@lobehub/chat 1.115.0 → 1.116.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (115) hide show
  1. package/.cursor/rules/add-provider-doc.mdc +183 -0
  2. package/.env.example +8 -0
  3. package/.github/workflows/claude.yml +1 -1
  4. package/.github/workflows/release.yml +3 -3
  5. package/.github/workflows/test.yml +3 -7
  6. package/CHANGELOG.md +42 -0
  7. package/CLAUDE.md +6 -6
  8. package/Dockerfile +5 -1
  9. package/Dockerfile.database +5 -1
  10. package/Dockerfile.pglite +5 -1
  11. package/changelog/v1.json +14 -0
  12. package/docs/development/basic/setup-development.mdx +10 -13
  13. package/docs/development/basic/setup-development.zh-CN.mdx +9 -12
  14. package/docs/development/database-schema.dbml +44 -0
  15. package/docs/self-hosting/environment-variables/model-provider.mdx +27 -2
  16. package/docs/self-hosting/environment-variables/model-provider.zh-CN.mdx +27 -2
  17. package/docs/usage/providers/bfl.mdx +68 -0
  18. package/docs/usage/providers/bfl.zh-CN.mdx +67 -0
  19. package/locales/ar/components.json +11 -0
  20. package/locales/ar/error.json +11 -0
  21. package/locales/ar/models.json +64 -4
  22. package/locales/ar/providers.json +3 -0
  23. package/locales/bg-BG/components.json +11 -0
  24. package/locales/bg-BG/error.json +11 -0
  25. package/locales/bg-BG/models.json +64 -4
  26. package/locales/bg-BG/providers.json +3 -0
  27. package/locales/de-DE/components.json +11 -0
  28. package/locales/de-DE/error.json +11 -12
  29. package/locales/de-DE/models.json +64 -4
  30. package/locales/de-DE/providers.json +3 -0
  31. package/locales/en-US/components.json +6 -0
  32. package/locales/en-US/error.json +11 -12
  33. package/locales/en-US/models.json +64 -4
  34. package/locales/en-US/providers.json +3 -0
  35. package/locales/es-ES/components.json +11 -0
  36. package/locales/es-ES/error.json +11 -0
  37. package/locales/es-ES/models.json +64 -6
  38. package/locales/es-ES/providers.json +3 -0
  39. package/locales/fa-IR/components.json +11 -0
  40. package/locales/fa-IR/error.json +11 -0
  41. package/locales/fa-IR/models.json +64 -4
  42. package/locales/fa-IR/providers.json +3 -0
  43. package/locales/fr-FR/components.json +11 -0
  44. package/locales/fr-FR/error.json +11 -12
  45. package/locales/fr-FR/models.json +64 -4
  46. package/locales/fr-FR/providers.json +3 -0
  47. package/locales/it-IT/components.json +11 -0
  48. package/locales/it-IT/error.json +11 -0
  49. package/locales/it-IT/models.json +64 -4
  50. package/locales/it-IT/providers.json +3 -0
  51. package/locales/ja-JP/components.json +11 -0
  52. package/locales/ja-JP/error.json +11 -12
  53. package/locales/ja-JP/models.json +64 -4
  54. package/locales/ja-JP/providers.json +3 -0
  55. package/locales/ko-KR/components.json +11 -0
  56. package/locales/ko-KR/error.json +11 -12
  57. package/locales/ko-KR/models.json +64 -6
  58. package/locales/ko-KR/providers.json +3 -0
  59. package/locales/nl-NL/components.json +11 -0
  60. package/locales/nl-NL/error.json +11 -0
  61. package/locales/nl-NL/models.json +62 -4
  62. package/locales/nl-NL/providers.json +3 -0
  63. package/locales/pl-PL/components.json +11 -0
  64. package/locales/pl-PL/error.json +11 -0
  65. package/locales/pl-PL/models.json +64 -4
  66. package/locales/pl-PL/providers.json +3 -0
  67. package/locales/pt-BR/components.json +11 -0
  68. package/locales/pt-BR/error.json +11 -0
  69. package/locales/pt-BR/models.json +64 -4
  70. package/locales/pt-BR/providers.json +3 -0
  71. package/locales/ru-RU/components.json +11 -0
  72. package/locales/ru-RU/error.json +11 -0
  73. package/locales/ru-RU/models.json +64 -4
  74. package/locales/ru-RU/providers.json +3 -0
  75. package/locales/tr-TR/components.json +11 -0
  76. package/locales/tr-TR/error.json +11 -0
  77. package/locales/tr-TR/models.json +64 -4
  78. package/locales/tr-TR/providers.json +3 -0
  79. package/locales/vi-VN/components.json +11 -0
  80. package/locales/vi-VN/error.json +11 -0
  81. package/locales/vi-VN/models.json +64 -4
  82. package/locales/vi-VN/providers.json +3 -0
  83. package/locales/zh-CN/components.json +6 -0
  84. package/locales/zh-CN/error.json +11 -0
  85. package/locales/zh-CN/models.json +64 -4
  86. package/locales/zh-CN/providers.json +3 -0
  87. package/locales/zh-TW/components.json +11 -0
  88. package/locales/zh-TW/error.json +11 -12
  89. package/locales/zh-TW/models.json +64 -6
  90. package/locales/zh-TW/providers.json +3 -0
  91. package/package.json +1 -1
  92. package/packages/database/migrations/0030_add_group_chat.sql +36 -0
  93. package/packages/database/migrations/meta/0030_snapshot.json +6417 -0
  94. package/packages/database/migrations/meta/_journal.json +7 -0
  95. package/packages/database/src/core/migrations.json +19 -0
  96. package/packages/database/src/models/__tests__/topic.test.ts +3 -1
  97. package/packages/database/src/repositories/tableViewer/index.test.ts +1 -1
  98. package/packages/database/src/schemas/chatGroup.ts +98 -0
  99. package/packages/database/src/schemas/index.ts +1 -0
  100. package/packages/database/src/schemas/message.ts +4 -1
  101. package/packages/database/src/schemas/relations.ts +26 -0
  102. package/packages/database/src/schemas/topic.ts +2 -0
  103. package/packages/database/src/types/chatGroup.ts +9 -0
  104. package/packages/database/src/utils/idGenerator.ts +1 -0
  105. package/packages/model-runtime/src/google/index.ts +3 -0
  106. package/packages/model-runtime/src/qwen/createImage.test.ts +0 -19
  107. package/packages/model-runtime/src/qwen/createImage.ts +1 -27
  108. package/packages/model-runtime/src/utils/modelParse.ts +17 -8
  109. package/packages/model-runtime/src/utils/streams/google-ai.ts +26 -14
  110. package/packages/types/src/aiModel.ts +2 -1
  111. package/src/config/aiModels/google.ts +22 -1
  112. package/src/config/aiModels/qwen.ts +2 -2
  113. package/src/config/aiModels/vertexai.ts +22 -0
  114. package/src/features/FileViewer/Renderer/PDF/index.tsx +2 -2
  115. package/.cursor/rules/debug.mdc +0 -193
@@ -332,12 +332,21 @@
332
332
  "Qwen/Qwen3-30B-A3B-Instruct-2507": {
333
333
  "description": "Qwen3-30B-A3B-Instruct-2507 е обновена версия на Qwen3-30B-A3B в режим без мислене. Това е хибриден експертен (MoE) модел с общо 30,5 милиарда параметри и 3,3 милиарда активни параметри. Моделът е получил ключови подобрения в множество аспекти, включително значително подобрена способност за следване на инструкции, логическо разсъждение, разбиране на текст, математика, наука, кодиране и използване на инструменти. Освен това, той постига съществен напредък в покритието на дългоопашатите знания на многоезично ниво и по-добре се съгласува с предпочитанията на потребителите при субективни и отворени задачи, което позволява генериране на по-полезни отговори и по-висококачествен текст. Освен това, способността му за разбиране на дълги текстове е увеличена до 256K. Този модел поддържа само режим без мислене и в изхода му не се генерират тагове `<think></think>`."
334
334
  },
335
+ "Qwen/Qwen3-30B-A3B-Thinking-2507": {
336
+ "description": "Qwen3-30B-A3B-Thinking-2507 е най-новият мисловен модел от серията Qwen3, публикуван от екипа Tongyi Qianwen на Alibaba. Като хибриден модел от типа Mixture of Experts (MoE) с общо 30,5 милиарда параметри и 3,3 милиарда активни параметри, той е насочен към повишаване на възможностите за справяне със сложни задачи. Моделът показва значително подобрение в логическото разсъждение, математиката, естествените науки, програмирането и академичните бенчмаркове, изискващи човешка експертиза. В същото време общите му способности — следване на инструкции, използване на инструменти, генериране на текст и съгласуване с човешките предпочитания — също са значително подсилени. Моделът поддържа нативно дълъг контекст до 256K и може да бъде разширен до 1 000 000 токена. Тази версия е специално проектирана за мисловен режим, с цел да решава изключително сложни задачи чрез подробни стъпкови разсъждения; агентните ѝ възможности също се представят отлично."
337
+ },
335
338
  "Qwen/Qwen3-32B": {
336
339
  "description": "Qwen3 е ново поколение модел на Tongyi Qianwen с значително подобрени способности, достигащи водещо ниво в индустрията в разсъждения, общи, агенти и многоезични основни способности, и поддържа превключване на режим на мислене."
337
340
  },
338
341
  "Qwen/Qwen3-8B": {
339
342
  "description": "Qwen3 е ново поколение модел на Tongyi Qianwen с значително подобрени способности, достигащи водещо ниво в индустрията в разсъждения, общи, агенти и многоезични основни способности, и поддържа превключване на режим на мислене."
340
343
  },
344
+ "Qwen/Qwen3-Coder-30B-A3B-Instruct": {
345
+ "description": "Qwen3-Coder-30B-A3B-Instruct е кодов модел от серията Qwen3, разработен от екипа Tongyi Qianwen на Alibaba. Като рационализиран и оптимизиран модел, той запазва висока производителност и ефективност, като същевременно е фокусиран върху подобряване на възможностите за обработка на код. Моделът показва значително предимство сред отворените модели при сложни задачи като агентно програмиране (Agentic Coding), автоматизирани браузърни операции и извикване на инструменти. Той предлага нативна поддръжка за дълги контексти до 256K токена и може да се разшири до 1M токена, което позволява по-добро разбиране и обработка на ниво кодова база. Освен това моделът предоставя силна поддръжка за агентно кодиране в платформи като Qwen Code и CLINE и е проектирал специален формат за извикване на функции."
346
+ },
347
+ "Qwen/Qwen3-Coder-480B-A35B-Instruct": {
348
+ "description": "Qwen3-Coder-480B-A35B-Instruct е публикуван от Alibaba и до момента е един от най-агентно ориентираните (agentic) кодови модели. Това е смесен експертен (MoE) модел с общо 480 милиарда параметри и 35 милиарда активни параметри, който постига баланс между ефективност и производителност. Моделът поддържа родно контекстна дължина от 256K (прибл. 260 000) токена и може да бъде екстраполиран чрез методи като YaRN до 1 милион токена, което му позволява да обработва големи кодови бази и сложни програмистки задачи. Qwen3-Coder е специално проектиран за агентно ориентирани (agentic) кодови работни потоци — той не само генерира код, но може и автономно да взаимодейства с инструменти и среди за разработка, за да решава сложни програмистки проблеми. В множество бенчмаркове за кодиране и агентни задачи моделът постига водещи резултати сред отворените модели и неговата производителност е сравнима с тази на водещи модели като Claude Sonnet 4."
349
+ },
341
350
  "Qwen2-72B-Instruct": {
342
351
  "description": "Qwen2 е най-новата серия на модела Qwen, поддържаща 128k контекст. В сравнение с текущите най-добри отворени модели, Qwen2-72B значително надминава водещите модели в области като разбиране на естествен език, знания, код, математика и многоезичност."
343
352
  },
@@ -1103,12 +1112,27 @@
1103
1112
  "flux-dev": {
1104
1113
  "description": "FLUX.1 [dev] е отворен и пречистен модел, предназначен за нетърговска употреба. Той запазва качество на изображенията и способността за следване на инструкции, близки до професионалната версия на FLUX, като същевременно предлага по-висока ефективност на работа и по-добро използване на ресурсите в сравнение със стандартни модели със същия размер."
1105
1114
  },
1115
+ "flux-kontext-max": {
1116
+ "description": "Най-съвременно генериране и редактиране на контекстуални изображения — комбиниране на текст и изображения за постигане на прецизни и кохерентни резултати."
1117
+ },
1118
+ "flux-kontext-pro": {
1119
+ "description": "Най-съвременни възможности за контекстно генериране и редактиране на изображения — комбиниране на текст и изображения за постигане на прецизни и последователни резултати."
1120
+ },
1106
1121
  "flux-kontext/dev": {
1107
1122
  "description": "FLUX.1 модел, фокусиран върху задачи за редактиране на изображения, поддържащ текстови и визуални входни данни."
1108
1123
  },
1109
1124
  "flux-merged": {
1110
1125
  "description": "FLUX.1-merged комбинира дълбоките характеристики, изследвани в разработката на \"DEV\" версията, с високоскоростните предимства на \"Schnell\". Тази комбинация не само разширява границите на производителността на модела, но и увеличава обхвата на неговото приложение."
1111
1126
  },
1127
+ "flux-pro": {
1128
+ "description": "Водещ комерсиален модел за генериране на изображения с изкуствен интелект — несравнимо качество на изображенията и богато разнообразие на генерираните резултати."
1129
+ },
1130
+ "flux-pro-1.1": {
1131
+ "description": "Усъвършенстван професионален модел за генериране на изображения с изкуствен интелект — предлага изключително качество на изображенията и прецизно изпълнение на подадените подсказки."
1132
+ },
1133
+ "flux-pro-1.1-ultra": {
1134
+ "description": "Генериране на изображения с изкуствен интелект с изключително висока резолюция — поддържа изход 4 мегапиксела, създава ултраясни изображения за по-малко от 10 секунди."
1135
+ },
1112
1136
  "flux-pro/kontext": {
1113
1137
  "description": "FLUX.1 Kontext [pro] може да обработва текст и референтни изображения като вход, осигурявайки безпроблемно целенасочено локално редактиране и сложни трансформации на цялостната сцена."
1114
1138
  },
@@ -1193,6 +1217,9 @@
1193
1217
  "gemini-2.5-flash": {
1194
1218
  "description": "Gemini 2.5 Flash е най-ефективният модел на Google, предлагащ пълна функционалност."
1195
1219
  },
1220
+ "gemini-2.5-flash-image-preview": {
1221
+ "description": "Gemini 2.5 Flash Image Preview е най-новият, най-бързият и най-ефективният роден мултимодален модел на Google; той ви позволява чрез диалог да създавате и редактирате изображения."
1222
+ },
1196
1223
  "gemini-2.5-flash-lite": {
1197
1224
  "description": "Gemini 2.5 Flash-Lite е най-малкият и най-ефективен модел на Google, създаден специално за масово използване."
1198
1225
  },
@@ -1295,6 +1322,9 @@
1295
1322
  "glm-4.5-x": {
1296
1323
  "description": "Експресната версия на GLM-4.5, която съчетава силна производителност с генериране на скорост до 100 токена в секунда."
1297
1324
  },
1325
+ "glm-4.5v": {
1326
+ "description": "Новото поколение визуален модел за разсъждение на Zhipu, базиран на MOE архитектура, с общо 106B параметри и 12B активни параметри, постига SOTA сред отворените мултимодални модели в своя клас в различни бенчмаркове, обхващайки често срещани задачи като обработка на изображения, видео, разбиране на документи и GUI задачи."
1327
+ },
1298
1328
  "glm-4v": {
1299
1329
  "description": "GLM-4V предлага мощни способности за разбиране и разсъждение на изображения, поддържаща множество визуални задачи."
1300
1330
  },
@@ -1434,7 +1464,7 @@
1434
1464
  "description": "GPT-4.1 mini предлага баланс между интелигентност, скорост и разходи, което го прави привлекателен модел за много случаи на употреба."
1435
1465
  },
1436
1466
  "gpt-4.5-preview": {
1437
- "description": "Изследователската предварителна версия на GPT-4.5, която е нашият най-голям и мощен GPT модел до момента. Тя притежава обширни знания за света и може по-добре да разбира намеренията на потребителите, което я прави изключително ефективна в креативни задачи и автономно планиране. GPT-4.5 приема текстови и изображен вход и генерира текстови изход (включително структурирани изходи). Поддържа ключови функции за разработчици, като извикване на функции, пакетно API и потоков изход. В задачи, изискващи креативно, открито мислене и диалог (като писане, учене или изследване на нови идеи), GPT-4.5 показва особени способности. Крайната дата на знанията е октомври 2023."
1467
+ "description": "GPT-4.5-preview е най-новият универсален модел, който притежава задълбочени световни познания и по-добро разбиране на намеренията на потребителите, отличава се в творчески задачи и при планирането на агенти. Знанията на модела са актуални до октомври 2023 г."
1438
1468
  },
1439
1469
  "gpt-4o": {
1440
1470
  "description": "ChatGPT-4o е динамичен модел, който се актуализира в реално време, за да поддържа най-новата версия. Той комбинира мощно разбиране на езика и генериране на текст, подходящ за мащабни приложения, включително обслужване на клиенти, образование и техническа поддръжка."
@@ -1637,9 +1667,18 @@
1637
1667
  "image-01-live": {
1638
1668
  "description": "Модел за генериране на изображения с фини детайли, поддържащ генериране от текст и настройка на стил."
1639
1669
  },
1670
+ "imagen-4.0-fast-generate-001": {
1671
+ "description": "Imagen — серия модели за преобразуване от текст към изображение от 4-то поколение, бърза версия"
1672
+ },
1673
+ "imagen-4.0-generate-001": {
1674
+ "description": "Imagen: серия от модели от 4-то поколение за генериране на изображения от текст"
1675
+ },
1640
1676
  "imagen-4.0-generate-preview-06-06": {
1641
1677
  "description": "Imagen 4-то поколение текст-към-изображение модел серия"
1642
1678
  },
1679
+ "imagen-4.0-ultra-generate-001": {
1680
+ "description": "Imagen, 4-то поколение модел за преобразуване на текст в изображение, серия Ultra"
1681
+ },
1643
1682
  "imagen-4.0-ultra-generate-preview-06-06": {
1644
1683
  "description": "Imagen 4-то поколение текст-към-изображение модел серия Ултра версия"
1645
1684
  },
@@ -1679,6 +1718,9 @@
1679
1718
  "kimi-k2-0711-preview": {
1680
1719
  "description": "kimi-k2 е базов модел с MoE архитектура с изключителни способности за кодиране и агентски функции, с общо 1 трилион параметри и 32 милиарда активни параметри. В тестове за общо знание, програмиране, математика и агентски задачи, моделът K2 превъзхожда други водещи отворени модели."
1681
1720
  },
1721
+ "kimi-k2-turbo-preview": {
1722
+ "description": "Kimi-k2 е базов модел с MoE архитектура, който притежава изключителни възможности за работа с код и агентни функции. Общият брой параметри е 1T, а активните параметри са 32B. В бенчмарковете за основни категории като общо знание и разсъждение, програмиране, математика и агентни задачи, моделът K2 превъзхожда другите водещи отворени модели."
1723
+ },
1682
1724
  "kimi-latest": {
1683
1725
  "description": "Kimi интелигентен асистент използва най-новия Kimi голям модел, който може да съдържа нестабилни функции. Поддържа разбиране на изображения и автоматично избира 8k/32k/128k модел за таксуване в зависимост от дължината на контекста на заявката."
1684
1726
  },
@@ -1763,6 +1805,9 @@
1763
1805
  "llava:34b": {
1764
1806
  "description": "LLaVA е многомодален модел, комбиниращ визуален кодер и Vicuna, предназначен за мощно визуално и езиково разбиране."
1765
1807
  },
1808
+ "magistral-medium-latest": {
1809
+ "description": "Magistral Medium 1.1 е водещ модел за инференция, публикуван от Mistral AI през юли 2025 г."
1810
+ },
1766
1811
  "mathstral": {
1767
1812
  "description": "MathΣtral е проектиран за научни изследвания и математически разсъждения, предоставяйки ефективни изчислителни способности и интерпретация на резултати."
1768
1813
  },
@@ -2094,7 +2139,7 @@
2094
2139
  "description": "o1-mini е бърз и икономичен модел за изводи, проектиран за приложения в програмирането, математиката и науката. Моделът разполага с контекст от 128K и дата на знание до октомври 2023."
2095
2140
  },
2096
2141
  "o1-preview": {
2097
- "description": "o1 е новият модел за изводи на OpenAI, подходящ за сложни задачи, изискващи обширни общи знания. Моделът разполага с контекст от 128K и дата на знание до октомври 2023."
2142
+ "description": "Фокусиран върху усъвършенствано разсъждение и решаване на сложни проблеми, включително математически и научни задачи. Отлично подходящ за приложения, които изискват дълбоко разбиране на контекста и автономни работни процеси."
2098
2143
  },
2099
2144
  "o1-pro": {
2100
2145
  "description": "Моделите от серията o1 са обучени чрез подсилващо обучение, което им позволява да мислят преди да отговорят и да изпълняват сложни задачи за разсъждение. Моделът o1-pro използва повече изчислителни ресурси за по-задълбочено мислене, осигурявайки постоянно по-високо качество на отговорите."
@@ -2213,8 +2258,14 @@
2213
2258
  "qwen-coder-turbo-latest": {
2214
2259
  "description": "Моделът на кода Qwen."
2215
2260
  },
2261
+ "qwen-flash": {
2262
+ "description": "Серията \"Tongyi Qianwen\" включва най-бързите и с изключително ниски разходи модели, подходящи за прости задачи."
2263
+ },
2216
2264
  "qwen-image": {
2217
- "description": "Мощен модел за генериране на изображения от екипа на Qwen, с впечатляващи възможности за генериране на китайски текст и разнообразни визуални стилове на изображения."
2265
+ "description": "Qwen-Image е универсален модел за генериране на изображения, който поддържа множество художествени стилове и е особено добър в рендериране на сложни текстове, включително на китайски и английски. Моделът поддържа многоредови оформления, генериране на текст на ниво абзац и изобразяване на детайли с висока прецизност, позволявайки създаване на сложни комбинирани оформления от изображение и текст."
2266
+ },
2267
+ "qwen-image-edit": {
2268
+ "description": "Професионален модел за редактиране на изображения, публикуван от екипа на Qwen, който поддържа семантично редактиране и редактиране на външния вид и може прецизно да обработва текст на китайски и английски, извършвайки висококачествени редакции на изображения като трансформация на стил и въртене на обекти."
2218
2269
  },
2219
2270
  "qwen-long": {
2220
2271
  "description": "Qwen е мащабен езиков модел, който поддържа дълги текстови контексти и диалогови функции, базирани на дълги документи и множество документи."
@@ -2241,7 +2292,7 @@
2241
2292
  "description": "通义千问(Qwen) е подобрена версия на мащабен езиков модел, който поддържа вход на различни езици, включително китайски и английски."
2242
2293
  },
2243
2294
  "qwen-turbo": {
2244
- "description": "通义千问(Qwen) е мащабен езиков модел, който поддържа вход на различни езици, включително китайски и английски."
2295
+ "description": "Версията „Tongyi Qianwen Turbo“ няма да получава повече актуализации; препоръчваме да я замените с „Tongyi Qianwen Flash“. Tongyi Qianwen е много голям езиков модел, който поддържа въвеждане на китайски, английски и други езици."
2245
2296
  },
2246
2297
  "qwen-vl-chat-v1": {
2247
2298
  "description": "Qwen VL поддържа гъвкави интерактивни методи, включително множество изображения, многократни въпроси и отговори, творчество и др."
@@ -2558,9 +2609,15 @@
2558
2609
  "step-2x-large": {
2559
2610
  "description": "Новото поколение модел за генериране на изображения Step Star, специализиран в генериране на висококачествени изображения според текстови описания от потребителя. Новият модел създава по-реалистични текстури и има по-силни способности за генериране на китайски и английски текст."
2560
2611
  },
2612
+ "step-3": {
2613
+ "description": "Този модел притежава мощни способности за визуално възприятие и сложни разсъждения. Той може точно да извършва междудисциплинарно разбиране на сложни знания, съвместен анализ на математическа и визуална информация, както и да решава различни визуални аналитични задачи от ежедневието."
2614
+ },
2561
2615
  "step-r1-v-mini": {
2562
2616
  "description": "Този модел е мощен модел за разсъждение с отлични способности за разбиране на изображения, способен да обработва информация от изображения и текст, и след дълбочинно разсъждение да генерира текстово съдържание. Моделът показва изключителни резултати в областта на визуалните разсъждения, като същевременно притежава първокласни способности в математиката, кода и текстовите разсъждения. Дължината на контекста е 100k."
2563
2617
  },
2618
+ "stepfun-ai/step3": {
2619
+ "description": "Step3 е авангарден мултимодален модел за разсъждение, публикуван от StepFun (阶跃星辰). Той е изграден върху архитектура на смес от експерти (MoE) с общо 321 милиарда параметъра и 38 милиарда активни параметъра. Моделът е с енд-ту-енд дизайн, целящ минимизиране на разходите за декодиране, като същевременно предоставя водещи резултати във визуално-лингвистичното разсъждение. Чрез кооперативния дизайн на многоматрично факторизирано внимание (MFA) и декуплиране на внимание и FFN (AFD), Step3 поддържа отлична ефективност както на флагмански, така и на по-бюджетни ускорители. По време на предварителното обучение Step3 е обработил над 20 трилиона текстови токена и 4 трилиона смесени текстово-изображенчески токена, обхващайки повече от десет езика. Моделът постига водещи резултати сред отворените модели в множество бенчмаркове, включително математика, код и мултимодални задачи."
2620
+ },
2564
2621
  "taichu_llm": {
2565
2622
  "description": "Моделът на езика TaiChu е с изключителни способности за разбиране на езика, текстово генериране, отговори на знания, програмиране, математически изчисления, логическо разсъждение, анализ на емоции, резюмиране на текст и др. Иновативно комбинира предварително обучение с големи данни и разнообразни източници на знания, чрез непрекъснато усъвършенстване на алгоритмичните технологии и усвояване на нови знания от масивни текстови данни, за да осигури на потребителите по-удобна информация и услуги, както и по-интелигентно изживяване."
2566
2623
  },
@@ -2707,5 +2764,8 @@
2707
2764
  },
2708
2765
  "zai-org/GLM-4.5-Air": {
2709
2766
  "description": "GLM-4.5-Air е базов модел, специално създаден за интелигентни агенти, използващ архитектура с микс от експерти (Mixture-of-Experts). Той е дълбоко оптимизиран за използване на инструменти, уеб браузване, софтуерно инженерство и фронтенд програмиране, и поддържа безпроблемна интеграция с кодови агенти като Claude Code и Roo Code. GLM-4.5 използва смесен режим на разсъждение, подходящ за сложни и ежедневни приложения."
2767
+ },
2768
+ "zai-org/GLM-4.5V": {
2769
+ "description": "GLM-4.5V е най-новото поколение визуално-езиков модел (VLM), публикуван от Zhipu AI (智谱 AI). Моделът е изграден върху водещия текстов модел GLM-4.5-Air, който разполага с общо 106 милиарда параметри и 12 милиарда активационни параметри, и използва архитектура с разбъркани експерти (Mixture of Experts, MoE), целяща постигане на висока производителност при по-ниски разходи за инференция. Технически GLM-4.5V продължава линията на GLM-4.1V-Thinking и въвежда иновации като триизмерно ротационно позиционно кодиране (3D-RoPE), което значително засилва възприемането и разсъжденията относно триизмерните пространствени взаимовръзки. Чрез оптимизации в етапите на предварително обучение, супервизирано фино настройване и подсилено обучение, моделът може да обработва различни визуални формати — изображения, видео и дълги документи — и в 41 публични мултимодални бенчмарка достига водещи резултати сред отворените модели от същия клас. Освен това моделът добавя превключвател за 'режим на мислене', който позволява на потребителите гъвкаво да избират между бърз отговор и дълбоко разсъждение, за да балансират ефективността и качеството."
2710
2770
  }
2711
2771
  }
@@ -26,6 +26,9 @@
26
26
  "bedrock": {
27
27
  "description": "Bedrock е услуга, предоставяна от Amazon AWS, фокусирана върху предоставянето на напреднали AI езикови и визуални модели за предприятия. Семейството на моделите включва серията Claude на Anthropic, серията Llama 3.1 на Meta и други, обхващащи разнообразие от опции от леки до високо производителни, поддържащи текстово генериране, диалог, обработка на изображения и много други задачи, подходящи за различни мащаби и нужди на бизнес приложения."
28
28
  },
29
+ "bfl": {
30
+ "description": "Водеща изследователска лаборатория за авангарден изкуствен интелект, която изгражда визуалната инфраструктура на утрешния ден."
31
+ },
29
32
  "cloudflare": {
30
33
  "description": "Работа с модели на машинно обучение, задвижвани от безсървърни GPU, в глобалната мрежа на Cloudflare."
31
34
  },
@@ -1,4 +1,9 @@
1
1
  {
2
+ "ArgsInput": {
3
+ "addArgument": "Parameter hinzufügen",
4
+ "argumentPlaceholder": "Parameter {{index}}",
5
+ "enterFirstArgument": "Geben Sie den ersten Parameter ein..."
6
+ },
2
7
  "DragUpload": {
3
8
  "dragDesc": "Ziehen Sie Dateien hierher, um mehrere Bilder hochzuladen.",
4
9
  "dragFileDesc": "Ziehen Sie Bilder und Dateien hierher, um mehrere Bilder und Dateien hochzuladen.",
@@ -125,6 +130,12 @@
125
130
  },
126
131
  "progress": {
127
132
  "uploadingWithCount": "{{completed}}/{{total}} hochgeladen"
133
+ },
134
+ "validation": {
135
+ "fileSizeExceeded": "Maximale Dateigröße überschritten",
136
+ "fileSizeExceededDetail": "{{fileName}} ({{actualSize}}) überschreitet die maximal zulässige Größe von {{maxSize}}",
137
+ "fileSizeExceededMultiple": "{{count}} Dateien überschreiten die maximal zulässige Größe von {{maxSize}}: {{fileList}}",
138
+ "imageCountExceeded": "Maximale Anzahl an Bildern überschritten"
128
139
  }
129
140
  },
130
141
  "OllamaSetupGuide": {
@@ -85,6 +85,17 @@
85
85
  "CreateMessageError": "Es tut uns leid, die Nachricht konnte nicht erfolgreich gesendet werden. Bitte kopieren Sie den Inhalt und senden Sie ihn erneut. Nach dem Aktualisieren der Seite wird diese Nachricht nicht gespeichert.",
86
86
  "ExceededContextWindow": "Der aktuelle Anfrageinhalt überschreitet die von dem Modell verarbeitbare Länge. Bitte reduzieren Sie die Menge des Inhalts und versuchen Sie es erneut.",
87
87
  "FreePlanLimit": "Sie sind derzeit ein kostenloser Benutzer und können diese Funktion nicht nutzen. Bitte aktualisieren Sie auf ein kostenpflichtiges Abonnement, um fortzufahren.",
88
+ "GoogleAIBlockReason": {
89
+ "BLOCKLIST": "Ihr Inhalt enthält verbotene Begriffe. Bitte überprüfen und ändern Sie Ihre Eingabe und versuchen Sie es erneut.",
90
+ "IMAGE_SAFETY": "Die erzeugten Bildinhalte wurden aus Sicherheitsgründen blockiert. Bitte versuchen Sie, Ihre Bildgenerierungsanfrage zu ändern.",
91
+ "LANGUAGE": "Die von Ihnen verwendete Sprache wird derzeit nicht unterstützt. Bitte versuchen Sie es erneut auf Englisch oder in einer anderen unterstützten Sprache.",
92
+ "OTHER": "Der Inhalt wurde aus einem unbekannten Grund blockiert. Bitte formulieren Sie Ihre Anfrage neu und versuchen Sie es erneut.",
93
+ "PROHIBITED_CONTENT": "Ihre Anfrage könnte verbotene Inhalte enthalten. Bitte passen Sie Ihre Anfrage an und stellen Sie sicher, dass sie den Nutzungsrichtlinien entspricht.",
94
+ "RECITATION": "Ihr Inhalt wurde möglicherweise wegen möglicher Urheberrechtsverletzungen blockiert. Bitte verwenden Sie eigene Inhalte oder formulieren Sie Ihre Anfrage um.",
95
+ "SAFETY": "Ihr Inhalt wurde aufgrund der Sicherheitsrichtlinien blockiert. Bitte passen Sie Ihre Anfrage an und vermeiden Sie potenziell schädliche oder unangemessene Inhalte.",
96
+ "SPII": "Ihr Inhalt könnte sensible personenbezogene Daten enthalten. Zum Schutz der Privatsphäre entfernen Sie bitte die betreffenden Informationen und versuchen Sie es erneut.",
97
+ "default": "Inhalt blockiert: {{blockReason}}。请调整您的请求内容后重试。"
98
+ },
88
99
  "InsufficientQuota": "Es tut uns leid, das Kontingent (Quota) für diesen Schlüssel ist erreicht. Bitte überprüfen Sie Ihr Kontoguthaben oder erhöhen Sie das Kontingent des Schlüssels und versuchen Sie es erneut.",
89
100
  "InvalidAccessCode": "Das Passwort ist ungültig oder leer. Bitte geben Sie das richtige Zugangspasswort ein oder fügen Sie einen benutzerdefinierten API-Schlüssel hinzu.",
90
101
  "InvalidBedrockCredentials": "Die Bedrock-Authentifizierung ist fehlgeschlagen. Bitte überprüfen Sie AccessKeyId/SecretAccessKey und versuchen Sie es erneut.",
@@ -113,18 +124,6 @@
113
124
  "PluginServerError": "Fehler bei der Serveranfrage des Plugins. Bitte überprüfen Sie die Fehlerinformationen unten in Ihrer Plugin-Beschreibungsdatei, Plugin-Konfiguration oder Serverimplementierung",
114
125
  "PluginSettingsInvalid": "Das Plugin muss korrekt konfiguriert werden, um verwendet werden zu können. Bitte überprüfen Sie Ihre Konfiguration auf Richtigkeit",
115
126
  "ProviderBizError": "Fehler bei der Anforderung des {{provider}}-Dienstes. Bitte überprüfen Sie die folgenden Informationen oder versuchen Sie es erneut.",
116
-
117
- "GoogleAIBlockReason": {
118
- "BLOCKLIST": "Ihr Inhalt enthält verbotene Begriffe. Bitte überprüfen und ändern Sie Ihre Eingabe, bevor Sie es erneut versuchen.",
119
- "IMAGE_SAFETY": "Der generierte Bildinhalt wurde aus Sicherheitsgründen blockiert. Bitte versuchen Sie, Ihre Bildgenerierungsanfrage zu ändern.",
120
- "LANGUAGE": "Die von Ihnen verwendete Sprache wird nicht unterstützt. Bitte versuchen Sie es mit Englisch oder anderen unterstützten Sprachen.",
121
- "OTHER": "Inhalt wurde aus unbekannten Gründen blockiert. Bitte versuchen Sie, Ihre Anfrage umzuformulieren oder wenden Sie sich an den technischen Support.",
122
- "PROHIBITED_CONTENT": "Ihr Inhalt könnte verbotene Inhaltstypen enthalten. Bitte passen Sie Ihre Anfrage an, um sicherzustellen, dass sie den Nutzungsrichtlinien entspricht.",
123
- "RECITATION": "Ihr Inhalt wurde aufgrund möglicher Urheberrechtsprobleme blockiert. Bitte versuchen Sie, originalen Inhalt zu verwenden oder Ihre Anfrage umzuformulieren.",
124
- "SAFETY": "Ihr Inhalt wurde aufgrund von Sicherheitsrichtlinien blockiert. Bitte versuchen Sie, Ihre Anfrage anzupassen, um potenziell schädliche oder unangemessene Inhalte zu vermeiden.",
125
- "SPII": "Ihr Inhalt könnte sensible persönlich identifizierbare Informationen enthalten. Zum Schutz der Privatsphäre entfernen Sie bitte relevante sensible Informationen, bevor Sie es erneut versuchen.",
126
- "default": "Inhalt wurde blockiert: {{blockReason}}. Bitte passen Sie Ihren Anfrageinhalt an und versuchen Sie es erneut."
127
- },
128
127
  "QuotaLimitReached": "Es tut uns leid, die aktuelle Token-Nutzung oder die Anzahl der Anfragen hat das Kontingent (Quota) für diesen Schlüssel erreicht. Bitte erhöhen Sie das Kontingent für diesen Schlüssel oder versuchen Sie es später erneut.",
129
128
  "StreamChunkError": "Fehler beim Parsen des Nachrichtenchunks der Streaming-Anfrage. Bitte überprüfen Sie, ob die aktuelle API-Schnittstelle den Standards entspricht, oder wenden Sie sich an Ihren API-Anbieter.",
130
129
  "SubscriptionKeyMismatch": "Es tut uns leid, aufgrund eines vorübergehenden Systemfehlers ist das aktuelle Abonnement vorübergehend ungültig. Bitte klicken Sie auf die Schaltfläche unten, um das Abonnement wiederherzustellen, oder kontaktieren Sie uns per E-Mail für Unterstützung.",
@@ -332,12 +332,21 @@
332
332
  "Qwen/Qwen3-30B-A3B-Instruct-2507": {
333
333
  "description": "Qwen3-30B-A3B-Instruct-2507 ist eine aktualisierte Version des Qwen3-30B-A3B im Nicht-Denkmodus. Es handelt sich um ein Mixture-of-Experts (MoE)-Modell mit insgesamt 30,5 Milliarden Parametern und 3,3 Milliarden Aktivierungsparametern. Das Modell wurde in mehreren Bereichen entscheidend verbessert, darunter eine signifikante Steigerung der Befolgung von Anweisungen, logisches Denken, Textverständnis, Mathematik, Wissenschaft, Programmierung und Werkzeugnutzung. Gleichzeitig wurden substanzielle Fortschritte bei der Abdeckung von Langschwanzwissen in mehreren Sprachen erzielt, und es kann besser auf die Präferenzen der Nutzer bei subjektiven und offenen Aufgaben abgestimmt werden, um hilfreichere Antworten und qualitativ hochwertigere Texte zu generieren. Darüber hinaus wurde die Fähigkeit zum Verständnis langer Texte auf 256K erweitert. Dieses Modell unterstützt ausschließlich den Nicht-Denkmodus und generiert keine `<think></think>`-Tags in der Ausgabe."
334
334
  },
335
+ "Qwen/Qwen3-30B-A3B-Thinking-2507": {
336
+ "description": "Qwen3-30B-A3B-Thinking-2507 ist das neueste Denkmodell der Qwen3‑Serie, veröffentlicht vom Alibaba Tongyi Qianwen‑Team. Als ein Mixture-of-Experts-(MoE)-Modell mit 30,5 Milliarden Gesamtparametern und 3,3 Milliarden aktiven Parametern konzentriert es sich auf die Verbesserung der Bewältigung komplexer Aufgaben. Das Modell zeigt deutliche Leistungssteigerungen in akademischen Benchmarks für logisches Schließen, Mathematik, Naturwissenschaften, Programmierung sowie Aufgaben, die menschliche Fachkenntnisse erfordern. Gleichzeitig wurden seine allgemeinen Fähigkeiten bei der Befolgung von Anweisungen, der Nutzung von Werkzeugen, der Textgenerierung und der Anpassung an menschliche Präferenzen erheblich gestärkt. Das Modell unterstützt nativ ein langes Kontextverständnis von 256K und ist auf bis zu 1 Million Tokens skalierbar. Diese Version ist speziell für den 'Denkmodus' konzipiert und zielt darauf ab, hochkomplexe Aufgaben durch ausführliches, schrittweises Denken zu lösen; auch seine Agent‑Fähigkeiten sind hervorragend."
337
+ },
335
338
  "Qwen/Qwen3-32B": {
336
339
  "description": "Qwen3 ist ein neues, leistungsstark verbessertes Modell von Tongyi Qianwen, das in den Bereichen Denken, Allgemeinwissen, Agenten und Mehrsprachigkeit in mehreren Kernfähigkeiten branchenführende Standards erreicht und den Wechsel zwischen Denkmodi unterstützt."
337
340
  },
338
341
  "Qwen/Qwen3-8B": {
339
342
  "description": "Qwen3 ist ein neues, leistungsstark verbessertes Modell von Tongyi Qianwen, das in den Bereichen Denken, Allgemeinwissen, Agenten und Mehrsprachigkeit in mehreren Kernfähigkeiten branchenführende Standards erreicht und den Wechsel zwischen Denkmodi unterstützt."
340
343
  },
344
+ "Qwen/Qwen3-Coder-30B-A3B-Instruct": {
345
+ "description": "Qwen3-Coder-30B-A3B-Instruct ist ein Code-Modell der Qwen3-Serie, das vom Alibaba-Team Tongyi Qianwen entwickelt wurde. Als schlank optimiertes Modell konzentriert es sich darauf, die Code-Verarbeitungsfähigkeiten zu verbessern, während es hohe Leistung und Effizienz beibehält. Das Modell zeigt unter Open-Source-Modellen deutliche Leistungsvorteile bei komplexen Aufgaben wie agentischem Programmieren (Agentic Coding), automatisierten Browseroperationen und Werkzeugaufrufen. Es unterstützt nativ lange Kontexte mit 256K Tokens und lässt sich auf bis zu 1M Tokens erweitern, sodass es Verständnis- und Verarbeitungsaufgaben auf Ebene ganzer Codebasen besser bewältigen kann. Darüber hinaus bietet das Modell starke Agenten-Codierungsunterstützung für Plattformen wie Qwen Code und CLINE und verfügt über ein speziell entwickeltes Format für Funktionsaufrufe."
346
+ },
347
+ "Qwen/Qwen3-Coder-480B-A35B-Instruct": {
348
+ "description": "Qwen3-Coder-480B-A35B-Instruct wurde von Alibaba veröffentlicht und ist bislang das agentischste Code-Modell. Es ist ein Mixture-of-Experts-(MoE)-Modell mit 480 Milliarden Gesamtparametern und 35 Milliarden aktivierten Parametern, das ein ausgewogenes Verhältnis von Effizienz und Leistung bietet. Das Modell unterstützt nativ eine Kontextlänge von 256K (≈260.000) Token und lässt sich mittels Extrapolationsverfahren wie YaRN auf bis zu 1.000.000 Token erweitern, sodass es große Codebasen und komplexe Programmieraufgaben verarbeiten kann. Qwen3-Coder wurde für agentenbasierte Coding-Workflows entwickelt: Es generiert nicht nur Code, sondern kann auch eigenständig mit Entwicklungswerkzeugen und -umgebungen interagieren, um komplexe Programmierprobleme zu lösen. In mehreren Benchmarks zu Coding- und Agentenaufgaben gehört das Modell zu den Spitzenreitern unter Open-Source-Modellen und erreicht eine Leistungsfähigkeit, die mit führenden Modellen wie Claude Sonnet 4 vergleichbar ist."
349
+ },
341
350
  "Qwen2-72B-Instruct": {
342
351
  "description": "Qwen2 ist die neueste Reihe des Qwen-Modells, das 128k Kontext unterstützt. Im Vergleich zu den derzeit besten Open-Source-Modellen übertrifft Qwen2-72B in den Bereichen natürliche Sprachverständnis, Wissen, Code, Mathematik und Mehrsprachigkeit deutlich die führenden Modelle."
343
352
  },
@@ -1103,12 +1112,27 @@
1103
1112
  "flux-dev": {
1104
1113
  "description": "FLUX.1 [dev] ist ein Open-Source-Gewichtungs- und Feinschlichtungsmodell für nicht-kommerzielle Anwendungen. Es bietet eine Bildqualität und Instruktionsbefolgung ähnlich der professionellen FLUX-Version, jedoch mit höherer Effizienz. Im Vergleich zu Standardmodellen gleicher Größe ist es ressourcenschonender."
1105
1114
  },
1115
+ "flux-kontext-max": {
1116
+ "description": "Modernste kontextbezogene Bildgenerierung und -bearbeitung – verbindet Text und Bilder, um präzise, kohärente Ergebnisse zu erzielen."
1117
+ },
1118
+ "flux-kontext-pro": {
1119
+ "description": "Modernste kontextbezogene Bildgenerierung und -bearbeitung – verbindet Text und Bild zu präzisen, kohärenten Ergebnissen."
1120
+ },
1106
1121
  "flux-kontext/dev": {
1107
1122
  "description": "FLUX.1 Modell, spezialisiert auf Bildbearbeitungsaufgaben, unterstützt Text- und Bildeingaben."
1108
1123
  },
1109
1124
  "flux-merged": {
1110
1125
  "description": "Das FLUX.1-merged Modell kombiniert die tiefgehenden Eigenschaften, die in der Entwicklungsphase von „DEV“ erforscht wurden, mit der hohen Ausführungsgeschwindigkeit von „Schnell“. Dadurch werden sowohl die Leistungsgrenzen des Modells erweitert als auch dessen Anwendungsbereich vergrößert."
1111
1126
  },
1127
+ "flux-pro": {
1128
+ "description": "Premium-kommerzielles KI-Bildgenerierungsmodell — unvergleichliche Bildqualität und vielfältige Ausgabemöglichkeiten."
1129
+ },
1130
+ "flux-pro-1.1": {
1131
+ "description": "Verbessertes professionelles KI-Modell zur Bildgenerierung — bietet herausragende Bildqualität und eine präzise Umsetzung von Eingabeaufforderungen."
1132
+ },
1133
+ "flux-pro-1.1-ultra": {
1134
+ "description": "Ultrahochauflösende KI-Bildgenerierung — unterstützt Ausgaben mit 4 Megapixeln und erstellt hochauflösende Bilder innerhalb von 10 Sekunden."
1135
+ },
1112
1136
  "flux-pro/kontext": {
1113
1137
  "description": "FLUX.1 Kontext [pro] kann Text und Referenzbilder als Eingabe verarbeiten und ermöglicht nahtlose zielgerichtete lokale Bearbeitungen sowie komplexe umfassende Szenenveränderungen."
1114
1138
  },
@@ -1193,6 +1217,9 @@
1193
1217
  "gemini-2.5-flash": {
1194
1218
  "description": "Gemini 2.5 Flash ist Googles kosteneffizientestes Modell und bietet umfassende Funktionen."
1195
1219
  },
1220
+ "gemini-2.5-flash-image-preview": {
1221
+ "description": "Gemini 2.5 Flash Image Preview ist Googles neuestes, schnellstes und effizientestes natives multimodales Modell. Es ermöglicht Ihnen, Bilder im Dialog zu erstellen und zu bearbeiten."
1222
+ },
1196
1223
  "gemini-2.5-flash-lite": {
1197
1224
  "description": "Gemini 2.5 Flash-Lite ist Googles kleinstes und kosteneffizientestes Modell, das speziell für den großflächigen Einsatz entwickelt wurde."
1198
1225
  },
@@ -1295,6 +1322,9 @@
1295
1322
  "glm-4.5-x": {
1296
1323
  "description": "Die Turbo-Version von GLM-4.5, die bei starker Leistung eine Generierungsgeschwindigkeit von bis zu 100 Tokens pro Sekunde erreicht."
1297
1324
  },
1325
+ "glm-4.5v": {
1326
+ "description": "Das neue visuelle Inferenzmodell der nächsten Generation von Zhipu, basierend auf der MOE-Architektur, verfügt über 106B Gesamtparameter und 12B aktivierte Parameter und erzielt in verschiedenen Benchmarks State-of-the-Art‑Ergebnisse (SOTA) unter weltweit vergleichbaren Open‑Source‑multimodalen Modellen. Es deckt gängige Aufgaben wie Bild-, Video- und Dokumentenverständnis sowie GUI‑Aufgaben ab."
1327
+ },
1298
1328
  "glm-4v": {
1299
1329
  "description": "GLM-4V bietet starke Fähigkeiten zur Bildverständnis und -schlussfolgerung und unterstützt eine Vielzahl visueller Aufgaben."
1300
1330
  },
@@ -1434,7 +1464,7 @@
1434
1464
  "description": "GPT-4.1 mini bietet ein Gleichgewicht zwischen Intelligenz, Geschwindigkeit und Kosten, was es zu einem attraktiven Modell für viele Anwendungsfälle macht."
1435
1465
  },
1436
1466
  "gpt-4.5-preview": {
1437
- "description": "Die Forschungs-Vorschau von GPT-4.5, unserem bisher größten und leistungsstärksten GPT-Modell. Es verfügt über umfangreiches Weltwissen und kann die Absichten der Benutzer besser verstehen, was es in kreativen Aufgaben und autonomer Planung herausragend macht. GPT-4.5 akzeptiert Text- und Bild-Eingaben und generiert Textausgaben (einschließlich strukturierter Ausgaben). Es unterstützt wichtige Entwicklerfunktionen wie Funktionsaufrufe, Batch-APIs und Streaming-Ausgaben. In Aufgaben, die kreatives, offenes Denken und Dialog erfordern (wie Schreiben, Lernen oder das Erkunden neuer Ideen), zeigt GPT-4.5 besonders gute Leistungen. Der Wissensstand ist bis Oktober 2023."
1467
+ "description": "GPT-4.5-preview ist das neueste Allzweckmodell, verfügt über fundiertes Weltwissen und ein verbessertes Verständnis der Nutzerintentionen und ist besonders leistungsfähig bei kreativen Aufgaben sowie in der Planung von Agenten. Das Wissen des Modells reicht bis Oktober 2023."
1438
1468
  },
1439
1469
  "gpt-4o": {
1440
1470
  "description": "ChatGPT-4o ist ein dynamisches Modell, das in Echtzeit aktualisiert wird, um die neueste Version zu gewährleisten. Es kombiniert starke Sprachverständnis- und Generierungsfähigkeiten und eignet sich für großangelegte Anwendungsszenarien, einschließlich Kundenservice, Bildung und technische Unterstützung."
@@ -1637,9 +1667,18 @@
1637
1667
  "image-01-live": {
1638
1668
  "description": "Bildgenerierungsmodell mit feiner Bilddarstellung, unterstützt Text-zu-Bild und Stil-Einstellungen."
1639
1669
  },
1670
+ "imagen-4.0-fast-generate-001": {
1671
+ "description": "Imagen – Text-zu-Bild-Modellreihe der 4. Generation (Fast-Version)"
1672
+ },
1673
+ "imagen-4.0-generate-001": {
1674
+ "description": "Imagen, Text-zu-Bild-Modellreihe der 4. Generation"
1675
+ },
1640
1676
  "imagen-4.0-generate-preview-06-06": {
1641
1677
  "description": "Imagen 4. Generation Text-zu-Bild Modellserie"
1642
1678
  },
1679
+ "imagen-4.0-ultra-generate-001": {
1680
+ "description": "Imagen, Text-zu-Bild-Modell der 4. Generation (Ultra-Version)"
1681
+ },
1643
1682
  "imagen-4.0-ultra-generate-preview-06-06": {
1644
1683
  "description": "Imagen 4. Generation Text-zu-Bild Modellserie Ultra-Version"
1645
1684
  },
@@ -1679,6 +1718,9 @@
1679
1718
  "kimi-k2-0711-preview": {
1680
1719
  "description": "kimi-k2 ist ein MoE-Architektur-Basis-Modell mit außergewöhnlichen Fähigkeiten in Code und Agentenfunktionen, mit insgesamt 1 Billion Parametern und 32 Milliarden aktiven Parametern. In Benchmark-Tests zu allgemeinem Wissen, Programmierung, Mathematik und Agenten übertrifft das K2-Modell andere führende Open-Source-Modelle."
1681
1720
  },
1721
+ "kimi-k2-turbo-preview": {
1722
+ "description": "kimi-k2 ist ein Basis-Modell mit MoE-Architektur und besonders starken Fähigkeiten im Bereich Code und Agenten. Es verfügt über insgesamt 1T Parameter und 32B aktivierte Parameter. In Benchmark-Tests der wichtigsten Kategorien – allgemeines Wissens-Reasoning, Programmierung, Mathematik und Agenten – übertrifft das K2-Modell die Leistung anderer gängiger Open‑Source‑Modelle."
1723
+ },
1682
1724
  "kimi-latest": {
1683
1725
  "description": "Das Kimi intelligente Assistenzprodukt verwendet das neueste Kimi Großmodell, das möglicherweise noch instabile Funktionen enthält. Es unterstützt die Bildverarbeitung und wählt automatisch das Abrechnungsmodell 8k/32k/128k basierend auf der Länge des angeforderten Kontexts aus."
1684
1726
  },
@@ -1763,6 +1805,9 @@
1763
1805
  "llava:34b": {
1764
1806
  "description": "LLaVA ist ein multimodales Modell, das visuelle Encoder und Vicuna kombiniert und für starke visuelle und sprachliche Verständnisse sorgt."
1765
1807
  },
1808
+ "magistral-medium-latest": {
1809
+ "description": "Magistral Medium 1.1 ist ein fortschrittliches Inferenzmodell, das Mistral AI im Juli 2025 veröffentlicht hat."
1810
+ },
1766
1811
  "mathstral": {
1767
1812
  "description": "MathΣtral ist für wissenschaftliche Forschung und mathematische Schlussfolgerungen konzipiert und bietet effektive Rechenfähigkeiten und Ergebnisinterpretationen."
1768
1813
  },
@@ -2094,7 +2139,7 @@
2094
2139
  "description": "o1-mini ist ein schnelles und kosteneffizientes Inferenzmodell, das für Programmier-, Mathematik- und Wissenschaftsanwendungen entwickelt wurde. Das Modell hat einen Kontext von 128K und einen Wissensstand bis Oktober 2023."
2095
2140
  },
2096
2141
  "o1-preview": {
2097
- "description": "o1 ist OpenAIs neues Inferenzmodell, das für komplexe Aufgaben geeignet ist, die umfangreiches Allgemeinwissen erfordern. Das Modell hat einen Kontext von 128K und einen Wissensstand bis Oktober 2023."
2142
+ "description": "Konzentriert auf fortgeschrittenes Schlussfolgern und die Lösung komplexer Probleme, einschließlich mathematischer und naturwissenschaftlicher Aufgaben. Sehr gut geeignet für Anwendungen, die ein tiefes Kontextverständnis und autonome Arbeitsabläufe benötigen."
2098
2143
  },
2099
2144
  "o1-pro": {
2100
2145
  "description": "Die o1-Serie wurde durch verstärkendes Lernen trainiert, um vor der Antwort nachzudenken und komplexe Schlussfolgerungen zu ziehen. Das o1-pro Modell nutzt mehr Rechenressourcen für tiefere Überlegungen und liefert dadurch kontinuierlich qualitativ hochwertigere Antworten."
@@ -2213,8 +2258,14 @@
2213
2258
  "qwen-coder-turbo-latest": {
2214
2259
  "description": "Das Tongyi Qianwen Code-Modell."
2215
2260
  },
2261
+ "qwen-flash": {
2262
+ "description": "Die Tongyi-Qianwen-Reihe bietet besonders schnelle und sehr kostengünstige Modelle und eignet sich für einfache Aufgaben."
2263
+ },
2216
2264
  "qwen-image": {
2217
- "description": "Leistungsstarkes Rohbildmodell vom Qwen-Team mit beeindruckenden Fähigkeiten zur chinesischen Textgenerierung und vielfältigen visuellen Bildstilen."
2265
+ "description": "Qwen-Image ist ein universelles Bildgenerierungsmodell, das zahlreiche Kunststile unterstützt und sich besonders bei der Wiedergabe komplexer Texte auszeichnet, insbesondere bei chinesischen und englischen Schriftzügen. Das Modell unterstützt mehrzeilige Layouts, absatzweises Textgenerieren sowie die präzise Darstellung feiner Details und ermöglicht die Erstellung komplexer Bild-Text-Kombinationen."
2266
+ },
2267
+ "qwen-image-edit": {
2268
+ "description": "Das Qwen-Team hat ein professionelles Modell zur Bildbearbeitung veröffentlicht, das semantische Bearbeitungen und Aussehensbearbeitungen unterstützt. Es kann chinesische und englische Texte präzise bearbeiten und ermöglicht Stiltransformationen, Objektrotationen sowie weitere hochwertige Bildbearbeitungen."
2218
2269
  },
2219
2270
  "qwen-long": {
2220
2271
  "description": "Qwen ist ein groß angelegtes Sprachmodell, das lange Textkontexte unterstützt und Dialogfunktionen für verschiedene Szenarien wie lange Dokumente und mehrere Dokumente bietet."
@@ -2241,7 +2292,7 @@
2241
2292
  "description": "Qwen Plus ist die verbesserte Version des großangelegten Sprachmodells, das Eingaben in verschiedenen Sprachen wie Chinesisch und Englisch unterstützt."
2242
2293
  },
2243
2294
  "qwen-turbo": {
2244
- "description": "Qwen Turbo ist ein großangelegtes Sprachmodell, das Eingaben in verschiedenen Sprachen wie Chinesisch und Englisch unterstützt."
2295
+ "description": "通义千问 Turbo wird künftig nicht mehr aktualisiert. Es wird empfohlen, auf 通义千问 Flash umzusteigen. 通义千问 ist ein äußerst groß angelegtes Sprachmodell und unterstützt Eingaben in Chinesisch, Englisch und weiteren Sprachen."
2245
2296
  },
2246
2297
  "qwen-vl-chat-v1": {
2247
2298
  "description": "Qwen VL unterstützt flexible Interaktionsmethoden, einschließlich Mehrbild-, Mehrfachfragen und kreativen Fähigkeiten."
@@ -2558,9 +2609,15 @@
2558
2609
  "step-2x-large": {
2559
2610
  "description": "Das neue Generationen-Bildmodell von Step Star konzentriert sich auf Bildgenerierung und kann basierend auf Textbeschreibungen des Nutzers hochwertige Bilder erzeugen. Das neue Modell erzeugt realistischere Bildtexturen und bietet verbesserte Fähigkeiten bei der Erzeugung chinesischer und englischer Schriftzeichen."
2560
2611
  },
2612
+ "step-3": {
2613
+ "description": "Dieses Modell verfügt über eine leistungsfähige visuelle Wahrnehmung und ausgeprägte Fähigkeiten zum komplexen Schlussfolgern. Es kann fachübergreifendes Verständnis komplexer Zusammenhänge, die kombinierte Analyse von mathematischen und visuellen Informationen sowie vielfältige visuelle Analyseaufgaben des Alltags präzise bewältigen."
2614
+ },
2561
2615
  "step-r1-v-mini": {
2562
2616
  "description": "Dieses Modell ist ein leistungsstarkes Schlussfolgerungsmodell mit starker Bildverständnisfähigkeit, das in der Lage ist, Bild- und Textinformationen zu verarbeiten und nach tiefem Denken Textinhalte zu generieren. Es zeigt herausragende Leistungen im Bereich der visuellen Schlussfolgerung und verfügt über erstklassige Fähigkeiten in Mathematik, Programmierung und Textschlussfolgerung. Die Kontextlänge beträgt 100k."
2563
2617
  },
2618
+ "stepfun-ai/step3": {
2619
+ "description": "Step3 ist ein wegweisendes multimodales Inferenzmodell, veröffentlicht von StepFun (阶跃星辰). Es basiert auf einer Mixture-of-Experts-(MoE)-Architektur mit insgesamt 321 Milliarden Parametern und 38 Milliarden Aktivierungsparametern. Das Modell ist als End-to-End-System konzipiert, um die Decodierungskosten zu minimieren und gleichzeitig erstklassige Leistung bei visuell-sprachlicher Inferenz zu bieten. Durch die synergistische Kombination von Multi-Matrix-Factorization-Attention (MFA) und Attention-FFN-Dekopplung (AFD) erzielt Step3 sowohl auf High-End- als auch auf ressourcenbeschränkten Beschleunigern hohe Effizienz. In der Vortrainingsphase verarbeitete Step3 mehr als 20 Billionen Text-Tokens und 4 Billionen multimodale (Bild‑Text) Tokens und deckt dabei über zehn Sprachen ab. Das Modell erzielt in zahlreichen Benchmarks — etwa in Mathematik, Programmierung und Multimodalität — führende Ergebnisse unter den Open‑Source‑Modellen."
2620
+ },
2564
2621
  "taichu_llm": {
2565
2622
  "description": "Das Zīdōng Taichu Sprachmodell verfügt über außergewöhnliche Sprachverständnisfähigkeiten sowie Fähigkeiten in Textgenerierung, Wissensabfrage, Programmierung, mathematischen Berechnungen, logischem Denken, Sentimentanalyse und Textzusammenfassung. Es kombiniert innovativ große Datenvortrainings mit reichhaltigem Wissen aus mehreren Quellen, verfeinert kontinuierlich die Algorithmen und absorbiert ständig neues Wissen aus umfangreichen Textdaten in Bezug auf Vokabular, Struktur, Grammatik und Semantik, um die Leistung des Modells kontinuierlich zu verbessern. Es bietet den Nutzern bequemere Informationen und Dienstleistungen sowie ein intelligenteres Erlebnis."
2566
2623
  },
@@ -2707,5 +2764,8 @@
2707
2764
  },
2708
2765
  "zai-org/GLM-4.5-Air": {
2709
2766
  "description": "GLM-4.5-Air ist ein speziell für Agentenanwendungen entwickeltes Basismodell mit Mixture-of-Experts-Architektur. Es ist tief optimiert für Werkzeugaufrufe, Web-Browsing, Softwareentwicklung und Frontend-Programmierung und unterstützt nahtlos die Integration in Code-Agenten wie Claude Code und Roo Code. GLM-4.5 verwendet einen hybriden Inferenzmodus und ist für komplexe Schlussfolgerungen sowie den Alltagsgebrauch geeignet."
2767
+ },
2768
+ "zai-org/GLM-4.5V": {
2769
+ "description": "GLM-4.5V ist das neueste visuell-sprachliche Modell (VLM), das von Zhipu AI veröffentlicht wurde. Das Modell basiert auf dem Flaggschiff-Textmodell GLM-4.5-Air mit insgesamt 106 Milliarden Parametern und 12 Milliarden Aktivierungsparametern und verwendet eine Mixture-of-Experts-(MoE)-Architektur. Es zielt darauf ab, bei geringeren Inferenzkosten herausragende Leistung zu erzielen. Technisch setzt es die Entwicklungslinie von GLM-4.1V-Thinking fort und führt Innovationen wie die dreidimensionale Rotations-Positionskodierung (3D-RoPE) ein, wodurch die Wahrnehmung und das Schließen über dreidimensionale Raumbeziehungen deutlich verbessert werden. Durch Optimierungen in den Phasen des Pre-Trainings, der überwachten Feinabstimmung und des Reinforcement Learnings ist das Modell in der Lage, verschiedene visuelle Inhalte wie Bilder, Videos und lange Dokumente zu verarbeiten; in 41 öffentlichen multimodalen Benchmarks erreichte es Spitzenwerte unter frei verfügbaren Modellen derselben Klasse. Zudem wurde ein \"Denkmodus\"-Schalter hinzugefügt, der es Nutzern erlaubt, flexibel zwischen schneller Reaktion und tiefgehendem Schlussfolgern zu wählen, um Effizienz und Ergebnisqualität auszubalancieren."
2710
2770
  }
2711
2771
  }
@@ -26,6 +26,9 @@
26
26
  "bedrock": {
27
27
  "description": "Bedrock ist ein Service von Amazon AWS, der sich darauf konzentriert, Unternehmen fortschrittliche KI-Sprach- und visuelle Modelle bereitzustellen. Die Modellfamilie umfasst die Claude-Serie von Anthropic, die Llama 3.1-Serie von Meta und mehr, und bietet eine Vielzahl von Optionen von leichtgewichtig bis hochleistungsfähig, die Textgenerierung, Dialoge, Bildverarbeitung und andere Aufgaben unterstützen und für Unternehmensanwendungen unterschiedlicher Größen und Anforderungen geeignet sind."
28
28
  },
29
+ "bfl": {
30
+ "description": "Ein führendes, an vorderster Front tätiges KI-Forschungslabor, das die visuelle Infrastruktur von morgen gestaltet."
31
+ },
29
32
  "cloudflare": {
30
33
  "description": "Führen Sie von serverlosen GPUs betriebene Machine-Learning-Modelle im globalen Netzwerk von Cloudflare aus."
31
34
  },
@@ -130,6 +130,12 @@
130
130
  },
131
131
  "progress": {
132
132
  "uploadingWithCount": "{{completed}}/{{total}} uploaded"
133
+ },
134
+ "validation": {
135
+ "fileSizeExceeded": "File size exceeds the maximum allowed",
136
+ "fileSizeExceededDetail": "{{fileName}} ({{actualSize}}) exceeds the maximum allowed size of {{maxSize}}",
137
+ "fileSizeExceededMultiple": "{{count}} files exceed the maximum allowed size of {{maxSize}}: {{fileList}}",
138
+ "imageCountExceeded": "Maximum number of images exceeded"
133
139
  }
134
140
  },
135
141
  "OllamaSetupGuide": {
@@ -85,6 +85,17 @@
85
85
  "CreateMessageError": "Sorry, the message could not be sent successfully. Please copy the content and try sending it again. This message will not be retained after refreshing the page.",
86
86
  "ExceededContextWindow": "The current request content exceeds the length that the model can handle. Please reduce the amount of content and try again.",
87
87
  "FreePlanLimit": "You are currently a free user and cannot use this feature. Please upgrade to a paid plan to continue using it.",
88
+ "GoogleAIBlockReason": {
89
+ "BLOCKLIST": "Your content contains prohibited terms. Please review and modify your input, then try again.",
90
+ "IMAGE_SAFETY": "The generated image content was blocked for safety reasons. Please try changing your image generation request.",
91
+ "LANGUAGE": "The language you used is not currently supported. Please try again in English or another supported language.",
92
+ "OTHER": "The content was blocked for an unknown reason. Please try rephrasing your request.",
93
+ "PROHIBITED_CONTENT": "Your request may contain prohibited content. Please adjust your request to comply with the usage guidelines.",
94
+ "RECITATION": "Your content was blocked due to potential copyright concerns. Please try using original content or rephrase your request.",
95
+ "SAFETY": "Your content was blocked by safety policies. Please modify your request to avoid potentially harmful or inappropriate content.",
96
+ "SPII": "Your content may contain sensitive personal identifying information. To protect privacy, please remove such information and try again.",
97
+ "default": "Content blocked: {{blockReason}}. Please adjust your request and try again."
98
+ },
88
99
  "InsufficientQuota": "Sorry, the quota for this key has been reached. Please check your account balance or increase the key quota and try again.",
89
100
  "InvalidAccessCode": "Invalid access code or empty. Please enter the correct access code or add a custom API Key.",
90
101
  "InvalidBedrockCredentials": "Bedrock authentication failed. Please check the AccessKeyId/SecretAccessKey and retry.",
@@ -113,18 +124,6 @@
113
124
  "PluginServerError": "Plugin server request returned an error. Please check your plugin manifest file, plugin configuration, or server implementation based on the error information below",
114
125
  "PluginSettingsInvalid": "This plugin needs to be correctly configured before it can be used. Please check if your configuration is correct",
115
126
  "ProviderBizError": "Error requesting {{provider}} service, please troubleshoot or retry based on the following information",
116
-
117
- "GoogleAIBlockReason": {
118
- "BLOCKLIST": "Your content contains prohibited terms. Please review and modify your input before retrying.",
119
- "IMAGE_SAFETY": "Generated image content was blocked for safety reasons. Please try modifying your image generation request.",
120
- "LANGUAGE": "The language you used is not supported. Please try using English or other supported languages.",
121
- "OTHER": "Content was blocked for unknown reasons. Please try rephrasing your request or contact technical support.",
122
- "PROHIBITED_CONTENT": "Your content may contain prohibited content types. Please adjust your request to ensure it complies with usage guidelines.",
123
- "RECITATION": "Your content was blocked due to potential copyright issues. Please try using original content or rephrasing your request.",
124
- "SAFETY": "Your content was blocked due to safety policies. Please try adjusting your request to avoid potentially harmful or inappropriate content.",
125
- "SPII": "Your content may contain sensitive personally identifiable information. For privacy protection, please remove relevant sensitive information before retrying.",
126
- "default": "Content was blocked: {{blockReason}}. Please adjust your request content and try again."
127
- },
128
127
  "QuotaLimitReached": "We apologize, but the current token usage or number of requests has reached the quota limit for this key. Please increase the quota for this key or try again later.",
129
128
  "StreamChunkError": "Error parsing the message chunk of the streaming request. Please check if the current API interface complies with the standard specifications, or contact your API provider for assistance.",
130
129
  "SubscriptionKeyMismatch": "We apologize for the inconvenience. Due to a temporary system malfunction, your current subscription usage is inactive. Please click the button below to restore your subscription, or contact us via email for support.",