tomoto 0.2.3 → 0.3.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +6 -0
- data/README.md +8 -10
- data/ext/tomoto/extconf.rb +6 -2
- data/ext/tomoto/{ext.cpp → tomoto.cpp} +1 -1
- data/lib/tomoto/version.rb +1 -1
- data/lib/tomoto.rb +5 -1
- data/vendor/EigenRand/EigenRand/Core.h +10 -10
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +208 -9
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +52 -31
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +9 -8
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +28 -21
- data/vendor/EigenRand/EigenRand/EigenRand +11 -6
- data/vendor/EigenRand/EigenRand/Macro.h +13 -7
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +348 -740
- data/vendor/EigenRand/EigenRand/MvDists/Multinomial.h +5 -3
- data/vendor/EigenRand/EigenRand/MvDists/MvNormal.h +9 -3
- data/vendor/EigenRand/EigenRand/PacketFilter.h +11 -253
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +21 -47
- data/vendor/EigenRand/EigenRand/RandUtils.h +50 -344
- data/vendor/EigenRand/EigenRand/arch/AVX/MorePacketMath.h +619 -0
- data/vendor/EigenRand/EigenRand/arch/AVX/PacketFilter.h +149 -0
- data/vendor/EigenRand/EigenRand/arch/AVX/RandUtils.h +228 -0
- data/vendor/EigenRand/EigenRand/arch/NEON/MorePacketMath.h +473 -0
- data/vendor/EigenRand/EigenRand/arch/NEON/PacketFilter.h +142 -0
- data/vendor/EigenRand/EigenRand/arch/NEON/RandUtils.h +126 -0
- data/vendor/EigenRand/EigenRand/arch/SSE/MorePacketMath.h +501 -0
- data/vendor/EigenRand/EigenRand/arch/SSE/PacketFilter.h +133 -0
- data/vendor/EigenRand/EigenRand/arch/SSE/RandUtils.h +120 -0
- data/vendor/EigenRand/EigenRand/doc.h +24 -12
- data/vendor/EigenRand/README.md +57 -4
- data/vendor/eigen/COPYING.APACHE +203 -0
- data/vendor/eigen/COPYING.BSD +1 -1
- data/vendor/eigen/COPYING.MINPACK +51 -52
- data/vendor/eigen/Eigen/Cholesky +0 -1
- data/vendor/eigen/Eigen/Core +112 -265
- data/vendor/eigen/Eigen/Eigenvalues +2 -3
- data/vendor/eigen/Eigen/Geometry +5 -8
- data/vendor/eigen/Eigen/Householder +0 -1
- data/vendor/eigen/Eigen/Jacobi +0 -1
- data/vendor/eigen/Eigen/KLUSupport +41 -0
- data/vendor/eigen/Eigen/LU +2 -5
- data/vendor/eigen/Eigen/OrderingMethods +0 -3
- data/vendor/eigen/Eigen/PaStiXSupport +1 -0
- data/vendor/eigen/Eigen/PardisoSupport +0 -0
- data/vendor/eigen/Eigen/QR +2 -3
- data/vendor/eigen/Eigen/QtAlignedMalloc +0 -1
- data/vendor/eigen/Eigen/SVD +0 -1
- data/vendor/eigen/Eigen/Sparse +0 -2
- data/vendor/eigen/Eigen/SparseCholesky +0 -8
- data/vendor/eigen/Eigen/SparseLU +4 -0
- data/vendor/eigen/Eigen/SparseQR +0 -1
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +42 -27
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +39 -23
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +90 -47
- data/vendor/eigen/Eigen/src/Core/ArithmeticSequence.h +413 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +99 -11
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +3 -3
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +21 -21
- data/vendor/eigen/Eigen/src/Core/Assign.h +1 -1
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +125 -50
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +10 -10
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +16 -16
- data/vendor/eigen/Eigen/src/Core/Block.h +56 -60
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +29 -31
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +7 -3
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +325 -272
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +5 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +21 -22
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +153 -18
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +6 -6
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +14 -10
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +132 -42
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +25 -21
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +153 -71
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +21 -23
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +50 -2
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +1 -1
- data/vendor/eigen/Eigen/src/Core/Dot.h +10 -10
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +10 -9
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +8 -4
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +3 -3
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +20 -10
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +599 -152
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +40 -33
- data/vendor/eigen/Eigen/src/Core/IO.h +40 -7
- data/vendor/eigen/Eigen/src/Core/IndexedView.h +237 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +9 -10
- data/vendor/eigen/Eigen/src/Core/Map.h +7 -7
- data/vendor/eigen/Eigen/src/Core/MapBase.h +10 -3
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +767 -125
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +118 -19
- data/vendor/eigen/Eigen/src/Core/Matrix.h +131 -25
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +21 -3
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +25 -50
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +4 -3
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +107 -20
- data/vendor/eigen/Eigen/src/Core/PartialReduxEvaluator.h +232 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +3 -31
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +152 -59
- data/vendor/eigen/Eigen/src/Core/Product.h +30 -25
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +192 -125
- data/vendor/eigen/Eigen/src/Core/Random.h +37 -1
- data/vendor/eigen/Eigen/src/Core/Redux.h +180 -170
- data/vendor/eigen/Eigen/src/Core/Ref.h +121 -23
- data/vendor/eigen/Eigen/src/Core/Replicate.h +8 -8
- data/vendor/eigen/Eigen/src/Core/Reshaped.h +454 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +7 -5
- data/vendor/eigen/Eigen/src/Core/Reverse.h +18 -12
- data/vendor/eigen/Eigen/src/Core/Select.h +8 -6
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +33 -20
- data/vendor/eigen/Eigen/src/Core/Solve.h +14 -14
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +16 -16
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +41 -3
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +100 -70
- data/vendor/eigen/Eigen/src/Core/StlIterators.h +463 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +9 -4
- data/vendor/eigen/Eigen/src/Core/Swap.h +5 -4
- data/vendor/eigen/Eigen/src/Core/Transpose.h +88 -27
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +26 -47
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +93 -75
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +5 -5
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +159 -70
- data/vendor/eigen/Eigen/src/Core/Visitor.h +137 -29
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +50 -129
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +126 -337
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +1092 -155
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +65 -1
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/Complex.h +422 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +207 -236
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1482 -495
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/TypeCasting.h +89 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +152 -165
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +19 -251
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProduct.h +2937 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProductCommon.h +221 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProductMMA.h +629 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +2042 -392
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +235 -80
- data/vendor/eigen/Eigen/src/Core/arch/Default/BFloat16.h +700 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +102 -14
- data/vendor/eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h +1649 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctionsFwd.h +110 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Half.h +942 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +1 -1
- data/vendor/eigen/Eigen/src/Core/arch/Default/TypeCasting.h +120 -0
- data/vendor/eigen/Eigen/src/Core/arch/{CUDA → GPU}/MathFunctions.h +16 -4
- data/vendor/eigen/Eigen/src/Core/arch/GPU/PacketMath.h +1685 -0
- data/vendor/eigen/Eigen/src/Core/arch/GPU/TypeCasting.h +80 -0
- data/vendor/eigen/Eigen/src/Core/arch/HIP/hcc/math_constants.h +23 -0
- data/vendor/eigen/Eigen/src/Core/arch/MSA/Complex.h +648 -0
- data/vendor/eigen/Eigen/src/Core/arch/MSA/MathFunctions.h +387 -0
- data/vendor/eigen/Eigen/src/Core/arch/MSA/PacketMath.h +1233 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +313 -219
- data/vendor/eigen/Eigen/src/Core/arch/NEON/GeneralBlockPanelKernel.h +183 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +54 -70
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +4376 -549
- data/vendor/eigen/Eigen/src/Core/arch/NEON/TypeCasting.h +1419 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +59 -179
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +65 -428
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +893 -283
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +65 -0
- data/vendor/eigen/Eigen/src/Core/arch/SVE/MathFunctions.h +44 -0
- data/vendor/eigen/Eigen/src/Core/arch/SVE/PacketMath.h +752 -0
- data/vendor/eigen/Eigen/src/Core/arch/SVE/TypeCasting.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/InteropHeaders.h +232 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/MathFunctions.h +301 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/PacketMath.h +670 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/SyclMemoryModel.h +694 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/TypeCasting.h +85 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +212 -183
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +101 -5
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +510 -395
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +11 -2
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +112 -46
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +31 -30
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +32 -2
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +355 -16
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +1075 -586
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +49 -24
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +41 -35
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +6 -6
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +4 -2
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +382 -483
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +22 -5
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +53 -30
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +16 -8
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +8 -6
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +4 -4
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +5 -4
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +33 -27
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +14 -12
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +36 -34
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +8 -4
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +13 -10
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +304 -119
- data/vendor/eigen/Eigen/src/Core/util/ConfigureVectorization.h +512 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +25 -9
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +26 -3
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +29 -9
- data/vendor/eigen/Eigen/src/Core/util/IndexedViewHelper.h +186 -0
- data/vendor/eigen/Eigen/src/Core/util/IntegralConstant.h +272 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +8 -1
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +709 -246
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +222 -52
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +355 -77
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +5 -1
- data/vendor/eigen/Eigen/src/Core/util/ReshapedHelper.h +51 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +8 -5
- data/vendor/eigen/Eigen/src/Core/util/SymbolicIndex.h +293 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +65 -30
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +1 -1
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +7 -4
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +2 -2
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +1 -1
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +2 -2
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +2 -2
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +9 -6
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +21 -9
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +77 -43
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +20 -15
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +99 -5
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +4 -4
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +3 -3
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +15 -11
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +1 -1
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +3 -2
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +39 -2
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +70 -14
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +3 -3
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +23 -5
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +88 -67
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +6 -12
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +1 -1
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +168 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +9 -2
- data/vendor/eigen/Eigen/src/Householder/Householder.h +8 -4
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +123 -48
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +15 -15
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +7 -23
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +5 -22
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +41 -47
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +51 -60
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +70 -20
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +2 -20
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +11 -9
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +31 -10
- data/vendor/eigen/Eigen/src/KLUSupport/KLUSupport.h +358 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +35 -19
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +29 -43
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +25 -8
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +71 -58
- data/vendor/eigen/Eigen/src/LU/arch/InverseSize4.h +351 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +7 -17
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +297 -277
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +6 -10
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +1 -1
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +9 -7
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +41 -20
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +100 -27
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +59 -22
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +48 -23
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +25 -3
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +183 -63
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +22 -14
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +83 -22
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +3 -3
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +17 -9
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +12 -37
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +3 -2
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +16 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +6 -6
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +81 -27
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +25 -57
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +40 -11
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +11 -15
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +4 -2
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +30 -8
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +126 -11
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +5 -12
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +13 -1
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +7 -7
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +5 -2
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +8 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +1 -1
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +1 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +162 -12
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +1 -1
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +76 -2
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +2 -2
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +1 -1
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +1 -1
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +19 -6
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +2 -12
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +2 -2
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +2 -2
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +6 -8
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +175 -39
- data/vendor/eigen/Eigen/src/misc/lapacke.h +5 -4
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +28 -2
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +155 -11
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +626 -242
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +14 -0
- data/vendor/eigen/Eigen/src/plugins/IndexedViewMethods.h +262 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +4 -4
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +10 -0
- data/vendor/eigen/Eigen/src/plugins/ReshapedMethods.h +149 -0
- data/vendor/eigen/README.md +2 -0
- data/vendor/eigen/bench/btl/README +1 -1
- data/vendor/eigen/bench/tensors/README +6 -7
- data/vendor/eigen/ci/README.md +56 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +1 -1
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +213 -158
- data/vendor/eigen/unsupported/README.txt +1 -1
- data/vendor/tomotopy/README.kr.rst +21 -0
- data/vendor/tomotopy/README.rst +20 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +2 -2
- data/vendor/tomotopy/src/Labeling/Phraser.hpp +1 -1
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +2 -1
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +2 -1
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +1 -1
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +2 -2
- data/vendor/tomotopy/src/TopicModel/HDP.h +1 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +53 -2
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +1 -1
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +1 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +2 -2
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +16 -5
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +1 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +1 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +1 -0
- data/vendor/tomotopy/src/TopicModel/PT.h +3 -1
- data/vendor/tomotopy/src/TopicModel/PTModel.hpp +31 -1
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +2 -2
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +7 -5
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +36 -1
- data/vendor/tomotopy/src/Utils/exception.h +6 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +14 -12
- data/vendor/tomotopy/src/Utils/sse_gamma.h +0 -3
- metadata +60 -14
- data/vendor/eigen/Eigen/CMakeLists.txt +0 -19
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +0 -674
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +0 -333
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +0 -1124
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +0 -212
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +0 -161
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +0 -338
@@ -267,7 +267,7 @@ template<typename _MatrixType> class HessenbergDecomposition
|
|
267
267
|
|
268
268
|
private:
|
269
269
|
|
270
|
-
typedef Matrix<Scalar, 1, Size, Options | RowMajor, 1, MaxSize> VectorType;
|
270
|
+
typedef Matrix<Scalar, 1, Size, int(Options) | int(RowMajor), 1, MaxSize> VectorType;
|
271
271
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
272
272
|
static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp);
|
273
273
|
|
@@ -315,7 +315,7 @@ void HessenbergDecomposition<MatrixType>::_compute(MatrixType& matA, CoeffVector
|
|
315
315
|
|
316
316
|
// A = A H'
|
317
317
|
matA.rightCols(remainingSize)
|
318
|
-
.applyHouseholderOnTheRight(matA.col(i).tail(remainingSize-1)
|
318
|
+
.applyHouseholderOnTheRight(matA.col(i).tail(remainingSize-1), numext::conj(h), &temp.coeffRef(0));
|
319
319
|
}
|
320
320
|
}
|
321
321
|
|
@@ -84,7 +84,7 @@ MatrixBase<Derived>::eigenvalues() const
|
|
84
84
|
* \sa SelfAdjointEigenSolver::eigenvalues(), MatrixBase::eigenvalues()
|
85
85
|
*/
|
86
86
|
template<typename MatrixType, unsigned int UpLo>
|
87
|
-
inline typename SelfAdjointView<MatrixType, UpLo>::EigenvaluesReturnType
|
87
|
+
EIGEN_DEVICE_FUNC inline typename SelfAdjointView<MatrixType, UpLo>::EigenvaluesReturnType
|
88
88
|
SelfAdjointView<MatrixType, UpLo>::eigenvalues() const
|
89
89
|
{
|
90
90
|
PlainObject thisAsMatrix(*this);
|
@@ -147,7 +147,7 @@ MatrixBase<Derived>::operatorNorm() const
|
|
147
147
|
* \sa eigenvalues(), MatrixBase::operatorNorm()
|
148
148
|
*/
|
149
149
|
template<typename MatrixType, unsigned int UpLo>
|
150
|
-
inline typename SelfAdjointView<MatrixType, UpLo>::RealScalar
|
150
|
+
EIGEN_DEVICE_FUNC inline typename SelfAdjointView<MatrixType, UpLo>::RealScalar
|
151
151
|
SelfAdjointView<MatrixType, UpLo>::operatorNorm() const
|
152
152
|
{
|
153
153
|
return eigenvalues().cwiseAbs().maxCoeff();
|
@@ -90,8 +90,9 @@ namespace Eigen {
|
|
90
90
|
m_Z(size, size),
|
91
91
|
m_workspace(size*2),
|
92
92
|
m_maxIters(400),
|
93
|
-
m_isInitialized(false)
|
94
|
-
|
93
|
+
m_isInitialized(false),
|
94
|
+
m_computeQZ(true)
|
95
|
+
{}
|
95
96
|
|
96
97
|
/** \brief Constructor; computes real QZ decomposition of given matrices
|
97
98
|
*
|
@@ -108,9 +109,11 @@ namespace Eigen {
|
|
108
109
|
m_Z(A.rows(),A.cols()),
|
109
110
|
m_workspace(A.rows()*2),
|
110
111
|
m_maxIters(400),
|
111
|
-
m_isInitialized(false)
|
112
|
-
|
113
|
-
|
112
|
+
m_isInitialized(false),
|
113
|
+
m_computeQZ(true)
|
114
|
+
{
|
115
|
+
compute(A, B, computeQZ);
|
116
|
+
}
|
114
117
|
|
115
118
|
/** \brief Returns matrix Q in the QZ decomposition.
|
116
119
|
*
|
@@ -161,7 +164,7 @@ namespace Eigen {
|
|
161
164
|
|
162
165
|
/** \brief Reports whether previous computation was successful.
|
163
166
|
*
|
164
|
-
* \returns \c Success if computation was
|
167
|
+
* \returns \c Success if computation was successful, \c NoConvergence otherwise.
|
165
168
|
*/
|
166
169
|
ComputationInfo info() const
|
167
170
|
{
|
@@ -190,7 +190,7 @@ template<typename _MatrixType> class RealSchur
|
|
190
190
|
RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU);
|
191
191
|
/** \brief Reports whether previous computation was successful.
|
192
192
|
*
|
193
|
-
* \returns \c Success if computation was
|
193
|
+
* \returns \c Success if computation was successful, \c NoConvergence otherwise.
|
194
194
|
*/
|
195
195
|
ComputationInfo info() const
|
196
196
|
{
|
@@ -236,7 +236,7 @@ template<typename _MatrixType> class RealSchur
|
|
236
236
|
typedef Matrix<Scalar,3,1> Vector3s;
|
237
237
|
|
238
238
|
Scalar computeNormOfT();
|
239
|
-
Index findSmallSubdiagEntry(Index iu);
|
239
|
+
Index findSmallSubdiagEntry(Index iu, const Scalar& considerAsZero);
|
240
240
|
void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
|
241
241
|
void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
|
242
242
|
void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
|
@@ -270,8 +270,13 @@ RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const EigenBase<InputType>
|
|
270
270
|
// Step 1. Reduce to Hessenberg form
|
271
271
|
m_hess.compute(matrix.derived()/scale);
|
272
272
|
|
273
|
-
// Step 2. Reduce to real Schur form
|
274
|
-
|
273
|
+
// Step 2. Reduce to real Schur form
|
274
|
+
// Note: we copy m_hess.matrixQ() into m_matU here and not in computeFromHessenberg
|
275
|
+
// to be able to pass our working-space buffer for the Householder to Dense evaluation.
|
276
|
+
m_workspaceVector.resize(matrix.cols());
|
277
|
+
if(computeU)
|
278
|
+
m_hess.matrixQ().evalTo(m_matU, m_workspaceVector);
|
279
|
+
computeFromHessenberg(m_hess.matrixH(), m_matU, computeU);
|
275
280
|
|
276
281
|
m_matT *= scale;
|
277
282
|
|
@@ -284,13 +289,13 @@ RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMa
|
|
284
289
|
using std::abs;
|
285
290
|
|
286
291
|
m_matT = matrixH;
|
287
|
-
|
292
|
+
m_workspaceVector.resize(m_matT.cols());
|
293
|
+
if(computeU && !internal::is_same_dense(m_matU,matrixQ))
|
288
294
|
m_matU = matrixQ;
|
289
295
|
|
290
296
|
Index maxIters = m_maxIters;
|
291
297
|
if (maxIters == -1)
|
292
298
|
maxIters = m_maxIterationsPerRow * matrixH.rows();
|
293
|
-
m_workspaceVector.resize(m_matT.cols());
|
294
299
|
Scalar* workspace = &m_workspaceVector.coeffRef(0);
|
295
300
|
|
296
301
|
// The matrix m_matT is divided in three parts.
|
@@ -302,12 +307,16 @@ RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMa
|
|
302
307
|
Index totalIter = 0; // iteration count for whole matrix
|
303
308
|
Scalar exshift(0); // sum of exceptional shifts
|
304
309
|
Scalar norm = computeNormOfT();
|
310
|
+
// sub-diagonal entries smaller than considerAsZero will be treated as zero.
|
311
|
+
// We use eps^2 to enable more precision in small eigenvalues.
|
312
|
+
Scalar considerAsZero = numext::maxi<Scalar>( norm * numext::abs2(NumTraits<Scalar>::epsilon()),
|
313
|
+
(std::numeric_limits<Scalar>::min)() );
|
305
314
|
|
306
315
|
if(norm!=Scalar(0))
|
307
316
|
{
|
308
317
|
while (iu >= 0)
|
309
318
|
{
|
310
|
-
Index il = findSmallSubdiagEntry(iu);
|
319
|
+
Index il = findSmallSubdiagEntry(iu,considerAsZero);
|
311
320
|
|
312
321
|
// Check for convergence
|
313
322
|
if (il == iu) // One root found
|
@@ -364,14 +373,17 @@ inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
|
|
364
373
|
|
365
374
|
/** \internal Look for single small sub-diagonal element and returns its index */
|
366
375
|
template<typename MatrixType>
|
367
|
-
inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu)
|
376
|
+
inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu, const Scalar& considerAsZero)
|
368
377
|
{
|
369
378
|
using std::abs;
|
370
379
|
Index res = iu;
|
371
380
|
while (res > 0)
|
372
381
|
{
|
373
382
|
Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
|
374
|
-
|
383
|
+
|
384
|
+
s = numext::maxi<Scalar>(s * NumTraits<Scalar>::epsilon(), considerAsZero);
|
385
|
+
|
386
|
+
if (abs(m_matT.coeff(res,res-1)) <= s)
|
375
387
|
break;
|
376
388
|
res--;
|
377
389
|
}
|
@@ -20,7 +20,9 @@ class GeneralizedSelfAdjointEigenSolver;
|
|
20
20
|
|
21
21
|
namespace internal {
|
22
22
|
template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues;
|
23
|
+
|
23
24
|
template<typename MatrixType, typename DiagType, typename SubDiagType>
|
25
|
+
EIGEN_DEVICE_FUNC
|
24
26
|
ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec);
|
25
27
|
}
|
26
28
|
|
@@ -42,10 +44,14 @@ ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag
|
|
42
44
|
* \f$ v \f$ such that \f$ Av = \lambda v \f$. The eigenvalues of a
|
43
45
|
* selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with
|
44
46
|
* the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the
|
45
|
-
* eigenvectors as its columns, then \f$ A = V D V^{-1} \f
|
46
|
-
* matrices, the matrix \f$ V \f$ is always invertible). This is called the
|
47
|
+
* eigenvectors as its columns, then \f$ A = V D V^{-1} \f$. This is called the
|
47
48
|
* eigendecomposition.
|
48
49
|
*
|
50
|
+
* For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal
|
51
|
+
* to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then
|
52
|
+
* \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is
|
53
|
+
* equal to its transpose, \f$ V^{-1} = V^T \f$.
|
54
|
+
*
|
49
55
|
* The algorithm exploits the fact that the matrix is selfadjoint, making it
|
50
56
|
* faster and more accurate than the general purpose eigenvalue algorithms
|
51
57
|
* implemented in EigenSolver and ComplexEigenSolver.
|
@@ -119,7 +125,10 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
|
|
119
125
|
: m_eivec(),
|
120
126
|
m_eivalues(),
|
121
127
|
m_subdiag(),
|
122
|
-
|
128
|
+
m_hcoeffs(),
|
129
|
+
m_info(InvalidInput),
|
130
|
+
m_isInitialized(false),
|
131
|
+
m_eigenvectorsOk(false)
|
123
132
|
{ }
|
124
133
|
|
125
134
|
/** \brief Constructor, pre-allocates memory for dynamic-size matrices.
|
@@ -139,7 +148,9 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
|
|
139
148
|
: m_eivec(size, size),
|
140
149
|
m_eivalues(size),
|
141
150
|
m_subdiag(size > 1 ? size - 1 : 1),
|
142
|
-
|
151
|
+
m_hcoeffs(size > 1 ? size - 1 : 1),
|
152
|
+
m_isInitialized(false),
|
153
|
+
m_eigenvectorsOk(false)
|
143
154
|
{}
|
144
155
|
|
145
156
|
/** \brief Constructor; computes eigendecomposition of given matrix.
|
@@ -163,7 +174,9 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
|
|
163
174
|
: m_eivec(matrix.rows(), matrix.cols()),
|
164
175
|
m_eivalues(matrix.cols()),
|
165
176
|
m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
|
166
|
-
|
177
|
+
m_hcoeffs(matrix.cols() > 1 ? matrix.cols() - 1 : 1),
|
178
|
+
m_isInitialized(false),
|
179
|
+
m_eigenvectorsOk(false)
|
167
180
|
{
|
168
181
|
compute(matrix.derived(), options);
|
169
182
|
}
|
@@ -250,6 +263,11 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
|
|
250
263
|
* matrix \f$ A \f$, then the matrix returned by this function is the
|
251
264
|
* matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$.
|
252
265
|
*
|
266
|
+
* For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal
|
267
|
+
* to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then
|
268
|
+
* \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is
|
269
|
+
* equal to its transpose, \f$ V^{-1} = V^T \f$.
|
270
|
+
*
|
253
271
|
* Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
|
254
272
|
* Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
|
255
273
|
*
|
@@ -337,7 +355,7 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
|
|
337
355
|
|
338
356
|
/** \brief Reports whether previous computation was successful.
|
339
357
|
*
|
340
|
-
* \returns \c Success if computation was
|
358
|
+
* \returns \c Success if computation was successful, \c NoConvergence otherwise.
|
341
359
|
*/
|
342
360
|
EIGEN_DEVICE_FUNC
|
343
361
|
ComputationInfo info() const
|
@@ -354,7 +372,8 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
|
|
354
372
|
static const int m_maxIterations = 30;
|
355
373
|
|
356
374
|
protected:
|
357
|
-
static
|
375
|
+
static EIGEN_DEVICE_FUNC
|
376
|
+
void check_template_parameters()
|
358
377
|
{
|
359
378
|
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
360
379
|
}
|
@@ -362,6 +381,7 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
|
|
362
381
|
EigenvectorsType m_eivec;
|
363
382
|
RealVectorType m_eivalues;
|
364
383
|
typename TridiagonalizationType::SubDiagonalType m_subdiag;
|
384
|
+
typename TridiagonalizationType::CoeffVectorType m_hcoeffs;
|
365
385
|
ComputationInfo m_info;
|
366
386
|
bool m_isInitialized;
|
367
387
|
bool m_eigenvectorsOk;
|
@@ -403,7 +423,7 @@ SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
|
|
403
423
|
|
404
424
|
const InputType &matrix(a_matrix.derived());
|
405
425
|
|
406
|
-
|
426
|
+
EIGEN_USING_STD(abs);
|
407
427
|
eigen_assert(matrix.cols() == matrix.rows());
|
408
428
|
eigen_assert((options&~(EigVecMask|GenEigMask))==0
|
409
429
|
&& (options&EigVecMask)!=EigVecMask
|
@@ -434,7 +454,8 @@ SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
|
|
434
454
|
if(scale==RealScalar(0)) scale = RealScalar(1);
|
435
455
|
mat.template triangularView<Lower>() /= scale;
|
436
456
|
m_subdiag.resize(n-1);
|
437
|
-
|
457
|
+
m_hcoeffs.resize(n-1);
|
458
|
+
internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors);
|
438
459
|
|
439
460
|
m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
|
440
461
|
|
@@ -479,10 +500,9 @@ namespace internal {
|
|
479
500
|
* \returns \c Success or \c NoConvergence
|
480
501
|
*/
|
481
502
|
template<typename MatrixType, typename DiagType, typename SubDiagType>
|
503
|
+
EIGEN_DEVICE_FUNC
|
482
504
|
ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec)
|
483
505
|
{
|
484
|
-
using std::abs;
|
485
|
-
|
486
506
|
ComputationInfo info;
|
487
507
|
typedef typename MatrixType::Scalar Scalar;
|
488
508
|
|
@@ -493,15 +513,23 @@ ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag
|
|
493
513
|
|
494
514
|
typedef typename DiagType::RealScalar RealScalar;
|
495
515
|
const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
|
496
|
-
const RealScalar
|
497
|
-
|
516
|
+
const RealScalar precision_inv = RealScalar(1)/NumTraits<RealScalar>::epsilon();
|
498
517
|
while (end>0)
|
499
518
|
{
|
500
|
-
for (Index i = start; i<end; ++i)
|
501
|
-
if (
|
502
|
-
subdiag[i] = 0;
|
519
|
+
for (Index i = start; i<end; ++i) {
|
520
|
+
if (numext::abs(subdiag[i]) < considerAsZero) {
|
521
|
+
subdiag[i] = RealScalar(0);
|
522
|
+
} else {
|
523
|
+
// abs(subdiag[i]) <= epsilon * sqrt(abs(diag[i]) + abs(diag[i+1]))
|
524
|
+
// Scaled to prevent underflows.
|
525
|
+
const RealScalar scaled_subdiag = precision_inv * subdiag[i];
|
526
|
+
if (scaled_subdiag * scaled_subdiag <= (numext::abs(diag[i])+numext::abs(diag[i+1]))) {
|
527
|
+
subdiag[i] = RealScalar(0);
|
528
|
+
}
|
529
|
+
}
|
530
|
+
}
|
503
531
|
|
504
|
-
// find the largest unreduced block
|
532
|
+
// find the largest unreduced block at the end of the matrix.
|
505
533
|
while (end>0 && subdiag[end-1]==RealScalar(0))
|
506
534
|
{
|
507
535
|
end--;
|
@@ -535,7 +563,7 @@ ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag
|
|
535
563
|
diag.segment(i,n-i).minCoeff(&k);
|
536
564
|
if (k > 0)
|
537
565
|
{
|
538
|
-
|
566
|
+
numext::swap(diag[i], diag[k+i]);
|
539
567
|
if(computeEigenvectors)
|
540
568
|
eivec.col(i).swap(eivec.col(k+i));
|
541
569
|
}
|
@@ -566,10 +594,10 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3
|
|
566
594
|
EIGEN_DEVICE_FUNC
|
567
595
|
static inline void computeRoots(const MatrixType& m, VectorType& roots)
|
568
596
|
{
|
569
|
-
|
570
|
-
|
571
|
-
|
572
|
-
|
597
|
+
EIGEN_USING_STD(sqrt)
|
598
|
+
EIGEN_USING_STD(atan2)
|
599
|
+
EIGEN_USING_STD(cos)
|
600
|
+
EIGEN_USING_STD(sin)
|
573
601
|
const Scalar s_inv3 = Scalar(1)/Scalar(3);
|
574
602
|
const Scalar s_sqrt3 = sqrt(Scalar(3));
|
575
603
|
|
@@ -605,7 +633,8 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3
|
|
605
633
|
EIGEN_DEVICE_FUNC
|
606
634
|
static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, Ref<VectorType> representative)
|
607
635
|
{
|
608
|
-
|
636
|
+
EIGEN_USING_STD(abs);
|
637
|
+
EIGEN_USING_STD(sqrt);
|
609
638
|
Index i0;
|
610
639
|
// Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal):
|
611
640
|
mat.diagonal().cwiseAbs().maxCoeff(&i0);
|
@@ -616,8 +645,8 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3
|
|
616
645
|
VectorType c0, c1;
|
617
646
|
n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm();
|
618
647
|
n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm();
|
619
|
-
if(n0>n1) res = c0/
|
620
|
-
else res = c1/
|
648
|
+
if(n0>n1) res = c0/sqrt(n0);
|
649
|
+
else res = c1/sqrt(n1);
|
621
650
|
|
622
651
|
return true;
|
623
652
|
}
|
@@ -719,7 +748,7 @@ struct direct_selfadjoint_eigenvalues<SolverType,2,false>
|
|
719
748
|
EIGEN_DEVICE_FUNC
|
720
749
|
static inline void computeRoots(const MatrixType& m, VectorType& roots)
|
721
750
|
{
|
722
|
-
|
751
|
+
EIGEN_USING_STD(sqrt);
|
723
752
|
const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0)));
|
724
753
|
const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1));
|
725
754
|
roots(0) = t1 - t0;
|
@@ -729,8 +758,8 @@ struct direct_selfadjoint_eigenvalues<SolverType,2,false>
|
|
729
758
|
EIGEN_DEVICE_FUNC
|
730
759
|
static inline void run(SolverType& solver, const MatrixType& mat, int options)
|
731
760
|
{
|
732
|
-
|
733
|
-
|
761
|
+
EIGEN_USING_STD(sqrt);
|
762
|
+
EIGEN_USING_STD(abs);
|
734
763
|
|
735
764
|
eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
|
736
765
|
eigen_assert((options&~(EigVecMask|GenEigMask))==0
|
@@ -803,32 +832,38 @@ SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
|
|
803
832
|
}
|
804
833
|
|
805
834
|
namespace internal {
|
835
|
+
|
836
|
+
// Francis implicit QR step.
|
806
837
|
template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
|
807
838
|
EIGEN_DEVICE_FUNC
|
808
839
|
static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n)
|
809
840
|
{
|
810
|
-
|
841
|
+
// Wilkinson Shift.
|
811
842
|
RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
|
812
843
|
RealScalar e = subdiag[end-1];
|
813
844
|
// Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still
|
814
845
|
// underflow thus leading to inf/NaN values when using the following commented code:
|
815
|
-
// RealScalar e2 = numext::abs2(subdiag[end-1]);
|
816
|
-
// RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
|
846
|
+
// RealScalar e2 = numext::abs2(subdiag[end-1]);
|
847
|
+
// RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
|
817
848
|
// This explain the following, somewhat more complicated, version:
|
818
849
|
RealScalar mu = diag[end];
|
819
|
-
if(td==RealScalar(0))
|
820
|
-
mu -= abs(e);
|
821
|
-
else
|
822
|
-
|
823
|
-
RealScalar
|
824
|
-
|
825
|
-
|
826
|
-
else
|
850
|
+
if(td==RealScalar(0)) {
|
851
|
+
mu -= numext::abs(e);
|
852
|
+
} else if (e != RealScalar(0)) {
|
853
|
+
const RealScalar e2 = numext::abs2(e);
|
854
|
+
const RealScalar h = numext::hypot(td,e);
|
855
|
+
if(e2 == RealScalar(0)) {
|
856
|
+
mu -= e / ((td + (td>RealScalar(0) ? h : -h)) / e);
|
857
|
+
} else {
|
858
|
+
mu -= e2 / (td + (td>RealScalar(0) ? h : -h));
|
859
|
+
}
|
827
860
|
}
|
828
|
-
|
861
|
+
|
829
862
|
RealScalar x = diag[start] - mu;
|
830
863
|
RealScalar z = subdiag[start];
|
831
|
-
|
864
|
+
// If z ever becomes zero, the Givens rotation will be the identity and
|
865
|
+
// z will stay zero for all future iterations.
|
866
|
+
for (Index k = start; k < end && z != RealScalar(0); ++k)
|
832
867
|
{
|
833
868
|
JacobiRotation<RealScalar> rot;
|
834
869
|
rot.makeGivens(x, z);
|
@@ -841,12 +876,11 @@ static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index sta
|
|
841
876
|
diag[k+1] = rot.s() * sdk + rot.c() * dkp1;
|
842
877
|
subdiag[k] = rot.c() * sdk - rot.s() * dkp1;
|
843
878
|
|
844
|
-
|
845
879
|
if (k > start)
|
846
880
|
subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z;
|
847
881
|
|
882
|
+
// "Chasing the bulge" to return to triangular form.
|
848
883
|
x = subdiag[k];
|
849
|
-
|
850
884
|
if (k < end - 1)
|
851
885
|
{
|
852
886
|
z = -rot.s() * subdiag[k+1];
|
@@ -11,10 +11,10 @@
|
|
11
11
|
#ifndef EIGEN_TRIDIAGONALIZATION_H
|
12
12
|
#define EIGEN_TRIDIAGONALIZATION_H
|
13
13
|
|
14
|
-
namespace Eigen {
|
14
|
+
namespace Eigen {
|
15
15
|
|
16
16
|
namespace internal {
|
17
|
-
|
17
|
+
|
18
18
|
template<typename MatrixType> struct TridiagonalizationMatrixTReturnType;
|
19
19
|
template<typename MatrixType>
|
20
20
|
struct traits<TridiagonalizationMatrixTReturnType<MatrixType> >
|
@@ -25,6 +25,7 @@ struct traits<TridiagonalizationMatrixTReturnType<MatrixType> >
|
|
25
25
|
};
|
26
26
|
|
27
27
|
template<typename MatrixType, typename CoeffVectorType>
|
28
|
+
EIGEN_DEVICE_FUNC
|
28
29
|
void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs);
|
29
30
|
}
|
30
31
|
|
@@ -344,6 +345,7 @@ namespace internal {
|
|
344
345
|
* \sa Tridiagonalization::packedMatrix()
|
345
346
|
*/
|
346
347
|
template<typename MatrixType, typename CoeffVectorType>
|
348
|
+
EIGEN_DEVICE_FUNC
|
347
349
|
void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs)
|
348
350
|
{
|
349
351
|
using numext::conj;
|
@@ -352,7 +354,7 @@ void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs)
|
|
352
354
|
Index n = matA.rows();
|
353
355
|
eigen_assert(n==matA.cols());
|
354
356
|
eigen_assert(n==hCoeffs.size()+1 || n==1);
|
355
|
-
|
357
|
+
|
356
358
|
for (Index i = 0; i<n-1; ++i)
|
357
359
|
{
|
358
360
|
Index remainingSize = n-i-1;
|
@@ -423,11 +425,13 @@ struct tridiagonalization_inplace_selector;
|
|
423
425
|
*
|
424
426
|
* \sa class Tridiagonalization
|
425
427
|
*/
|
426
|
-
template<typename MatrixType, typename DiagonalType, typename SubDiagonalType>
|
427
|
-
|
428
|
+
template<typename MatrixType, typename DiagonalType, typename SubDiagonalType, typename CoeffVectorType>
|
429
|
+
EIGEN_DEVICE_FUNC
|
430
|
+
void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag,
|
431
|
+
CoeffVectorType& hcoeffs, bool extractQ)
|
428
432
|
{
|
429
433
|
eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1);
|
430
|
-
tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, extractQ);
|
434
|
+
tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, hcoeffs, extractQ);
|
431
435
|
}
|
432
436
|
|
433
437
|
/** \internal
|
@@ -439,10 +443,10 @@ struct tridiagonalization_inplace_selector
|
|
439
443
|
typedef typename Tridiagonalization<MatrixType>::CoeffVectorType CoeffVectorType;
|
440
444
|
typedef typename Tridiagonalization<MatrixType>::HouseholderSequenceType HouseholderSequenceType;
|
441
445
|
template<typename DiagonalType, typename SubDiagonalType>
|
442
|
-
static
|
446
|
+
static EIGEN_DEVICE_FUNC
|
447
|
+
void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, CoeffVectorType& hCoeffs, bool extractQ)
|
443
448
|
{
|
444
|
-
|
445
|
-
tridiagonalization_inplace(mat,hCoeffs);
|
449
|
+
tridiagonalization_inplace(mat, hCoeffs);
|
446
450
|
diag = mat.diagonal().real();
|
447
451
|
subdiag = mat.template diagonal<-1>().real();
|
448
452
|
if(extractQ)
|
@@ -462,8 +466,8 @@ struct tridiagonalization_inplace_selector<MatrixType,3,false>
|
|
462
466
|
typedef typename MatrixType::Scalar Scalar;
|
463
467
|
typedef typename MatrixType::RealScalar RealScalar;
|
464
468
|
|
465
|
-
template<typename DiagonalType, typename SubDiagonalType>
|
466
|
-
static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
|
469
|
+
template<typename DiagonalType, typename SubDiagonalType, typename CoeffVectorType>
|
470
|
+
static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, CoeffVectorType&, bool extractQ)
|
467
471
|
{
|
468
472
|
using std::sqrt;
|
469
473
|
const RealScalar tol = (std::numeric_limits<RealScalar>::min)();
|
@@ -507,8 +511,9 @@ struct tridiagonalization_inplace_selector<MatrixType,1,IsComplex>
|
|
507
511
|
{
|
508
512
|
typedef typename MatrixType::Scalar Scalar;
|
509
513
|
|
510
|
-
template<typename DiagonalType, typename SubDiagonalType>
|
511
|
-
static
|
514
|
+
template<typename DiagonalType, typename SubDiagonalType, typename CoeffVectorType>
|
515
|
+
static EIGEN_DEVICE_FUNC
|
516
|
+
void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, CoeffVectorType&, bool extractQ)
|
512
517
|
{
|
513
518
|
diag(0,0) = numext::real(mat(0,0));
|
514
519
|
if(extractQ)
|
@@ -542,8 +547,8 @@ template<typename MatrixType> struct TridiagonalizationMatrixTReturnType
|
|
542
547
|
result.template diagonal<-1>() = m_matrix.template diagonal<-1>();
|
543
548
|
}
|
544
549
|
|
545
|
-
Index rows() const { return m_matrix.rows(); }
|
546
|
-
Index cols() const { return m_matrix.cols(); }
|
550
|
+
EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); }
|
551
|
+
EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); }
|
547
552
|
|
548
553
|
protected:
|
549
554
|
typename MatrixType::Nested m_matrix;
|