tomoto 0.2.3 → 0.3.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +6 -0
- data/README.md +8 -10
- data/ext/tomoto/extconf.rb +6 -2
- data/ext/tomoto/{ext.cpp → tomoto.cpp} +1 -1
- data/lib/tomoto/version.rb +1 -1
- data/lib/tomoto.rb +5 -1
- data/vendor/EigenRand/EigenRand/Core.h +10 -10
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +208 -9
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +52 -31
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +9 -8
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +28 -21
- data/vendor/EigenRand/EigenRand/EigenRand +11 -6
- data/vendor/EigenRand/EigenRand/Macro.h +13 -7
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +348 -740
- data/vendor/EigenRand/EigenRand/MvDists/Multinomial.h +5 -3
- data/vendor/EigenRand/EigenRand/MvDists/MvNormal.h +9 -3
- data/vendor/EigenRand/EigenRand/PacketFilter.h +11 -253
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +21 -47
- data/vendor/EigenRand/EigenRand/RandUtils.h +50 -344
- data/vendor/EigenRand/EigenRand/arch/AVX/MorePacketMath.h +619 -0
- data/vendor/EigenRand/EigenRand/arch/AVX/PacketFilter.h +149 -0
- data/vendor/EigenRand/EigenRand/arch/AVX/RandUtils.h +228 -0
- data/vendor/EigenRand/EigenRand/arch/NEON/MorePacketMath.h +473 -0
- data/vendor/EigenRand/EigenRand/arch/NEON/PacketFilter.h +142 -0
- data/vendor/EigenRand/EigenRand/arch/NEON/RandUtils.h +126 -0
- data/vendor/EigenRand/EigenRand/arch/SSE/MorePacketMath.h +501 -0
- data/vendor/EigenRand/EigenRand/arch/SSE/PacketFilter.h +133 -0
- data/vendor/EigenRand/EigenRand/arch/SSE/RandUtils.h +120 -0
- data/vendor/EigenRand/EigenRand/doc.h +24 -12
- data/vendor/EigenRand/README.md +57 -4
- data/vendor/eigen/COPYING.APACHE +203 -0
- data/vendor/eigen/COPYING.BSD +1 -1
- data/vendor/eigen/COPYING.MINPACK +51 -52
- data/vendor/eigen/Eigen/Cholesky +0 -1
- data/vendor/eigen/Eigen/Core +112 -265
- data/vendor/eigen/Eigen/Eigenvalues +2 -3
- data/vendor/eigen/Eigen/Geometry +5 -8
- data/vendor/eigen/Eigen/Householder +0 -1
- data/vendor/eigen/Eigen/Jacobi +0 -1
- data/vendor/eigen/Eigen/KLUSupport +41 -0
- data/vendor/eigen/Eigen/LU +2 -5
- data/vendor/eigen/Eigen/OrderingMethods +0 -3
- data/vendor/eigen/Eigen/PaStiXSupport +1 -0
- data/vendor/eigen/Eigen/PardisoSupport +0 -0
- data/vendor/eigen/Eigen/QR +2 -3
- data/vendor/eigen/Eigen/QtAlignedMalloc +0 -1
- data/vendor/eigen/Eigen/SVD +0 -1
- data/vendor/eigen/Eigen/Sparse +0 -2
- data/vendor/eigen/Eigen/SparseCholesky +0 -8
- data/vendor/eigen/Eigen/SparseLU +4 -0
- data/vendor/eigen/Eigen/SparseQR +0 -1
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +42 -27
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +39 -23
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +90 -47
- data/vendor/eigen/Eigen/src/Core/ArithmeticSequence.h +413 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +99 -11
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +3 -3
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +21 -21
- data/vendor/eigen/Eigen/src/Core/Assign.h +1 -1
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +125 -50
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +10 -10
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +16 -16
- data/vendor/eigen/Eigen/src/Core/Block.h +56 -60
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +29 -31
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +7 -3
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +325 -272
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +5 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +21 -22
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +153 -18
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +6 -6
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +14 -10
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +132 -42
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +25 -21
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +153 -71
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +21 -23
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +50 -2
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +1 -1
- data/vendor/eigen/Eigen/src/Core/Dot.h +10 -10
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +10 -9
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +8 -4
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +3 -3
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +20 -10
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +599 -152
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +40 -33
- data/vendor/eigen/Eigen/src/Core/IO.h +40 -7
- data/vendor/eigen/Eigen/src/Core/IndexedView.h +237 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +9 -10
- data/vendor/eigen/Eigen/src/Core/Map.h +7 -7
- data/vendor/eigen/Eigen/src/Core/MapBase.h +10 -3
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +767 -125
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +118 -19
- data/vendor/eigen/Eigen/src/Core/Matrix.h +131 -25
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +21 -3
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +25 -50
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +4 -3
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +107 -20
- data/vendor/eigen/Eigen/src/Core/PartialReduxEvaluator.h +232 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +3 -31
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +152 -59
- data/vendor/eigen/Eigen/src/Core/Product.h +30 -25
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +192 -125
- data/vendor/eigen/Eigen/src/Core/Random.h +37 -1
- data/vendor/eigen/Eigen/src/Core/Redux.h +180 -170
- data/vendor/eigen/Eigen/src/Core/Ref.h +121 -23
- data/vendor/eigen/Eigen/src/Core/Replicate.h +8 -8
- data/vendor/eigen/Eigen/src/Core/Reshaped.h +454 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +7 -5
- data/vendor/eigen/Eigen/src/Core/Reverse.h +18 -12
- data/vendor/eigen/Eigen/src/Core/Select.h +8 -6
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +33 -20
- data/vendor/eigen/Eigen/src/Core/Solve.h +14 -14
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +16 -16
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +41 -3
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +100 -70
- data/vendor/eigen/Eigen/src/Core/StlIterators.h +463 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +9 -4
- data/vendor/eigen/Eigen/src/Core/Swap.h +5 -4
- data/vendor/eigen/Eigen/src/Core/Transpose.h +88 -27
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +26 -47
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +93 -75
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +5 -5
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +159 -70
- data/vendor/eigen/Eigen/src/Core/Visitor.h +137 -29
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +50 -129
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +126 -337
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +1092 -155
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +65 -1
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/Complex.h +422 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +207 -236
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1482 -495
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/TypeCasting.h +89 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +152 -165
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +19 -251
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProduct.h +2937 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProductCommon.h +221 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProductMMA.h +629 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +2042 -392
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +235 -80
- data/vendor/eigen/Eigen/src/Core/arch/Default/BFloat16.h +700 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +102 -14
- data/vendor/eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h +1649 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctionsFwd.h +110 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Half.h +942 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +1 -1
- data/vendor/eigen/Eigen/src/Core/arch/Default/TypeCasting.h +120 -0
- data/vendor/eigen/Eigen/src/Core/arch/{CUDA → GPU}/MathFunctions.h +16 -4
- data/vendor/eigen/Eigen/src/Core/arch/GPU/PacketMath.h +1685 -0
- data/vendor/eigen/Eigen/src/Core/arch/GPU/TypeCasting.h +80 -0
- data/vendor/eigen/Eigen/src/Core/arch/HIP/hcc/math_constants.h +23 -0
- data/vendor/eigen/Eigen/src/Core/arch/MSA/Complex.h +648 -0
- data/vendor/eigen/Eigen/src/Core/arch/MSA/MathFunctions.h +387 -0
- data/vendor/eigen/Eigen/src/Core/arch/MSA/PacketMath.h +1233 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +313 -219
- data/vendor/eigen/Eigen/src/Core/arch/NEON/GeneralBlockPanelKernel.h +183 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +54 -70
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +4376 -549
- data/vendor/eigen/Eigen/src/Core/arch/NEON/TypeCasting.h +1419 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +59 -179
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +65 -428
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +893 -283
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +65 -0
- data/vendor/eigen/Eigen/src/Core/arch/SVE/MathFunctions.h +44 -0
- data/vendor/eigen/Eigen/src/Core/arch/SVE/PacketMath.h +752 -0
- data/vendor/eigen/Eigen/src/Core/arch/SVE/TypeCasting.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/InteropHeaders.h +232 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/MathFunctions.h +301 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/PacketMath.h +670 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/SyclMemoryModel.h +694 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/TypeCasting.h +85 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +212 -183
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +101 -5
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +510 -395
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +11 -2
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +112 -46
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +31 -30
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +32 -2
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +355 -16
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +1075 -586
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +49 -24
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +41 -35
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +6 -6
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +4 -2
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +382 -483
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +22 -5
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +53 -30
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +16 -8
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +8 -6
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +4 -4
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +5 -4
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +33 -27
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +14 -12
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +36 -34
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +8 -4
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +13 -10
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +304 -119
- data/vendor/eigen/Eigen/src/Core/util/ConfigureVectorization.h +512 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +25 -9
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +26 -3
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +29 -9
- data/vendor/eigen/Eigen/src/Core/util/IndexedViewHelper.h +186 -0
- data/vendor/eigen/Eigen/src/Core/util/IntegralConstant.h +272 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +8 -1
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +709 -246
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +222 -52
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +355 -77
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +5 -1
- data/vendor/eigen/Eigen/src/Core/util/ReshapedHelper.h +51 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +8 -5
- data/vendor/eigen/Eigen/src/Core/util/SymbolicIndex.h +293 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +65 -30
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +1 -1
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +7 -4
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +2 -2
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +1 -1
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +2 -2
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +2 -2
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +9 -6
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +21 -9
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +77 -43
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +20 -15
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +99 -5
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +4 -4
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +3 -3
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +15 -11
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +1 -1
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +3 -2
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +39 -2
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +70 -14
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +3 -3
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +23 -5
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +88 -67
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +6 -12
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +1 -1
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +168 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +9 -2
- data/vendor/eigen/Eigen/src/Householder/Householder.h +8 -4
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +123 -48
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +15 -15
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +7 -23
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +5 -22
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +41 -47
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +51 -60
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +70 -20
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +2 -20
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +11 -9
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +31 -10
- data/vendor/eigen/Eigen/src/KLUSupport/KLUSupport.h +358 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +35 -19
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +29 -43
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +25 -8
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +71 -58
- data/vendor/eigen/Eigen/src/LU/arch/InverseSize4.h +351 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +7 -17
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +297 -277
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +6 -10
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +1 -1
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +9 -7
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +41 -20
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +100 -27
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +59 -22
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +48 -23
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +25 -3
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +183 -63
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +22 -14
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +83 -22
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +3 -3
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +17 -9
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +12 -37
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +3 -2
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +16 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +6 -6
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +81 -27
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +25 -57
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +40 -11
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +11 -15
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +4 -2
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +30 -8
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +126 -11
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +5 -12
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +13 -1
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +7 -7
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +5 -2
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +8 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +1 -1
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +1 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +162 -12
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +1 -1
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +76 -2
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +2 -2
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +1 -1
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +1 -1
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +19 -6
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +2 -12
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +2 -2
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +2 -2
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +6 -8
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +175 -39
- data/vendor/eigen/Eigen/src/misc/lapacke.h +5 -4
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +28 -2
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +155 -11
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +626 -242
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +14 -0
- data/vendor/eigen/Eigen/src/plugins/IndexedViewMethods.h +262 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +4 -4
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +10 -0
- data/vendor/eigen/Eigen/src/plugins/ReshapedMethods.h +149 -0
- data/vendor/eigen/README.md +2 -0
- data/vendor/eigen/bench/btl/README +1 -1
- data/vendor/eigen/bench/tensors/README +6 -7
- data/vendor/eigen/ci/README.md +56 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +1 -1
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +213 -158
- data/vendor/eigen/unsupported/README.txt +1 -1
- data/vendor/tomotopy/README.kr.rst +21 -0
- data/vendor/tomotopy/README.rst +20 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +2 -2
- data/vendor/tomotopy/src/Labeling/Phraser.hpp +1 -1
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +2 -1
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +2 -1
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +1 -1
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +2 -2
- data/vendor/tomotopy/src/TopicModel/HDP.h +1 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +53 -2
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +1 -1
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +1 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +2 -2
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +16 -5
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +1 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +1 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +1 -0
- data/vendor/tomotopy/src/TopicModel/PT.h +3 -1
- data/vendor/tomotopy/src/TopicModel/PTModel.hpp +31 -1
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +2 -2
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +7 -5
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +36 -1
- data/vendor/tomotopy/src/Utils/exception.h +6 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +14 -12
- data/vendor/tomotopy/src/Utils/sse_gamma.h +0 -3
- metadata +60 -14
- data/vendor/eigen/Eigen/CMakeLists.txt +0 -19
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +0 -674
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +0 -333
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +0 -1124
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +0 -212
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +0 -161
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +0 -338
@@ -0,0 +1,1649 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2007 Julien Pommier
|
5
|
+
// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
|
6
|
+
// Copyright (C) 2009-2019 Gael Guennebaud <gael.guennebaud@inria.fr>
|
7
|
+
//
|
8
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
9
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
10
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
11
|
+
|
12
|
+
/* The exp and log functions of this file initially come from
|
13
|
+
* Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
|
14
|
+
*/
|
15
|
+
|
16
|
+
#ifndef EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H
|
17
|
+
#define EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H
|
18
|
+
|
19
|
+
namespace Eigen {
|
20
|
+
namespace internal {
|
21
|
+
|
22
|
+
// Creates a Scalar integer type with same bit-width.
|
23
|
+
template<typename T> struct make_integer;
|
24
|
+
template<> struct make_integer<float> { typedef numext::int32_t type; };
|
25
|
+
template<> struct make_integer<double> { typedef numext::int64_t type; };
|
26
|
+
template<> struct make_integer<half> { typedef numext::int16_t type; };
|
27
|
+
template<> struct make_integer<bfloat16> { typedef numext::int16_t type; };
|
28
|
+
|
29
|
+
template<typename Packet> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
|
30
|
+
Packet pfrexp_generic_get_biased_exponent(const Packet& a) {
|
31
|
+
typedef typename unpacket_traits<Packet>::type Scalar;
|
32
|
+
typedef typename unpacket_traits<Packet>::integer_packet PacketI;
|
33
|
+
enum { mantissa_bits = numext::numeric_limits<Scalar>::digits - 1};
|
34
|
+
return pcast<PacketI, Packet>(plogical_shift_right<mantissa_bits>(preinterpret<PacketI>(pabs(a))));
|
35
|
+
}
|
36
|
+
|
37
|
+
// Safely applies frexp, correctly handles denormals.
|
38
|
+
// Assumes IEEE floating point format.
|
39
|
+
template<typename Packet> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
|
40
|
+
Packet pfrexp_generic(const Packet& a, Packet& exponent) {
|
41
|
+
typedef typename unpacket_traits<Packet>::type Scalar;
|
42
|
+
typedef typename make_unsigned<typename make_integer<Scalar>::type>::type ScalarUI;
|
43
|
+
enum {
|
44
|
+
TotalBits = sizeof(Scalar) * CHAR_BIT,
|
45
|
+
MantissaBits = numext::numeric_limits<Scalar>::digits - 1,
|
46
|
+
ExponentBits = int(TotalBits) - int(MantissaBits) - 1
|
47
|
+
};
|
48
|
+
|
49
|
+
EIGEN_CONSTEXPR ScalarUI scalar_sign_mantissa_mask =
|
50
|
+
~(((ScalarUI(1) << int(ExponentBits)) - ScalarUI(1)) << int(MantissaBits)); // ~0x7f800000
|
51
|
+
const Packet sign_mantissa_mask = pset1frombits<Packet>(static_cast<ScalarUI>(scalar_sign_mantissa_mask));
|
52
|
+
const Packet half = pset1<Packet>(Scalar(0.5));
|
53
|
+
const Packet zero = pzero(a);
|
54
|
+
const Packet normal_min = pset1<Packet>((numext::numeric_limits<Scalar>::min)()); // Minimum normal value, 2^-126
|
55
|
+
|
56
|
+
// To handle denormals, normalize by multiplying by 2^(int(MantissaBits)+1).
|
57
|
+
const Packet is_denormal = pcmp_lt(pabs(a), normal_min);
|
58
|
+
EIGEN_CONSTEXPR ScalarUI scalar_normalization_offset = ScalarUI(int(MantissaBits) + 1); // 24
|
59
|
+
// The following cannot be constexpr because bfloat16(uint16_t) is not constexpr.
|
60
|
+
const Scalar scalar_normalization_factor = Scalar(ScalarUI(1) << int(scalar_normalization_offset)); // 2^24
|
61
|
+
const Packet normalization_factor = pset1<Packet>(scalar_normalization_factor);
|
62
|
+
const Packet normalized_a = pselect(is_denormal, pmul(a, normalization_factor), a);
|
63
|
+
|
64
|
+
// Determine exponent offset: -126 if normal, -126-24 if denormal
|
65
|
+
const Scalar scalar_exponent_offset = -Scalar((ScalarUI(1)<<(int(ExponentBits)-1)) - ScalarUI(2)); // -126
|
66
|
+
Packet exponent_offset = pset1<Packet>(scalar_exponent_offset);
|
67
|
+
const Packet normalization_offset = pset1<Packet>(-Scalar(scalar_normalization_offset)); // -24
|
68
|
+
exponent_offset = pselect(is_denormal, padd(exponent_offset, normalization_offset), exponent_offset);
|
69
|
+
|
70
|
+
// Determine exponent and mantissa from normalized_a.
|
71
|
+
exponent = pfrexp_generic_get_biased_exponent(normalized_a);
|
72
|
+
// Zero, Inf and NaN return 'a' unmodified, exponent is zero
|
73
|
+
// (technically the exponent is unspecified for inf/NaN, but GCC/Clang set it to zero)
|
74
|
+
const Scalar scalar_non_finite_exponent = Scalar((ScalarUI(1) << int(ExponentBits)) - ScalarUI(1)); // 255
|
75
|
+
const Packet non_finite_exponent = pset1<Packet>(scalar_non_finite_exponent);
|
76
|
+
const Packet is_zero_or_not_finite = por(pcmp_eq(a, zero), pcmp_eq(exponent, non_finite_exponent));
|
77
|
+
const Packet m = pselect(is_zero_or_not_finite, a, por(pand(normalized_a, sign_mantissa_mask), half));
|
78
|
+
exponent = pselect(is_zero_or_not_finite, zero, padd(exponent, exponent_offset));
|
79
|
+
return m;
|
80
|
+
}
|
81
|
+
|
82
|
+
// Safely applies ldexp, correctly handles overflows, underflows and denormals.
|
83
|
+
// Assumes IEEE floating point format.
|
84
|
+
template<typename Packet> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
|
85
|
+
Packet pldexp_generic(const Packet& a, const Packet& exponent) {
|
86
|
+
// We want to return a * 2^exponent, allowing for all possible integer
|
87
|
+
// exponents without overflowing or underflowing in intermediate
|
88
|
+
// computations.
|
89
|
+
//
|
90
|
+
// Since 'a' and the output can be denormal, the maximum range of 'exponent'
|
91
|
+
// to consider for a float is:
|
92
|
+
// -255-23 -> 255+23
|
93
|
+
// Below -278 any finite float 'a' will become zero, and above +278 any
|
94
|
+
// finite float will become inf, including when 'a' is the smallest possible
|
95
|
+
// denormal.
|
96
|
+
//
|
97
|
+
// Unfortunately, 2^(278) cannot be represented using either one or two
|
98
|
+
// finite normal floats, so we must split the scale factor into at least
|
99
|
+
// three parts. It turns out to be faster to split 'exponent' into four
|
100
|
+
// factors, since [exponent>>2] is much faster to compute that [exponent/3].
|
101
|
+
//
|
102
|
+
// Set e = min(max(exponent, -278), 278);
|
103
|
+
// b = floor(e/4);
|
104
|
+
// out = ((((a * 2^(b)) * 2^(b)) * 2^(b)) * 2^(e-3*b))
|
105
|
+
//
|
106
|
+
// This will avoid any intermediate overflows and correctly handle 0, inf,
|
107
|
+
// NaN cases.
|
108
|
+
typedef typename unpacket_traits<Packet>::integer_packet PacketI;
|
109
|
+
typedef typename unpacket_traits<Packet>::type Scalar;
|
110
|
+
typedef typename unpacket_traits<PacketI>::type ScalarI;
|
111
|
+
enum {
|
112
|
+
TotalBits = sizeof(Scalar) * CHAR_BIT,
|
113
|
+
MantissaBits = numext::numeric_limits<Scalar>::digits - 1,
|
114
|
+
ExponentBits = int(TotalBits) - int(MantissaBits) - 1
|
115
|
+
};
|
116
|
+
|
117
|
+
const Packet max_exponent = pset1<Packet>(Scalar((ScalarI(1)<<int(ExponentBits)) + ScalarI(int(MantissaBits) - 1))); // 278
|
118
|
+
const PacketI bias = pset1<PacketI>((ScalarI(1)<<(int(ExponentBits)-1)) - ScalarI(1)); // 127
|
119
|
+
const PacketI e = pcast<Packet, PacketI>(pmin(pmax(exponent, pnegate(max_exponent)), max_exponent));
|
120
|
+
PacketI b = parithmetic_shift_right<2>(e); // floor(e/4);
|
121
|
+
Packet c = preinterpret<Packet>(plogical_shift_left<int(MantissaBits)>(padd(b, bias))); // 2^b
|
122
|
+
Packet out = pmul(pmul(pmul(a, c), c), c); // a * 2^(3b)
|
123
|
+
b = psub(psub(psub(e, b), b), b); // e - 3b
|
124
|
+
c = preinterpret<Packet>(plogical_shift_left<int(MantissaBits)>(padd(b, bias))); // 2^(e-3*b)
|
125
|
+
out = pmul(out, c);
|
126
|
+
return out;
|
127
|
+
}
|
128
|
+
|
129
|
+
// Explicitly multiplies
|
130
|
+
// a * (2^e)
|
131
|
+
// clamping e to the range
|
132
|
+
// [NumTraits<Scalar>::min_exponent()-2, NumTraits<Scalar>::max_exponent()]
|
133
|
+
//
|
134
|
+
// This is approx 7x faster than pldexp_impl, but will prematurely over/underflow
|
135
|
+
// if 2^e doesn't fit into a normal floating-point Scalar.
|
136
|
+
//
|
137
|
+
// Assumes IEEE floating point format
|
138
|
+
template<typename Packet>
|
139
|
+
struct pldexp_fast_impl {
|
140
|
+
typedef typename unpacket_traits<Packet>::integer_packet PacketI;
|
141
|
+
typedef typename unpacket_traits<Packet>::type Scalar;
|
142
|
+
typedef typename unpacket_traits<PacketI>::type ScalarI;
|
143
|
+
enum {
|
144
|
+
TotalBits = sizeof(Scalar) * CHAR_BIT,
|
145
|
+
MantissaBits = numext::numeric_limits<Scalar>::digits - 1,
|
146
|
+
ExponentBits = int(TotalBits) - int(MantissaBits) - 1
|
147
|
+
};
|
148
|
+
|
149
|
+
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
|
150
|
+
Packet run(const Packet& a, const Packet& exponent) {
|
151
|
+
const Packet bias = pset1<Packet>(Scalar((ScalarI(1)<<(int(ExponentBits)-1)) - ScalarI(1))); // 127
|
152
|
+
const Packet limit = pset1<Packet>(Scalar((ScalarI(1)<<int(ExponentBits)) - ScalarI(1))); // 255
|
153
|
+
// restrict biased exponent between 0 and 255 for float.
|
154
|
+
const PacketI e = pcast<Packet, PacketI>(pmin(pmax(padd(exponent, bias), pzero(limit)), limit)); // exponent + 127
|
155
|
+
// return a * (2^e)
|
156
|
+
return pmul(a, preinterpret<Packet>(plogical_shift_left<int(MantissaBits)>(e)));
|
157
|
+
}
|
158
|
+
};
|
159
|
+
|
160
|
+
// Natural or base 2 logarithm.
|
161
|
+
// Computes log(x) as log(2^e * m) = C*e + log(m), where the constant C =log(2)
|
162
|
+
// and m is in the range [sqrt(1/2),sqrt(2)). In this range, the logarithm can
|
163
|
+
// be easily approximated by a polynomial centered on m=1 for stability.
|
164
|
+
// TODO(gonnet): Further reduce the interval allowing for lower-degree
|
165
|
+
// polynomial interpolants -> ... -> profit!
|
166
|
+
template <typename Packet, bool base2>
|
167
|
+
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
168
|
+
EIGEN_UNUSED
|
169
|
+
Packet plog_impl_float(const Packet _x)
|
170
|
+
{
|
171
|
+
Packet x = _x;
|
172
|
+
|
173
|
+
const Packet cst_1 = pset1<Packet>(1.0f);
|
174
|
+
const Packet cst_neg_half = pset1<Packet>(-0.5f);
|
175
|
+
// The smallest non denormalized float number.
|
176
|
+
const Packet cst_min_norm_pos = pset1frombits<Packet>( 0x00800000u);
|
177
|
+
const Packet cst_minus_inf = pset1frombits<Packet>( 0xff800000u);
|
178
|
+
const Packet cst_pos_inf = pset1frombits<Packet>( 0x7f800000u);
|
179
|
+
|
180
|
+
// Polynomial coefficients.
|
181
|
+
const Packet cst_cephes_SQRTHF = pset1<Packet>(0.707106781186547524f);
|
182
|
+
const Packet cst_cephes_log_p0 = pset1<Packet>(7.0376836292E-2f);
|
183
|
+
const Packet cst_cephes_log_p1 = pset1<Packet>(-1.1514610310E-1f);
|
184
|
+
const Packet cst_cephes_log_p2 = pset1<Packet>(1.1676998740E-1f);
|
185
|
+
const Packet cst_cephes_log_p3 = pset1<Packet>(-1.2420140846E-1f);
|
186
|
+
const Packet cst_cephes_log_p4 = pset1<Packet>(+1.4249322787E-1f);
|
187
|
+
const Packet cst_cephes_log_p5 = pset1<Packet>(-1.6668057665E-1f);
|
188
|
+
const Packet cst_cephes_log_p6 = pset1<Packet>(+2.0000714765E-1f);
|
189
|
+
const Packet cst_cephes_log_p7 = pset1<Packet>(-2.4999993993E-1f);
|
190
|
+
const Packet cst_cephes_log_p8 = pset1<Packet>(+3.3333331174E-1f);
|
191
|
+
|
192
|
+
// Truncate input values to the minimum positive normal.
|
193
|
+
x = pmax(x, cst_min_norm_pos);
|
194
|
+
|
195
|
+
Packet e;
|
196
|
+
// extract significant in the range [0.5,1) and exponent
|
197
|
+
x = pfrexp(x,e);
|
198
|
+
|
199
|
+
// part2: Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2))
|
200
|
+
// and shift by -1. The values are then centered around 0, which improves
|
201
|
+
// the stability of the polynomial evaluation.
|
202
|
+
// if( x < SQRTHF ) {
|
203
|
+
// e -= 1;
|
204
|
+
// x = x + x - 1.0;
|
205
|
+
// } else { x = x - 1.0; }
|
206
|
+
Packet mask = pcmp_lt(x, cst_cephes_SQRTHF);
|
207
|
+
Packet tmp = pand(x, mask);
|
208
|
+
x = psub(x, cst_1);
|
209
|
+
e = psub(e, pand(cst_1, mask));
|
210
|
+
x = padd(x, tmp);
|
211
|
+
|
212
|
+
Packet x2 = pmul(x, x);
|
213
|
+
Packet x3 = pmul(x2, x);
|
214
|
+
|
215
|
+
// Evaluate the polynomial approximant of degree 8 in three parts, probably
|
216
|
+
// to improve instruction-level parallelism.
|
217
|
+
Packet y, y1, y2;
|
218
|
+
y = pmadd(cst_cephes_log_p0, x, cst_cephes_log_p1);
|
219
|
+
y1 = pmadd(cst_cephes_log_p3, x, cst_cephes_log_p4);
|
220
|
+
y2 = pmadd(cst_cephes_log_p6, x, cst_cephes_log_p7);
|
221
|
+
y = pmadd(y, x, cst_cephes_log_p2);
|
222
|
+
y1 = pmadd(y1, x, cst_cephes_log_p5);
|
223
|
+
y2 = pmadd(y2, x, cst_cephes_log_p8);
|
224
|
+
y = pmadd(y, x3, y1);
|
225
|
+
y = pmadd(y, x3, y2);
|
226
|
+
y = pmul(y, x3);
|
227
|
+
|
228
|
+
y = pmadd(cst_neg_half, x2, y);
|
229
|
+
x = padd(x, y);
|
230
|
+
|
231
|
+
// Add the logarithm of the exponent back to the result of the interpolation.
|
232
|
+
if (base2) {
|
233
|
+
const Packet cst_log2e = pset1<Packet>(static_cast<float>(EIGEN_LOG2E));
|
234
|
+
x = pmadd(x, cst_log2e, e);
|
235
|
+
} else {
|
236
|
+
const Packet cst_ln2 = pset1<Packet>(static_cast<float>(EIGEN_LN2));
|
237
|
+
x = pmadd(e, cst_ln2, x);
|
238
|
+
}
|
239
|
+
|
240
|
+
Packet invalid_mask = pcmp_lt_or_nan(_x, pzero(_x));
|
241
|
+
Packet iszero_mask = pcmp_eq(_x,pzero(_x));
|
242
|
+
Packet pos_inf_mask = pcmp_eq(_x,cst_pos_inf);
|
243
|
+
// Filter out invalid inputs, i.e.:
|
244
|
+
// - negative arg will be NAN
|
245
|
+
// - 0 will be -INF
|
246
|
+
// - +INF will be +INF
|
247
|
+
return pselect(iszero_mask, cst_minus_inf,
|
248
|
+
por(pselect(pos_inf_mask,cst_pos_inf,x), invalid_mask));
|
249
|
+
}
|
250
|
+
|
251
|
+
template <typename Packet>
|
252
|
+
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
253
|
+
EIGEN_UNUSED
|
254
|
+
Packet plog_float(const Packet _x)
|
255
|
+
{
|
256
|
+
return plog_impl_float<Packet, /* base2 */ false>(_x);
|
257
|
+
}
|
258
|
+
|
259
|
+
template <typename Packet>
|
260
|
+
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
261
|
+
EIGEN_UNUSED
|
262
|
+
Packet plog2_float(const Packet _x)
|
263
|
+
{
|
264
|
+
return plog_impl_float<Packet, /* base2 */ true>(_x);
|
265
|
+
}
|
266
|
+
|
267
|
+
/* Returns the base e (2.718...) or base 2 logarithm of x.
|
268
|
+
* The argument is separated into its exponent and fractional parts.
|
269
|
+
* The logarithm of the fraction in the interval [sqrt(1/2), sqrt(2)],
|
270
|
+
* is approximated by
|
271
|
+
*
|
272
|
+
* log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
|
273
|
+
*
|
274
|
+
* for more detail see: http://www.netlib.org/cephes/
|
275
|
+
*/
|
276
|
+
template <typename Packet, bool base2>
|
277
|
+
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
278
|
+
EIGEN_UNUSED
|
279
|
+
Packet plog_impl_double(const Packet _x)
|
280
|
+
{
|
281
|
+
Packet x = _x;
|
282
|
+
|
283
|
+
const Packet cst_1 = pset1<Packet>(1.0);
|
284
|
+
const Packet cst_neg_half = pset1<Packet>(-0.5);
|
285
|
+
// The smallest non denormalized double.
|
286
|
+
const Packet cst_min_norm_pos = pset1frombits<Packet>( static_cast<uint64_t>(0x0010000000000000ull));
|
287
|
+
const Packet cst_minus_inf = pset1frombits<Packet>( static_cast<uint64_t>(0xfff0000000000000ull));
|
288
|
+
const Packet cst_pos_inf = pset1frombits<Packet>( static_cast<uint64_t>(0x7ff0000000000000ull));
|
289
|
+
|
290
|
+
|
291
|
+
// Polynomial Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
|
292
|
+
// 1/sqrt(2) <= x < sqrt(2)
|
293
|
+
const Packet cst_cephes_SQRTHF = pset1<Packet>(0.70710678118654752440E0);
|
294
|
+
const Packet cst_cephes_log_p0 = pset1<Packet>(1.01875663804580931796E-4);
|
295
|
+
const Packet cst_cephes_log_p1 = pset1<Packet>(4.97494994976747001425E-1);
|
296
|
+
const Packet cst_cephes_log_p2 = pset1<Packet>(4.70579119878881725854E0);
|
297
|
+
const Packet cst_cephes_log_p3 = pset1<Packet>(1.44989225341610930846E1);
|
298
|
+
const Packet cst_cephes_log_p4 = pset1<Packet>(1.79368678507819816313E1);
|
299
|
+
const Packet cst_cephes_log_p5 = pset1<Packet>(7.70838733755885391666E0);
|
300
|
+
|
301
|
+
const Packet cst_cephes_log_q0 = pset1<Packet>(1.0);
|
302
|
+
const Packet cst_cephes_log_q1 = pset1<Packet>(1.12873587189167450590E1);
|
303
|
+
const Packet cst_cephes_log_q2 = pset1<Packet>(4.52279145837532221105E1);
|
304
|
+
const Packet cst_cephes_log_q3 = pset1<Packet>(8.29875266912776603211E1);
|
305
|
+
const Packet cst_cephes_log_q4 = pset1<Packet>(7.11544750618563894466E1);
|
306
|
+
const Packet cst_cephes_log_q5 = pset1<Packet>(2.31251620126765340583E1);
|
307
|
+
|
308
|
+
// Truncate input values to the minimum positive normal.
|
309
|
+
x = pmax(x, cst_min_norm_pos);
|
310
|
+
|
311
|
+
Packet e;
|
312
|
+
// extract significant in the range [0.5,1) and exponent
|
313
|
+
x = pfrexp(x,e);
|
314
|
+
|
315
|
+
// Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2))
|
316
|
+
// and shift by -1. The values are then centered around 0, which improves
|
317
|
+
// the stability of the polynomial evaluation.
|
318
|
+
// if( x < SQRTHF ) {
|
319
|
+
// e -= 1;
|
320
|
+
// x = x + x - 1.0;
|
321
|
+
// } else { x = x - 1.0; }
|
322
|
+
Packet mask = pcmp_lt(x, cst_cephes_SQRTHF);
|
323
|
+
Packet tmp = pand(x, mask);
|
324
|
+
x = psub(x, cst_1);
|
325
|
+
e = psub(e, pand(cst_1, mask));
|
326
|
+
x = padd(x, tmp);
|
327
|
+
|
328
|
+
Packet x2 = pmul(x, x);
|
329
|
+
Packet x3 = pmul(x2, x);
|
330
|
+
|
331
|
+
// Evaluate the polynomial approximant , probably to improve instruction-level parallelism.
|
332
|
+
// y = x - 0.5*x^2 + x^3 * polevl( x, P, 5 ) / p1evl( x, Q, 5 ) );
|
333
|
+
Packet y, y1, y_;
|
334
|
+
y = pmadd(cst_cephes_log_p0, x, cst_cephes_log_p1);
|
335
|
+
y1 = pmadd(cst_cephes_log_p3, x, cst_cephes_log_p4);
|
336
|
+
y = pmadd(y, x, cst_cephes_log_p2);
|
337
|
+
y1 = pmadd(y1, x, cst_cephes_log_p5);
|
338
|
+
y_ = pmadd(y, x3, y1);
|
339
|
+
|
340
|
+
y = pmadd(cst_cephes_log_q0, x, cst_cephes_log_q1);
|
341
|
+
y1 = pmadd(cst_cephes_log_q3, x, cst_cephes_log_q4);
|
342
|
+
y = pmadd(y, x, cst_cephes_log_q2);
|
343
|
+
y1 = pmadd(y1, x, cst_cephes_log_q5);
|
344
|
+
y = pmadd(y, x3, y1);
|
345
|
+
|
346
|
+
y_ = pmul(y_, x3);
|
347
|
+
y = pdiv(y_, y);
|
348
|
+
|
349
|
+
y = pmadd(cst_neg_half, x2, y);
|
350
|
+
x = padd(x, y);
|
351
|
+
|
352
|
+
// Add the logarithm of the exponent back to the result of the interpolation.
|
353
|
+
if (base2) {
|
354
|
+
const Packet cst_log2e = pset1<Packet>(static_cast<double>(EIGEN_LOG2E));
|
355
|
+
x = pmadd(x, cst_log2e, e);
|
356
|
+
} else {
|
357
|
+
const Packet cst_ln2 = pset1<Packet>(static_cast<double>(EIGEN_LN2));
|
358
|
+
x = pmadd(e, cst_ln2, x);
|
359
|
+
}
|
360
|
+
|
361
|
+
Packet invalid_mask = pcmp_lt_or_nan(_x, pzero(_x));
|
362
|
+
Packet iszero_mask = pcmp_eq(_x,pzero(_x));
|
363
|
+
Packet pos_inf_mask = pcmp_eq(_x,cst_pos_inf);
|
364
|
+
// Filter out invalid inputs, i.e.:
|
365
|
+
// - negative arg will be NAN
|
366
|
+
// - 0 will be -INF
|
367
|
+
// - +INF will be +INF
|
368
|
+
return pselect(iszero_mask, cst_minus_inf,
|
369
|
+
por(pselect(pos_inf_mask,cst_pos_inf,x), invalid_mask));
|
370
|
+
}
|
371
|
+
|
372
|
+
template <typename Packet>
|
373
|
+
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
374
|
+
EIGEN_UNUSED
|
375
|
+
Packet plog_double(const Packet _x)
|
376
|
+
{
|
377
|
+
return plog_impl_double<Packet, /* base2 */ false>(_x);
|
378
|
+
}
|
379
|
+
|
380
|
+
template <typename Packet>
|
381
|
+
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
382
|
+
EIGEN_UNUSED
|
383
|
+
Packet plog2_double(const Packet _x)
|
384
|
+
{
|
385
|
+
return plog_impl_double<Packet, /* base2 */ true>(_x);
|
386
|
+
}
|
387
|
+
|
388
|
+
/** \internal \returns log(1 + x) computed using W. Kahan's formula.
|
389
|
+
See: http://www.plunk.org/~hatch/rightway.php
|
390
|
+
*/
|
391
|
+
template<typename Packet>
|
392
|
+
Packet generic_plog1p(const Packet& x)
|
393
|
+
{
|
394
|
+
typedef typename unpacket_traits<Packet>::type ScalarType;
|
395
|
+
const Packet one = pset1<Packet>(ScalarType(1));
|
396
|
+
Packet xp1 = padd(x, one);
|
397
|
+
Packet small_mask = pcmp_eq(xp1, one);
|
398
|
+
Packet log1 = plog(xp1);
|
399
|
+
Packet inf_mask = pcmp_eq(xp1, log1);
|
400
|
+
Packet log_large = pmul(x, pdiv(log1, psub(xp1, one)));
|
401
|
+
return pselect(por(small_mask, inf_mask), x, log_large);
|
402
|
+
}
|
403
|
+
|
404
|
+
/** \internal \returns exp(x)-1 computed using W. Kahan's formula.
|
405
|
+
See: http://www.plunk.org/~hatch/rightway.php
|
406
|
+
*/
|
407
|
+
template<typename Packet>
|
408
|
+
Packet generic_expm1(const Packet& x)
|
409
|
+
{
|
410
|
+
typedef typename unpacket_traits<Packet>::type ScalarType;
|
411
|
+
const Packet one = pset1<Packet>(ScalarType(1));
|
412
|
+
const Packet neg_one = pset1<Packet>(ScalarType(-1));
|
413
|
+
Packet u = pexp(x);
|
414
|
+
Packet one_mask = pcmp_eq(u, one);
|
415
|
+
Packet u_minus_one = psub(u, one);
|
416
|
+
Packet neg_one_mask = pcmp_eq(u_minus_one, neg_one);
|
417
|
+
Packet logu = plog(u);
|
418
|
+
// The following comparison is to catch the case where
|
419
|
+
// exp(x) = +inf. It is written in this way to avoid having
|
420
|
+
// to form the constant +inf, which depends on the packet
|
421
|
+
// type.
|
422
|
+
Packet pos_inf_mask = pcmp_eq(logu, u);
|
423
|
+
Packet expm1 = pmul(u_minus_one, pdiv(x, logu));
|
424
|
+
expm1 = pselect(pos_inf_mask, u, expm1);
|
425
|
+
return pselect(one_mask,
|
426
|
+
x,
|
427
|
+
pselect(neg_one_mask,
|
428
|
+
neg_one,
|
429
|
+
expm1));
|
430
|
+
}
|
431
|
+
|
432
|
+
|
433
|
+
// Exponential function. Works by writing "x = m*log(2) + r" where
|
434
|
+
// "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then
|
435
|
+
// "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1).
|
436
|
+
template <typename Packet>
|
437
|
+
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
438
|
+
EIGEN_UNUSED
|
439
|
+
Packet pexp_float(const Packet _x)
|
440
|
+
{
|
441
|
+
const Packet cst_1 = pset1<Packet>(1.0f);
|
442
|
+
const Packet cst_half = pset1<Packet>(0.5f);
|
443
|
+
const Packet cst_exp_hi = pset1<Packet>( 88.723f);
|
444
|
+
const Packet cst_exp_lo = pset1<Packet>(-88.723f);
|
445
|
+
|
446
|
+
const Packet cst_cephes_LOG2EF = pset1<Packet>(1.44269504088896341f);
|
447
|
+
const Packet cst_cephes_exp_p0 = pset1<Packet>(1.9875691500E-4f);
|
448
|
+
const Packet cst_cephes_exp_p1 = pset1<Packet>(1.3981999507E-3f);
|
449
|
+
const Packet cst_cephes_exp_p2 = pset1<Packet>(8.3334519073E-3f);
|
450
|
+
const Packet cst_cephes_exp_p3 = pset1<Packet>(4.1665795894E-2f);
|
451
|
+
const Packet cst_cephes_exp_p4 = pset1<Packet>(1.6666665459E-1f);
|
452
|
+
const Packet cst_cephes_exp_p5 = pset1<Packet>(5.0000001201E-1f);
|
453
|
+
|
454
|
+
// Clamp x.
|
455
|
+
Packet x = pmax(pmin(_x, cst_exp_hi), cst_exp_lo);
|
456
|
+
|
457
|
+
// Express exp(x) as exp(m*ln(2) + r), start by extracting
|
458
|
+
// m = floor(x/ln(2) + 0.5).
|
459
|
+
Packet m = pfloor(pmadd(x, cst_cephes_LOG2EF, cst_half));
|
460
|
+
|
461
|
+
// Get r = x - m*ln(2). If no FMA instructions are available, m*ln(2) is
|
462
|
+
// subtracted out in two parts, m*C1+m*C2 = m*ln(2), to avoid accumulating
|
463
|
+
// truncation errors.
|
464
|
+
const Packet cst_cephes_exp_C1 = pset1<Packet>(-0.693359375f);
|
465
|
+
const Packet cst_cephes_exp_C2 = pset1<Packet>(2.12194440e-4f);
|
466
|
+
Packet r = pmadd(m, cst_cephes_exp_C1, x);
|
467
|
+
r = pmadd(m, cst_cephes_exp_C2, r);
|
468
|
+
|
469
|
+
Packet r2 = pmul(r, r);
|
470
|
+
Packet r3 = pmul(r2, r);
|
471
|
+
|
472
|
+
// Evaluate the polynomial approximant,improved by instruction-level parallelism.
|
473
|
+
Packet y, y1, y2;
|
474
|
+
y = pmadd(cst_cephes_exp_p0, r, cst_cephes_exp_p1);
|
475
|
+
y1 = pmadd(cst_cephes_exp_p3, r, cst_cephes_exp_p4);
|
476
|
+
y2 = padd(r, cst_1);
|
477
|
+
y = pmadd(y, r, cst_cephes_exp_p2);
|
478
|
+
y1 = pmadd(y1, r, cst_cephes_exp_p5);
|
479
|
+
y = pmadd(y, r3, y1);
|
480
|
+
y = pmadd(y, r2, y2);
|
481
|
+
|
482
|
+
// Return 2^m * exp(r).
|
483
|
+
// TODO: replace pldexp with faster implementation since y in [-1, 1).
|
484
|
+
return pmax(pldexp(y,m), _x);
|
485
|
+
}
|
486
|
+
|
487
|
+
template <typename Packet>
|
488
|
+
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
489
|
+
EIGEN_UNUSED
|
490
|
+
Packet pexp_double(const Packet _x)
|
491
|
+
{
|
492
|
+
Packet x = _x;
|
493
|
+
|
494
|
+
const Packet cst_1 = pset1<Packet>(1.0);
|
495
|
+
const Packet cst_2 = pset1<Packet>(2.0);
|
496
|
+
const Packet cst_half = pset1<Packet>(0.5);
|
497
|
+
|
498
|
+
const Packet cst_exp_hi = pset1<Packet>(709.784);
|
499
|
+
const Packet cst_exp_lo = pset1<Packet>(-709.784);
|
500
|
+
|
501
|
+
const Packet cst_cephes_LOG2EF = pset1<Packet>(1.4426950408889634073599);
|
502
|
+
const Packet cst_cephes_exp_p0 = pset1<Packet>(1.26177193074810590878e-4);
|
503
|
+
const Packet cst_cephes_exp_p1 = pset1<Packet>(3.02994407707441961300e-2);
|
504
|
+
const Packet cst_cephes_exp_p2 = pset1<Packet>(9.99999999999999999910e-1);
|
505
|
+
const Packet cst_cephes_exp_q0 = pset1<Packet>(3.00198505138664455042e-6);
|
506
|
+
const Packet cst_cephes_exp_q1 = pset1<Packet>(2.52448340349684104192e-3);
|
507
|
+
const Packet cst_cephes_exp_q2 = pset1<Packet>(2.27265548208155028766e-1);
|
508
|
+
const Packet cst_cephes_exp_q3 = pset1<Packet>(2.00000000000000000009e0);
|
509
|
+
const Packet cst_cephes_exp_C1 = pset1<Packet>(0.693145751953125);
|
510
|
+
const Packet cst_cephes_exp_C2 = pset1<Packet>(1.42860682030941723212e-6);
|
511
|
+
|
512
|
+
Packet tmp, fx;
|
513
|
+
|
514
|
+
// clamp x
|
515
|
+
x = pmax(pmin(x, cst_exp_hi), cst_exp_lo);
|
516
|
+
// Express exp(x) as exp(g + n*log(2)).
|
517
|
+
fx = pmadd(cst_cephes_LOG2EF, x, cst_half);
|
518
|
+
|
519
|
+
// Get the integer modulus of log(2), i.e. the "n" described above.
|
520
|
+
fx = pfloor(fx);
|
521
|
+
|
522
|
+
// Get the remainder modulo log(2), i.e. the "g" described above. Subtract
|
523
|
+
// n*log(2) out in two steps, i.e. n*C1 + n*C2, C1+C2=log2 to get the last
|
524
|
+
// digits right.
|
525
|
+
tmp = pmul(fx, cst_cephes_exp_C1);
|
526
|
+
Packet z = pmul(fx, cst_cephes_exp_C2);
|
527
|
+
x = psub(x, tmp);
|
528
|
+
x = psub(x, z);
|
529
|
+
|
530
|
+
Packet x2 = pmul(x, x);
|
531
|
+
|
532
|
+
// Evaluate the numerator polynomial of the rational interpolant.
|
533
|
+
Packet px = cst_cephes_exp_p0;
|
534
|
+
px = pmadd(px, x2, cst_cephes_exp_p1);
|
535
|
+
px = pmadd(px, x2, cst_cephes_exp_p2);
|
536
|
+
px = pmul(px, x);
|
537
|
+
|
538
|
+
// Evaluate the denominator polynomial of the rational interpolant.
|
539
|
+
Packet qx = cst_cephes_exp_q0;
|
540
|
+
qx = pmadd(qx, x2, cst_cephes_exp_q1);
|
541
|
+
qx = pmadd(qx, x2, cst_cephes_exp_q2);
|
542
|
+
qx = pmadd(qx, x2, cst_cephes_exp_q3);
|
543
|
+
|
544
|
+
// I don't really get this bit, copied from the SSE2 routines, so...
|
545
|
+
// TODO(gonnet): Figure out what is going on here, perhaps find a better
|
546
|
+
// rational interpolant?
|
547
|
+
x = pdiv(px, psub(qx, px));
|
548
|
+
x = pmadd(cst_2, x, cst_1);
|
549
|
+
|
550
|
+
// Construct the result 2^n * exp(g) = e * x. The max is used to catch
|
551
|
+
// non-finite values in the input.
|
552
|
+
// TODO: replace pldexp with faster implementation since x in [-1, 1).
|
553
|
+
return pmax(pldexp(x,fx), _x);
|
554
|
+
}
|
555
|
+
|
556
|
+
// The following code is inspired by the following stack-overflow answer:
|
557
|
+
// https://stackoverflow.com/questions/30463616/payne-hanek-algorithm-implementation-in-c/30465751#30465751
|
558
|
+
// It has been largely optimized:
|
559
|
+
// - By-pass calls to frexp.
|
560
|
+
// - Aligned loads of required 96 bits of 2/pi. This is accomplished by
|
561
|
+
// (1) balancing the mantissa and exponent to the required bits of 2/pi are
|
562
|
+
// aligned on 8-bits, and (2) replicating the storage of the bits of 2/pi.
|
563
|
+
// - Avoid a branch in rounding and extraction of the remaining fractional part.
|
564
|
+
// Overall, I measured a speed up higher than x2 on x86-64.
|
565
|
+
inline float trig_reduce_huge (float xf, int *quadrant)
|
566
|
+
{
|
567
|
+
using Eigen::numext::int32_t;
|
568
|
+
using Eigen::numext::uint32_t;
|
569
|
+
using Eigen::numext::int64_t;
|
570
|
+
using Eigen::numext::uint64_t;
|
571
|
+
|
572
|
+
const double pio2_62 = 3.4061215800865545e-19; // pi/2 * 2^-62
|
573
|
+
const uint64_t zero_dot_five = uint64_t(1) << 61; // 0.5 in 2.62-bit fixed-point foramt
|
574
|
+
|
575
|
+
// 192 bits of 2/pi for Payne-Hanek reduction
|
576
|
+
// Bits are introduced by packet of 8 to enable aligned reads.
|
577
|
+
static const uint32_t two_over_pi [] =
|
578
|
+
{
|
579
|
+
0x00000028, 0x000028be, 0x0028be60, 0x28be60db,
|
580
|
+
0xbe60db93, 0x60db9391, 0xdb939105, 0x9391054a,
|
581
|
+
0x91054a7f, 0x054a7f09, 0x4a7f09d5, 0x7f09d5f4,
|
582
|
+
0x09d5f47d, 0xd5f47d4d, 0xf47d4d37, 0x7d4d3770,
|
583
|
+
0x4d377036, 0x377036d8, 0x7036d8a5, 0x36d8a566,
|
584
|
+
0xd8a5664f, 0xa5664f10, 0x664f10e4, 0x4f10e410,
|
585
|
+
0x10e41000, 0xe4100000
|
586
|
+
};
|
587
|
+
|
588
|
+
uint32_t xi = numext::bit_cast<uint32_t>(xf);
|
589
|
+
// Below, -118 = -126 + 8.
|
590
|
+
// -126 is to get the exponent,
|
591
|
+
// +8 is to enable alignment of 2/pi's bits on 8 bits.
|
592
|
+
// This is possible because the fractional part of x as only 24 meaningful bits.
|
593
|
+
uint32_t e = (xi >> 23) - 118;
|
594
|
+
// Extract the mantissa and shift it to align it wrt the exponent
|
595
|
+
xi = ((xi & 0x007fffffu)| 0x00800000u) << (e & 0x7);
|
596
|
+
|
597
|
+
uint32_t i = e >> 3;
|
598
|
+
uint32_t twoopi_1 = two_over_pi[i-1];
|
599
|
+
uint32_t twoopi_2 = two_over_pi[i+3];
|
600
|
+
uint32_t twoopi_3 = two_over_pi[i+7];
|
601
|
+
|
602
|
+
// Compute x * 2/pi in 2.62-bit fixed-point format.
|
603
|
+
uint64_t p;
|
604
|
+
p = uint64_t(xi) * twoopi_3;
|
605
|
+
p = uint64_t(xi) * twoopi_2 + (p >> 32);
|
606
|
+
p = (uint64_t(xi * twoopi_1) << 32) + p;
|
607
|
+
|
608
|
+
// Round to nearest: add 0.5 and extract integral part.
|
609
|
+
uint64_t q = (p + zero_dot_five) >> 62;
|
610
|
+
*quadrant = int(q);
|
611
|
+
// Now it remains to compute "r = x - q*pi/2" with high accuracy,
|
612
|
+
// since we have p=x/(pi/2) with high accuracy, we can more efficiently compute r as:
|
613
|
+
// r = (p-q)*pi/2,
|
614
|
+
// where the product can be be carried out with sufficient accuracy using double precision.
|
615
|
+
p -= q<<62;
|
616
|
+
return float(double(int64_t(p)) * pio2_62);
|
617
|
+
}
|
618
|
+
|
619
|
+
template<bool ComputeSine,typename Packet>
|
620
|
+
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
621
|
+
EIGEN_UNUSED
|
622
|
+
#if EIGEN_GNUC_AT_LEAST(4,4) && EIGEN_COMP_GNUC_STRICT
|
623
|
+
__attribute__((optimize("-fno-unsafe-math-optimizations")))
|
624
|
+
#endif
|
625
|
+
Packet psincos_float(const Packet& _x)
|
626
|
+
{
|
627
|
+
typedef typename unpacket_traits<Packet>::integer_packet PacketI;
|
628
|
+
|
629
|
+
const Packet cst_2oPI = pset1<Packet>(0.636619746685028076171875f); // 2/PI
|
630
|
+
const Packet cst_rounding_magic = pset1<Packet>(12582912); // 2^23 for rounding
|
631
|
+
const PacketI csti_1 = pset1<PacketI>(1);
|
632
|
+
const Packet cst_sign_mask = pset1frombits<Packet>(0x80000000u);
|
633
|
+
|
634
|
+
Packet x = pabs(_x);
|
635
|
+
|
636
|
+
// Scale x by 2/Pi to find x's octant.
|
637
|
+
Packet y = pmul(x, cst_2oPI);
|
638
|
+
|
639
|
+
// Rounding trick:
|
640
|
+
Packet y_round = padd(y, cst_rounding_magic);
|
641
|
+
EIGEN_OPTIMIZATION_BARRIER(y_round)
|
642
|
+
PacketI y_int = preinterpret<PacketI>(y_round); // last 23 digits represent integer (if abs(x)<2^24)
|
643
|
+
y = psub(y_round, cst_rounding_magic); // nearest integer to x*4/pi
|
644
|
+
|
645
|
+
// Reduce x by y octants to get: -Pi/4 <= x <= +Pi/4
|
646
|
+
// using "Extended precision modular arithmetic"
|
647
|
+
#if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD)
|
648
|
+
// This version requires true FMA for high accuracy
|
649
|
+
// It provides a max error of 1ULP up to (with absolute_error < 5.9605e-08):
|
650
|
+
const float huge_th = ComputeSine ? 117435.992f : 71476.0625f;
|
651
|
+
x = pmadd(y, pset1<Packet>(-1.57079601287841796875f), x);
|
652
|
+
x = pmadd(y, pset1<Packet>(-3.1391647326017846353352069854736328125e-07f), x);
|
653
|
+
x = pmadd(y, pset1<Packet>(-5.390302529957764765544681040410068817436695098876953125e-15f), x);
|
654
|
+
#else
|
655
|
+
// Without true FMA, the previous set of coefficients maintain 1ULP accuracy
|
656
|
+
// up to x<15.7 (for sin), but accuracy is immediately lost for x>15.7.
|
657
|
+
// We thus use one more iteration to maintain 2ULPs up to reasonably large inputs.
|
658
|
+
|
659
|
+
// The following set of coefficients maintain 1ULP up to 9.43 and 14.16 for sin and cos respectively.
|
660
|
+
// and 2 ULP up to:
|
661
|
+
const float huge_th = ComputeSine ? 25966.f : 18838.f;
|
662
|
+
x = pmadd(y, pset1<Packet>(-1.5703125), x); // = 0xbfc90000
|
663
|
+
EIGEN_OPTIMIZATION_BARRIER(x)
|
664
|
+
x = pmadd(y, pset1<Packet>(-0.000483989715576171875), x); // = 0xb9fdc000
|
665
|
+
EIGEN_OPTIMIZATION_BARRIER(x)
|
666
|
+
x = pmadd(y, pset1<Packet>(1.62865035235881805419921875e-07), x); // = 0x342ee000
|
667
|
+
x = pmadd(y, pset1<Packet>(5.5644315544167710640977020375430583953857421875e-11), x); // = 0x2e74b9ee
|
668
|
+
|
669
|
+
// For the record, the following set of coefficients maintain 2ULP up
|
670
|
+
// to a slightly larger range:
|
671
|
+
// const float huge_th = ComputeSine ? 51981.f : 39086.125f;
|
672
|
+
// but it slightly fails to maintain 1ULP for two values of sin below pi.
|
673
|
+
// x = pmadd(y, pset1<Packet>(-3.140625/2.), x);
|
674
|
+
// x = pmadd(y, pset1<Packet>(-0.00048351287841796875), x);
|
675
|
+
// x = pmadd(y, pset1<Packet>(-3.13855707645416259765625e-07), x);
|
676
|
+
// x = pmadd(y, pset1<Packet>(-6.0771006282767103812147979624569416046142578125e-11), x);
|
677
|
+
|
678
|
+
// For the record, with only 3 iterations it is possible to maintain
|
679
|
+
// 1 ULP up to 3PI (maybe more) and 2ULP up to 255.
|
680
|
+
// The coefficients are: 0xbfc90f80, 0xb7354480, 0x2e74b9ee
|
681
|
+
#endif
|
682
|
+
|
683
|
+
if(predux_any(pcmp_le(pset1<Packet>(huge_th),pabs(_x))))
|
684
|
+
{
|
685
|
+
const int PacketSize = unpacket_traits<Packet>::size;
|
686
|
+
EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) float vals[PacketSize];
|
687
|
+
EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) float x_cpy[PacketSize];
|
688
|
+
EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) int y_int2[PacketSize];
|
689
|
+
pstoreu(vals, pabs(_x));
|
690
|
+
pstoreu(x_cpy, x);
|
691
|
+
pstoreu(y_int2, y_int);
|
692
|
+
for(int k=0; k<PacketSize;++k)
|
693
|
+
{
|
694
|
+
float val = vals[k];
|
695
|
+
if(val>=huge_th && (numext::isfinite)(val))
|
696
|
+
x_cpy[k] = trig_reduce_huge(val,&y_int2[k]);
|
697
|
+
}
|
698
|
+
x = ploadu<Packet>(x_cpy);
|
699
|
+
y_int = ploadu<PacketI>(y_int2);
|
700
|
+
}
|
701
|
+
|
702
|
+
// Compute the sign to apply to the polynomial.
|
703
|
+
// sin: sign = second_bit(y_int) xor signbit(_x)
|
704
|
+
// cos: sign = second_bit(y_int+1)
|
705
|
+
Packet sign_bit = ComputeSine ? pxor(_x, preinterpret<Packet>(plogical_shift_left<30>(y_int)))
|
706
|
+
: preinterpret<Packet>(plogical_shift_left<30>(padd(y_int,csti_1)));
|
707
|
+
sign_bit = pand(sign_bit, cst_sign_mask); // clear all but left most bit
|
708
|
+
|
709
|
+
// Get the polynomial selection mask from the second bit of y_int
|
710
|
+
// We'll calculate both (sin and cos) polynomials and then select from the two.
|
711
|
+
Packet poly_mask = preinterpret<Packet>(pcmp_eq(pand(y_int, csti_1), pzero(y_int)));
|
712
|
+
|
713
|
+
Packet x2 = pmul(x,x);
|
714
|
+
|
715
|
+
// Evaluate the cos(x) polynomial. (-Pi/4 <= x <= Pi/4)
|
716
|
+
Packet y1 = pset1<Packet>(2.4372266125283204019069671630859375e-05f);
|
717
|
+
y1 = pmadd(y1, x2, pset1<Packet>(-0.00138865201734006404876708984375f ));
|
718
|
+
y1 = pmadd(y1, x2, pset1<Packet>(0.041666619479656219482421875f ));
|
719
|
+
y1 = pmadd(y1, x2, pset1<Packet>(-0.5f));
|
720
|
+
y1 = pmadd(y1, x2, pset1<Packet>(1.f));
|
721
|
+
|
722
|
+
// Evaluate the sin(x) polynomial. (Pi/4 <= x <= Pi/4)
|
723
|
+
// octave/matlab code to compute those coefficients:
|
724
|
+
// x = (0:0.0001:pi/4)';
|
725
|
+
// A = [x.^3 x.^5 x.^7];
|
726
|
+
// w = ((1.-(x/(pi/4)).^2).^5)*2000+1; # weights trading relative accuracy
|
727
|
+
// c = (A'*diag(w)*A)\(A'*diag(w)*(sin(x)-x)); # weighted LS, linear coeff forced to 1
|
728
|
+
// printf('%.64f\n %.64f\n%.64f\n', c(3), c(2), c(1))
|
729
|
+
//
|
730
|
+
Packet y2 = pset1<Packet>(-0.0001959234114083702898469196984621021329076029360294342041015625f);
|
731
|
+
y2 = pmadd(y2, x2, pset1<Packet>( 0.0083326873655616851693794799871284340042620897293090820312500000f));
|
732
|
+
y2 = pmadd(y2, x2, pset1<Packet>(-0.1666666203982298255503735617821803316473960876464843750000000000f));
|
733
|
+
y2 = pmul(y2, x2);
|
734
|
+
y2 = pmadd(y2, x, x);
|
735
|
+
|
736
|
+
// Select the correct result from the two polynomials.
|
737
|
+
y = ComputeSine ? pselect(poly_mask,y2,y1)
|
738
|
+
: pselect(poly_mask,y1,y2);
|
739
|
+
|
740
|
+
// Update the sign and filter huge inputs
|
741
|
+
return pxor(y, sign_bit);
|
742
|
+
}
|
743
|
+
|
744
|
+
template<typename Packet>
|
745
|
+
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
746
|
+
EIGEN_UNUSED
|
747
|
+
Packet psin_float(const Packet& x)
|
748
|
+
{
|
749
|
+
return psincos_float<true>(x);
|
750
|
+
}
|
751
|
+
|
752
|
+
template<typename Packet>
|
753
|
+
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
754
|
+
EIGEN_UNUSED
|
755
|
+
Packet pcos_float(const Packet& x)
|
756
|
+
{
|
757
|
+
return psincos_float<false>(x);
|
758
|
+
}
|
759
|
+
|
760
|
+
|
761
|
+
template<typename Packet>
|
762
|
+
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
763
|
+
EIGEN_UNUSED
|
764
|
+
Packet psqrt_complex(const Packet& a) {
|
765
|
+
typedef typename unpacket_traits<Packet>::type Scalar;
|
766
|
+
typedef typename Scalar::value_type RealScalar;
|
767
|
+
typedef typename unpacket_traits<Packet>::as_real RealPacket;
|
768
|
+
|
769
|
+
// Computes the principal sqrt of the complex numbers in the input.
|
770
|
+
//
|
771
|
+
// For example, for packets containing 2 complex numbers stored in interleaved format
|
772
|
+
// a = [a0, a1] = [x0, y0, x1, y1],
|
773
|
+
// where x0 = real(a0), y0 = imag(a0) etc., this function returns
|
774
|
+
// b = [b0, b1] = [u0, v0, u1, v1],
|
775
|
+
// such that b0^2 = a0, b1^2 = a1.
|
776
|
+
//
|
777
|
+
// To derive the formula for the complex square roots, let's consider the equation for
|
778
|
+
// a single complex square root of the number x + i*y. We want to find real numbers
|
779
|
+
// u and v such that
|
780
|
+
// (u + i*v)^2 = x + i*y <=>
|
781
|
+
// u^2 - v^2 + i*2*u*v = x + i*v.
|
782
|
+
// By equating the real and imaginary parts we get:
|
783
|
+
// u^2 - v^2 = x
|
784
|
+
// 2*u*v = y.
|
785
|
+
//
|
786
|
+
// For x >= 0, this has the numerically stable solution
|
787
|
+
// u = sqrt(0.5 * (x + sqrt(x^2 + y^2)))
|
788
|
+
// v = 0.5 * (y / u)
|
789
|
+
// and for x < 0,
|
790
|
+
// v = sign(y) * sqrt(0.5 * (-x + sqrt(x^2 + y^2)))
|
791
|
+
// u = 0.5 * (y / v)
|
792
|
+
//
|
793
|
+
// To avoid unnecessary over- and underflow, we compute sqrt(x^2 + y^2) as
|
794
|
+
// l = max(|x|, |y|) * sqrt(1 + (min(|x|, |y|) / max(|x|, |y|))^2) ,
|
795
|
+
|
796
|
+
// In the following, without lack of generality, we have annotated the code, assuming
|
797
|
+
// that the input is a packet of 2 complex numbers.
|
798
|
+
//
|
799
|
+
// Step 1. Compute l = [l0, l0, l1, l1], where
|
800
|
+
// l0 = sqrt(x0^2 + y0^2), l1 = sqrt(x1^2 + y1^2)
|
801
|
+
// To avoid over- and underflow, we use the stable formula for each hypotenuse
|
802
|
+
// l0 = (min0 == 0 ? max0 : max0 * sqrt(1 + (min0/max0)**2)),
|
803
|
+
// where max0 = max(|x0|, |y0|), min0 = min(|x0|, |y0|), and similarly for l1.
|
804
|
+
|
805
|
+
RealPacket a_abs = pabs(a.v); // [|x0|, |y0|, |x1|, |y1|]
|
806
|
+
RealPacket a_abs_flip = pcplxflip(Packet(a_abs)).v; // [|y0|, |x0|, |y1|, |x1|]
|
807
|
+
RealPacket a_max = pmax(a_abs, a_abs_flip);
|
808
|
+
RealPacket a_min = pmin(a_abs, a_abs_flip);
|
809
|
+
RealPacket a_min_zero_mask = pcmp_eq(a_min, pzero(a_min));
|
810
|
+
RealPacket a_max_zero_mask = pcmp_eq(a_max, pzero(a_max));
|
811
|
+
RealPacket r = pdiv(a_min, a_max);
|
812
|
+
const RealPacket cst_one = pset1<RealPacket>(RealScalar(1));
|
813
|
+
RealPacket l = pmul(a_max, psqrt(padd(cst_one, pmul(r, r)))); // [l0, l0, l1, l1]
|
814
|
+
// Set l to a_max if a_min is zero.
|
815
|
+
l = pselect(a_min_zero_mask, a_max, l);
|
816
|
+
|
817
|
+
// Step 2. Compute [rho0, *, rho1, *], where
|
818
|
+
// rho0 = sqrt(0.5 * (l0 + |x0|)), rho1 = sqrt(0.5 * (l1 + |x1|))
|
819
|
+
// We don't care about the imaginary parts computed here. They will be overwritten later.
|
820
|
+
const RealPacket cst_half = pset1<RealPacket>(RealScalar(0.5));
|
821
|
+
Packet rho;
|
822
|
+
rho.v = psqrt(pmul(cst_half, padd(a_abs, l)));
|
823
|
+
|
824
|
+
// Step 3. Compute [rho0, eta0, rho1, eta1], where
|
825
|
+
// eta0 = (y0 / l0) / 2, and eta1 = (y1 / l1) / 2.
|
826
|
+
// set eta = 0 of input is 0 + i0.
|
827
|
+
RealPacket eta = pandnot(pmul(cst_half, pdiv(a.v, pcplxflip(rho).v)), a_max_zero_mask);
|
828
|
+
RealPacket real_mask = peven_mask(a.v);
|
829
|
+
Packet positive_real_result;
|
830
|
+
// Compute result for inputs with positive real part.
|
831
|
+
positive_real_result.v = pselect(real_mask, rho.v, eta);
|
832
|
+
|
833
|
+
// Step 4. Compute solution for inputs with negative real part:
|
834
|
+
// [|eta0|, sign(y0)*rho0, |eta1|, sign(y1)*rho1]
|
835
|
+
const RealScalar neg_zero = RealScalar(numext::bit_cast<float>(0x80000000u));
|
836
|
+
const RealPacket cst_imag_sign_mask = pset1<Packet>(Scalar(RealScalar(0.0), neg_zero)).v;
|
837
|
+
RealPacket imag_signs = pand(a.v, cst_imag_sign_mask);
|
838
|
+
Packet negative_real_result;
|
839
|
+
// Notice that rho is positive, so taking it's absolute value is a noop.
|
840
|
+
negative_real_result.v = por(pabs(pcplxflip(positive_real_result).v), imag_signs);
|
841
|
+
|
842
|
+
// Step 5. Select solution branch based on the sign of the real parts.
|
843
|
+
Packet negative_real_mask;
|
844
|
+
negative_real_mask.v = pcmp_lt(pand(real_mask, a.v), pzero(a.v));
|
845
|
+
negative_real_mask.v = por(negative_real_mask.v, pcplxflip(negative_real_mask).v);
|
846
|
+
Packet result = pselect(negative_real_mask, negative_real_result, positive_real_result);
|
847
|
+
|
848
|
+
// Step 6. Handle special cases for infinities:
|
849
|
+
// * If z is (x,+∞), the result is (+∞,+∞) even if x is NaN
|
850
|
+
// * If z is (x,-∞), the result is (+∞,-∞) even if x is NaN
|
851
|
+
// * If z is (-∞,y), the result is (0*|y|,+∞) for finite or NaN y
|
852
|
+
// * If z is (+∞,y), the result is (+∞,0*|y|) for finite or NaN y
|
853
|
+
const RealPacket cst_pos_inf = pset1<RealPacket>(NumTraits<RealScalar>::infinity());
|
854
|
+
Packet is_inf;
|
855
|
+
is_inf.v = pcmp_eq(a_abs, cst_pos_inf);
|
856
|
+
Packet is_real_inf;
|
857
|
+
is_real_inf.v = pand(is_inf.v, real_mask);
|
858
|
+
is_real_inf = por(is_real_inf, pcplxflip(is_real_inf));
|
859
|
+
// prepare packet of (+∞,0*|y|) or (0*|y|,+∞), depending on the sign of the infinite real part.
|
860
|
+
Packet real_inf_result;
|
861
|
+
real_inf_result.v = pmul(a_abs, pset1<Packet>(Scalar(RealScalar(1.0), RealScalar(0.0))).v);
|
862
|
+
real_inf_result.v = pselect(negative_real_mask.v, pcplxflip(real_inf_result).v, real_inf_result.v);
|
863
|
+
// prepare packet of (+∞,+∞) or (+∞,-∞), depending on the sign of the infinite imaginary part.
|
864
|
+
Packet is_imag_inf;
|
865
|
+
is_imag_inf.v = pandnot(is_inf.v, real_mask);
|
866
|
+
is_imag_inf = por(is_imag_inf, pcplxflip(is_imag_inf));
|
867
|
+
Packet imag_inf_result;
|
868
|
+
imag_inf_result.v = por(pand(cst_pos_inf, real_mask), pandnot(a.v, real_mask));
|
869
|
+
|
870
|
+
return pselect(is_imag_inf, imag_inf_result,
|
871
|
+
pselect(is_real_inf, real_inf_result,result));
|
872
|
+
}
|
873
|
+
|
874
|
+
// TODO(rmlarsen): The following set of utilities for double word arithmetic
|
875
|
+
// should perhaps be refactored as a separate file, since it would be generally
|
876
|
+
// useful for special function implementation etc. Writing the algorithms in
|
877
|
+
// terms if a double word type would also make the code more readable.
|
878
|
+
|
879
|
+
// This function splits x into the nearest integer n and fractional part r,
|
880
|
+
// such that x = n + r holds exactly.
|
881
|
+
template<typename Packet>
|
882
|
+
EIGEN_STRONG_INLINE
|
883
|
+
void absolute_split(const Packet& x, Packet& n, Packet& r) {
|
884
|
+
n = pround(x);
|
885
|
+
r = psub(x, n);
|
886
|
+
}
|
887
|
+
|
888
|
+
// This function computes the sum {s, r}, such that x + y = s_hi + s_lo
|
889
|
+
// holds exactly, and s_hi = fl(x+y), if |x| >= |y|.
|
890
|
+
template<typename Packet>
|
891
|
+
EIGEN_STRONG_INLINE
|
892
|
+
void fast_twosum(const Packet& x, const Packet& y, Packet& s_hi, Packet& s_lo) {
|
893
|
+
s_hi = padd(x, y);
|
894
|
+
const Packet t = psub(s_hi, x);
|
895
|
+
s_lo = psub(y, t);
|
896
|
+
}
|
897
|
+
|
898
|
+
#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
|
899
|
+
// This function implements the extended precision product of
|
900
|
+
// a pair of floating point numbers. Given {x, y}, it computes the pair
|
901
|
+
// {p_hi, p_lo} such that x * y = p_hi + p_lo holds exactly and
|
902
|
+
// p_hi = fl(x * y).
|
903
|
+
template<typename Packet>
|
904
|
+
EIGEN_STRONG_INLINE
|
905
|
+
void twoprod(const Packet& x, const Packet& y,
|
906
|
+
Packet& p_hi, Packet& p_lo) {
|
907
|
+
p_hi = pmul(x, y);
|
908
|
+
p_lo = pmadd(x, y, pnegate(p_hi));
|
909
|
+
}
|
910
|
+
|
911
|
+
#else
|
912
|
+
|
913
|
+
// This function implements the Veltkamp splitting. Given a floating point
|
914
|
+
// number x it returns the pair {x_hi, x_lo} such that x_hi + x_lo = x holds
|
915
|
+
// exactly and that half of the significant of x fits in x_hi.
|
916
|
+
// This is Algorithm 3 from Jean-Michel Muller, "Elementary Functions",
|
917
|
+
// 3rd edition, Birkh\"auser, 2016.
|
918
|
+
template<typename Packet>
|
919
|
+
EIGEN_STRONG_INLINE
|
920
|
+
void veltkamp_splitting(const Packet& x, Packet& x_hi, Packet& x_lo) {
|
921
|
+
typedef typename unpacket_traits<Packet>::type Scalar;
|
922
|
+
EIGEN_CONSTEXPR int shift = (NumTraits<Scalar>::digits() + 1) / 2;
|
923
|
+
const Scalar shift_scale = Scalar(uint64_t(1) << shift); // Scalar constructor not necessarily constexpr.
|
924
|
+
const Packet gamma = pmul(pset1<Packet>(shift_scale + Scalar(1)), x);
|
925
|
+
Packet rho = psub(x, gamma);
|
926
|
+
x_hi = padd(rho, gamma);
|
927
|
+
x_lo = psub(x, x_hi);
|
928
|
+
}
|
929
|
+
|
930
|
+
// This function implements Dekker's algorithm for products x * y.
|
931
|
+
// Given floating point numbers {x, y} computes the pair
|
932
|
+
// {p_hi, p_lo} such that x * y = p_hi + p_lo holds exactly and
|
933
|
+
// p_hi = fl(x * y).
|
934
|
+
template<typename Packet>
|
935
|
+
EIGEN_STRONG_INLINE
|
936
|
+
void twoprod(const Packet& x, const Packet& y,
|
937
|
+
Packet& p_hi, Packet& p_lo) {
|
938
|
+
Packet x_hi, x_lo, y_hi, y_lo;
|
939
|
+
veltkamp_splitting(x, x_hi, x_lo);
|
940
|
+
veltkamp_splitting(y, y_hi, y_lo);
|
941
|
+
|
942
|
+
p_hi = pmul(x, y);
|
943
|
+
p_lo = pmadd(x_hi, y_hi, pnegate(p_hi));
|
944
|
+
p_lo = pmadd(x_hi, y_lo, p_lo);
|
945
|
+
p_lo = pmadd(x_lo, y_hi, p_lo);
|
946
|
+
p_lo = pmadd(x_lo, y_lo, p_lo);
|
947
|
+
}
|
948
|
+
|
949
|
+
#endif // EIGEN_HAS_SINGLE_INSTRUCTION_MADD
|
950
|
+
|
951
|
+
|
952
|
+
// This function implements Dekker's algorithm for the addition
|
953
|
+
// of two double word numbers represented by {x_hi, x_lo} and {y_hi, y_lo}.
|
954
|
+
// It returns the result as a pair {s_hi, s_lo} such that
|
955
|
+
// x_hi + x_lo + y_hi + y_lo = s_hi + s_lo holds exactly.
|
956
|
+
// This is Algorithm 5 from Jean-Michel Muller, "Elementary Functions",
|
957
|
+
// 3rd edition, Birkh\"auser, 2016.
|
958
|
+
template<typename Packet>
|
959
|
+
EIGEN_STRONG_INLINE
|
960
|
+
void twosum(const Packet& x_hi, const Packet& x_lo,
|
961
|
+
const Packet& y_hi, const Packet& y_lo,
|
962
|
+
Packet& s_hi, Packet& s_lo) {
|
963
|
+
const Packet x_greater_mask = pcmp_lt(pabs(y_hi), pabs(x_hi));
|
964
|
+
Packet r_hi_1, r_lo_1;
|
965
|
+
fast_twosum(x_hi, y_hi,r_hi_1, r_lo_1);
|
966
|
+
Packet r_hi_2, r_lo_2;
|
967
|
+
fast_twosum(y_hi, x_hi,r_hi_2, r_lo_2);
|
968
|
+
const Packet r_hi = pselect(x_greater_mask, r_hi_1, r_hi_2);
|
969
|
+
|
970
|
+
const Packet s1 = padd(padd(y_lo, r_lo_1), x_lo);
|
971
|
+
const Packet s2 = padd(padd(x_lo, r_lo_2), y_lo);
|
972
|
+
const Packet s = pselect(x_greater_mask, s1, s2);
|
973
|
+
|
974
|
+
fast_twosum(r_hi, s, s_hi, s_lo);
|
975
|
+
}
|
976
|
+
|
977
|
+
// This is a version of twosum for double word numbers,
|
978
|
+
// which assumes that |x_hi| >= |y_hi|.
|
979
|
+
template<typename Packet>
|
980
|
+
EIGEN_STRONG_INLINE
|
981
|
+
void fast_twosum(const Packet& x_hi, const Packet& x_lo,
|
982
|
+
const Packet& y_hi, const Packet& y_lo,
|
983
|
+
Packet& s_hi, Packet& s_lo) {
|
984
|
+
Packet r_hi, r_lo;
|
985
|
+
fast_twosum(x_hi, y_hi, r_hi, r_lo);
|
986
|
+
const Packet s = padd(padd(y_lo, r_lo), x_lo);
|
987
|
+
fast_twosum(r_hi, s, s_hi, s_lo);
|
988
|
+
}
|
989
|
+
|
990
|
+
// This is a version of twosum for adding a floating point number x to
|
991
|
+
// double word number {y_hi, y_lo} number, with the assumption
|
992
|
+
// that |x| >= |y_hi|.
|
993
|
+
template<typename Packet>
|
994
|
+
EIGEN_STRONG_INLINE
|
995
|
+
void fast_twosum(const Packet& x,
|
996
|
+
const Packet& y_hi, const Packet& y_lo,
|
997
|
+
Packet& s_hi, Packet& s_lo) {
|
998
|
+
Packet r_hi, r_lo;
|
999
|
+
fast_twosum(x, y_hi, r_hi, r_lo);
|
1000
|
+
const Packet s = padd(y_lo, r_lo);
|
1001
|
+
fast_twosum(r_hi, s, s_hi, s_lo);
|
1002
|
+
}
|
1003
|
+
|
1004
|
+
// This function implements the multiplication of a double word
|
1005
|
+
// number represented by {x_hi, x_lo} by a floating point number y.
|
1006
|
+
// It returns the result as a pair {p_hi, p_lo} such that
|
1007
|
+
// (x_hi + x_lo) * y = p_hi + p_lo hold with a relative error
|
1008
|
+
// of less than 2*2^{-2p}, where p is the number of significand bit
|
1009
|
+
// in the floating point type.
|
1010
|
+
// This is Algorithm 7 from Jean-Michel Muller, "Elementary Functions",
|
1011
|
+
// 3rd edition, Birkh\"auser, 2016.
|
1012
|
+
template<typename Packet>
|
1013
|
+
EIGEN_STRONG_INLINE
|
1014
|
+
void twoprod(const Packet& x_hi, const Packet& x_lo, const Packet& y,
|
1015
|
+
Packet& p_hi, Packet& p_lo) {
|
1016
|
+
Packet c_hi, c_lo1;
|
1017
|
+
twoprod(x_hi, y, c_hi, c_lo1);
|
1018
|
+
const Packet c_lo2 = pmul(x_lo, y);
|
1019
|
+
Packet t_hi, t_lo1;
|
1020
|
+
fast_twosum(c_hi, c_lo2, t_hi, t_lo1);
|
1021
|
+
const Packet t_lo2 = padd(t_lo1, c_lo1);
|
1022
|
+
fast_twosum(t_hi, t_lo2, p_hi, p_lo);
|
1023
|
+
}
|
1024
|
+
|
1025
|
+
// This function implements the multiplication of two double word
|
1026
|
+
// numbers represented by {x_hi, x_lo} and {y_hi, y_lo}.
|
1027
|
+
// It returns the result as a pair {p_hi, p_lo} such that
|
1028
|
+
// (x_hi + x_lo) * (y_hi + y_lo) = p_hi + p_lo holds with a relative error
|
1029
|
+
// of less than 2*2^{-2p}, where p is the number of significand bit
|
1030
|
+
// in the floating point type.
|
1031
|
+
template<typename Packet>
|
1032
|
+
EIGEN_STRONG_INLINE
|
1033
|
+
void twoprod(const Packet& x_hi, const Packet& x_lo,
|
1034
|
+
const Packet& y_hi, const Packet& y_lo,
|
1035
|
+
Packet& p_hi, Packet& p_lo) {
|
1036
|
+
Packet p_hi_hi, p_hi_lo;
|
1037
|
+
twoprod(x_hi, x_lo, y_hi, p_hi_hi, p_hi_lo);
|
1038
|
+
Packet p_lo_hi, p_lo_lo;
|
1039
|
+
twoprod(x_hi, x_lo, y_lo, p_lo_hi, p_lo_lo);
|
1040
|
+
fast_twosum(p_hi_hi, p_hi_lo, p_lo_hi, p_lo_lo, p_hi, p_lo);
|
1041
|
+
}
|
1042
|
+
|
1043
|
+
// This function computes the reciprocal of a floating point number
|
1044
|
+
// with extra precision and returns the result as a double word.
|
1045
|
+
template <typename Packet>
|
1046
|
+
void doubleword_reciprocal(const Packet& x, Packet& recip_hi, Packet& recip_lo) {
|
1047
|
+
typedef typename unpacket_traits<Packet>::type Scalar;
|
1048
|
+
// 1. Approximate the reciprocal as the reciprocal of the high order element.
|
1049
|
+
Packet approx_recip = prsqrt(x);
|
1050
|
+
approx_recip = pmul(approx_recip, approx_recip);
|
1051
|
+
|
1052
|
+
// 2. Run one step of Newton-Raphson iteration in double word arithmetic
|
1053
|
+
// to get the bottom half. The NR iteration for reciprocal of 'a' is
|
1054
|
+
// x_{i+1} = x_i * (2 - a * x_i)
|
1055
|
+
|
1056
|
+
// -a*x_i
|
1057
|
+
Packet t1_hi, t1_lo;
|
1058
|
+
twoprod(pnegate(x), approx_recip, t1_hi, t1_lo);
|
1059
|
+
// 2 - a*x_i
|
1060
|
+
Packet t2_hi, t2_lo;
|
1061
|
+
fast_twosum(pset1<Packet>(Scalar(2)), t1_hi, t2_hi, t2_lo);
|
1062
|
+
Packet t3_hi, t3_lo;
|
1063
|
+
fast_twosum(t2_hi, padd(t2_lo, t1_lo), t3_hi, t3_lo);
|
1064
|
+
// x_i * (2 - a * x_i)
|
1065
|
+
twoprod(t3_hi, t3_lo, approx_recip, recip_hi, recip_lo);
|
1066
|
+
}
|
1067
|
+
|
1068
|
+
|
1069
|
+
// This function computes log2(x) and returns the result as a double word.
|
1070
|
+
template <typename Scalar>
|
1071
|
+
struct accurate_log2 {
|
1072
|
+
template <typename Packet>
|
1073
|
+
EIGEN_STRONG_INLINE
|
1074
|
+
void operator()(const Packet& x, Packet& log2_x_hi, Packet& log2_x_lo) {
|
1075
|
+
log2_x_hi = plog2(x);
|
1076
|
+
log2_x_lo = pzero(x);
|
1077
|
+
}
|
1078
|
+
};
|
1079
|
+
|
1080
|
+
// This specialization uses a more accurate algorithm to compute log2(x) for
|
1081
|
+
// floats in [1/sqrt(2);sqrt(2)] with a relative accuracy of ~6.42e-10.
|
1082
|
+
// This additional accuracy is needed to counter the error-magnification
|
1083
|
+
// inherent in multiplying by a potentially large exponent in pow(x,y).
|
1084
|
+
// The minimax polynomial used was calculated using the Sollya tool.
|
1085
|
+
// See sollya.org.
|
1086
|
+
template <>
|
1087
|
+
struct accurate_log2<float> {
|
1088
|
+
template <typename Packet>
|
1089
|
+
EIGEN_STRONG_INLINE
|
1090
|
+
void operator()(const Packet& z, Packet& log2_x_hi, Packet& log2_x_lo) {
|
1091
|
+
// The function log(1+x)/x is approximated in the interval
|
1092
|
+
// [1/sqrt(2)-1;sqrt(2)-1] by a degree 10 polynomial of the form
|
1093
|
+
// Q(x) = (C0 + x * (C1 + x * (C2 + x * (C3 + x * P(x))))),
|
1094
|
+
// where the degree 6 polynomial P(x) is evaluated in single precision,
|
1095
|
+
// while the remaining 4 terms of Q(x), as well as the final multiplication by x
|
1096
|
+
// to reconstruct log(1+x) are evaluated in extra precision using
|
1097
|
+
// double word arithmetic. C0 through C3 are extra precise constants
|
1098
|
+
// stored as double words.
|
1099
|
+
//
|
1100
|
+
// The polynomial coefficients were calculated using Sollya commands:
|
1101
|
+
// > n = 10;
|
1102
|
+
// > f = log2(1+x)/x;
|
1103
|
+
// > interval = [sqrt(0.5)-1;sqrt(2)-1];
|
1104
|
+
// > p = fpminimax(f,n,[|double,double,double,double,single...|],interval,relative,floating);
|
1105
|
+
|
1106
|
+
const Packet p6 = pset1<Packet>( 9.703654795885e-2f);
|
1107
|
+
const Packet p5 = pset1<Packet>(-0.1690667718648f);
|
1108
|
+
const Packet p4 = pset1<Packet>( 0.1720575392246f);
|
1109
|
+
const Packet p3 = pset1<Packet>(-0.1789081543684f);
|
1110
|
+
const Packet p2 = pset1<Packet>( 0.2050433009862f);
|
1111
|
+
const Packet p1 = pset1<Packet>(-0.2404672354459f);
|
1112
|
+
const Packet p0 = pset1<Packet>( 0.2885761857032f);
|
1113
|
+
|
1114
|
+
const Packet C3_hi = pset1<Packet>(-0.360674142838f);
|
1115
|
+
const Packet C3_lo = pset1<Packet>(-6.13283912543e-09f);
|
1116
|
+
const Packet C2_hi = pset1<Packet>(0.480897903442f);
|
1117
|
+
const Packet C2_lo = pset1<Packet>(-1.44861207474e-08f);
|
1118
|
+
const Packet C1_hi = pset1<Packet>(-0.721347510815f);
|
1119
|
+
const Packet C1_lo = pset1<Packet>(-4.84483164698e-09f);
|
1120
|
+
const Packet C0_hi = pset1<Packet>(1.44269502163f);
|
1121
|
+
const Packet C0_lo = pset1<Packet>(2.01711713999e-08f);
|
1122
|
+
const Packet one = pset1<Packet>(1.0f);
|
1123
|
+
|
1124
|
+
const Packet x = psub(z, one);
|
1125
|
+
// Evaluate P(x) in working precision.
|
1126
|
+
// We evaluate it in multiple parts to improve instruction level
|
1127
|
+
// parallelism.
|
1128
|
+
Packet x2 = pmul(x,x);
|
1129
|
+
Packet p_even = pmadd(p6, x2, p4);
|
1130
|
+
p_even = pmadd(p_even, x2, p2);
|
1131
|
+
p_even = pmadd(p_even, x2, p0);
|
1132
|
+
Packet p_odd = pmadd(p5, x2, p3);
|
1133
|
+
p_odd = pmadd(p_odd, x2, p1);
|
1134
|
+
Packet p = pmadd(p_odd, x, p_even);
|
1135
|
+
|
1136
|
+
// Now evaluate the low-order tems of Q(x) in double word precision.
|
1137
|
+
// In the following, due to the alternating signs and the fact that
|
1138
|
+
// |x| < sqrt(2)-1, we can assume that |C*_hi| >= q_i, and use
|
1139
|
+
// fast_twosum instead of the slower twosum.
|
1140
|
+
Packet q_hi, q_lo;
|
1141
|
+
Packet t_hi, t_lo;
|
1142
|
+
// C3 + x * p(x)
|
1143
|
+
twoprod(p, x, t_hi, t_lo);
|
1144
|
+
fast_twosum(C3_hi, C3_lo, t_hi, t_lo, q_hi, q_lo);
|
1145
|
+
// C2 + x * p(x)
|
1146
|
+
twoprod(q_hi, q_lo, x, t_hi, t_lo);
|
1147
|
+
fast_twosum(C2_hi, C2_lo, t_hi, t_lo, q_hi, q_lo);
|
1148
|
+
// C1 + x * p(x)
|
1149
|
+
twoprod(q_hi, q_lo, x, t_hi, t_lo);
|
1150
|
+
fast_twosum(C1_hi, C1_lo, t_hi, t_lo, q_hi, q_lo);
|
1151
|
+
// C0 + x * p(x)
|
1152
|
+
twoprod(q_hi, q_lo, x, t_hi, t_lo);
|
1153
|
+
fast_twosum(C0_hi, C0_lo, t_hi, t_lo, q_hi, q_lo);
|
1154
|
+
|
1155
|
+
// log(z) ~= x * Q(x)
|
1156
|
+
twoprod(q_hi, q_lo, x, log2_x_hi, log2_x_lo);
|
1157
|
+
}
|
1158
|
+
};
|
1159
|
+
|
1160
|
+
// This specialization uses a more accurate algorithm to compute log2(x) for
|
1161
|
+
// floats in [1/sqrt(2);sqrt(2)] with a relative accuracy of ~1.27e-18.
|
1162
|
+
// This additional accuracy is needed to counter the error-magnification
|
1163
|
+
// inherent in multiplying by a potentially large exponent in pow(x,y).
|
1164
|
+
// The minimax polynomial used was calculated using the Sollya tool.
|
1165
|
+
// See sollya.org.
|
1166
|
+
|
1167
|
+
template <>
|
1168
|
+
struct accurate_log2<double> {
|
1169
|
+
template <typename Packet>
|
1170
|
+
EIGEN_STRONG_INLINE
|
1171
|
+
void operator()(const Packet& x, Packet& log2_x_hi, Packet& log2_x_lo) {
|
1172
|
+
// We use a transformation of variables:
|
1173
|
+
// r = c * (x-1) / (x+1),
|
1174
|
+
// such that
|
1175
|
+
// log2(x) = log2((1 + r/c) / (1 - r/c)) = f(r).
|
1176
|
+
// The function f(r) can be approximated well using an odd polynomial
|
1177
|
+
// of the form
|
1178
|
+
// P(r) = ((Q(r^2) * r^2 + C) * r^2 + 1) * r,
|
1179
|
+
// For the implementation of log2<double> here, Q is of degree 6 with
|
1180
|
+
// coefficient represented in working precision (double), while C is a
|
1181
|
+
// constant represented in extra precision as a double word to achieve
|
1182
|
+
// full accuracy.
|
1183
|
+
//
|
1184
|
+
// The polynomial coefficients were computed by the Sollya script:
|
1185
|
+
//
|
1186
|
+
// c = 2 / log(2);
|
1187
|
+
// trans = c * (x-1)/(x+1);
|
1188
|
+
// itrans = (1+x/c)/(1-x/c);
|
1189
|
+
// interval=[trans(sqrt(0.5)); trans(sqrt(2))];
|
1190
|
+
// print(interval);
|
1191
|
+
// f = log2(itrans(x));
|
1192
|
+
// p=fpminimax(f,[|1,3,5,7,9,11,13,15,17|],[|1,DD,double...|],interval,relative,floating);
|
1193
|
+
const Packet q12 = pset1<Packet>(2.87074255468000586e-9);
|
1194
|
+
const Packet q10 = pset1<Packet>(2.38957980901884082e-8);
|
1195
|
+
const Packet q8 = pset1<Packet>(2.31032094540014656e-7);
|
1196
|
+
const Packet q6 = pset1<Packet>(2.27279857398537278e-6);
|
1197
|
+
const Packet q4 = pset1<Packet>(2.31271023278625638e-5);
|
1198
|
+
const Packet q2 = pset1<Packet>(2.47556738444535513e-4);
|
1199
|
+
const Packet q0 = pset1<Packet>(2.88543873228900172e-3);
|
1200
|
+
const Packet C_hi = pset1<Packet>(0.0400377511598501157);
|
1201
|
+
const Packet C_lo = pset1<Packet>(-4.77726582251425391e-19);
|
1202
|
+
const Packet one = pset1<Packet>(1.0);
|
1203
|
+
|
1204
|
+
const Packet cst_2_log2e_hi = pset1<Packet>(2.88539008177792677);
|
1205
|
+
const Packet cst_2_log2e_lo = pset1<Packet>(4.07660016854549667e-17);
|
1206
|
+
// c * (x - 1)
|
1207
|
+
Packet num_hi, num_lo;
|
1208
|
+
twoprod(cst_2_log2e_hi, cst_2_log2e_lo, psub(x, one), num_hi, num_lo);
|
1209
|
+
// TODO(rmlarsen): Investigate if using the division algorithm by
|
1210
|
+
// Muller et al. is faster/more accurate.
|
1211
|
+
// 1 / (x + 1)
|
1212
|
+
Packet denom_hi, denom_lo;
|
1213
|
+
doubleword_reciprocal(padd(x, one), denom_hi, denom_lo);
|
1214
|
+
// r = c * (x-1) / (x+1),
|
1215
|
+
Packet r_hi, r_lo;
|
1216
|
+
twoprod(num_hi, num_lo, denom_hi, denom_lo, r_hi, r_lo);
|
1217
|
+
// r2 = r * r
|
1218
|
+
Packet r2_hi, r2_lo;
|
1219
|
+
twoprod(r_hi, r_lo, r_hi, r_lo, r2_hi, r2_lo);
|
1220
|
+
// r4 = r2 * r2
|
1221
|
+
Packet r4_hi, r4_lo;
|
1222
|
+
twoprod(r2_hi, r2_lo, r2_hi, r2_lo, r4_hi, r4_lo);
|
1223
|
+
|
1224
|
+
// Evaluate Q(r^2) in working precision. We evaluate it in two parts
|
1225
|
+
// (even and odd in r^2) to improve instruction level parallelism.
|
1226
|
+
Packet q_even = pmadd(q12, r4_hi, q8);
|
1227
|
+
Packet q_odd = pmadd(q10, r4_hi, q6);
|
1228
|
+
q_even = pmadd(q_even, r4_hi, q4);
|
1229
|
+
q_odd = pmadd(q_odd, r4_hi, q2);
|
1230
|
+
q_even = pmadd(q_even, r4_hi, q0);
|
1231
|
+
Packet q = pmadd(q_odd, r2_hi, q_even);
|
1232
|
+
|
1233
|
+
// Now evaluate the low order terms of P(x) in double word precision.
|
1234
|
+
// In the following, due to the increasing magnitude of the coefficients
|
1235
|
+
// and r being constrained to [-0.5, 0.5] we can use fast_twosum instead
|
1236
|
+
// of the slower twosum.
|
1237
|
+
// Q(r^2) * r^2
|
1238
|
+
Packet p_hi, p_lo;
|
1239
|
+
twoprod(r2_hi, r2_lo, q, p_hi, p_lo);
|
1240
|
+
// Q(r^2) * r^2 + C
|
1241
|
+
Packet p1_hi, p1_lo;
|
1242
|
+
fast_twosum(C_hi, C_lo, p_hi, p_lo, p1_hi, p1_lo);
|
1243
|
+
// (Q(r^2) * r^2 + C) * r^2
|
1244
|
+
Packet p2_hi, p2_lo;
|
1245
|
+
twoprod(r2_hi, r2_lo, p1_hi, p1_lo, p2_hi, p2_lo);
|
1246
|
+
// ((Q(r^2) * r^2 + C) * r^2 + 1)
|
1247
|
+
Packet p3_hi, p3_lo;
|
1248
|
+
fast_twosum(one, p2_hi, p2_lo, p3_hi, p3_lo);
|
1249
|
+
|
1250
|
+
// log(z) ~= ((Q(r^2) * r^2 + C) * r^2 + 1) * r
|
1251
|
+
twoprod(p3_hi, p3_lo, r_hi, r_lo, log2_x_hi, log2_x_lo);
|
1252
|
+
}
|
1253
|
+
};
|
1254
|
+
|
1255
|
+
// This function computes exp2(x) (i.e. 2**x).
|
1256
|
+
template <typename Scalar>
|
1257
|
+
struct fast_accurate_exp2 {
|
1258
|
+
template <typename Packet>
|
1259
|
+
EIGEN_STRONG_INLINE
|
1260
|
+
Packet operator()(const Packet& x) {
|
1261
|
+
// TODO(rmlarsen): Add a pexp2 packetop.
|
1262
|
+
return pexp(pmul(pset1<Packet>(Scalar(EIGEN_LN2)), x));
|
1263
|
+
}
|
1264
|
+
};
|
1265
|
+
|
1266
|
+
// This specialization uses a faster algorithm to compute exp2(x) for floats
|
1267
|
+
// in [-0.5;0.5] with a relative accuracy of 1 ulp.
|
1268
|
+
// The minimax polynomial used was calculated using the Sollya tool.
|
1269
|
+
// See sollya.org.
|
1270
|
+
template <>
|
1271
|
+
struct fast_accurate_exp2<float> {
|
1272
|
+
template <typename Packet>
|
1273
|
+
EIGEN_STRONG_INLINE
|
1274
|
+
Packet operator()(const Packet& x) {
|
1275
|
+
// This function approximates exp2(x) by a degree 6 polynomial of the form
|
1276
|
+
// Q(x) = 1 + x * (C + x * P(x)), where the degree 4 polynomial P(x) is evaluated in
|
1277
|
+
// single precision, and the remaining steps are evaluated with extra precision using
|
1278
|
+
// double word arithmetic. C is an extra precise constant stored as a double word.
|
1279
|
+
//
|
1280
|
+
// The polynomial coefficients were calculated using Sollya commands:
|
1281
|
+
// > n = 6;
|
1282
|
+
// > f = 2^x;
|
1283
|
+
// > interval = [-0.5;0.5];
|
1284
|
+
// > p = fpminimax(f,n,[|1,double,single...|],interval,relative,floating);
|
1285
|
+
|
1286
|
+
const Packet p4 = pset1<Packet>(1.539513905e-4f);
|
1287
|
+
const Packet p3 = pset1<Packet>(1.340007293e-3f);
|
1288
|
+
const Packet p2 = pset1<Packet>(9.618283249e-3f);
|
1289
|
+
const Packet p1 = pset1<Packet>(5.550328270e-2f);
|
1290
|
+
const Packet p0 = pset1<Packet>(0.2402264923f);
|
1291
|
+
|
1292
|
+
const Packet C_hi = pset1<Packet>(0.6931471825f);
|
1293
|
+
const Packet C_lo = pset1<Packet>(2.36836577e-08f);
|
1294
|
+
const Packet one = pset1<Packet>(1.0f);
|
1295
|
+
|
1296
|
+
// Evaluate P(x) in working precision.
|
1297
|
+
// We evaluate even and odd parts of the polynomial separately
|
1298
|
+
// to gain some instruction level parallelism.
|
1299
|
+
Packet x2 = pmul(x,x);
|
1300
|
+
Packet p_even = pmadd(p4, x2, p2);
|
1301
|
+
Packet p_odd = pmadd(p3, x2, p1);
|
1302
|
+
p_even = pmadd(p_even, x2, p0);
|
1303
|
+
Packet p = pmadd(p_odd, x, p_even);
|
1304
|
+
|
1305
|
+
// Evaluate the remaining terms of Q(x) with extra precision using
|
1306
|
+
// double word arithmetic.
|
1307
|
+
Packet p_hi, p_lo;
|
1308
|
+
// x * p(x)
|
1309
|
+
twoprod(p, x, p_hi, p_lo);
|
1310
|
+
// C + x * p(x)
|
1311
|
+
Packet q1_hi, q1_lo;
|
1312
|
+
twosum(p_hi, p_lo, C_hi, C_lo, q1_hi, q1_lo);
|
1313
|
+
// x * (C + x * p(x))
|
1314
|
+
Packet q2_hi, q2_lo;
|
1315
|
+
twoprod(q1_hi, q1_lo, x, q2_hi, q2_lo);
|
1316
|
+
// 1 + x * (C + x * p(x))
|
1317
|
+
Packet q3_hi, q3_lo;
|
1318
|
+
// Since |q2_hi| <= sqrt(2)-1 < 1, we can use fast_twosum
|
1319
|
+
// for adding it to unity here.
|
1320
|
+
fast_twosum(one, q2_hi, q3_hi, q3_lo);
|
1321
|
+
return padd(q3_hi, padd(q2_lo, q3_lo));
|
1322
|
+
}
|
1323
|
+
};
|
1324
|
+
|
1325
|
+
// in [-0.5;0.5] with a relative accuracy of 1 ulp.
|
1326
|
+
// The minimax polynomial used was calculated using the Sollya tool.
|
1327
|
+
// See sollya.org.
|
1328
|
+
template <>
|
1329
|
+
struct fast_accurate_exp2<double> {
|
1330
|
+
template <typename Packet>
|
1331
|
+
EIGEN_STRONG_INLINE
|
1332
|
+
Packet operator()(const Packet& x) {
|
1333
|
+
// This function approximates exp2(x) by a degree 10 polynomial of the form
|
1334
|
+
// Q(x) = 1 + x * (C + x * P(x)), where the degree 8 polynomial P(x) is evaluated in
|
1335
|
+
// single precision, and the remaining steps are evaluated with extra precision using
|
1336
|
+
// double word arithmetic. C is an extra precise constant stored as a double word.
|
1337
|
+
//
|
1338
|
+
// The polynomial coefficients were calculated using Sollya commands:
|
1339
|
+
// > n = 11;
|
1340
|
+
// > f = 2^x;
|
1341
|
+
// > interval = [-0.5;0.5];
|
1342
|
+
// > p = fpminimax(f,n,[|1,DD,double...|],interval,relative,floating);
|
1343
|
+
|
1344
|
+
const Packet p9 = pset1<Packet>(4.431642109085495276e-10);
|
1345
|
+
const Packet p8 = pset1<Packet>(7.073829923303358410e-9);
|
1346
|
+
const Packet p7 = pset1<Packet>(1.017822306737031311e-7);
|
1347
|
+
const Packet p6 = pset1<Packet>(1.321543498017646657e-6);
|
1348
|
+
const Packet p5 = pset1<Packet>(1.525273342728892877e-5);
|
1349
|
+
const Packet p4 = pset1<Packet>(1.540353045780084423e-4);
|
1350
|
+
const Packet p3 = pset1<Packet>(1.333355814685869807e-3);
|
1351
|
+
const Packet p2 = pset1<Packet>(9.618129107593478832e-3);
|
1352
|
+
const Packet p1 = pset1<Packet>(5.550410866481961247e-2);
|
1353
|
+
const Packet p0 = pset1<Packet>(0.240226506959101332);
|
1354
|
+
const Packet C_hi = pset1<Packet>(0.693147180559945286);
|
1355
|
+
const Packet C_lo = pset1<Packet>(4.81927865669806721e-17);
|
1356
|
+
const Packet one = pset1<Packet>(1.0);
|
1357
|
+
|
1358
|
+
// Evaluate P(x) in working precision.
|
1359
|
+
// We evaluate even and odd parts of the polynomial separately
|
1360
|
+
// to gain some instruction level parallelism.
|
1361
|
+
Packet x2 = pmul(x,x);
|
1362
|
+
Packet p_even = pmadd(p8, x2, p6);
|
1363
|
+
Packet p_odd = pmadd(p9, x2, p7);
|
1364
|
+
p_even = pmadd(p_even, x2, p4);
|
1365
|
+
p_odd = pmadd(p_odd, x2, p5);
|
1366
|
+
p_even = pmadd(p_even, x2, p2);
|
1367
|
+
p_odd = pmadd(p_odd, x2, p3);
|
1368
|
+
p_even = pmadd(p_even, x2, p0);
|
1369
|
+
p_odd = pmadd(p_odd, x2, p1);
|
1370
|
+
Packet p = pmadd(p_odd, x, p_even);
|
1371
|
+
|
1372
|
+
// Evaluate the remaining terms of Q(x) with extra precision using
|
1373
|
+
// double word arithmetic.
|
1374
|
+
Packet p_hi, p_lo;
|
1375
|
+
// x * p(x)
|
1376
|
+
twoprod(p, x, p_hi, p_lo);
|
1377
|
+
// C + x * p(x)
|
1378
|
+
Packet q1_hi, q1_lo;
|
1379
|
+
twosum(p_hi, p_lo, C_hi, C_lo, q1_hi, q1_lo);
|
1380
|
+
// x * (C + x * p(x))
|
1381
|
+
Packet q2_hi, q2_lo;
|
1382
|
+
twoprod(q1_hi, q1_lo, x, q2_hi, q2_lo);
|
1383
|
+
// 1 + x * (C + x * p(x))
|
1384
|
+
Packet q3_hi, q3_lo;
|
1385
|
+
// Since |q2_hi| <= sqrt(2)-1 < 1, we can use fast_twosum
|
1386
|
+
// for adding it to unity here.
|
1387
|
+
fast_twosum(one, q2_hi, q3_hi, q3_lo);
|
1388
|
+
return padd(q3_hi, padd(q2_lo, q3_lo));
|
1389
|
+
}
|
1390
|
+
};
|
1391
|
+
|
1392
|
+
// This function implements the non-trivial case of pow(x,y) where x is
|
1393
|
+
// positive and y is (possibly) non-integer.
|
1394
|
+
// Formally, pow(x,y) = exp2(y * log2(x)), where exp2(x) is shorthand for 2^x.
|
1395
|
+
// TODO(rmlarsen): We should probably add this as a packet up 'ppow', to make it
|
1396
|
+
// easier to specialize or turn off for specific types and/or backends.x
|
1397
|
+
template <typename Packet>
|
1398
|
+
EIGEN_STRONG_INLINE Packet generic_pow_impl(const Packet& x, const Packet& y) {
|
1399
|
+
typedef typename unpacket_traits<Packet>::type Scalar;
|
1400
|
+
// Split x into exponent e_x and mantissa m_x.
|
1401
|
+
Packet e_x;
|
1402
|
+
Packet m_x = pfrexp(x, e_x);
|
1403
|
+
|
1404
|
+
// Adjust m_x to lie in [1/sqrt(2):sqrt(2)] to minimize absolute error in log2(m_x).
|
1405
|
+
EIGEN_CONSTEXPR Scalar sqrt_half = Scalar(0.70710678118654752440);
|
1406
|
+
const Packet m_x_scale_mask = pcmp_lt(m_x, pset1<Packet>(sqrt_half));
|
1407
|
+
m_x = pselect(m_x_scale_mask, pmul(pset1<Packet>(Scalar(2)), m_x), m_x);
|
1408
|
+
e_x = pselect(m_x_scale_mask, psub(e_x, pset1<Packet>(Scalar(1))), e_x);
|
1409
|
+
|
1410
|
+
// Compute log2(m_x) with 6 extra bits of accuracy.
|
1411
|
+
Packet rx_hi, rx_lo;
|
1412
|
+
accurate_log2<Scalar>()(m_x, rx_hi, rx_lo);
|
1413
|
+
|
1414
|
+
// Compute the two terms {y * e_x, y * r_x} in f = y * log2(x) with doubled
|
1415
|
+
// precision using double word arithmetic.
|
1416
|
+
Packet f1_hi, f1_lo, f2_hi, f2_lo;
|
1417
|
+
twoprod(e_x, y, f1_hi, f1_lo);
|
1418
|
+
twoprod(rx_hi, rx_lo, y, f2_hi, f2_lo);
|
1419
|
+
// Sum the two terms in f using double word arithmetic. We know
|
1420
|
+
// that |e_x| > |log2(m_x)|, except for the case where e_x==0.
|
1421
|
+
// This means that we can use fast_twosum(f1,f2).
|
1422
|
+
// In the case e_x == 0, e_x * y = f1 = 0, so we don't lose any
|
1423
|
+
// accuracy by violating the assumption of fast_twosum, because
|
1424
|
+
// it's a no-op.
|
1425
|
+
Packet f_hi, f_lo;
|
1426
|
+
fast_twosum(f1_hi, f1_lo, f2_hi, f2_lo, f_hi, f_lo);
|
1427
|
+
|
1428
|
+
// Split f into integer and fractional parts.
|
1429
|
+
Packet n_z, r_z;
|
1430
|
+
absolute_split(f_hi, n_z, r_z);
|
1431
|
+
r_z = padd(r_z, f_lo);
|
1432
|
+
Packet n_r;
|
1433
|
+
absolute_split(r_z, n_r, r_z);
|
1434
|
+
n_z = padd(n_z, n_r);
|
1435
|
+
|
1436
|
+
// We now have an accurate split of f = n_z + r_z and can compute
|
1437
|
+
// x^y = 2**{n_z + r_z) = exp2(r_z) * 2**{n_z}.
|
1438
|
+
// Since r_z is in [-0.5;0.5], we compute the first factor to high accuracy
|
1439
|
+
// using a specialized algorithm. Multiplication by the second factor can
|
1440
|
+
// be done exactly using pldexp(), since it is an integer power of 2.
|
1441
|
+
const Packet e_r = fast_accurate_exp2<Scalar>()(r_z);
|
1442
|
+
return pldexp(e_r, n_z);
|
1443
|
+
}
|
1444
|
+
|
1445
|
+
// Generic implementation of pow(x,y).
|
1446
|
+
template<typename Packet>
|
1447
|
+
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
1448
|
+
EIGEN_UNUSED
|
1449
|
+
Packet generic_pow(const Packet& x, const Packet& y) {
|
1450
|
+
typedef typename unpacket_traits<Packet>::type Scalar;
|
1451
|
+
|
1452
|
+
const Packet cst_pos_inf = pset1<Packet>(NumTraits<Scalar>::infinity());
|
1453
|
+
const Packet cst_zero = pset1<Packet>(Scalar(0));
|
1454
|
+
const Packet cst_one = pset1<Packet>(Scalar(1));
|
1455
|
+
const Packet cst_nan = pset1<Packet>(NumTraits<Scalar>::quiet_NaN());
|
1456
|
+
|
1457
|
+
const Packet abs_x = pabs(x);
|
1458
|
+
// Predicates for sign and magnitude of x.
|
1459
|
+
const Packet x_is_zero = pcmp_eq(x, cst_zero);
|
1460
|
+
const Packet x_is_neg = pcmp_lt(x, cst_zero);
|
1461
|
+
const Packet abs_x_is_inf = pcmp_eq(abs_x, cst_pos_inf);
|
1462
|
+
const Packet abs_x_is_one = pcmp_eq(abs_x, cst_one);
|
1463
|
+
const Packet abs_x_is_gt_one = pcmp_lt(cst_one, abs_x);
|
1464
|
+
const Packet abs_x_is_lt_one = pcmp_lt(abs_x, cst_one);
|
1465
|
+
const Packet x_is_one = pandnot(abs_x_is_one, x_is_neg);
|
1466
|
+
const Packet x_is_neg_one = pand(abs_x_is_one, x_is_neg);
|
1467
|
+
const Packet x_is_nan = pandnot(ptrue(x), pcmp_eq(x, x));
|
1468
|
+
|
1469
|
+
// Predicates for sign and magnitude of y.
|
1470
|
+
const Packet y_is_one = pcmp_eq(y, cst_one);
|
1471
|
+
const Packet y_is_zero = pcmp_eq(y, cst_zero);
|
1472
|
+
const Packet y_is_neg = pcmp_lt(y, cst_zero);
|
1473
|
+
const Packet y_is_pos = pandnot(ptrue(y), por(y_is_zero, y_is_neg));
|
1474
|
+
const Packet y_is_nan = pandnot(ptrue(y), pcmp_eq(y, y));
|
1475
|
+
const Packet abs_y_is_inf = pcmp_eq(pabs(y), cst_pos_inf);
|
1476
|
+
EIGEN_CONSTEXPR Scalar huge_exponent =
|
1477
|
+
(NumTraits<Scalar>::max_exponent() * Scalar(EIGEN_LN2)) /
|
1478
|
+
NumTraits<Scalar>::epsilon();
|
1479
|
+
const Packet abs_y_is_huge = pcmp_le(pset1<Packet>(huge_exponent), pabs(y));
|
1480
|
+
|
1481
|
+
// Predicates for whether y is integer and/or even.
|
1482
|
+
const Packet y_is_int = pcmp_eq(pfloor(y), y);
|
1483
|
+
const Packet y_div_2 = pmul(y, pset1<Packet>(Scalar(0.5)));
|
1484
|
+
const Packet y_is_even = pcmp_eq(pround(y_div_2), y_div_2);
|
1485
|
+
|
1486
|
+
// Predicates encoding special cases for the value of pow(x,y)
|
1487
|
+
const Packet invalid_negative_x = pandnot(pandnot(pandnot(x_is_neg, abs_x_is_inf),
|
1488
|
+
y_is_int),
|
1489
|
+
abs_y_is_inf);
|
1490
|
+
const Packet pow_is_one = por(por(x_is_one, y_is_zero),
|
1491
|
+
pand(x_is_neg_one,
|
1492
|
+
por(abs_y_is_inf, pandnot(y_is_even, invalid_negative_x))));
|
1493
|
+
const Packet pow_is_nan = por(invalid_negative_x, por(x_is_nan, y_is_nan));
|
1494
|
+
const Packet pow_is_zero = por(por(por(pand(x_is_zero, y_is_pos),
|
1495
|
+
pand(abs_x_is_inf, y_is_neg)),
|
1496
|
+
pand(pand(abs_x_is_lt_one, abs_y_is_huge),
|
1497
|
+
y_is_pos)),
|
1498
|
+
pand(pand(abs_x_is_gt_one, abs_y_is_huge),
|
1499
|
+
y_is_neg));
|
1500
|
+
const Packet pow_is_inf = por(por(por(pand(x_is_zero, y_is_neg),
|
1501
|
+
pand(abs_x_is_inf, y_is_pos)),
|
1502
|
+
pand(pand(abs_x_is_lt_one, abs_y_is_huge),
|
1503
|
+
y_is_neg)),
|
1504
|
+
pand(pand(abs_x_is_gt_one, abs_y_is_huge),
|
1505
|
+
y_is_pos));
|
1506
|
+
|
1507
|
+
// General computation of pow(x,y) for positive x or negative x and integer y.
|
1508
|
+
const Packet negate_pow_abs = pandnot(x_is_neg, y_is_even);
|
1509
|
+
const Packet pow_abs = generic_pow_impl(abs_x, y);
|
1510
|
+
return pselect(y_is_one, x,
|
1511
|
+
pselect(pow_is_one, cst_one,
|
1512
|
+
pselect(pow_is_nan, cst_nan,
|
1513
|
+
pselect(pow_is_inf, cst_pos_inf,
|
1514
|
+
pselect(pow_is_zero, cst_zero,
|
1515
|
+
pselect(negate_pow_abs, pnegate(pow_abs), pow_abs))))));
|
1516
|
+
}
|
1517
|
+
|
1518
|
+
|
1519
|
+
|
1520
|
+
/* polevl (modified for Eigen)
|
1521
|
+
*
|
1522
|
+
* Evaluate polynomial
|
1523
|
+
*
|
1524
|
+
*
|
1525
|
+
*
|
1526
|
+
* SYNOPSIS:
|
1527
|
+
*
|
1528
|
+
* int N;
|
1529
|
+
* Scalar x, y, coef[N+1];
|
1530
|
+
*
|
1531
|
+
* y = polevl<decltype(x), N>( x, coef);
|
1532
|
+
*
|
1533
|
+
*
|
1534
|
+
*
|
1535
|
+
* DESCRIPTION:
|
1536
|
+
*
|
1537
|
+
* Evaluates polynomial of degree N:
|
1538
|
+
*
|
1539
|
+
* 2 N
|
1540
|
+
* y = C + C x + C x +...+ C x
|
1541
|
+
* 0 1 2 N
|
1542
|
+
*
|
1543
|
+
* Coefficients are stored in reverse order:
|
1544
|
+
*
|
1545
|
+
* coef[0] = C , ..., coef[N] = C .
|
1546
|
+
* N 0
|
1547
|
+
*
|
1548
|
+
* The function p1evl() assumes that coef[N] = 1.0 and is
|
1549
|
+
* omitted from the array. Its calling arguments are
|
1550
|
+
* otherwise the same as polevl().
|
1551
|
+
*
|
1552
|
+
*
|
1553
|
+
* The Eigen implementation is templatized. For best speed, store
|
1554
|
+
* coef as a const array (constexpr), e.g.
|
1555
|
+
*
|
1556
|
+
* const double coef[] = {1.0, 2.0, 3.0, ...};
|
1557
|
+
*
|
1558
|
+
*/
|
1559
|
+
template <typename Packet, int N>
|
1560
|
+
struct ppolevl {
|
1561
|
+
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& x, const typename unpacket_traits<Packet>::type coeff[]) {
|
1562
|
+
EIGEN_STATIC_ASSERT((N > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
|
1563
|
+
return pmadd(ppolevl<Packet, N-1>::run(x, coeff), x, pset1<Packet>(coeff[N]));
|
1564
|
+
}
|
1565
|
+
};
|
1566
|
+
|
1567
|
+
template <typename Packet>
|
1568
|
+
struct ppolevl<Packet, 0> {
|
1569
|
+
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& x, const typename unpacket_traits<Packet>::type coeff[]) {
|
1570
|
+
EIGEN_UNUSED_VARIABLE(x);
|
1571
|
+
return pset1<Packet>(coeff[0]);
|
1572
|
+
}
|
1573
|
+
};
|
1574
|
+
|
1575
|
+
/* chbevl (modified for Eigen)
|
1576
|
+
*
|
1577
|
+
* Evaluate Chebyshev series
|
1578
|
+
*
|
1579
|
+
*
|
1580
|
+
*
|
1581
|
+
* SYNOPSIS:
|
1582
|
+
*
|
1583
|
+
* int N;
|
1584
|
+
* Scalar x, y, coef[N], chebevl();
|
1585
|
+
*
|
1586
|
+
* y = chbevl( x, coef, N );
|
1587
|
+
*
|
1588
|
+
*
|
1589
|
+
*
|
1590
|
+
* DESCRIPTION:
|
1591
|
+
*
|
1592
|
+
* Evaluates the series
|
1593
|
+
*
|
1594
|
+
* N-1
|
1595
|
+
* - '
|
1596
|
+
* y = > coef[i] T (x/2)
|
1597
|
+
* - i
|
1598
|
+
* i=0
|
1599
|
+
*
|
1600
|
+
* of Chebyshev polynomials Ti at argument x/2.
|
1601
|
+
*
|
1602
|
+
* Coefficients are stored in reverse order, i.e. the zero
|
1603
|
+
* order term is last in the array. Note N is the number of
|
1604
|
+
* coefficients, not the order.
|
1605
|
+
*
|
1606
|
+
* If coefficients are for the interval a to b, x must
|
1607
|
+
* have been transformed to x -> 2(2x - b - a)/(b-a) before
|
1608
|
+
* entering the routine. This maps x from (a, b) to (-1, 1),
|
1609
|
+
* over which the Chebyshev polynomials are defined.
|
1610
|
+
*
|
1611
|
+
* If the coefficients are for the inverted interval, in
|
1612
|
+
* which (a, b) is mapped to (1/b, 1/a), the transformation
|
1613
|
+
* required is x -> 2(2ab/x - b - a)/(b-a). If b is infinity,
|
1614
|
+
* this becomes x -> 4a/x - 1.
|
1615
|
+
*
|
1616
|
+
*
|
1617
|
+
*
|
1618
|
+
* SPEED:
|
1619
|
+
*
|
1620
|
+
* Taking advantage of the recurrence properties of the
|
1621
|
+
* Chebyshev polynomials, the routine requires one more
|
1622
|
+
* addition per loop than evaluating a nested polynomial of
|
1623
|
+
* the same degree.
|
1624
|
+
*
|
1625
|
+
*/
|
1626
|
+
|
1627
|
+
template <typename Packet, int N>
|
1628
|
+
struct pchebevl {
|
1629
|
+
EIGEN_DEVICE_FUNC
|
1630
|
+
static EIGEN_STRONG_INLINE Packet run(Packet x, const typename unpacket_traits<Packet>::type coef[]) {
|
1631
|
+
typedef typename unpacket_traits<Packet>::type Scalar;
|
1632
|
+
Packet b0 = pset1<Packet>(coef[0]);
|
1633
|
+
Packet b1 = pset1<Packet>(static_cast<Scalar>(0.f));
|
1634
|
+
Packet b2;
|
1635
|
+
|
1636
|
+
for (int i = 1; i < N; i++) {
|
1637
|
+
b2 = b1;
|
1638
|
+
b1 = b0;
|
1639
|
+
b0 = psub(pmadd(x, b1, pset1<Packet>(coef[i])), b2);
|
1640
|
+
}
|
1641
|
+
|
1642
|
+
return pmul(pset1<Packet>(static_cast<Scalar>(0.5f)), psub(b0, b2));
|
1643
|
+
}
|
1644
|
+
};
|
1645
|
+
|
1646
|
+
} // end namespace internal
|
1647
|
+
} // end namespace Eigen
|
1648
|
+
|
1649
|
+
#endif // EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H
|