@intentsolutions/blueprint 2.0.0 → 2.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/cli.js +1 -1
- package/dist/cli.js.map +1 -1
- package/dist/core/index.d.ts +62 -0
- package/dist/core/index.d.ts.map +1 -0
- package/dist/core/index.js +137 -0
- package/dist/core/index.js.map +1 -0
- package/dist/index.d.ts +9 -0
- package/dist/index.d.ts.map +1 -0
- package/dist/index.js +11 -0
- package/dist/index.js.map +1 -0
- package/dist/mcp/index.d.ts +7 -0
- package/dist/mcp/index.d.ts.map +1 -0
- package/dist/mcp/index.js +216 -0
- package/dist/mcp/index.js.map +1 -0
- package/package.json +30 -10
- package/templates/core/01_prd.md +465 -0
- package/templates/core/02_adr.md +432 -0
- package/templates/core/03_generate_tasks.md +418 -0
- package/templates/core/04_process_task_list.md +430 -0
- package/templates/core/05_market_research.md +483 -0
- package/templates/core/06_architecture.md +561 -0
- package/templates/core/07_competitor_analysis.md +462 -0
- package/templates/core/08_personas.md +367 -0
- package/templates/core/09_user_journeys.md +385 -0
- package/templates/core/10_user_stories.md +582 -0
- package/templates/core/11_acceptance_criteria.md +687 -0
- package/templates/core/12_qa_gate.md +737 -0
- package/templates/core/13_risk_register.md +605 -0
- package/templates/core/14_project_brief.md +477 -0
- package/templates/core/15_brainstorming.md +653 -0
- package/templates/core/16_frontend_spec.md +1479 -0
- package/templates/core/17_test_plan.md +878 -0
- package/templates/core/18_release_plan.md +994 -0
- package/templates/core/19_operational_readiness.md +1100 -0
- package/templates/core/20_metrics_dashboard.md +1375 -0
- package/templates/core/21_postmortem.md +1122 -0
- package/templates/core/22_playtest_usability.md +1624 -0
|
@@ -0,0 +1,1375 @@
|
|
|
1
|
+
# 📊 Enterprise Metrics & Analytics Dashboard Framework
|
|
2
|
+
|
|
3
|
+
**Metadata**
|
|
4
|
+
- Last Updated: {{DATE}}
|
|
5
|
+
- Maintainer: AI-Dev Toolkit
|
|
6
|
+
- Related Docs: 01_prd.md, 19_operational_readiness.md, 18_release_plan.md, 17_test_plan.md
|
|
7
|
+
|
|
8
|
+
> **🎯 Executive Summary**
|
|
9
|
+
> A comprehensive enterprise metrics and analytics framework providing real-time business intelligence, operational insights, and predictive analytics. This dashboard system enables data-driven decision making across all organizational levels with automated alerting, trend analysis, and actionable insights for strategic planning and operational excellence.
|
|
10
|
+
|
|
11
|
+
---
|
|
12
|
+
|
|
13
|
+
## 📈 1. Business Intelligence Dashboard Architecture
|
|
14
|
+
|
|
15
|
+
### 1.1 Executive Dashboard (C-Level View)
|
|
16
|
+
#### Strategic KPIs & Business Health
|
|
17
|
+
```yaml
|
|
18
|
+
# Executive Dashboard Configuration
|
|
19
|
+
Primary Business Metrics:
|
|
20
|
+
Revenue & Growth:
|
|
21
|
+
- [ ] Monthly Recurring Revenue (MRR) trend
|
|
22
|
+
- [ ] Annual Recurring Revenue (ARR) growth
|
|
23
|
+
- [ ] Revenue per customer (ARPU)
|
|
24
|
+
- [ ] Customer lifetime value (CLV)
|
|
25
|
+
- [ ] Gross revenue retention (GRR)
|
|
26
|
+
- [ ] Net revenue retention (NRR)
|
|
27
|
+
- [ ] Revenue forecast accuracy
|
|
28
|
+
- [ ] Market share percentage
|
|
29
|
+
|
|
30
|
+
Customer Metrics:
|
|
31
|
+
- [ ] Total customer count and growth rate
|
|
32
|
+
- [ ] Customer acquisition rate (new signups/month)
|
|
33
|
+
- [ ] Customer churn rate (monthly/annual)
|
|
34
|
+
- [ ] Net promoter score (NPS) trending
|
|
35
|
+
- [ ] Customer satisfaction score (CSAT)
|
|
36
|
+
- [ ] Customer effort score (CES)
|
|
37
|
+
- [ ] Product-market fit indicators
|
|
38
|
+
- [ ] Customer segment analysis
|
|
39
|
+
|
|
40
|
+
Operational Excellence:
|
|
41
|
+
- [ ] System uptime and availability (99.9%+ SLA)
|
|
42
|
+
- [ ] Critical incident count and resolution time
|
|
43
|
+
- [ ] Feature adoption rates
|
|
44
|
+
- [ ] Development velocity (story points/sprint)
|
|
45
|
+
- [ ] Time to market for new features
|
|
46
|
+
- [ ] Cost per acquisition (CAC) vs. CLV ratio
|
|
47
|
+
- [ ] Gross margin and operating efficiency
|
|
48
|
+
- [ ] Team productivity and utilization
|
|
49
|
+
```
|
|
50
|
+
|
|
51
|
+
#### Real-time Business Health Score
|
|
52
|
+
```javascript
|
|
53
|
+
// Business Health Score Calculation
|
|
54
|
+
const calculateBusinessHealthScore = (metrics) => {
|
|
55
|
+
const weights = {
|
|
56
|
+
revenue_growth: 0.25, // 25% weight
|
|
57
|
+
customer_satisfaction: 0.20, // 20% weight
|
|
58
|
+
system_reliability: 0.20, // 20% weight
|
|
59
|
+
customer_retention: 0.15, // 15% weight
|
|
60
|
+
operational_efficiency: 0.10, // 10% weight
|
|
61
|
+
feature_adoption: 0.10 // 10% weight
|
|
62
|
+
};
|
|
63
|
+
|
|
64
|
+
const scores = {
|
|
65
|
+
revenue_growth: calculateRevenueScore(metrics.mrr_growth),
|
|
66
|
+
customer_satisfaction: normalizeScore(metrics.nps, -100, 100),
|
|
67
|
+
system_reliability: normalizeScore(metrics.uptime, 99.0, 99.99),
|
|
68
|
+
customer_retention: normalizeScore(metrics.retention_rate, 80, 95),
|
|
69
|
+
operational_efficiency: calculateEfficiencyScore(metrics),
|
|
70
|
+
feature_adoption: normalizeScore(metrics.adoption_rate, 20, 80)
|
|
71
|
+
};
|
|
72
|
+
|
|
73
|
+
let totalScore = 0;
|
|
74
|
+
for (const [metric, weight] of Object.entries(weights)) {
|
|
75
|
+
totalScore += scores[metric] * weight;
|
|
76
|
+
}
|
|
77
|
+
|
|
78
|
+
return {
|
|
79
|
+
overall_score: Math.round(totalScore),
|
|
80
|
+
component_scores: scores,
|
|
81
|
+
trend: calculateTrend(metrics),
|
|
82
|
+
recommendations: generateRecommendations(scores)
|
|
83
|
+
};
|
|
84
|
+
};
|
|
85
|
+
|
|
86
|
+
// Health Score Thresholds
|
|
87
|
+
const HEALTH_THRESHOLDS = {
|
|
88
|
+
excellent: 90, // Green indicator
|
|
89
|
+
good: 75, // Yellow indicator
|
|
90
|
+
warning: 60, // Orange indicator
|
|
91
|
+
critical: 40 // Red indicator
|
|
92
|
+
};
|
|
93
|
+
```
|
|
94
|
+
|
|
95
|
+
### 1.2 Product Management Dashboard
|
|
96
|
+
#### Feature Performance & User Engagement
|
|
97
|
+
```yaml
|
|
98
|
+
# Product Analytics Configuration
|
|
99
|
+
User Engagement Metrics:
|
|
100
|
+
Daily/Weekly/Monthly Active Users:
|
|
101
|
+
- [ ] DAU (Daily Active Users) trending
|
|
102
|
+
- [ ] WAU (Weekly Active Users) patterns
|
|
103
|
+
- [ ] MAU (Monthly Active Users) growth
|
|
104
|
+
- [ ] User stickiness ratio (DAU/MAU)
|
|
105
|
+
- [ ] Session duration and frequency
|
|
106
|
+
- [ ] User journey completion rates
|
|
107
|
+
- [ ] Feature utilization heatmaps
|
|
108
|
+
- [ ] User cohort analysis and retention
|
|
109
|
+
|
|
110
|
+
Feature Adoption & Usage:
|
|
111
|
+
- [ ] Feature discovery rates
|
|
112
|
+
- [ ] Time to first value (TTFV)
|
|
113
|
+
- [ ] Feature adoption by user segment
|
|
114
|
+
- [ ] Feature usage depth and breadth
|
|
115
|
+
- [ ] A/B test results and statistical significance
|
|
116
|
+
- [ ] Conversion funnel analysis
|
|
117
|
+
- [ ] User flow optimization opportunities
|
|
118
|
+
- [ ] Feature deprecation impact analysis
|
|
119
|
+
|
|
120
|
+
Product-Market Fit Indicators:
|
|
121
|
+
- [ ] Organic growth rate
|
|
122
|
+
- [ ] User referral rates
|
|
123
|
+
- [ ] Product usage intensity
|
|
124
|
+
- [ ] Customer feedback sentiment
|
|
125
|
+
- [ ] Market penetration by segment
|
|
126
|
+
- [ ] Competitive feature comparison
|
|
127
|
+
- [ ] Innovation pipeline metrics
|
|
128
|
+
- [ ] User-generated content volume
|
|
129
|
+
```
|
|
130
|
+
|
|
131
|
+
#### A/B Testing & Experimentation Framework
|
|
132
|
+
```javascript
|
|
133
|
+
// A/B Testing Dashboard Configuration
|
|
134
|
+
const experimentDashboard = {
|
|
135
|
+
activeExperiments: [
|
|
136
|
+
{
|
|
137
|
+
id: "checkout_optimization_v2",
|
|
138
|
+
name: "Checkout Flow Optimization",
|
|
139
|
+
status: "running",
|
|
140
|
+
startDate: "2024-01-15",
|
|
141
|
+
endDate: "2024-02-15",
|
|
142
|
+
participants: 10000,
|
|
143
|
+
variants: {
|
|
144
|
+
control: { allocation: 50, conversions: 1240, conversion_rate: 12.4 },
|
|
145
|
+
variant_a: { allocation: 50, conversions: 1356, conversion_rate: 13.56 }
|
|
146
|
+
},
|
|
147
|
+
statistical_significance: 95.2,
|
|
148
|
+
expected_impact: "+9.3% conversion rate",
|
|
149
|
+
business_impact: "$45,000 additional monthly revenue"
|
|
150
|
+
}
|
|
151
|
+
],
|
|
152
|
+
|
|
153
|
+
experimentMetrics: {
|
|
154
|
+
total_experiments_ytd: 24,
|
|
155
|
+
successful_experiments: 18,
|
|
156
|
+
success_rate: 75,
|
|
157
|
+
average_lift: 8.3,
|
|
158
|
+
total_revenue_impact: "$540,000",
|
|
159
|
+
experiments_in_pipeline: 6
|
|
160
|
+
},
|
|
161
|
+
|
|
162
|
+
experimentationVelocity: {
|
|
163
|
+
experiments_per_month: 4,
|
|
164
|
+
average_experiment_duration: 21, // days
|
|
165
|
+
time_to_results: 14, // days
|
|
166
|
+
implementation_time: 7 // days
|
|
167
|
+
}
|
|
168
|
+
};
|
|
169
|
+
|
|
170
|
+
// Statistical Significance Calculation
|
|
171
|
+
function calculateSignificance(controlRate, variantRate, sampleSize) {
|
|
172
|
+
const pooledRate = (controlRate + variantRate) / 2;
|
|
173
|
+
const standardError = Math.sqrt(2 * pooledRate * (1 - pooledRate) / sampleSize);
|
|
174
|
+
const zScore = Math.abs(variantRate - controlRate) / standardError;
|
|
175
|
+
const pValue = 2 * (1 - normalCDF(Math.abs(zScore)));
|
|
176
|
+
|
|
177
|
+
return {
|
|
178
|
+
z_score: zScore,
|
|
179
|
+
p_value: pValue,
|
|
180
|
+
confidence_level: (1 - pValue) * 100,
|
|
181
|
+
is_significant: pValue < 0.05
|
|
182
|
+
};
|
|
183
|
+
}
|
|
184
|
+
```
|
|
185
|
+
|
|
186
|
+
---
|
|
187
|
+
|
|
188
|
+
## 🔧 2. Technical Operations Dashboard
|
|
189
|
+
|
|
190
|
+
### 2.1 System Performance & Reliability
|
|
191
|
+
#### Infrastructure Health Monitoring
|
|
192
|
+
```yaml
|
|
193
|
+
# Technical Operations Metrics
|
|
194
|
+
System Performance:
|
|
195
|
+
Application Performance:
|
|
196
|
+
- [ ] Response time percentiles (50th, 95th, 99th)
|
|
197
|
+
- [ ] Throughput (requests per second)
|
|
198
|
+
- [ ] Error rate by service and endpoint
|
|
199
|
+
- [ ] Apdex score (Application Performance Index)
|
|
200
|
+
- [ ] User experience metrics (Core Web Vitals)
|
|
201
|
+
- [ ] API rate limiting and throttling metrics
|
|
202
|
+
- [ ] Background job processing times
|
|
203
|
+
- [ ] Cache hit ratios and performance
|
|
204
|
+
|
|
205
|
+
Infrastructure Metrics:
|
|
206
|
+
- [ ] CPU utilization across all services
|
|
207
|
+
- [ ] Memory usage and garbage collection
|
|
208
|
+
- [ ] Disk I/O and storage utilization
|
|
209
|
+
- [ ] Network latency and packet loss
|
|
210
|
+
- [ ] Container health and restart counts
|
|
211
|
+
- [ ] Auto-scaling events and triggers
|
|
212
|
+
- [ ] Load balancer distribution and health
|
|
213
|
+
- [ ] Database connection pool utilization
|
|
214
|
+
|
|
215
|
+
Reliability & Availability:
|
|
216
|
+
- [ ] Service uptime and availability (99.9%+ SLA)
|
|
217
|
+
- [ ] Mean Time To Recovery (MTTR)
|
|
218
|
+
- [ ] Mean Time Between Failures (MTBF)
|
|
219
|
+
- [ ] Service level objective (SLO) compliance
|
|
220
|
+
- [ ] Incident count and severity distribution
|
|
221
|
+
- [ ] Error budget consumption
|
|
222
|
+
- [ ] Disaster recovery readiness
|
|
223
|
+
- [ ] Business continuity metrics
|
|
224
|
+
```
|
|
225
|
+
|
|
226
|
+
#### Real-time Performance Dashboard
|
|
227
|
+
```javascript
|
|
228
|
+
// Performance Monitoring Configuration
|
|
229
|
+
const performanceDashboard = {
|
|
230
|
+
realTimeMetrics: {
|
|
231
|
+
currentRPS: 1247, // Requests per second
|
|
232
|
+
averageLatency: 145, // milliseconds
|
|
233
|
+
errorRate: 0.023, // 0.023%
|
|
234
|
+
activeConnections: 2846,
|
|
235
|
+
queueDepth: 12,
|
|
236
|
+
cacheHitRatio: 94.7, // percentage
|
|
237
|
+
uptime: 99.97 // percentage
|
|
238
|
+
},
|
|
239
|
+
|
|
240
|
+
slaCompliance: {
|
|
241
|
+
availability_target: 99.9,
|
|
242
|
+
availability_current: 99.97,
|
|
243
|
+
response_time_target: 200, // ms
|
|
244
|
+
response_time_current: 145, // ms
|
|
245
|
+
error_rate_target: 0.1, // percentage
|
|
246
|
+
error_rate_current: 0.023 // percentage
|
|
247
|
+
},
|
|
248
|
+
|
|
249
|
+
performanceTrends: {
|
|
250
|
+
last_24h: {
|
|
251
|
+
peak_rps: 2847,
|
|
252
|
+
peak_latency: 287,
|
|
253
|
+
incidents: 0,
|
|
254
|
+
error_budget_consumed: 2.1 // percentage
|
|
255
|
+
},
|
|
256
|
+
last_7d: {
|
|
257
|
+
average_uptime: 99.94,
|
|
258
|
+
total_incidents: 1,
|
|
259
|
+
mttr_minutes: 12,
|
|
260
|
+
performance_score: 94.2
|
|
261
|
+
}
|
|
262
|
+
}
|
|
263
|
+
};
|
|
264
|
+
|
|
265
|
+
// Alert Thresholds Configuration
|
|
266
|
+
const alertThresholds = {
|
|
267
|
+
critical: {
|
|
268
|
+
response_time: 1000, // ms
|
|
269
|
+
error_rate: 1.0, // percentage
|
|
270
|
+
cpu_usage: 90, // percentage
|
|
271
|
+
memory_usage: 95, // percentage
|
|
272
|
+
disk_usage: 90 // percentage
|
|
273
|
+
},
|
|
274
|
+
warning: {
|
|
275
|
+
response_time: 500, // ms
|
|
276
|
+
error_rate: 0.5, // percentage
|
|
277
|
+
cpu_usage: 75, // percentage
|
|
278
|
+
memory_usage: 85, // percentage
|
|
279
|
+
disk_usage: 80 // percentage
|
|
280
|
+
}
|
|
281
|
+
};
|
|
282
|
+
```
|
|
283
|
+
|
|
284
|
+
### 2.2 DevOps & Deployment Metrics
|
|
285
|
+
#### CI/CD Pipeline Performance
|
|
286
|
+
```yaml
|
|
287
|
+
# DevOps Metrics Dashboard
|
|
288
|
+
Development Velocity:
|
|
289
|
+
Code Quality & Delivery:
|
|
290
|
+
- [ ] Deployment frequency (deployments per day/week)
|
|
291
|
+
- [ ] Lead time for changes (commit to production)
|
|
292
|
+
- [ ] Change failure rate (rollbacks/deployments)
|
|
293
|
+
- [ ] Mean time to recovery from incidents
|
|
294
|
+
- [ ] Code review completion time
|
|
295
|
+
- [ ] Automated test coverage percentage
|
|
296
|
+
- [ ] Build success rate and duration
|
|
297
|
+
- [ ] Static code analysis scores
|
|
298
|
+
|
|
299
|
+
Team Productivity:
|
|
300
|
+
- [ ] Story points completed per sprint
|
|
301
|
+
- [ ] Velocity trends and predictability
|
|
302
|
+
- [ ] Cycle time (story start to completion)
|
|
303
|
+
- [ ] Work in progress (WIP) limits compliance
|
|
304
|
+
- [ ] Technical debt ratio and trend
|
|
305
|
+
- [ ] Developer satisfaction scores
|
|
306
|
+
- [ ] Knowledge sharing metrics
|
|
307
|
+
- [ ] Innovation time allocation
|
|
308
|
+
|
|
309
|
+
Security & Compliance:
|
|
310
|
+
Security Metrics:
|
|
311
|
+
- [ ] Vulnerability scan results and trends
|
|
312
|
+
- [ ] Security incident count and severity
|
|
313
|
+
- [ ] Patch management compliance
|
|
314
|
+
- [ ] Access review completion rates
|
|
315
|
+
- [ ] Security training completion
|
|
316
|
+
- [ ] Penetration test findings
|
|
317
|
+
- [ ] Compliance audit scores
|
|
318
|
+
- [ ] Third-party risk assessments
|
|
319
|
+
```
|
|
320
|
+
|
|
321
|
+
#### Deployment Success Dashboard
|
|
322
|
+
```javascript
|
|
323
|
+
// DevOps Dashboard Configuration
|
|
324
|
+
const devOpsDashboard = {
|
|
325
|
+
deploymentMetrics: {
|
|
326
|
+
frequency: {
|
|
327
|
+
daily_average: 3.2,
|
|
328
|
+
weekly_total: 22,
|
|
329
|
+
monthly_total: 94,
|
|
330
|
+
year_over_year_growth: 145 // percentage
|
|
331
|
+
},
|
|
332
|
+
|
|
333
|
+
success_rates: {
|
|
334
|
+
deployment_success: 97.8, // percentage
|
|
335
|
+
automated_test_pass: 94.3, // percentage
|
|
336
|
+
security_scan_pass: 98.1, // percentage
|
|
337
|
+
performance_test_pass: 89.7 // percentage
|
|
338
|
+
},
|
|
339
|
+
|
|
340
|
+
timing_metrics: {
|
|
341
|
+
average_build_time: 8.3, // minutes
|
|
342
|
+
average_deployment_time: 4.7, // minutes
|
|
343
|
+
lead_time_hours: 16.2, // hours
|
|
344
|
+
cycle_time_days: 3.4 // days
|
|
345
|
+
}
|
|
346
|
+
},
|
|
347
|
+
|
|
348
|
+
qualityMetrics: {
|
|
349
|
+
test_coverage: 87.3, // percentage
|
|
350
|
+
code_complexity_score: 7.2, // out of 10
|
|
351
|
+
technical_debt_hours: 124, // estimated hours
|
|
352
|
+
security_score: 94.1, // percentage
|
|
353
|
+
documentation_coverage: 78.9 // percentage
|
|
354
|
+
},
|
|
355
|
+
|
|
356
|
+
teamMetrics: {
|
|
357
|
+
velocity_points: 42, // story points per sprint
|
|
358
|
+
predictability: 91.2, // percentage
|
|
359
|
+
developer_satisfaction: 8.1, // out of 10
|
|
360
|
+
innovation_time: 15.3, // percentage of total time
|
|
361
|
+
knowledge_sharing_events: 8 // per month
|
|
362
|
+
}
|
|
363
|
+
};
|
|
364
|
+
```
|
|
365
|
+
|
|
366
|
+
---
|
|
367
|
+
|
|
368
|
+
## 💰 3. Financial & Revenue Analytics
|
|
369
|
+
|
|
370
|
+
### 3.1 Revenue Operations Dashboard
|
|
371
|
+
#### Financial Performance Tracking
|
|
372
|
+
```yaml
|
|
373
|
+
# Financial Analytics Configuration
|
|
374
|
+
Revenue Metrics:
|
|
375
|
+
Subscription Business (SaaS):
|
|
376
|
+
- [ ] Monthly Recurring Revenue (MRR) growth
|
|
377
|
+
- [ ] Annual Recurring Revenue (ARR) tracking
|
|
378
|
+
- [ ] Average Revenue Per User (ARPU)
|
|
379
|
+
- [ ] Customer Lifetime Value (CLV)
|
|
380
|
+
- [ ] Churn rate impact on revenue
|
|
381
|
+
- [ ] Expansion revenue from existing customers
|
|
382
|
+
- [ ] Contraction and downgrade revenue
|
|
383
|
+
- [ ] Revenue concentration by customer segment
|
|
384
|
+
|
|
385
|
+
Transactional Business (E-commerce):
|
|
386
|
+
- [ ] Gross Merchandise Value (GMV)
|
|
387
|
+
- [ ] Average Order Value (AOV)
|
|
388
|
+
- [ ] Conversion rate by traffic source
|
|
389
|
+
- [ ] Revenue per visitor (RPV)
|
|
390
|
+
- [ ] Cart abandonment rate and recovery
|
|
391
|
+
- [ ] Repeat purchase rate
|
|
392
|
+
- [ ] Seasonal revenue patterns
|
|
393
|
+
- [ ] Product category performance
|
|
394
|
+
|
|
395
|
+
Profitability Analysis:
|
|
396
|
+
- [ ] Gross margin by product/service
|
|
397
|
+
- [ ] Customer Acquisition Cost (CAC)
|
|
398
|
+
- [ ] CAC payback period
|
|
399
|
+
- [ ] Unit economics and contribution margin
|
|
400
|
+
- [ ] Operating expense ratio
|
|
401
|
+
- [ ] EBITDA and net profit margins
|
|
402
|
+
- [ ] Cash flow and burn rate
|
|
403
|
+
- [ ] Revenue per employee
|
|
404
|
+
```
|
|
405
|
+
|
|
406
|
+
#### Financial Forecasting Dashboard
|
|
407
|
+
```javascript
|
|
408
|
+
// Financial Forecasting Model
|
|
409
|
+
const financialForecast = {
|
|
410
|
+
revenueProjection: {
|
|
411
|
+
current_month: {
|
|
412
|
+
actual: 847000,
|
|
413
|
+
target: 825000,
|
|
414
|
+
variance: 22000,
|
|
415
|
+
variance_percent: 2.67
|
|
416
|
+
},
|
|
417
|
+
|
|
418
|
+
quarterly_forecast: {
|
|
419
|
+
q1_projection: 2540000,
|
|
420
|
+
q1_confidence: 94.2,
|
|
421
|
+
q2_projection: 2785000,
|
|
422
|
+
q2_confidence: 87.1,
|
|
423
|
+
annual_target: 11500000,
|
|
424
|
+
projected_achievement: 102.3
|
|
425
|
+
},
|
|
426
|
+
|
|
427
|
+
growth_metrics: {
|
|
428
|
+
month_over_month: 8.7, // percentage
|
|
429
|
+
quarter_over_quarter: 12.4, // percentage
|
|
430
|
+
year_over_year: 34.2 // percentage
|
|
431
|
+
}
|
|
432
|
+
},
|
|
433
|
+
|
|
434
|
+
customerMetrics: {
|
|
435
|
+
acquisition: {
|
|
436
|
+
new_customers_month: 847,
|
|
437
|
+
acquisition_cost: 127, // CAC
|
|
438
|
+
payback_period: 8.3, // months
|
|
439
|
+
conversion_rate: 3.2 // percentage
|
|
440
|
+
},
|
|
441
|
+
|
|
442
|
+
retention: {
|
|
443
|
+
monthly_churn: 2.8, // percentage
|
|
444
|
+
annual_retention: 91.2, // percentage
|
|
445
|
+
expansion_rate: 118, // net revenue retention
|
|
446
|
+
upsell_rate: 23.4 // percentage
|
|
447
|
+
}
|
|
448
|
+
},
|
|
449
|
+
|
|
450
|
+
profitabilityAnalysis: {
|
|
451
|
+
gross_margin: 78.3, // percentage
|
|
452
|
+
operating_margin: 15.7, // percentage
|
|
453
|
+
customer_lifetime_value: 3240, // CLV
|
|
454
|
+
ltv_to_cac_ratio: 25.5, // LTV:CAC
|
|
455
|
+
months_to_recover_cac: 8.3 // payback period
|
|
456
|
+
}
|
|
457
|
+
};
|
|
458
|
+
|
|
459
|
+
// Revenue Waterfall Analysis
|
|
460
|
+
function generateRevenueWaterfall(startRevenue, components) {
|
|
461
|
+
const waterfall = [
|
|
462
|
+
{ category: "Starting Revenue", value: startRevenue, cumulative: startRevenue },
|
|
463
|
+
{ category: "New Customers", value: components.new_customer_revenue, cumulative: 0 },
|
|
464
|
+
{ category: "Expansion", value: components.expansion_revenue, cumulative: 0 },
|
|
465
|
+
{ category: "Churn", value: -components.churned_revenue, cumulative: 0 },
|
|
466
|
+
{ category: "Contraction", value: -components.contraction_revenue, cumulative: 0 }
|
|
467
|
+
];
|
|
468
|
+
|
|
469
|
+
let running_total = startRevenue;
|
|
470
|
+
for (let i = 1; i < waterfall.length; i++) {
|
|
471
|
+
running_total += waterfall[i].value;
|
|
472
|
+
waterfall[i].cumulative = running_total;
|
|
473
|
+
}
|
|
474
|
+
|
|
475
|
+
waterfall.push({
|
|
476
|
+
category: "Ending Revenue",
|
|
477
|
+
value: running_total,
|
|
478
|
+
cumulative: running_total
|
|
479
|
+
});
|
|
480
|
+
|
|
481
|
+
return waterfall;
|
|
482
|
+
}
|
|
483
|
+
```
|
|
484
|
+
|
|
485
|
+
### 3.2 Customer Success & Retention Analytics
|
|
486
|
+
#### Customer Health Scoring
|
|
487
|
+
```yaml
|
|
488
|
+
# Customer Success Metrics
|
|
489
|
+
Customer Health Indicators:
|
|
490
|
+
Usage & Engagement:
|
|
491
|
+
- [ ] Product usage frequency and depth
|
|
492
|
+
- [ ] Feature adoption progression
|
|
493
|
+
- [ ] Support ticket volume and sentiment
|
|
494
|
+
- [ ] Training and onboarding completion
|
|
495
|
+
- [ ] Community engagement levels
|
|
496
|
+
- [ ] Integration setup and utilization
|
|
497
|
+
- [ ] Advanced feature usage rates
|
|
498
|
+
- [ ] User role expansion within accounts
|
|
499
|
+
|
|
500
|
+
Business Value Realization:
|
|
501
|
+
- [ ] Time to first value achievement
|
|
502
|
+
- [ ] ROI metrics and business outcomes
|
|
503
|
+
- [ ] Success milestone completion
|
|
504
|
+
- [ ] Goal achievement rates
|
|
505
|
+
- [ ] Business objective alignment
|
|
506
|
+
- [ ] Value realization documentation
|
|
507
|
+
- [ ] Executive sponsorship strength
|
|
508
|
+
- [ ] Renewal probability scoring
|
|
509
|
+
|
|
510
|
+
Relationship Health:
|
|
511
|
+
- [ ] Net Promoter Score (NPS) trends
|
|
512
|
+
- [ ] Customer satisfaction surveys
|
|
513
|
+
- [ ] Executive relationship quality
|
|
514
|
+
- [ ] Champion identification and strength
|
|
515
|
+
- [ ] Communication frequency and quality
|
|
516
|
+
- [ ] Feedback loop effectiveness
|
|
517
|
+
- [ ] Partnership development opportunities
|
|
518
|
+
- [ ] Advocacy and reference potential
|
|
519
|
+
```
|
|
520
|
+
|
|
521
|
+
#### Churn Prediction & Prevention
|
|
522
|
+
```javascript
|
|
523
|
+
// Customer Health Score Calculation
|
|
524
|
+
const calculateCustomerHealth = (customer) => {
|
|
525
|
+
const healthFactors = {
|
|
526
|
+
usage_score: calculateUsageScore(customer.usage_metrics),
|
|
527
|
+
engagement_score: calculateEngagementScore(customer.activity),
|
|
528
|
+
support_score: calculateSupportScore(customer.tickets),
|
|
529
|
+
payment_score: calculatePaymentScore(customer.billing),
|
|
530
|
+
relationship_score: calculateRelationshipScore(customer.interactions)
|
|
531
|
+
};
|
|
532
|
+
|
|
533
|
+
const weights = {
|
|
534
|
+
usage_score: 0.30,
|
|
535
|
+
engagement_score: 0.25,
|
|
536
|
+
support_score: 0.20,
|
|
537
|
+
payment_score: 0.15,
|
|
538
|
+
relationship_score: 0.10
|
|
539
|
+
};
|
|
540
|
+
|
|
541
|
+
let totalScore = 0;
|
|
542
|
+
for (const [factor, weight] of Object.entries(weights)) {
|
|
543
|
+
totalScore += healthFactors[factor] * weight;
|
|
544
|
+
}
|
|
545
|
+
|
|
546
|
+
const riskLevel = determineRiskLevel(totalScore);
|
|
547
|
+
const churnProbability = calculateChurnProbability(healthFactors);
|
|
548
|
+
|
|
549
|
+
return {
|
|
550
|
+
overall_health_score: Math.round(totalScore),
|
|
551
|
+
risk_level: riskLevel,
|
|
552
|
+
churn_probability: churnProbability,
|
|
553
|
+
component_scores: healthFactors,
|
|
554
|
+
recommended_actions: generateRecommendations(healthFactors, riskLevel),
|
|
555
|
+
next_review_date: calculateNextReviewDate(riskLevel)
|
|
556
|
+
};
|
|
557
|
+
};
|
|
558
|
+
|
|
559
|
+
// Risk Level Classification
|
|
560
|
+
const RISK_LEVELS = {
|
|
561
|
+
green: { min: 80, label: "Healthy", actions: ["expansion_opportunity", "advocacy"] },
|
|
562
|
+
yellow: { min: 60, label: "At Risk", actions: ["engagement_campaign", "training"] },
|
|
563
|
+
orange: { min: 40, label: "High Risk", actions: ["immediate_intervention", "executive_engagement"] },
|
|
564
|
+
red: { min: 0, label: "Critical", actions: ["emergency_response", "retention_campaign"] }
|
|
565
|
+
};
|
|
566
|
+
|
|
567
|
+
// Churn Prevention Workflow
|
|
568
|
+
const churnPreventionActions = {
|
|
569
|
+
early_warning_triggers: [
|
|
570
|
+
"login_frequency_decline",
|
|
571
|
+
"feature_usage_drop",
|
|
572
|
+
"support_ticket_increase",
|
|
573
|
+
"billing_issues",
|
|
574
|
+
"champion_departure"
|
|
575
|
+
],
|
|
576
|
+
|
|
577
|
+
intervention_strategies: {
|
|
578
|
+
automated: ["email_campaigns", "in_app_guidance", "resource_recommendations"],
|
|
579
|
+
human: ["success_manager_outreach", "executive_check_in", "custom_training"],
|
|
580
|
+
strategic: ["contract_renegotiation", "pilot_programs", "partnership_opportunities"]
|
|
581
|
+
}
|
|
582
|
+
};
|
|
583
|
+
```
|
|
584
|
+
|
|
585
|
+
---
|
|
586
|
+
|
|
587
|
+
## 🎯 4. Marketing & Sales Analytics
|
|
588
|
+
|
|
589
|
+
### 4.1 Marketing Performance Dashboard
|
|
590
|
+
#### Campaign Attribution & ROI
|
|
591
|
+
```yaml
|
|
592
|
+
# Marketing Analytics Configuration
|
|
593
|
+
Campaign Performance:
|
|
594
|
+
Digital Marketing Channels:
|
|
595
|
+
- [ ] Organic search traffic and conversions
|
|
596
|
+
- [ ] Paid search (SEM) performance and ROI
|
|
597
|
+
- [ ] Social media engagement and conversions
|
|
598
|
+
- [ ] Email marketing open/click/conversion rates
|
|
599
|
+
- [ ] Content marketing performance metrics
|
|
600
|
+
- [ ] Display advertising impressions and CTR
|
|
601
|
+
- [ ] Affiliate and partner channel performance
|
|
602
|
+
- [ ] Retargeting campaign effectiveness
|
|
603
|
+
|
|
604
|
+
Lead Generation & Qualification:
|
|
605
|
+
- [ ] Marketing Qualified Leads (MQLs) volume
|
|
606
|
+
- [ ] MQL to SQL (Sales Qualified Lead) conversion
|
|
607
|
+
- [ ] Lead source attribution and quality
|
|
608
|
+
- [ ] Cost per lead by channel
|
|
609
|
+
- [ ] Lead scoring accuracy and effectiveness
|
|
610
|
+
- [ ] Pipeline velocity by lead source
|
|
611
|
+
- [ ] Lead nurturing campaign performance
|
|
612
|
+
- [ ] Marketing influence on closed deals
|
|
613
|
+
|
|
614
|
+
Brand & Content Performance:
|
|
615
|
+
- [ ] Brand awareness and sentiment tracking
|
|
616
|
+
- [ ] Content engagement and sharing rates
|
|
617
|
+
- [ ] Website traffic sources and behavior
|
|
618
|
+
- [ ] SEO ranking improvements
|
|
619
|
+
- [ ] Thought leadership metrics
|
|
620
|
+
- [ ] PR and media mention tracking
|
|
621
|
+
- [ ] Event participation and lead generation
|
|
622
|
+
- [ ] Customer advocacy and referral rates
|
|
623
|
+
```
|
|
624
|
+
|
|
625
|
+
#### Multi-Touch Attribution Model
|
|
626
|
+
```javascript
|
|
627
|
+
// Marketing Attribution Dashboard
|
|
628
|
+
const marketingAttribution = {
|
|
629
|
+
attributionModel: "time_decay", // Options: first_touch, last_touch, linear, time_decay, position_based
|
|
630
|
+
|
|
631
|
+
channelPerformance: {
|
|
632
|
+
organic_search: {
|
|
633
|
+
visits: 24750,
|
|
634
|
+
conversions: 847,
|
|
635
|
+
conversion_rate: 3.42,
|
|
636
|
+
cost: 0,
|
|
637
|
+
revenue: 284000,
|
|
638
|
+
roi: Infinity,
|
|
639
|
+
assisted_conversions: 1256
|
|
640
|
+
},
|
|
641
|
+
|
|
642
|
+
paid_search: {
|
|
643
|
+
visits: 18420,
|
|
644
|
+
conversions: 623,
|
|
645
|
+
conversion_rate: 3.38,
|
|
646
|
+
cost: 45000,
|
|
647
|
+
revenue: 189000,
|
|
648
|
+
roi: 4.2,
|
|
649
|
+
assisted_conversions: 892
|
|
650
|
+
},
|
|
651
|
+
|
|
652
|
+
social_media: {
|
|
653
|
+
visits: 12350,
|
|
654
|
+
conversions: 298,
|
|
655
|
+
conversion_rate: 2.41,
|
|
656
|
+
cost: 18000,
|
|
657
|
+
revenue: 87000,
|
|
658
|
+
roi: 4.83,
|
|
659
|
+
assisted_conversions: 756
|
|
660
|
+
},
|
|
661
|
+
|
|
662
|
+
email: {
|
|
663
|
+
visits: 8940,
|
|
664
|
+
conversions: 412,
|
|
665
|
+
conversion_rate: 4.61,
|
|
666
|
+
cost: 5000,
|
|
667
|
+
revenue: 145000,
|
|
668
|
+
roi: 29.0,
|
|
669
|
+
assisted_conversions: 623
|
|
670
|
+
}
|
|
671
|
+
},
|
|
672
|
+
|
|
673
|
+
customerJourneyAnalysis: {
|
|
674
|
+
average_touchpoints: 7.3,
|
|
675
|
+
average_journey_length: 23, // days
|
|
676
|
+
top_conversion_paths: [
|
|
677
|
+
"Organic Search → Email → Paid Search → Direct",
|
|
678
|
+
"Social Media → Organic Search → Email → Direct",
|
|
679
|
+
"Paid Search → Direct → Email → Direct"
|
|
680
|
+
],
|
|
681
|
+
journey_value_distribution: {
|
|
682
|
+
single_touch: 15.2, // percentage
|
|
683
|
+
multi_touch: 84.8 // percentage
|
|
684
|
+
}
|
|
685
|
+
}
|
|
686
|
+
};
|
|
687
|
+
|
|
688
|
+
// Campaign ROI Calculation
|
|
689
|
+
function calculateCampaignROI(campaign) {
|
|
690
|
+
const directRevenue = campaign.attributed_revenue;
|
|
691
|
+
const assistedRevenue = campaign.assisted_revenue * 0.3; // 30% attribution weight
|
|
692
|
+
const totalRevenue = directRevenue + assistedRevenue;
|
|
693
|
+
const totalCost = campaign.media_spend + campaign.operational_cost;
|
|
694
|
+
|
|
695
|
+
return {
|
|
696
|
+
total_revenue: totalRevenue,
|
|
697
|
+
total_cost: totalCost,
|
|
698
|
+
roi: ((totalRevenue - totalCost) / totalCost) * 100,
|
|
699
|
+
roas: totalRevenue / campaign.media_spend, // Return on Ad Spend
|
|
700
|
+
cpa: totalCost / campaign.conversions, // Cost per Acquisition
|
|
701
|
+
ltv_to_cac: campaign.avg_customer_ltv / (totalCost / campaign.conversions)
|
|
702
|
+
};
|
|
703
|
+
}
|
|
704
|
+
```
|
|
705
|
+
|
|
706
|
+
### 4.2 Sales Performance Analytics
|
|
707
|
+
#### Pipeline Management & Forecasting
|
|
708
|
+
```yaml
|
|
709
|
+
# Sales Analytics Configuration
|
|
710
|
+
Pipeline Metrics:
|
|
711
|
+
Opportunity Management:
|
|
712
|
+
- [ ] Total pipeline value by stage
|
|
713
|
+
- [ ] Stage conversion rates and velocity
|
|
714
|
+
- [ ] Average deal size by segment
|
|
715
|
+
- [ ] Sales cycle length trends
|
|
716
|
+
- [ ] Win rate by product/service
|
|
717
|
+
- [ ] Loss analysis and competitive insights
|
|
718
|
+
- [ ] Pipeline coverage ratio
|
|
719
|
+
- [ ] Forecast accuracy by sales rep
|
|
720
|
+
|
|
721
|
+
Sales Team Performance:
|
|
722
|
+
- [ ] Individual quota attainment
|
|
723
|
+
- [ ] Activities per rep (calls, meetings, emails)
|
|
724
|
+
- [ ] Pipeline generation by rep
|
|
725
|
+
- [ ] Average deal size by rep
|
|
726
|
+
- [ ] Sales cycle efficiency
|
|
727
|
+
- [ ] Customer retention by sales rep
|
|
728
|
+
- [ ] Upsell and cross-sell success rates
|
|
729
|
+
- [ ] Territory performance analysis
|
|
730
|
+
|
|
731
|
+
Revenue Forecasting:
|
|
732
|
+
- [ ] Committed vs. best case scenarios
|
|
733
|
+
- [ ] Quarterly and annual projections
|
|
734
|
+
- [ ] Pipeline health scoring
|
|
735
|
+
- [ ] Historical accuracy trends
|
|
736
|
+
- [ ] Risk-adjusted forecasting
|
|
737
|
+
- [ ] Seasonal pattern analysis
|
|
738
|
+
- [ ] Market condition impact
|
|
739
|
+
- [ ] Competitive win/loss analysis
|
|
740
|
+
```
|
|
741
|
+
|
|
742
|
+
#### Sales Intelligence Dashboard
|
|
743
|
+
```javascript
|
|
744
|
+
// Sales Performance Dashboard
|
|
745
|
+
const salesDashboard = {
|
|
746
|
+
pipelineMetrics: {
|
|
747
|
+
total_pipeline_value: 5420000,
|
|
748
|
+
weighted_pipeline: 2840000,
|
|
749
|
+
deals_in_pipeline: 247,
|
|
750
|
+
average_deal_size: 21943,
|
|
751
|
+
pipeline_velocity: 67, // days average
|
|
752
|
+
pipeline_coverage: 3.2, // ratio
|
|
753
|
+
|
|
754
|
+
stage_breakdown: {
|
|
755
|
+
discovery: { count: 89, value: 1245000, conversion_rate: 45 },
|
|
756
|
+
proposal: { count: 67, value: 1680000, conversion_rate: 62 },
|
|
757
|
+
negotiation: { count: 34, value: 1420000, conversion_rate: 78 },
|
|
758
|
+
closed_won: { count: 28, value: 1075000, conversion_rate: 100 }
|
|
759
|
+
}
|
|
760
|
+
},
|
|
761
|
+
|
|
762
|
+
salesRepPerformance: {
|
|
763
|
+
quota_attainment: {
|
|
764
|
+
above_100: 12, // number of reps
|
|
765
|
+
between_75_100: 18,
|
|
766
|
+
between_50_75: 8,
|
|
767
|
+
below_50: 4
|
|
768
|
+
},
|
|
769
|
+
|
|
770
|
+
activity_metrics: {
|
|
771
|
+
calls_per_day: 47,
|
|
772
|
+
meetings_per_week: 23,
|
|
773
|
+
emails_per_day: 89,
|
|
774
|
+
demos_per_week: 12
|
|
775
|
+
},
|
|
776
|
+
|
|
777
|
+
efficiency_metrics: {
|
|
778
|
+
lead_response_time: 1.3, // hours
|
|
779
|
+
follow_up_consistency: 87, // percentage
|
|
780
|
+
crm_data_quality: 94, // percentage
|
|
781
|
+
pipeline_hygiene: 91 // percentage
|
|
782
|
+
}
|
|
783
|
+
},
|
|
784
|
+
|
|
785
|
+
forecastAccuracy: {
|
|
786
|
+
current_quarter: {
|
|
787
|
+
committed_forecast: 2100000,
|
|
788
|
+
best_case_forecast: 2450000,
|
|
789
|
+
actual_to_date: 1680000,
|
|
790
|
+
projected_final: 2180000,
|
|
791
|
+
accuracy_percentage: 96.2
|
|
792
|
+
},
|
|
793
|
+
|
|
794
|
+
historical_accuracy: {
|
|
795
|
+
last_4_quarters: [94.2, 91.8, 96.7, 88.3],
|
|
796
|
+
improvement_trend: 2.1, // percentage points
|
|
797
|
+
forecast_bias: -2.4 // negative = conservative
|
|
798
|
+
}
|
|
799
|
+
}
|
|
800
|
+
};
|
|
801
|
+
|
|
802
|
+
// Deal Score Calculation
|
|
803
|
+
function calculateDealScore(deal) {
|
|
804
|
+
const factors = {
|
|
805
|
+
stage_probability: getStageBaseProbability(deal.stage),
|
|
806
|
+
champion_strength: deal.champion_score || 50,
|
|
807
|
+
budget_confirmed: deal.budget_confirmed ? 100 : 20,
|
|
808
|
+
decision_timeframe: deal.decision_timeframe <= 30 ? 100 : 50,
|
|
809
|
+
competitive_position: deal.competitive_position || 60,
|
|
810
|
+
solution_fit: deal.solution_fit_score || 70
|
|
811
|
+
};
|
|
812
|
+
|
|
813
|
+
const weights = {
|
|
814
|
+
stage_probability: 0.25,
|
|
815
|
+
champion_strength: 0.20,
|
|
816
|
+
budget_confirmed: 0.20,
|
|
817
|
+
decision_timeframe: 0.15,
|
|
818
|
+
competitive_position: 0.10,
|
|
819
|
+
solution_fit: 0.10
|
|
820
|
+
};
|
|
821
|
+
|
|
822
|
+
let weightedScore = 0;
|
|
823
|
+
for (const [factor, weight] of Object.entries(weights)) {
|
|
824
|
+
weightedScore += (factors[factor] * weight) / 100;
|
|
825
|
+
}
|
|
826
|
+
|
|
827
|
+
return {
|
|
828
|
+
deal_score: Math.round(weightedScore * 100),
|
|
829
|
+
risk_factors: identifyRiskFactors(factors),
|
|
830
|
+
recommended_actions: generateSalesActions(factors),
|
|
831
|
+
close_probability: weightedScore
|
|
832
|
+
};
|
|
833
|
+
}
|
|
834
|
+
```
|
|
835
|
+
|
|
836
|
+
---
|
|
837
|
+
|
|
838
|
+
## 🔍 5. Advanced Analytics & Predictive Insights
|
|
839
|
+
|
|
840
|
+
### 5.1 Machine Learning & AI Analytics
|
|
841
|
+
#### Predictive Analytics Framework
|
|
842
|
+
```yaml
|
|
843
|
+
# AI/ML Analytics Configuration
|
|
844
|
+
Predictive Models:
|
|
845
|
+
Customer Behavior Prediction:
|
|
846
|
+
- [ ] Churn prediction models (90-day horizon)
|
|
847
|
+
- [ ] Lifetime value prediction
|
|
848
|
+
- [ ] Upsell/cross-sell propensity scoring
|
|
849
|
+
- [ ] Optimal pricing recommendations
|
|
850
|
+
- [ ] Product recommendation engines
|
|
851
|
+
- [ ] Purchase timing predictions
|
|
852
|
+
- [ ] Support ticket escalation prediction
|
|
853
|
+
- [ ] User engagement likelihood scoring
|
|
854
|
+
|
|
855
|
+
Business Forecasting:
|
|
856
|
+
- [ ] Revenue forecasting with confidence intervals
|
|
857
|
+
- [ ] Demand forecasting by product/service
|
|
858
|
+
- [ ] Market trend analysis and prediction
|
|
859
|
+
- [ ] Seasonal pattern recognition
|
|
860
|
+
- [ ] Capacity planning optimization
|
|
861
|
+
- [ ] Resource allocation recommendations
|
|
862
|
+
- [ ] Risk assessment and mitigation scoring
|
|
863
|
+
- [ ] Competitive analysis and positioning
|
|
864
|
+
|
|
865
|
+
Operational Optimization:
|
|
866
|
+
- [ ] System performance anomaly detection
|
|
867
|
+
- [ ] Predictive maintenance scheduling
|
|
868
|
+
- [ ] Resource utilization optimization
|
|
869
|
+
- [ ] Quality assurance automation
|
|
870
|
+
- [ ] Fraud detection and prevention
|
|
871
|
+
- [ ] Security threat identification
|
|
872
|
+
- [ ] Process efficiency recommendations
|
|
873
|
+
- [ ] Cost optimization opportunities
|
|
874
|
+
```
|
|
875
|
+
|
|
876
|
+
#### Real-time Analytics Engine
|
|
877
|
+
```javascript
|
|
878
|
+
// Predictive Analytics Dashboard
|
|
879
|
+
const predictiveAnalytics = {
|
|
880
|
+
churnPrediction: {
|
|
881
|
+
model_accuracy: 94.2,
|
|
882
|
+
false_positive_rate: 3.1,
|
|
883
|
+
customers_at_risk: {
|
|
884
|
+
high_risk: 47, // 90%+ churn probability
|
|
885
|
+
medium_risk: 123, // 60-90% churn probability
|
|
886
|
+
low_risk: 289 // 30-60% churn probability
|
|
887
|
+
},
|
|
888
|
+
|
|
889
|
+
intervention_impact: {
|
|
890
|
+
prevented_churn: 156,
|
|
891
|
+
retained_revenue: 487000,
|
|
892
|
+
intervention_cost: 34000,
|
|
893
|
+
roi: 1435 // percentage
|
|
894
|
+
}
|
|
895
|
+
},
|
|
896
|
+
|
|
897
|
+
revenueForecast: {
|
|
898
|
+
next_30_days: {
|
|
899
|
+
predicted_revenue: 784000,
|
|
900
|
+
confidence_interval: [721000, 847000],
|
|
901
|
+
prediction_accuracy: 96.7,
|
|
902
|
+
key_drivers: ["seasonal_uptick", "campaign_performance", "pipeline_velocity"]
|
|
903
|
+
},
|
|
904
|
+
|
|
905
|
+
scenario_analysis: {
|
|
906
|
+
optimistic: { revenue: 923000, probability: 25 },
|
|
907
|
+
realistic: { revenue: 784000, probability: 50 },
|
|
908
|
+
pessimistic: { revenue: 645000, probability: 25 }
|
|
909
|
+
}
|
|
910
|
+
},
|
|
911
|
+
|
|
912
|
+
anomalyDetection: {
|
|
913
|
+
detected_anomalies: [
|
|
914
|
+
{
|
|
915
|
+
metric: "api_response_time",
|
|
916
|
+
severity: "medium",
|
|
917
|
+
deviation: 2.3, // standard deviations
|
|
918
|
+
timestamp: "2024-01-15T14:30:00Z",
|
|
919
|
+
likely_cause: "database_performance"
|
|
920
|
+
}
|
|
921
|
+
],
|
|
922
|
+
|
|
923
|
+
automated_responses: {
|
|
924
|
+
alerts_sent: 12,
|
|
925
|
+
auto_scaling_triggered: 3,
|
|
926
|
+
circuit_breakers_activated: 1,
|
|
927
|
+
false_positives: 2
|
|
928
|
+
}
|
|
929
|
+
}
|
|
930
|
+
};
|
|
931
|
+
|
|
932
|
+
// AI Model Performance Monitoring
|
|
933
|
+
const modelPerformance = {
|
|
934
|
+
churn_model: {
|
|
935
|
+
accuracy: 94.2,
|
|
936
|
+
precision: 91.8,
|
|
937
|
+
recall: 89.3,
|
|
938
|
+
f1_score: 90.5,
|
|
939
|
+
last_retrained: "2024-01-10",
|
|
940
|
+
next_retrain: "2024-02-10",
|
|
941
|
+
data_drift_score: 0.23,
|
|
942
|
+
model_degradation: "minimal"
|
|
943
|
+
},
|
|
944
|
+
|
|
945
|
+
recommendation_engine: {
|
|
946
|
+
click_through_rate: 8.7,
|
|
947
|
+
conversion_rate: 3.2,
|
|
948
|
+
revenue_per_recommendation: 24.50,
|
|
949
|
+
personalization_score: 87.3,
|
|
950
|
+
catalog_coverage: 76.8,
|
|
951
|
+
diversity_score: 82.1
|
|
952
|
+
}
|
|
953
|
+
};
|
|
954
|
+
```
|
|
955
|
+
|
|
956
|
+
### 5.2 Real-time Decision Intelligence
|
|
957
|
+
#### Automated Alert & Action System
|
|
958
|
+
```yaml
|
|
959
|
+
# Intelligent Alerting Configuration
|
|
960
|
+
Automated Decision Making:
|
|
961
|
+
Performance Optimization:
|
|
962
|
+
- [ ] Auto-scaling trigger optimization
|
|
963
|
+
- [ ] Load balancing algorithm adjustment
|
|
964
|
+
- [ ] Cache invalidation strategy automation
|
|
965
|
+
- [ ] Database query optimization suggestions
|
|
966
|
+
- [ ] CDN configuration optimization
|
|
967
|
+
- [ ] Resource allocation rebalancing
|
|
968
|
+
- [ ] Cost optimization recommendations
|
|
969
|
+
- [ ] Performance bottleneck identification
|
|
970
|
+
|
|
971
|
+
Business Process Automation:
|
|
972
|
+
- [ ] Lead scoring and routing automation
|
|
973
|
+
- [ ] Customer success intervention triggers
|
|
974
|
+
- [ ] Pricing optimization recommendations
|
|
975
|
+
- [ ] Inventory level optimization
|
|
976
|
+
- [ ] Marketing campaign optimization
|
|
977
|
+
- [ ] A/B test result interpretation
|
|
978
|
+
- [ ] Content personalization engines
|
|
979
|
+
- [ ] Fraud detection and prevention
|
|
980
|
+
|
|
981
|
+
Risk Management:
|
|
982
|
+
- [ ] Security threat response automation
|
|
983
|
+
- [ ] Compliance violation detection
|
|
984
|
+
- [ ] Financial risk assessment
|
|
985
|
+
- [ ] Operational risk monitoring
|
|
986
|
+
- [ ] Customer health score alerts
|
|
987
|
+
- [ ] Revenue at risk identification
|
|
988
|
+
- [ ] Quality assurance automation
|
|
989
|
+
- [ ] Incident escalation optimization
|
|
990
|
+
```
|
|
991
|
+
|
|
992
|
+
#### Decision Support Framework
|
|
993
|
+
```javascript
|
|
994
|
+
// Real-time Decision Engine
|
|
995
|
+
const decisionEngine = {
|
|
996
|
+
performanceOptimization: {
|
|
997
|
+
autoScaling: {
|
|
998
|
+
cpu_threshold: 75,
|
|
999
|
+
memory_threshold: 80,
|
|
1000
|
+
scale_up_cooldown: 300, // seconds
|
|
1001
|
+
scale_down_cooldown: 600, // seconds
|
|
1002
|
+
max_instances: 20,
|
|
1003
|
+
min_instances: 2
|
|
1004
|
+
},
|
|
1005
|
+
|
|
1006
|
+
loadBalancing: {
|
|
1007
|
+
algorithm: "least_connections",
|
|
1008
|
+
health_check_interval: 30,
|
|
1009
|
+
failure_threshold: 3,
|
|
1010
|
+
success_threshold: 2,
|
|
1011
|
+
timeout: 5000 // milliseconds
|
|
1012
|
+
}
|
|
1013
|
+
},
|
|
1014
|
+
|
|
1015
|
+
businessOptimization: {
|
|
1016
|
+
pricingEngine: {
|
|
1017
|
+
dynamic_pricing_enabled: true,
|
|
1018
|
+
price_elasticity_model: "advanced",
|
|
1019
|
+
competitor_monitoring: true,
|
|
1020
|
+
margin_protection: 15, // minimum percentage
|
|
1021
|
+
max_price_change: 10 // percentage per adjustment
|
|
1022
|
+
},
|
|
1023
|
+
|
|
1024
|
+
inventoryManagement: {
|
|
1025
|
+
reorder_point_calculation: "ai_optimized",
|
|
1026
|
+
safety_stock_multiplier: 1.5,
|
|
1027
|
+
seasonal_adjustment: true,
|
|
1028
|
+
demand_forecasting: "ml_enhanced",
|
|
1029
|
+
supplier_lead_time_variance: 0.2
|
|
1030
|
+
}
|
|
1031
|
+
},
|
|
1032
|
+
|
|
1033
|
+
riskManagement: {
|
|
1034
|
+
fraudDetection: {
|
|
1035
|
+
real_time_scoring: true,
|
|
1036
|
+
machine_learning_enabled: true,
|
|
1037
|
+
risk_threshold: 85,
|
|
1038
|
+
auto_block_threshold: 95,
|
|
1039
|
+
manual_review_threshold: 70
|
|
1040
|
+
},
|
|
1041
|
+
|
|
1042
|
+
operationalRisk: {
|
|
1043
|
+
incident_prediction: true,
|
|
1044
|
+
capacity_monitoring: true,
|
|
1045
|
+
dependency_tracking: true,
|
|
1046
|
+
sla_monitoring: true,
|
|
1047
|
+
automated_mitigation: true
|
|
1048
|
+
}
|
|
1049
|
+
}
|
|
1050
|
+
};
|
|
1051
|
+
|
|
1052
|
+
// Decision Confidence Scoring
|
|
1053
|
+
function calculateDecisionConfidence(decision_factors) {
|
|
1054
|
+
const weights = {
|
|
1055
|
+
data_quality: 0.25,
|
|
1056
|
+
historical_accuracy: 0.20,
|
|
1057
|
+
sample_size: 0.20,
|
|
1058
|
+
model_performance: 0.15,
|
|
1059
|
+
external_validation: 0.10,
|
|
1060
|
+
expert_consensus: 0.10
|
|
1061
|
+
};
|
|
1062
|
+
|
|
1063
|
+
let confidence_score = 0;
|
|
1064
|
+
for (const [factor, weight] of Object.entries(weights)) {
|
|
1065
|
+
confidence_score += decision_factors[factor] * weight;
|
|
1066
|
+
}
|
|
1067
|
+
|
|
1068
|
+
return {
|
|
1069
|
+
confidence_percentage: Math.round(confidence_score),
|
|
1070
|
+
recommendation_strength: getRecommendationStrength(confidence_score),
|
|
1071
|
+
risk_assessment: assessDecisionRisk(decision_factors),
|
|
1072
|
+
required_approvals: getRequiredApprovals(confidence_score)
|
|
1073
|
+
};
|
|
1074
|
+
}
|
|
1075
|
+
```
|
|
1076
|
+
|
|
1077
|
+
---
|
|
1078
|
+
|
|
1079
|
+
## 📱 6. Dashboard Implementation & User Experience
|
|
1080
|
+
|
|
1081
|
+
### 6.1 Multi-Platform Dashboard Design
|
|
1082
|
+
#### Responsive Dashboard Framework
|
|
1083
|
+
```yaml
|
|
1084
|
+
# Dashboard Implementation Specifications
|
|
1085
|
+
User Interface Design:
|
|
1086
|
+
Executive Dashboard (C-Suite):
|
|
1087
|
+
- [ ] High-level KPI overview with trend indicators
|
|
1088
|
+
- [ ] Real-time business health score
|
|
1089
|
+
- [ ] Exception-based reporting (alerts only)
|
|
1090
|
+
- [ ] Mobile-responsive design for on-the-go access
|
|
1091
|
+
- [ ] One-click drill-down capabilities
|
|
1092
|
+
- [ ] Customizable widget arrangements
|
|
1093
|
+
- [ ] Export capabilities (PDF, PowerPoint)
|
|
1094
|
+
- [ ] Scheduled automated reporting
|
|
1095
|
+
|
|
1096
|
+
Operational Dashboard (Managers):
|
|
1097
|
+
- [ ] Detailed metrics with historical context
|
|
1098
|
+
- [ ] Team performance comparisons
|
|
1099
|
+
- [ ] Goal tracking and progress indicators
|
|
1100
|
+
- [ ] Resource utilization monitoring
|
|
1101
|
+
- [ ] Predictive analytics insights
|
|
1102
|
+
- [ ] Collaborative annotation features
|
|
1103
|
+
- [ ] Real-time collaboration tools
|
|
1104
|
+
- [ ] Custom alert configurations
|
|
1105
|
+
|
|
1106
|
+
Analyst Dashboard (Individual Contributors):
|
|
1107
|
+
- [ ] Granular data exploration tools
|
|
1108
|
+
- [ ] Advanced filtering and segmentation
|
|
1109
|
+
- [ ] Custom query builders
|
|
1110
|
+
- [ ] Data export and API access
|
|
1111
|
+
- [ ] Visualization customization
|
|
1112
|
+
- [ ] Statistical analysis tools
|
|
1113
|
+
- [ ] Machine learning model insights
|
|
1114
|
+
- [ ] Peer comparison capabilities
|
|
1115
|
+
```
|
|
1116
|
+
|
|
1117
|
+
#### Dashboard Performance Optimization
|
|
1118
|
+
```javascript
|
|
1119
|
+
// Dashboard Performance Configuration
|
|
1120
|
+
const dashboardPerformance = {
|
|
1121
|
+
loadTimeTargets: {
|
|
1122
|
+
initial_load: 2000, // milliseconds
|
|
1123
|
+
widget_refresh: 500, // milliseconds
|
|
1124
|
+
data_query: 1000, // milliseconds
|
|
1125
|
+
visualization_render: 300 // milliseconds
|
|
1126
|
+
},
|
|
1127
|
+
|
|
1128
|
+
cachingStrategy: {
|
|
1129
|
+
real_time_data: 30, // seconds
|
|
1130
|
+
historical_data: 3600, // seconds (1 hour)
|
|
1131
|
+
static_content: 86400, // seconds (24 hours)
|
|
1132
|
+
user_preferences: 604800 // seconds (7 days)
|
|
1133
|
+
},
|
|
1134
|
+
|
|
1135
|
+
dataOptimization: {
|
|
1136
|
+
aggregation_levels: ["minute", "hour", "day", "week", "month"],
|
|
1137
|
+
compression_enabled: true,
|
|
1138
|
+
lazy_loading: true,
|
|
1139
|
+
progressive_enhancement: true,
|
|
1140
|
+
offline_capability: true
|
|
1141
|
+
},
|
|
1142
|
+
|
|
1143
|
+
userExperience: {
|
|
1144
|
+
personalization: {
|
|
1145
|
+
saved_views: 10,
|
|
1146
|
+
custom_widgets: 25,
|
|
1147
|
+
notification_preferences: true,
|
|
1148
|
+
theme_customization: true,
|
|
1149
|
+
layout_persistence: true
|
|
1150
|
+
},
|
|
1151
|
+
|
|
1152
|
+
accessibility: {
|
|
1153
|
+
wcag_compliance: "AA",
|
|
1154
|
+
keyboard_navigation: true,
|
|
1155
|
+
screen_reader_support: true,
|
|
1156
|
+
high_contrast_mode: true,
|
|
1157
|
+
font_size_adjustment: true
|
|
1158
|
+
}
|
|
1159
|
+
}
|
|
1160
|
+
};
|
|
1161
|
+
|
|
1162
|
+
// Widget Configuration Framework
|
|
1163
|
+
const widgetFramework = {
|
|
1164
|
+
chartTypes: [
|
|
1165
|
+
"line_chart", "bar_chart", "pie_chart", "scatter_plot",
|
|
1166
|
+
"heatmap", "gauge", "funnel", "sankey", "treemap",
|
|
1167
|
+
"geographic_map", "network_diagram", "candlestick"
|
|
1168
|
+
],
|
|
1169
|
+
|
|
1170
|
+
interactivity: {
|
|
1171
|
+
drill_down: true,
|
|
1172
|
+
cross_filtering: true,
|
|
1173
|
+
tooltip_customization: true,
|
|
1174
|
+
zoom_and_pan: true,
|
|
1175
|
+
brush_selection: true,
|
|
1176
|
+
context_menu: true
|
|
1177
|
+
},
|
|
1178
|
+
|
|
1179
|
+
dataConnections: {
|
|
1180
|
+
real_time_streams: ["websocket", "sse", "polling"],
|
|
1181
|
+
databases: ["postgresql", "mysql", "mongodb", "elasticsearch"],
|
|
1182
|
+
apis: ["rest", "graphql", "grpc"],
|
|
1183
|
+
files: ["csv", "json", "excel", "parquet"],
|
|
1184
|
+
cloud_services: ["aws", "gcp", "azure", "snowflake"]
|
|
1185
|
+
}
|
|
1186
|
+
};
|
|
1187
|
+
```
|
|
1188
|
+
|
|
1189
|
+
### 6.2 Security & Governance
|
|
1190
|
+
#### Data Access & Privacy Controls
|
|
1191
|
+
```yaml
|
|
1192
|
+
# Dashboard Security Configuration
|
|
1193
|
+
Access Control:
|
|
1194
|
+
Role-Based Permissions:
|
|
1195
|
+
- [ ] Executive access (all metrics, high-level views)
|
|
1196
|
+
- [ ] Manager access (team metrics, departmental data)
|
|
1197
|
+
- [ ] Analyst access (detailed data, exploration tools)
|
|
1198
|
+
- [ ] Guest access (limited public metrics)
|
|
1199
|
+
- [ ] API access (programmatic data consumption)
|
|
1200
|
+
- [ ] Audit access (compliance and governance data)
|
|
1201
|
+
- [ ] Developer access (system metrics, debugging tools)
|
|
1202
|
+
- [ ] Customer access (self-service analytics)
|
|
1203
|
+
|
|
1204
|
+
Data Governance:
|
|
1205
|
+
- [ ] PII data masking and anonymization
|
|
1206
|
+
- [ ] Regional data residency compliance
|
|
1207
|
+
- [ ] Audit trail for all data access
|
|
1208
|
+
- [ ] Data retention policy enforcement
|
|
1209
|
+
- [ ] Consent management integration
|
|
1210
|
+
- [ ] Right to deletion compliance
|
|
1211
|
+
- [ ] Data lineage tracking
|
|
1212
|
+
- [ ] Quality scoring and validation
|
|
1213
|
+
|
|
1214
|
+
Security Measures:
|
|
1215
|
+
- [ ] Multi-factor authentication (MFA)
|
|
1216
|
+
- [ ] Single sign-on (SSO) integration
|
|
1217
|
+
- [ ] API rate limiting and throttling
|
|
1218
|
+
- [ ] Encryption at rest and in transit
|
|
1219
|
+
- [ ] Network security and VPN access
|
|
1220
|
+
- [ ] Regular security assessments
|
|
1221
|
+
- [ ] Intrusion detection and monitoring
|
|
1222
|
+
- [ ] Compliance reporting automation
|
|
1223
|
+
```
|
|
1224
|
+
|
|
1225
|
+
---
|
|
1226
|
+
|
|
1227
|
+
## 🎯 7. Success Metrics & KPI Framework
|
|
1228
|
+
|
|
1229
|
+
### 7.1 Organizational KPI Hierarchy
|
|
1230
|
+
#### Balanced Scorecard Approach
|
|
1231
|
+
```yaml
|
|
1232
|
+
# Enterprise KPI Framework
|
|
1233
|
+
Financial Perspective:
|
|
1234
|
+
Growth Metrics:
|
|
1235
|
+
- [ ] Revenue growth rate (target: 25% YoY)
|
|
1236
|
+
- [ ] Profit margin improvement
|
|
1237
|
+
- [ ] Cash flow and burn rate
|
|
1238
|
+
- [ ] Return on investment (ROI)
|
|
1239
|
+
- [ ] Market share growth
|
|
1240
|
+
- [ ] Customer lifetime value growth
|
|
1241
|
+
- [ ] Cost per acquisition optimization
|
|
1242
|
+
- [ ] Revenue diversification index
|
|
1243
|
+
|
|
1244
|
+
Customer Perspective:
|
|
1245
|
+
Satisfaction & Retention:
|
|
1246
|
+
- [ ] Net Promoter Score (target: >50)
|
|
1247
|
+
- [ ] Customer satisfaction score (target: >4.5/5)
|
|
1248
|
+
- [ ] Customer retention rate (target: >90%)
|
|
1249
|
+
- [ ] Customer effort score
|
|
1250
|
+
- [ ] Time to value achievement
|
|
1251
|
+
- [ ] Support resolution time
|
|
1252
|
+
- [ ] Product adoption rates
|
|
1253
|
+
- [ ] Advocacy and referral rates
|
|
1254
|
+
|
|
1255
|
+
Internal Process Perspective:
|
|
1256
|
+
Operational Excellence:
|
|
1257
|
+
- [ ] System uptime (target: 99.9%+)
|
|
1258
|
+
- [ ] Development velocity
|
|
1259
|
+
- [ ] Time to market for new features
|
|
1260
|
+
- [ ] Quality metrics (defect rates)
|
|
1261
|
+
- [ ] Process automation level
|
|
1262
|
+
- [ ] Cost efficiency ratios
|
|
1263
|
+
- [ ] Compliance score
|
|
1264
|
+
- [ ] Security incident frequency
|
|
1265
|
+
|
|
1266
|
+
Learning & Growth Perspective:
|
|
1267
|
+
Innovation & Capability:
|
|
1268
|
+
- [ ] Employee satisfaction and engagement
|
|
1269
|
+
- [ ] Skill development and certification
|
|
1270
|
+
- [ ] Innovation pipeline metrics
|
|
1271
|
+
- [ ] Knowledge sharing effectiveness
|
|
1272
|
+
- [ ] Technology adoption rates
|
|
1273
|
+
- [ ] Leadership development
|
|
1274
|
+
- [ ] Diversity and inclusion metrics
|
|
1275
|
+
- [ ] Organizational agility index
|
|
1276
|
+
```
|
|
1277
|
+
|
|
1278
|
+
### 7.2 Performance Management Integration
|
|
1279
|
+
#### OKR (Objectives & Key Results) Tracking
|
|
1280
|
+
```javascript
|
|
1281
|
+
// OKR Dashboard Integration
|
|
1282
|
+
const okrFramework = {
|
|
1283
|
+
companyObjectives: [
|
|
1284
|
+
{
|
|
1285
|
+
id: "CO_2024_Q1_01",
|
|
1286
|
+
objective: "Accelerate customer acquisition and growth",
|
|
1287
|
+
owner: "CEO",
|
|
1288
|
+
progress: 73,
|
|
1289
|
+
confidence: 85,
|
|
1290
|
+
keyResults: [
|
|
1291
|
+
{
|
|
1292
|
+
id: "KR_01",
|
|
1293
|
+
description: "Increase MRR by 30% to $1.2M",
|
|
1294
|
+
target: 1200000,
|
|
1295
|
+
current: 876000,
|
|
1296
|
+
progress: 73,
|
|
1297
|
+
trend: "up"
|
|
1298
|
+
},
|
|
1299
|
+
{
|
|
1300
|
+
id: "KR_02",
|
|
1301
|
+
description: "Achieve 95% customer satisfaction",
|
|
1302
|
+
target: 95,
|
|
1303
|
+
current: 92.3,
|
|
1304
|
+
progress: 97,
|
|
1305
|
+
trend: "up"
|
|
1306
|
+
}
|
|
1307
|
+
]
|
|
1308
|
+
}
|
|
1309
|
+
],
|
|
1310
|
+
|
|
1311
|
+
departmentAlignment: {
|
|
1312
|
+
engineering: {
|
|
1313
|
+
alignment_score: 94,
|
|
1314
|
+
contributing_okrs: 8,
|
|
1315
|
+
delivery_confidence: 87
|
|
1316
|
+
},
|
|
1317
|
+
sales: {
|
|
1318
|
+
alignment_score: 91,
|
|
1319
|
+
contributing_okrs: 6,
|
|
1320
|
+
delivery_confidence: 92
|
|
1321
|
+
},
|
|
1322
|
+
marketing: {
|
|
1323
|
+
alignment_score: 88,
|
|
1324
|
+
contributing_okrs: 7,
|
|
1325
|
+
delivery_confidence: 85
|
|
1326
|
+
}
|
|
1327
|
+
},
|
|
1328
|
+
|
|
1329
|
+
progressTracking: {
|
|
1330
|
+
update_frequency: "weekly",
|
|
1331
|
+
automated_tracking: 67, // percentage
|
|
1332
|
+
manual_updates: 33, // percentage
|
|
1333
|
+
confidence_trending: "stable",
|
|
1334
|
+
risk_factors: ["market_conditions", "resource_constraints"]
|
|
1335
|
+
}
|
|
1336
|
+
};
|
|
1337
|
+
|
|
1338
|
+
// Performance Dashboard Integration
|
|
1339
|
+
function generatePerformanceDashboard(timeframe) {
|
|
1340
|
+
return {
|
|
1341
|
+
summary: {
|
|
1342
|
+
okrs_on_track: calculateOKRsOnTrack(),
|
|
1343
|
+
kpis_meeting_targets: calculateKPIsOnTarget(),
|
|
1344
|
+
overall_health_score: calculateOverallHealth(),
|
|
1345
|
+
areas_needing_attention: identifyRiskAreas()
|
|
1346
|
+
},
|
|
1347
|
+
|
|
1348
|
+
trending: {
|
|
1349
|
+
improvement_areas: identifyImprovements(timeframe),
|
|
1350
|
+
declining_metrics: identifyDeclines(timeframe),
|
|
1351
|
+
seasonal_patterns: analyzeSeasonality(timeframe),
|
|
1352
|
+
benchmark_comparisons: getBenchmarkData()
|
|
1353
|
+
},
|
|
1354
|
+
|
|
1355
|
+
recommendations: {
|
|
1356
|
+
quick_wins: identifyQuickWins(),
|
|
1357
|
+
strategic_initiatives: suggestStrategicActions(),
|
|
1358
|
+
resource_reallocation: optimizeResourceAllocation(),
|
|
1359
|
+
process_improvements: identifyProcessGaps()
|
|
1360
|
+
}
|
|
1361
|
+
};
|
|
1362
|
+
}
|
|
1363
|
+
```
|
|
1364
|
+
|
|
1365
|
+
---
|
|
1366
|
+
|
|
1367
|
+
**Metrics Dashboard Status:** [Development/Testing/Production]
|
|
1368
|
+
---
|
|
1369
|
+
|
|
1370
|
+
**Stakeholder Access Matrix:**
|
|
1371
|
+
- **Executive Team:** Full dashboard access + mobile app
|
|
1372
|
+
- **Department Heads:** Departmental dashboards + cross-functional metrics
|
|
1373
|
+
- **Team Leads:** Team performance + individual contributor metrics
|
|
1374
|
+
- **Analysts:** Raw data access + advanced analytics tools
|
|
1375
|
+
- **External Partners:** Limited partner-specific metrics dashboards
|