tomoto 0.2.3 → 0.3.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (347) hide show
  1. checksums.yaml +4 -4
  2. data/CHANGELOG.md +6 -0
  3. data/README.md +8 -10
  4. data/ext/tomoto/extconf.rb +6 -2
  5. data/ext/tomoto/{ext.cpp → tomoto.cpp} +1 -1
  6. data/lib/tomoto/version.rb +1 -1
  7. data/lib/tomoto.rb +5 -1
  8. data/vendor/EigenRand/EigenRand/Core.h +10 -10
  9. data/vendor/EigenRand/EigenRand/Dists/Basic.h +208 -9
  10. data/vendor/EigenRand/EigenRand/Dists/Discrete.h +52 -31
  11. data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +9 -8
  12. data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +28 -21
  13. data/vendor/EigenRand/EigenRand/EigenRand +11 -6
  14. data/vendor/EigenRand/EigenRand/Macro.h +13 -7
  15. data/vendor/EigenRand/EigenRand/MorePacketMath.h +348 -740
  16. data/vendor/EigenRand/EigenRand/MvDists/Multinomial.h +5 -3
  17. data/vendor/EigenRand/EigenRand/MvDists/MvNormal.h +9 -3
  18. data/vendor/EigenRand/EigenRand/PacketFilter.h +11 -253
  19. data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +21 -47
  20. data/vendor/EigenRand/EigenRand/RandUtils.h +50 -344
  21. data/vendor/EigenRand/EigenRand/arch/AVX/MorePacketMath.h +619 -0
  22. data/vendor/EigenRand/EigenRand/arch/AVX/PacketFilter.h +149 -0
  23. data/vendor/EigenRand/EigenRand/arch/AVX/RandUtils.h +228 -0
  24. data/vendor/EigenRand/EigenRand/arch/NEON/MorePacketMath.h +473 -0
  25. data/vendor/EigenRand/EigenRand/arch/NEON/PacketFilter.h +142 -0
  26. data/vendor/EigenRand/EigenRand/arch/NEON/RandUtils.h +126 -0
  27. data/vendor/EigenRand/EigenRand/arch/SSE/MorePacketMath.h +501 -0
  28. data/vendor/EigenRand/EigenRand/arch/SSE/PacketFilter.h +133 -0
  29. data/vendor/EigenRand/EigenRand/arch/SSE/RandUtils.h +120 -0
  30. data/vendor/EigenRand/EigenRand/doc.h +24 -12
  31. data/vendor/EigenRand/README.md +57 -4
  32. data/vendor/eigen/COPYING.APACHE +203 -0
  33. data/vendor/eigen/COPYING.BSD +1 -1
  34. data/vendor/eigen/COPYING.MINPACK +51 -52
  35. data/vendor/eigen/Eigen/Cholesky +0 -1
  36. data/vendor/eigen/Eigen/Core +112 -265
  37. data/vendor/eigen/Eigen/Eigenvalues +2 -3
  38. data/vendor/eigen/Eigen/Geometry +5 -8
  39. data/vendor/eigen/Eigen/Householder +0 -1
  40. data/vendor/eigen/Eigen/Jacobi +0 -1
  41. data/vendor/eigen/Eigen/KLUSupport +41 -0
  42. data/vendor/eigen/Eigen/LU +2 -5
  43. data/vendor/eigen/Eigen/OrderingMethods +0 -3
  44. data/vendor/eigen/Eigen/PaStiXSupport +1 -0
  45. data/vendor/eigen/Eigen/PardisoSupport +0 -0
  46. data/vendor/eigen/Eigen/QR +2 -3
  47. data/vendor/eigen/Eigen/QtAlignedMalloc +0 -1
  48. data/vendor/eigen/Eigen/SVD +0 -1
  49. data/vendor/eigen/Eigen/Sparse +0 -2
  50. data/vendor/eigen/Eigen/SparseCholesky +0 -8
  51. data/vendor/eigen/Eigen/SparseLU +4 -0
  52. data/vendor/eigen/Eigen/SparseQR +0 -1
  53. data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +42 -27
  54. data/vendor/eigen/Eigen/src/Cholesky/LLT.h +39 -23
  55. data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +90 -47
  56. data/vendor/eigen/Eigen/src/Core/ArithmeticSequence.h +413 -0
  57. data/vendor/eigen/Eigen/src/Core/Array.h +99 -11
  58. data/vendor/eigen/Eigen/src/Core/ArrayBase.h +3 -3
  59. data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +21 -21
  60. data/vendor/eigen/Eigen/src/Core/Assign.h +1 -1
  61. data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +125 -50
  62. data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +10 -10
  63. data/vendor/eigen/Eigen/src/Core/BandMatrix.h +16 -16
  64. data/vendor/eigen/Eigen/src/Core/Block.h +56 -60
  65. data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +29 -31
  66. data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +7 -3
  67. data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +325 -272
  68. data/vendor/eigen/Eigen/src/Core/CoreIterators.h +5 -0
  69. data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +21 -22
  70. data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +153 -18
  71. data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +6 -6
  72. data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +14 -10
  73. data/vendor/eigen/Eigen/src/Core/DenseBase.h +132 -42
  74. data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +25 -21
  75. data/vendor/eigen/Eigen/src/Core/DenseStorage.h +153 -71
  76. data/vendor/eigen/Eigen/src/Core/Diagonal.h +21 -23
  77. data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +50 -2
  78. data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +1 -1
  79. data/vendor/eigen/Eigen/src/Core/Dot.h +10 -10
  80. data/vendor/eigen/Eigen/src/Core/EigenBase.h +10 -9
  81. data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +8 -4
  82. data/vendor/eigen/Eigen/src/Core/Fuzzy.h +3 -3
  83. data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +20 -10
  84. data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +599 -152
  85. data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +40 -33
  86. data/vendor/eigen/Eigen/src/Core/IO.h +40 -7
  87. data/vendor/eigen/Eigen/src/Core/IndexedView.h +237 -0
  88. data/vendor/eigen/Eigen/src/Core/Inverse.h +9 -10
  89. data/vendor/eigen/Eigen/src/Core/Map.h +7 -7
  90. data/vendor/eigen/Eigen/src/Core/MapBase.h +10 -3
  91. data/vendor/eigen/Eigen/src/Core/MathFunctions.h +767 -125
  92. data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +118 -19
  93. data/vendor/eigen/Eigen/src/Core/Matrix.h +131 -25
  94. data/vendor/eigen/Eigen/src/Core/MatrixBase.h +21 -3
  95. data/vendor/eigen/Eigen/src/Core/NestByValue.h +25 -50
  96. data/vendor/eigen/Eigen/src/Core/NoAlias.h +4 -3
  97. data/vendor/eigen/Eigen/src/Core/NumTraits.h +107 -20
  98. data/vendor/eigen/Eigen/src/Core/PartialReduxEvaluator.h +232 -0
  99. data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +3 -31
  100. data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +152 -59
  101. data/vendor/eigen/Eigen/src/Core/Product.h +30 -25
  102. data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +192 -125
  103. data/vendor/eigen/Eigen/src/Core/Random.h +37 -1
  104. data/vendor/eigen/Eigen/src/Core/Redux.h +180 -170
  105. data/vendor/eigen/Eigen/src/Core/Ref.h +121 -23
  106. data/vendor/eigen/Eigen/src/Core/Replicate.h +8 -8
  107. data/vendor/eigen/Eigen/src/Core/Reshaped.h +454 -0
  108. data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +7 -5
  109. data/vendor/eigen/Eigen/src/Core/Reverse.h +18 -12
  110. data/vendor/eigen/Eigen/src/Core/Select.h +8 -6
  111. data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +33 -20
  112. data/vendor/eigen/Eigen/src/Core/Solve.h +14 -14
  113. data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +16 -16
  114. data/vendor/eigen/Eigen/src/Core/SolverBase.h +41 -3
  115. data/vendor/eigen/Eigen/src/Core/StableNorm.h +100 -70
  116. data/vendor/eigen/Eigen/src/Core/StlIterators.h +463 -0
  117. data/vendor/eigen/Eigen/src/Core/Stride.h +9 -4
  118. data/vendor/eigen/Eigen/src/Core/Swap.h +5 -4
  119. data/vendor/eigen/Eigen/src/Core/Transpose.h +88 -27
  120. data/vendor/eigen/Eigen/src/Core/Transpositions.h +26 -47
  121. data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +93 -75
  122. data/vendor/eigen/Eigen/src/Core/VectorBlock.h +5 -5
  123. data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +159 -70
  124. data/vendor/eigen/Eigen/src/Core/Visitor.h +137 -29
  125. data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +50 -129
  126. data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +126 -337
  127. data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +1092 -155
  128. data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +65 -1
  129. data/vendor/eigen/Eigen/src/Core/arch/AVX512/Complex.h +422 -0
  130. data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +207 -236
  131. data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1482 -495
  132. data/vendor/eigen/Eigen/src/Core/arch/AVX512/TypeCasting.h +89 -0
  133. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +152 -165
  134. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +19 -251
  135. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProduct.h +2937 -0
  136. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProductCommon.h +221 -0
  137. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProductMMA.h +629 -0
  138. data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +2042 -392
  139. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +235 -80
  140. data/vendor/eigen/Eigen/src/Core/arch/Default/BFloat16.h +700 -0
  141. data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +102 -14
  142. data/vendor/eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h +1649 -0
  143. data/vendor/eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctionsFwd.h +110 -0
  144. data/vendor/eigen/Eigen/src/Core/arch/Default/Half.h +942 -0
  145. data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +1 -1
  146. data/vendor/eigen/Eigen/src/Core/arch/Default/TypeCasting.h +120 -0
  147. data/vendor/eigen/Eigen/src/Core/arch/{CUDA → GPU}/MathFunctions.h +16 -4
  148. data/vendor/eigen/Eigen/src/Core/arch/GPU/PacketMath.h +1685 -0
  149. data/vendor/eigen/Eigen/src/Core/arch/GPU/TypeCasting.h +80 -0
  150. data/vendor/eigen/Eigen/src/Core/arch/HIP/hcc/math_constants.h +23 -0
  151. data/vendor/eigen/Eigen/src/Core/arch/MSA/Complex.h +648 -0
  152. data/vendor/eigen/Eigen/src/Core/arch/MSA/MathFunctions.h +387 -0
  153. data/vendor/eigen/Eigen/src/Core/arch/MSA/PacketMath.h +1233 -0
  154. data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +313 -219
  155. data/vendor/eigen/Eigen/src/Core/arch/NEON/GeneralBlockPanelKernel.h +183 -0
  156. data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +54 -70
  157. data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +4376 -549
  158. data/vendor/eigen/Eigen/src/Core/arch/NEON/TypeCasting.h +1419 -0
  159. data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +59 -179
  160. data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +65 -428
  161. data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +893 -283
  162. data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +65 -0
  163. data/vendor/eigen/Eigen/src/Core/arch/SVE/MathFunctions.h +44 -0
  164. data/vendor/eigen/Eigen/src/Core/arch/SVE/PacketMath.h +752 -0
  165. data/vendor/eigen/Eigen/src/Core/arch/SVE/TypeCasting.h +49 -0
  166. data/vendor/eigen/Eigen/src/Core/arch/SYCL/InteropHeaders.h +232 -0
  167. data/vendor/eigen/Eigen/src/Core/arch/SYCL/MathFunctions.h +301 -0
  168. data/vendor/eigen/Eigen/src/Core/arch/SYCL/PacketMath.h +670 -0
  169. data/vendor/eigen/Eigen/src/Core/arch/SYCL/SyclMemoryModel.h +694 -0
  170. data/vendor/eigen/Eigen/src/Core/arch/SYCL/TypeCasting.h +85 -0
  171. data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +212 -183
  172. data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +101 -5
  173. data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +510 -395
  174. data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +11 -2
  175. data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +112 -46
  176. data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +31 -30
  177. data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +32 -2
  178. data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +355 -16
  179. data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +1075 -586
  180. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +49 -24
  181. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +41 -35
  182. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +6 -6
  183. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +4 -2
  184. data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +382 -483
  185. data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +22 -5
  186. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +53 -30
  187. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +16 -8
  188. data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +8 -6
  189. data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +4 -4
  190. data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +5 -4
  191. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +33 -27
  192. data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +14 -12
  193. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +36 -34
  194. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +8 -4
  195. data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +13 -10
  196. data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +304 -119
  197. data/vendor/eigen/Eigen/src/Core/util/ConfigureVectorization.h +512 -0
  198. data/vendor/eigen/Eigen/src/Core/util/Constants.h +25 -9
  199. data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +26 -3
  200. data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +29 -9
  201. data/vendor/eigen/Eigen/src/Core/util/IndexedViewHelper.h +186 -0
  202. data/vendor/eigen/Eigen/src/Core/util/IntegralConstant.h +272 -0
  203. data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +8 -1
  204. data/vendor/eigen/Eigen/src/Core/util/Macros.h +709 -246
  205. data/vendor/eigen/Eigen/src/Core/util/Memory.h +222 -52
  206. data/vendor/eigen/Eigen/src/Core/util/Meta.h +355 -77
  207. data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +5 -1
  208. data/vendor/eigen/Eigen/src/Core/util/ReshapedHelper.h +51 -0
  209. data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +8 -5
  210. data/vendor/eigen/Eigen/src/Core/util/SymbolicIndex.h +293 -0
  211. data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +65 -30
  212. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +1 -1
  213. data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +7 -4
  214. data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +2 -2
  215. data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +1 -1
  216. data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +2 -2
  217. data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +2 -2
  218. data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +9 -6
  219. data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +21 -9
  220. data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +77 -43
  221. data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +20 -15
  222. data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +99 -5
  223. data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +4 -4
  224. data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +3 -3
  225. data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +15 -11
  226. data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +1 -1
  227. data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +3 -2
  228. data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +39 -2
  229. data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +70 -14
  230. data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +3 -3
  231. data/vendor/eigen/Eigen/src/Geometry/Scaling.h +23 -5
  232. data/vendor/eigen/Eigen/src/Geometry/Transform.h +88 -67
  233. data/vendor/eigen/Eigen/src/Geometry/Translation.h +6 -12
  234. data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +1 -1
  235. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +168 -0
  236. data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +9 -2
  237. data/vendor/eigen/Eigen/src/Householder/Householder.h +8 -4
  238. data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +123 -48
  239. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +15 -15
  240. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +7 -23
  241. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +5 -22
  242. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +41 -47
  243. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +51 -60
  244. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +70 -20
  245. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +2 -20
  246. data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +11 -9
  247. data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +31 -10
  248. data/vendor/eigen/Eigen/src/KLUSupport/KLUSupport.h +358 -0
  249. data/vendor/eigen/Eigen/src/LU/Determinant.h +35 -19
  250. data/vendor/eigen/Eigen/src/LU/FullPivLU.h +29 -43
  251. data/vendor/eigen/Eigen/src/LU/InverseImpl.h +25 -8
  252. data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +71 -58
  253. data/vendor/eigen/Eigen/src/LU/arch/InverseSize4.h +351 -0
  254. data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +7 -17
  255. data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +297 -277
  256. data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +6 -10
  257. data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +1 -1
  258. data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +9 -7
  259. data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +41 -20
  260. data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +100 -27
  261. data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +59 -22
  262. data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +48 -23
  263. data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +25 -3
  264. data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +183 -63
  265. data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +22 -14
  266. data/vendor/eigen/Eigen/src/SVD/SVDBase.h +83 -22
  267. data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +3 -3
  268. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +17 -9
  269. data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +12 -37
  270. data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +3 -2
  271. data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +16 -0
  272. data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +6 -6
  273. data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +81 -27
  274. data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +25 -57
  275. data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +40 -11
  276. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +11 -15
  277. data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +4 -2
  278. data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +30 -8
  279. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +126 -11
  280. data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +5 -12
  281. data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +13 -1
  282. data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +7 -7
  283. data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +5 -2
  284. data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +8 -0
  285. data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +1 -1
  286. data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +1 -0
  287. data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +162 -12
  288. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +1 -1
  289. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +76 -2
  290. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +2 -2
  291. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +1 -1
  292. data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +1 -1
  293. data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +19 -6
  294. data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +2 -12
  295. data/vendor/eigen/Eigen/src/StlSupport/StdList.h +2 -2
  296. data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +2 -2
  297. data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +6 -8
  298. data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +175 -39
  299. data/vendor/eigen/Eigen/src/misc/lapacke.h +5 -4
  300. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +28 -2
  301. data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +155 -11
  302. data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +626 -242
  303. data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +14 -0
  304. data/vendor/eigen/Eigen/src/plugins/IndexedViewMethods.h +262 -0
  305. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +4 -4
  306. data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +10 -0
  307. data/vendor/eigen/Eigen/src/plugins/ReshapedMethods.h +149 -0
  308. data/vendor/eigen/README.md +2 -0
  309. data/vendor/eigen/bench/btl/README +1 -1
  310. data/vendor/eigen/bench/tensors/README +6 -7
  311. data/vendor/eigen/ci/README.md +56 -0
  312. data/vendor/eigen/demos/mix_eigen_and_c/README +1 -1
  313. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +213 -158
  314. data/vendor/eigen/unsupported/README.txt +1 -1
  315. data/vendor/tomotopy/README.kr.rst +21 -0
  316. data/vendor/tomotopy/README.rst +20 -0
  317. data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +2 -2
  318. data/vendor/tomotopy/src/Labeling/Phraser.hpp +1 -1
  319. data/vendor/tomotopy/src/TopicModel/CTModel.hpp +2 -1
  320. data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +2 -1
  321. data/vendor/tomotopy/src/TopicModel/DTModel.hpp +1 -1
  322. data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +2 -2
  323. data/vendor/tomotopy/src/TopicModel/HDP.h +1 -0
  324. data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +53 -2
  325. data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +1 -1
  326. data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +1 -0
  327. data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +2 -2
  328. data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +16 -5
  329. data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +1 -0
  330. data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +1 -0
  331. data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +1 -0
  332. data/vendor/tomotopy/src/TopicModel/PT.h +3 -1
  333. data/vendor/tomotopy/src/TopicModel/PTModel.hpp +31 -1
  334. data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +2 -2
  335. data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +7 -5
  336. data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +36 -1
  337. data/vendor/tomotopy/src/Utils/exception.h +6 -0
  338. data/vendor/tomotopy/src/Utils/sample.hpp +14 -12
  339. data/vendor/tomotopy/src/Utils/sse_gamma.h +0 -3
  340. metadata +60 -14
  341. data/vendor/eigen/Eigen/CMakeLists.txt +0 -19
  342. data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +0 -674
  343. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +0 -333
  344. data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +0 -1124
  345. data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +0 -212
  346. data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +0 -161
  347. data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +0 -338
@@ -128,7 +128,7 @@ DenseBase<Derived>::Random()
128
128
  * \sa class CwiseNullaryOp, setRandom(Index), setRandom(Index,Index)
129
129
  */
130
130
  template<typename Derived>
131
- inline Derived& DenseBase<Derived>::setRandom()
131
+ EIGEN_DEVICE_FUNC inline Derived& DenseBase<Derived>::setRandom()
132
132
  {
133
133
  return *this = Random(rows(), cols());
134
134
  }
@@ -177,6 +177,42 @@ PlainObjectBase<Derived>::setRandom(Index rows, Index cols)
177
177
  return setRandom();
178
178
  }
179
179
 
180
+ /** Resizes to the given size, changing only the number of columns, and sets all
181
+ * coefficients in this expression to random values. For the parameter of type
182
+ * NoChange_t, just pass the special value \c NoChange.
183
+ *
184
+ * Numbers are uniformly spread through their whole definition range for integer types,
185
+ * and in the [-1:1] range for floating point scalar types.
186
+ *
187
+ * \not_reentrant
188
+ *
189
+ * \sa DenseBase::setRandom(), setRandom(Index), setRandom(Index, NoChange_t), class CwiseNullaryOp, DenseBase::Random()
190
+ */
191
+ template<typename Derived>
192
+ EIGEN_STRONG_INLINE Derived&
193
+ PlainObjectBase<Derived>::setRandom(NoChange_t, Index cols)
194
+ {
195
+ return setRandom(rows(), cols);
196
+ }
197
+
198
+ /** Resizes to the given size, changing only the number of rows, and sets all
199
+ * coefficients in this expression to random values. For the parameter of type
200
+ * NoChange_t, just pass the special value \c NoChange.
201
+ *
202
+ * Numbers are uniformly spread through their whole definition range for integer types,
203
+ * and in the [-1:1] range for floating point scalar types.
204
+ *
205
+ * \not_reentrant
206
+ *
207
+ * \sa DenseBase::setRandom(), setRandom(Index), setRandom(NoChange_t, Index), class CwiseNullaryOp, DenseBase::Random()
208
+ */
209
+ template<typename Derived>
210
+ EIGEN_STRONG_INLINE Derived&
211
+ PlainObjectBase<Derived>::setRandom(Index rows, NoChange_t)
212
+ {
213
+ return setRandom(rows, cols());
214
+ }
215
+
180
216
  } // end namespace Eigen
181
217
 
182
218
  #endif // EIGEN_RANDOM_H
@@ -23,23 +23,29 @@ namespace internal {
23
23
  * Part 1 : the logic deciding a strategy for vectorization and unrolling
24
24
  ***************************************************************************/
25
25
 
26
- template<typename Func, typename Derived>
26
+ template<typename Func, typename Evaluator>
27
27
  struct redux_traits
28
28
  {
29
29
  public:
30
- typedef typename find_best_packet<typename Derived::Scalar,Derived::SizeAtCompileTime>::type PacketType;
30
+ typedef typename find_best_packet<typename Evaluator::Scalar,Evaluator::SizeAtCompileTime>::type PacketType;
31
31
  enum {
32
32
  PacketSize = unpacket_traits<PacketType>::size,
33
- InnerMaxSize = int(Derived::IsRowMajor)
34
- ? Derived::MaxColsAtCompileTime
35
- : Derived::MaxRowsAtCompileTime
33
+ InnerMaxSize = int(Evaluator::IsRowMajor)
34
+ ? Evaluator::MaxColsAtCompileTime
35
+ : Evaluator::MaxRowsAtCompileTime,
36
+ OuterMaxSize = int(Evaluator::IsRowMajor)
37
+ ? Evaluator::MaxRowsAtCompileTime
38
+ : Evaluator::MaxColsAtCompileTime,
39
+ SliceVectorizedWork = int(InnerMaxSize)==Dynamic ? Dynamic
40
+ : int(OuterMaxSize)==Dynamic ? (int(InnerMaxSize)>=int(PacketSize) ? Dynamic : 0)
41
+ : (int(InnerMaxSize)/int(PacketSize)) * int(OuterMaxSize)
36
42
  };
37
43
 
38
44
  enum {
39
- MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit)
45
+ MightVectorize = (int(Evaluator::Flags)&ActualPacketAccessBit)
40
46
  && (functor_traits<Func>::PacketAccess),
41
- MayLinearVectorize = bool(MightVectorize) && (int(Derived::Flags)&LinearAccessBit),
42
- MaySliceVectorize = bool(MightVectorize) && int(InnerMaxSize)>=3*PacketSize
47
+ MayLinearVectorize = bool(MightVectorize) && (int(Evaluator::Flags)&LinearAccessBit),
48
+ MaySliceVectorize = bool(MightVectorize) && (int(SliceVectorizedWork)==Dynamic || int(SliceVectorizedWork)>=3)
43
49
  };
44
50
 
45
51
  public:
@@ -51,8 +57,8 @@ public:
51
57
 
52
58
  public:
53
59
  enum {
54
- Cost = Derived::SizeAtCompileTime == Dynamic ? HugeCost
55
- : Derived::SizeAtCompileTime * Derived::CoeffReadCost + (Derived::SizeAtCompileTime-1) * functor_traits<Func>::Cost,
60
+ Cost = Evaluator::SizeAtCompileTime == Dynamic ? HugeCost
61
+ : int(Evaluator::SizeAtCompileTime) * int(Evaluator::CoeffReadCost) + (Evaluator::SizeAtCompileTime-1) * functor_traits<Func>::Cost,
56
62
  UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize))
57
63
  };
58
64
 
@@ -64,18 +70,20 @@ public:
64
70
  #ifdef EIGEN_DEBUG_ASSIGN
65
71
  static void debug()
66
72
  {
67
- std::cerr << "Xpr: " << typeid(typename Derived::XprType).name() << std::endl;
73
+ std::cerr << "Xpr: " << typeid(typename Evaluator::XprType).name() << std::endl;
68
74
  std::cerr.setf(std::ios::hex, std::ios::basefield);
69
- EIGEN_DEBUG_VAR(Derived::Flags)
75
+ EIGEN_DEBUG_VAR(Evaluator::Flags)
70
76
  std::cerr.unsetf(std::ios::hex);
71
77
  EIGEN_DEBUG_VAR(InnerMaxSize)
78
+ EIGEN_DEBUG_VAR(OuterMaxSize)
79
+ EIGEN_DEBUG_VAR(SliceVectorizedWork)
72
80
  EIGEN_DEBUG_VAR(PacketSize)
73
81
  EIGEN_DEBUG_VAR(MightVectorize)
74
82
  EIGEN_DEBUG_VAR(MayLinearVectorize)
75
83
  EIGEN_DEBUG_VAR(MaySliceVectorize)
76
- EIGEN_DEBUG_VAR(Traversal)
84
+ std::cerr << "Traversal" << " = " << Traversal << " (" << demangle_traversal(Traversal) << ")" << std::endl;
77
85
  EIGEN_DEBUG_VAR(UnrollingLimit)
78
- EIGEN_DEBUG_VAR(Unrolling)
86
+ std::cerr << "Unrolling" << " = " << Unrolling << " (" << demangle_unrolling(Unrolling) << ")" << std::endl;
79
87
  std::cerr << std::endl;
80
88
  }
81
89
  #endif
@@ -87,88 +95,86 @@ public:
87
95
 
88
96
  /*** no vectorization ***/
89
97
 
90
- template<typename Func, typename Derived, int Start, int Length>
98
+ template<typename Func, typename Evaluator, int Start, int Length>
91
99
  struct redux_novec_unroller
92
100
  {
93
101
  enum {
94
102
  HalfLength = Length/2
95
103
  };
96
104
 
97
- typedef typename Derived::Scalar Scalar;
105
+ typedef typename Evaluator::Scalar Scalar;
98
106
 
99
107
  EIGEN_DEVICE_FUNC
100
- static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
108
+ static EIGEN_STRONG_INLINE Scalar run(const Evaluator &eval, const Func& func)
101
109
  {
102
- return func(redux_novec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
103
- redux_novec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func));
110
+ return func(redux_novec_unroller<Func, Evaluator, Start, HalfLength>::run(eval,func),
111
+ redux_novec_unroller<Func, Evaluator, Start+HalfLength, Length-HalfLength>::run(eval,func));
104
112
  }
105
113
  };
106
114
 
107
- template<typename Func, typename Derived, int Start>
108
- struct redux_novec_unroller<Func, Derived, Start, 1>
115
+ template<typename Func, typename Evaluator, int Start>
116
+ struct redux_novec_unroller<Func, Evaluator, Start, 1>
109
117
  {
110
118
  enum {
111
- outer = Start / Derived::InnerSizeAtCompileTime,
112
- inner = Start % Derived::InnerSizeAtCompileTime
119
+ outer = Start / Evaluator::InnerSizeAtCompileTime,
120
+ inner = Start % Evaluator::InnerSizeAtCompileTime
113
121
  };
114
122
 
115
- typedef typename Derived::Scalar Scalar;
123
+ typedef typename Evaluator::Scalar Scalar;
116
124
 
117
125
  EIGEN_DEVICE_FUNC
118
- static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func&)
126
+ static EIGEN_STRONG_INLINE Scalar run(const Evaluator &eval, const Func&)
119
127
  {
120
- return mat.coeffByOuterInner(outer, inner);
128
+ return eval.coeffByOuterInner(outer, inner);
121
129
  }
122
130
  };
123
131
 
124
132
  // This is actually dead code and will never be called. It is required
125
133
  // to prevent false warnings regarding failed inlining though
126
134
  // for 0 length run() will never be called at all.
127
- template<typename Func, typename Derived, int Start>
128
- struct redux_novec_unroller<Func, Derived, Start, 0>
135
+ template<typename Func, typename Evaluator, int Start>
136
+ struct redux_novec_unroller<Func, Evaluator, Start, 0>
129
137
  {
130
- typedef typename Derived::Scalar Scalar;
138
+ typedef typename Evaluator::Scalar Scalar;
131
139
  EIGEN_DEVICE_FUNC
132
- static EIGEN_STRONG_INLINE Scalar run(const Derived&, const Func&) { return Scalar(); }
140
+ static EIGEN_STRONG_INLINE Scalar run(const Evaluator&, const Func&) { return Scalar(); }
133
141
  };
134
142
 
135
143
  /*** vectorization ***/
136
144
 
137
- template<typename Func, typename Derived, int Start, int Length>
145
+ template<typename Func, typename Evaluator, int Start, int Length>
138
146
  struct redux_vec_unroller
139
147
  {
140
- enum {
141
- PacketSize = redux_traits<Func, Derived>::PacketSize,
142
- HalfLength = Length/2
143
- };
144
-
145
- typedef typename Derived::Scalar Scalar;
146
- typedef typename redux_traits<Func, Derived>::PacketType PacketScalar;
147
-
148
- static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func& func)
148
+ template<typename PacketType>
149
+ EIGEN_DEVICE_FUNC
150
+ static EIGEN_STRONG_INLINE PacketType run(const Evaluator &eval, const Func& func)
149
151
  {
152
+ enum {
153
+ PacketSize = unpacket_traits<PacketType>::size,
154
+ HalfLength = Length/2
155
+ };
156
+
150
157
  return func.packetOp(
151
- redux_vec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
152
- redux_vec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func) );
158
+ redux_vec_unroller<Func, Evaluator, Start, HalfLength>::template run<PacketType>(eval,func),
159
+ redux_vec_unroller<Func, Evaluator, Start+HalfLength, Length-HalfLength>::template run<PacketType>(eval,func) );
153
160
  }
154
161
  };
155
162
 
156
- template<typename Func, typename Derived, int Start>
157
- struct redux_vec_unroller<Func, Derived, Start, 1>
163
+ template<typename Func, typename Evaluator, int Start>
164
+ struct redux_vec_unroller<Func, Evaluator, Start, 1>
158
165
  {
159
- enum {
160
- index = Start * redux_traits<Func, Derived>::PacketSize,
161
- outer = index / int(Derived::InnerSizeAtCompileTime),
162
- inner = index % int(Derived::InnerSizeAtCompileTime),
163
- alignment = Derived::Alignment
164
- };
165
-
166
- typedef typename Derived::Scalar Scalar;
167
- typedef typename redux_traits<Func, Derived>::PacketType PacketScalar;
168
-
169
- static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func&)
166
+ template<typename PacketType>
167
+ EIGEN_DEVICE_FUNC
168
+ static EIGEN_STRONG_INLINE PacketType run(const Evaluator &eval, const Func&)
170
169
  {
171
- return mat.template packetByOuterInner<alignment,PacketScalar>(outer, inner);
170
+ enum {
171
+ PacketSize = unpacket_traits<PacketType>::size,
172
+ index = Start * PacketSize,
173
+ outer = index / int(Evaluator::InnerSizeAtCompileTime),
174
+ inner = index % int(Evaluator::InnerSizeAtCompileTime),
175
+ alignment = Evaluator::Alignment
176
+ };
177
+ return eval.template packetByOuterInner<alignment,PacketType>(outer, inner);
172
178
  }
173
179
  };
174
180
 
@@ -176,53 +182,65 @@ struct redux_vec_unroller<Func, Derived, Start, 1>
176
182
  * Part 3 : implementation of all cases
177
183
  ***************************************************************************/
178
184
 
179
- template<typename Func, typename Derived,
180
- int Traversal = redux_traits<Func, Derived>::Traversal,
181
- int Unrolling = redux_traits<Func, Derived>::Unrolling
185
+ template<typename Func, typename Evaluator,
186
+ int Traversal = redux_traits<Func, Evaluator>::Traversal,
187
+ int Unrolling = redux_traits<Func, Evaluator>::Unrolling
182
188
  >
183
189
  struct redux_impl;
184
190
 
185
- template<typename Func, typename Derived>
186
- struct redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>
191
+ template<typename Func, typename Evaluator>
192
+ struct redux_impl<Func, Evaluator, DefaultTraversal, NoUnrolling>
187
193
  {
188
- typedef typename Derived::Scalar Scalar;
189
- EIGEN_DEVICE_FUNC
190
- static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
194
+ typedef typename Evaluator::Scalar Scalar;
195
+
196
+ template<typename XprType>
197
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE
198
+ Scalar run(const Evaluator &eval, const Func& func, const XprType& xpr)
191
199
  {
192
- eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
200
+ eigen_assert(xpr.rows()>0 && xpr.cols()>0 && "you are using an empty matrix");
193
201
  Scalar res;
194
- res = mat.coeffByOuterInner(0, 0);
195
- for(Index i = 1; i < mat.innerSize(); ++i)
196
- res = func(res, mat.coeffByOuterInner(0, i));
197
- for(Index i = 1; i < mat.outerSize(); ++i)
198
- for(Index j = 0; j < mat.innerSize(); ++j)
199
- res = func(res, mat.coeffByOuterInner(i, j));
202
+ res = eval.coeffByOuterInner(0, 0);
203
+ for(Index i = 1; i < xpr.innerSize(); ++i)
204
+ res = func(res, eval.coeffByOuterInner(0, i));
205
+ for(Index i = 1; i < xpr.outerSize(); ++i)
206
+ for(Index j = 0; j < xpr.innerSize(); ++j)
207
+ res = func(res, eval.coeffByOuterInner(i, j));
200
208
  return res;
201
209
  }
202
210
  };
203
211
 
204
- template<typename Func, typename Derived>
205
- struct redux_impl<Func,Derived, DefaultTraversal, CompleteUnrolling>
206
- : public redux_novec_unroller<Func,Derived, 0, Derived::SizeAtCompileTime>
207
- {};
212
+ template<typename Func, typename Evaluator>
213
+ struct redux_impl<Func,Evaluator, DefaultTraversal, CompleteUnrolling>
214
+ : redux_novec_unroller<Func,Evaluator, 0, Evaluator::SizeAtCompileTime>
215
+ {
216
+ typedef redux_novec_unroller<Func,Evaluator, 0, Evaluator::SizeAtCompileTime> Base;
217
+ typedef typename Evaluator::Scalar Scalar;
218
+ template<typename XprType>
219
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE
220
+ Scalar run(const Evaluator &eval, const Func& func, const XprType& /*xpr*/)
221
+ {
222
+ return Base::run(eval,func);
223
+ }
224
+ };
208
225
 
209
- template<typename Func, typename Derived>
210
- struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling>
226
+ template<typename Func, typename Evaluator>
227
+ struct redux_impl<Func, Evaluator, LinearVectorizedTraversal, NoUnrolling>
211
228
  {
212
- typedef typename Derived::Scalar Scalar;
213
- typedef typename redux_traits<Func, Derived>::PacketType PacketScalar;
229
+ typedef typename Evaluator::Scalar Scalar;
230
+ typedef typename redux_traits<Func, Evaluator>::PacketType PacketScalar;
214
231
 
215
- static Scalar run(const Derived &mat, const Func& func)
232
+ template<typename XprType>
233
+ static Scalar run(const Evaluator &eval, const Func& func, const XprType& xpr)
216
234
  {
217
- const Index size = mat.size();
235
+ const Index size = xpr.size();
218
236
 
219
- const Index packetSize = redux_traits<Func, Derived>::PacketSize;
237
+ const Index packetSize = redux_traits<Func, Evaluator>::PacketSize;
220
238
  const int packetAlignment = unpacket_traits<PacketScalar>::alignment;
221
239
  enum {
222
- alignment0 = (bool(Derived::Flags & DirectAccessBit) && bool(packet_traits<Scalar>::AlignedOnScalar)) ? int(packetAlignment) : int(Unaligned),
223
- alignment = EIGEN_PLAIN_ENUM_MAX(alignment0, Derived::Alignment)
240
+ alignment0 = (bool(Evaluator::Flags & DirectAccessBit) && bool(packet_traits<Scalar>::AlignedOnScalar)) ? int(packetAlignment) : int(Unaligned),
241
+ alignment = EIGEN_PLAIN_ENUM_MAX(alignment0, Evaluator::Alignment)
224
242
  };
225
- const Index alignedStart = internal::first_default_aligned(mat.nestedExpression());
243
+ const Index alignedStart = internal::first_default_aligned(xpr);
226
244
  const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize);
227
245
  const Index alignedSize = ((size-alignedStart)/(packetSize))*(packetSize);
228
246
  const Index alignedEnd2 = alignedStart + alignedSize2;
@@ -230,34 +248,34 @@ struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling>
230
248
  Scalar res;
231
249
  if(alignedSize)
232
250
  {
233
- PacketScalar packet_res0 = mat.template packet<alignment,PacketScalar>(alignedStart);
251
+ PacketScalar packet_res0 = eval.template packet<alignment,PacketScalar>(alignedStart);
234
252
  if(alignedSize>packetSize) // we have at least two packets to partly unroll the loop
235
253
  {
236
- PacketScalar packet_res1 = mat.template packet<alignment,PacketScalar>(alignedStart+packetSize);
254
+ PacketScalar packet_res1 = eval.template packet<alignment,PacketScalar>(alignedStart+packetSize);
237
255
  for(Index index = alignedStart + 2*packetSize; index < alignedEnd2; index += 2*packetSize)
238
256
  {
239
- packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment,PacketScalar>(index));
240
- packet_res1 = func.packetOp(packet_res1, mat.template packet<alignment,PacketScalar>(index+packetSize));
257
+ packet_res0 = func.packetOp(packet_res0, eval.template packet<alignment,PacketScalar>(index));
258
+ packet_res1 = func.packetOp(packet_res1, eval.template packet<alignment,PacketScalar>(index+packetSize));
241
259
  }
242
260
 
243
261
  packet_res0 = func.packetOp(packet_res0,packet_res1);
244
262
  if(alignedEnd>alignedEnd2)
245
- packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment,PacketScalar>(alignedEnd2));
263
+ packet_res0 = func.packetOp(packet_res0, eval.template packet<alignment,PacketScalar>(alignedEnd2));
246
264
  }
247
265
  res = func.predux(packet_res0);
248
266
 
249
267
  for(Index index = 0; index < alignedStart; ++index)
250
- res = func(res,mat.coeff(index));
268
+ res = func(res,eval.coeff(index));
251
269
 
252
270
  for(Index index = alignedEnd; index < size; ++index)
253
- res = func(res,mat.coeff(index));
271
+ res = func(res,eval.coeff(index));
254
272
  }
255
273
  else // too small to vectorize anything.
256
274
  // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
257
275
  {
258
- res = mat.coeff(0);
276
+ res = eval.coeff(0);
259
277
  for(Index index = 1; index < size; ++index)
260
- res = func(res,mat.coeff(index));
278
+ res = func(res,eval.coeff(index));
261
279
  }
262
280
 
263
281
  return res;
@@ -265,130 +283,108 @@ struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling>
265
283
  };
266
284
 
267
285
  // NOTE: for SliceVectorizedTraversal we simply bypass unrolling
268
- template<typename Func, typename Derived, int Unrolling>
269
- struct redux_impl<Func, Derived, SliceVectorizedTraversal, Unrolling>
286
+ template<typename Func, typename Evaluator, int Unrolling>
287
+ struct redux_impl<Func, Evaluator, SliceVectorizedTraversal, Unrolling>
270
288
  {
271
- typedef typename Derived::Scalar Scalar;
272
- typedef typename redux_traits<Func, Derived>::PacketType PacketType;
289
+ typedef typename Evaluator::Scalar Scalar;
290
+ typedef typename redux_traits<Func, Evaluator>::PacketType PacketType;
273
291
 
274
- EIGEN_DEVICE_FUNC static Scalar run(const Derived &mat, const Func& func)
292
+ template<typename XprType>
293
+ EIGEN_DEVICE_FUNC static Scalar run(const Evaluator &eval, const Func& func, const XprType& xpr)
275
294
  {
276
- eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
277
- const Index innerSize = mat.innerSize();
278
- const Index outerSize = mat.outerSize();
295
+ eigen_assert(xpr.rows()>0 && xpr.cols()>0 && "you are using an empty matrix");
296
+ const Index innerSize = xpr.innerSize();
297
+ const Index outerSize = xpr.outerSize();
279
298
  enum {
280
- packetSize = redux_traits<Func, Derived>::PacketSize
299
+ packetSize = redux_traits<Func, Evaluator>::PacketSize
281
300
  };
282
301
  const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize;
283
302
  Scalar res;
284
303
  if(packetedInnerSize)
285
304
  {
286
- PacketType packet_res = mat.template packet<Unaligned,PacketType>(0,0);
305
+ PacketType packet_res = eval.template packet<Unaligned,PacketType>(0,0);
287
306
  for(Index j=0; j<outerSize; ++j)
288
307
  for(Index i=(j==0?packetSize:0); i<packetedInnerSize; i+=Index(packetSize))
289
- packet_res = func.packetOp(packet_res, mat.template packetByOuterInner<Unaligned,PacketType>(j,i));
308
+ packet_res = func.packetOp(packet_res, eval.template packetByOuterInner<Unaligned,PacketType>(j,i));
290
309
 
291
310
  res = func.predux(packet_res);
292
311
  for(Index j=0; j<outerSize; ++j)
293
312
  for(Index i=packetedInnerSize; i<innerSize; ++i)
294
- res = func(res, mat.coeffByOuterInner(j,i));
313
+ res = func(res, eval.coeffByOuterInner(j,i));
295
314
  }
296
315
  else // too small to vectorize anything.
297
316
  // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
298
317
  {
299
- res = redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>::run(mat, func);
318
+ res = redux_impl<Func, Evaluator, DefaultTraversal, NoUnrolling>::run(eval, func, xpr);
300
319
  }
301
320
 
302
321
  return res;
303
322
  }
304
323
  };
305
324
 
306
- template<typename Func, typename Derived>
307
- struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling>
325
+ template<typename Func, typename Evaluator>
326
+ struct redux_impl<Func, Evaluator, LinearVectorizedTraversal, CompleteUnrolling>
308
327
  {
309
- typedef typename Derived::Scalar Scalar;
328
+ typedef typename Evaluator::Scalar Scalar;
310
329
 
311
- typedef typename redux_traits<Func, Derived>::PacketType PacketScalar;
330
+ typedef typename redux_traits<Func, Evaluator>::PacketType PacketType;
312
331
  enum {
313
- PacketSize = redux_traits<Func, Derived>::PacketSize,
314
- Size = Derived::SizeAtCompileTime,
315
- VectorizedSize = (Size / PacketSize) * PacketSize
332
+ PacketSize = redux_traits<Func, Evaluator>::PacketSize,
333
+ Size = Evaluator::SizeAtCompileTime,
334
+ VectorizedSize = (int(Size) / int(PacketSize)) * int(PacketSize)
316
335
  };
317
- EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
336
+
337
+ template<typename XprType>
338
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE
339
+ Scalar run(const Evaluator &eval, const Func& func, const XprType &xpr)
318
340
  {
319
- eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
341
+ EIGEN_ONLY_USED_FOR_DEBUG(xpr)
342
+ eigen_assert(xpr.rows()>0 && xpr.cols()>0 && "you are using an empty matrix");
320
343
  if (VectorizedSize > 0) {
321
- Scalar res = func.predux(redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func));
344
+ Scalar res = func.predux(redux_vec_unroller<Func, Evaluator, 0, Size / PacketSize>::template run<PacketType>(eval,func));
322
345
  if (VectorizedSize != Size)
323
- res = func(res,redux_novec_unroller<Func, Derived, VectorizedSize, Size-VectorizedSize>::run(mat,func));
346
+ res = func(res,redux_novec_unroller<Func, Evaluator, VectorizedSize, Size-VectorizedSize>::run(eval,func));
324
347
  return res;
325
348
  }
326
349
  else {
327
- return redux_novec_unroller<Func, Derived, 0, Size>::run(mat,func);
350
+ return redux_novec_unroller<Func, Evaluator, 0, Size>::run(eval,func);
328
351
  }
329
352
  }
330
353
  };
331
354
 
332
355
  // evaluator adaptor
333
356
  template<typename _XprType>
334
- class redux_evaluator
357
+ class redux_evaluator : public internal::evaluator<_XprType>
335
358
  {
359
+ typedef internal::evaluator<_XprType> Base;
336
360
  public:
337
361
  typedef _XprType XprType;
338
- EIGEN_DEVICE_FUNC explicit redux_evaluator(const XprType &xpr) : m_evaluator(xpr), m_xpr(xpr) {}
362
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
363
+ explicit redux_evaluator(const XprType &xpr) : Base(xpr) {}
339
364
 
340
365
  typedef typename XprType::Scalar Scalar;
341
366
  typedef typename XprType::CoeffReturnType CoeffReturnType;
342
367
  typedef typename XprType::PacketScalar PacketScalar;
343
- typedef typename XprType::PacketReturnType PacketReturnType;
344
368
 
345
369
  enum {
346
370
  MaxRowsAtCompileTime = XprType::MaxRowsAtCompileTime,
347
371
  MaxColsAtCompileTime = XprType::MaxColsAtCompileTime,
348
372
  // TODO we should not remove DirectAccessBit and rather find an elegant way to query the alignment offset at runtime from the evaluator
349
- Flags = evaluator<XprType>::Flags & ~DirectAccessBit,
373
+ Flags = Base::Flags & ~DirectAccessBit,
350
374
  IsRowMajor = XprType::IsRowMajor,
351
375
  SizeAtCompileTime = XprType::SizeAtCompileTime,
352
- InnerSizeAtCompileTime = XprType::InnerSizeAtCompileTime,
353
- CoeffReadCost = evaluator<XprType>::CoeffReadCost,
354
- Alignment = evaluator<XprType>::Alignment
376
+ InnerSizeAtCompileTime = XprType::InnerSizeAtCompileTime
355
377
  };
356
378
 
357
- EIGEN_DEVICE_FUNC Index rows() const { return m_xpr.rows(); }
358
- EIGEN_DEVICE_FUNC Index cols() const { return m_xpr.cols(); }
359
- EIGEN_DEVICE_FUNC Index size() const { return m_xpr.size(); }
360
- EIGEN_DEVICE_FUNC Index innerSize() const { return m_xpr.innerSize(); }
361
- EIGEN_DEVICE_FUNC Index outerSize() const { return m_xpr.outerSize(); }
362
-
363
- EIGEN_DEVICE_FUNC
364
- CoeffReturnType coeff(Index row, Index col) const
365
- { return m_evaluator.coeff(row, col); }
366
-
367
- EIGEN_DEVICE_FUNC
368
- CoeffReturnType coeff(Index index) const
369
- { return m_evaluator.coeff(index); }
370
-
371
- template<int LoadMode, typename PacketType>
372
- PacketType packet(Index row, Index col) const
373
- { return m_evaluator.template packet<LoadMode,PacketType>(row, col); }
374
-
375
- template<int LoadMode, typename PacketType>
376
- PacketType packet(Index index) const
377
- { return m_evaluator.template packet<LoadMode,PacketType>(index); }
378
-
379
- EIGEN_DEVICE_FUNC
379
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
380
380
  CoeffReturnType coeffByOuterInner(Index outer, Index inner) const
381
- { return m_evaluator.coeff(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); }
381
+ { return Base::coeff(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); }
382
382
 
383
383
  template<int LoadMode, typename PacketType>
384
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
384
385
  PacketType packetByOuterInner(Index outer, Index inner) const
385
- { return m_evaluator.template packet<LoadMode,PacketType>(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); }
386
+ { return Base::template packet<LoadMode,PacketType>(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); }
386
387
 
387
- const XprType & nestedExpression() const { return m_xpr; }
388
-
389
- protected:
390
- internal::evaluator<XprType> m_evaluator;
391
- const XprType &m_xpr;
392
388
  };
393
389
 
394
390
  } // end namespace internal
@@ -403,39 +399,53 @@ protected:
403
399
  * The template parameter \a BinaryOp is the type of the functor \a func which must be
404
400
  * an associative operator. Both current C++98 and C++11 functor styles are handled.
405
401
  *
402
+ * \warning the matrix must be not empty, otherwise an assertion is triggered.
403
+ *
406
404
  * \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise()
407
405
  */
408
406
  template<typename Derived>
409
407
  template<typename Func>
410
- EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
408
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
411
409
  DenseBase<Derived>::redux(const Func& func) const
412
410
  {
413
411
  eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix");
414
412
 
415
413
  typedef typename internal::redux_evaluator<Derived> ThisEvaluator;
416
414
  ThisEvaluator thisEval(derived());
417
-
418
- return internal::redux_impl<Func, ThisEvaluator>::run(thisEval, func);
415
+
416
+ // The initial expression is passed to the reducer as an additional argument instead of
417
+ // passing it as a member of redux_evaluator to help
418
+ return internal::redux_impl<Func, ThisEvaluator>::run(thisEval, func, derived());
419
419
  }
420
420
 
421
421
  /** \returns the minimum of all coefficients of \c *this.
422
- * \warning the result is undefined if \c *this contains NaN.
422
+ * In case \c *this contains NaN, NaNPropagation determines the behavior:
423
+ * NaNPropagation == PropagateFast : undefined
424
+ * NaNPropagation == PropagateNaN : result is NaN
425
+ * NaNPropagation == PropagateNumbers : result is minimum of elements that are not NaN
426
+ * \warning the matrix must be not empty, otherwise an assertion is triggered.
423
427
  */
424
428
  template<typename Derived>
425
- EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
429
+ template<int NaNPropagation>
430
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
426
431
  DenseBase<Derived>::minCoeff() const
427
432
  {
428
- return derived().redux(Eigen::internal::scalar_min_op<Scalar,Scalar>());
433
+ return derived().redux(Eigen::internal::scalar_min_op<Scalar,Scalar, NaNPropagation>());
429
434
  }
430
435
 
431
- /** \returns the maximum of all coefficients of \c *this.
432
- * \warning the result is undefined if \c *this contains NaN.
436
+ /** \returns the maximum of all coefficients of \c *this.
437
+ * In case \c *this contains NaN, NaNPropagation determines the behavior:
438
+ * NaNPropagation == PropagateFast : undefined
439
+ * NaNPropagation == PropagateNaN : result is NaN
440
+ * NaNPropagation == PropagateNumbers : result is maximum of elements that are not NaN
441
+ * \warning the matrix must be not empty, otherwise an assertion is triggered.
433
442
  */
434
443
  template<typename Derived>
435
- EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
444
+ template<int NaNPropagation>
445
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
436
446
  DenseBase<Derived>::maxCoeff() const
437
447
  {
438
- return derived().redux(Eigen::internal::scalar_max_op<Scalar,Scalar>());
448
+ return derived().redux(Eigen::internal::scalar_max_op<Scalar,Scalar, NaNPropagation>());
439
449
  }
440
450
 
441
451
  /** \returns the sum of all coefficients of \c *this
@@ -445,7 +455,7 @@ DenseBase<Derived>::maxCoeff() const
445
455
  * \sa trace(), prod(), mean()
446
456
  */
447
457
  template<typename Derived>
448
- EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
458
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
449
459
  DenseBase<Derived>::sum() const
450
460
  {
451
461
  if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
@@ -458,7 +468,7 @@ DenseBase<Derived>::sum() const
458
468
  * \sa trace(), prod(), sum()
459
469
  */
460
470
  template<typename Derived>
461
- EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
471
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
462
472
  DenseBase<Derived>::mean() const
463
473
  {
464
474
  #ifdef __INTEL_COMPILER
@@ -479,7 +489,7 @@ DenseBase<Derived>::mean() const
479
489
  * \sa sum(), mean(), trace()
480
490
  */
481
491
  template<typename Derived>
482
- EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
492
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
483
493
  DenseBase<Derived>::prod() const
484
494
  {
485
495
  if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
@@ -494,7 +504,7 @@ DenseBase<Derived>::prod() const
494
504
  * \sa diagonal(), sum()
495
505
  */
496
506
  template<typename Derived>
497
- EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
507
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
498
508
  MatrixBase<Derived>::trace() const
499
509
  {
500
510
  return derived().diagonal().sum();