "Ci dispiace, la quota per questa chiave ha raggiunto il limite. Si prega di controllare il saldo dell'account o di aumentare la quota della chiave e riprovare.",
|
89
100
|
"InvalidAccessCode": "Password incorrect or empty, please enter the correct access password, or add a custom API Key",
|
90
101
|
"InvalidBedrockCredentials": "Autenticazione Bedrock non riuscita, controlla AccessKeyId/SecretAccessKey e riprova",
|