tomoto 0.2.3 → 0.3.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +6 -0
- data/README.md +8 -10
- data/ext/tomoto/extconf.rb +6 -2
- data/ext/tomoto/{ext.cpp → tomoto.cpp} +1 -1
- data/lib/tomoto/version.rb +1 -1
- data/lib/tomoto.rb +5 -1
- data/vendor/EigenRand/EigenRand/Core.h +10 -10
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +208 -9
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +52 -31
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +9 -8
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +28 -21
- data/vendor/EigenRand/EigenRand/EigenRand +11 -6
- data/vendor/EigenRand/EigenRand/Macro.h +13 -7
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +348 -740
- data/vendor/EigenRand/EigenRand/MvDists/Multinomial.h +5 -3
- data/vendor/EigenRand/EigenRand/MvDists/MvNormal.h +9 -3
- data/vendor/EigenRand/EigenRand/PacketFilter.h +11 -253
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +21 -47
- data/vendor/EigenRand/EigenRand/RandUtils.h +50 -344
- data/vendor/EigenRand/EigenRand/arch/AVX/MorePacketMath.h +619 -0
- data/vendor/EigenRand/EigenRand/arch/AVX/PacketFilter.h +149 -0
- data/vendor/EigenRand/EigenRand/arch/AVX/RandUtils.h +228 -0
- data/vendor/EigenRand/EigenRand/arch/NEON/MorePacketMath.h +473 -0
- data/vendor/EigenRand/EigenRand/arch/NEON/PacketFilter.h +142 -0
- data/vendor/EigenRand/EigenRand/arch/NEON/RandUtils.h +126 -0
- data/vendor/EigenRand/EigenRand/arch/SSE/MorePacketMath.h +501 -0
- data/vendor/EigenRand/EigenRand/arch/SSE/PacketFilter.h +133 -0
- data/vendor/EigenRand/EigenRand/arch/SSE/RandUtils.h +120 -0
- data/vendor/EigenRand/EigenRand/doc.h +24 -12
- data/vendor/EigenRand/README.md +57 -4
- data/vendor/eigen/COPYING.APACHE +203 -0
- data/vendor/eigen/COPYING.BSD +1 -1
- data/vendor/eigen/COPYING.MINPACK +51 -52
- data/vendor/eigen/Eigen/Cholesky +0 -1
- data/vendor/eigen/Eigen/Core +112 -265
- data/vendor/eigen/Eigen/Eigenvalues +2 -3
- data/vendor/eigen/Eigen/Geometry +5 -8
- data/vendor/eigen/Eigen/Householder +0 -1
- data/vendor/eigen/Eigen/Jacobi +0 -1
- data/vendor/eigen/Eigen/KLUSupport +41 -0
- data/vendor/eigen/Eigen/LU +2 -5
- data/vendor/eigen/Eigen/OrderingMethods +0 -3
- data/vendor/eigen/Eigen/PaStiXSupport +1 -0
- data/vendor/eigen/Eigen/PardisoSupport +0 -0
- data/vendor/eigen/Eigen/QR +2 -3
- data/vendor/eigen/Eigen/QtAlignedMalloc +0 -1
- data/vendor/eigen/Eigen/SVD +0 -1
- data/vendor/eigen/Eigen/Sparse +0 -2
- data/vendor/eigen/Eigen/SparseCholesky +0 -8
- data/vendor/eigen/Eigen/SparseLU +4 -0
- data/vendor/eigen/Eigen/SparseQR +0 -1
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +42 -27
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +39 -23
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +90 -47
- data/vendor/eigen/Eigen/src/Core/ArithmeticSequence.h +413 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +99 -11
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +3 -3
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +21 -21
- data/vendor/eigen/Eigen/src/Core/Assign.h +1 -1
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +125 -50
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +10 -10
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +16 -16
- data/vendor/eigen/Eigen/src/Core/Block.h +56 -60
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +29 -31
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +7 -3
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +325 -272
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +5 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +21 -22
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +153 -18
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +6 -6
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +14 -10
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +132 -42
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +25 -21
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +153 -71
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +21 -23
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +50 -2
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +1 -1
- data/vendor/eigen/Eigen/src/Core/Dot.h +10 -10
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +10 -9
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +8 -4
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +3 -3
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +20 -10
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +599 -152
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +40 -33
- data/vendor/eigen/Eigen/src/Core/IO.h +40 -7
- data/vendor/eigen/Eigen/src/Core/IndexedView.h +237 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +9 -10
- data/vendor/eigen/Eigen/src/Core/Map.h +7 -7
- data/vendor/eigen/Eigen/src/Core/MapBase.h +10 -3
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +767 -125
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +118 -19
- data/vendor/eigen/Eigen/src/Core/Matrix.h +131 -25
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +21 -3
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +25 -50
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +4 -3
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +107 -20
- data/vendor/eigen/Eigen/src/Core/PartialReduxEvaluator.h +232 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +3 -31
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +152 -59
- data/vendor/eigen/Eigen/src/Core/Product.h +30 -25
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +192 -125
- data/vendor/eigen/Eigen/src/Core/Random.h +37 -1
- data/vendor/eigen/Eigen/src/Core/Redux.h +180 -170
- data/vendor/eigen/Eigen/src/Core/Ref.h +121 -23
- data/vendor/eigen/Eigen/src/Core/Replicate.h +8 -8
- data/vendor/eigen/Eigen/src/Core/Reshaped.h +454 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +7 -5
- data/vendor/eigen/Eigen/src/Core/Reverse.h +18 -12
- data/vendor/eigen/Eigen/src/Core/Select.h +8 -6
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +33 -20
- data/vendor/eigen/Eigen/src/Core/Solve.h +14 -14
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +16 -16
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +41 -3
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +100 -70
- data/vendor/eigen/Eigen/src/Core/StlIterators.h +463 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +9 -4
- data/vendor/eigen/Eigen/src/Core/Swap.h +5 -4
- data/vendor/eigen/Eigen/src/Core/Transpose.h +88 -27
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +26 -47
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +93 -75
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +5 -5
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +159 -70
- data/vendor/eigen/Eigen/src/Core/Visitor.h +137 -29
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +50 -129
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +126 -337
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +1092 -155
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +65 -1
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/Complex.h +422 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +207 -236
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1482 -495
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/TypeCasting.h +89 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +152 -165
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +19 -251
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProduct.h +2937 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProductCommon.h +221 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProductMMA.h +629 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +2042 -392
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +235 -80
- data/vendor/eigen/Eigen/src/Core/arch/Default/BFloat16.h +700 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +102 -14
- data/vendor/eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h +1649 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctionsFwd.h +110 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Half.h +942 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +1 -1
- data/vendor/eigen/Eigen/src/Core/arch/Default/TypeCasting.h +120 -0
- data/vendor/eigen/Eigen/src/Core/arch/{CUDA → GPU}/MathFunctions.h +16 -4
- data/vendor/eigen/Eigen/src/Core/arch/GPU/PacketMath.h +1685 -0
- data/vendor/eigen/Eigen/src/Core/arch/GPU/TypeCasting.h +80 -0
- data/vendor/eigen/Eigen/src/Core/arch/HIP/hcc/math_constants.h +23 -0
- data/vendor/eigen/Eigen/src/Core/arch/MSA/Complex.h +648 -0
- data/vendor/eigen/Eigen/src/Core/arch/MSA/MathFunctions.h +387 -0
- data/vendor/eigen/Eigen/src/Core/arch/MSA/PacketMath.h +1233 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +313 -219
- data/vendor/eigen/Eigen/src/Core/arch/NEON/GeneralBlockPanelKernel.h +183 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +54 -70
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +4376 -549
- data/vendor/eigen/Eigen/src/Core/arch/NEON/TypeCasting.h +1419 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +59 -179
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +65 -428
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +893 -283
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +65 -0
- data/vendor/eigen/Eigen/src/Core/arch/SVE/MathFunctions.h +44 -0
- data/vendor/eigen/Eigen/src/Core/arch/SVE/PacketMath.h +752 -0
- data/vendor/eigen/Eigen/src/Core/arch/SVE/TypeCasting.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/InteropHeaders.h +232 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/MathFunctions.h +301 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/PacketMath.h +670 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/SyclMemoryModel.h +694 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/TypeCasting.h +85 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +212 -183
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +101 -5
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +510 -395
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +11 -2
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +112 -46
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +31 -30
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +32 -2
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +355 -16
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +1075 -586
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +49 -24
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +41 -35
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +6 -6
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +4 -2
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +382 -483
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +22 -5
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +53 -30
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +16 -8
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +8 -6
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +4 -4
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +5 -4
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +33 -27
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +14 -12
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +36 -34
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +8 -4
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +13 -10
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +304 -119
- data/vendor/eigen/Eigen/src/Core/util/ConfigureVectorization.h +512 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +25 -9
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +26 -3
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +29 -9
- data/vendor/eigen/Eigen/src/Core/util/IndexedViewHelper.h +186 -0
- data/vendor/eigen/Eigen/src/Core/util/IntegralConstant.h +272 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +8 -1
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +709 -246
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +222 -52
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +355 -77
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +5 -1
- data/vendor/eigen/Eigen/src/Core/util/ReshapedHelper.h +51 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +8 -5
- data/vendor/eigen/Eigen/src/Core/util/SymbolicIndex.h +293 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +65 -30
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +1 -1
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +7 -4
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +2 -2
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +1 -1
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +2 -2
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +2 -2
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +9 -6
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +21 -9
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +77 -43
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +20 -15
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +99 -5
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +4 -4
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +3 -3
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +15 -11
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +1 -1
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +3 -2
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +39 -2
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +70 -14
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +3 -3
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +23 -5
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +88 -67
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +6 -12
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +1 -1
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +168 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +9 -2
- data/vendor/eigen/Eigen/src/Householder/Householder.h +8 -4
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +123 -48
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +15 -15
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +7 -23
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +5 -22
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +41 -47
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +51 -60
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +70 -20
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +2 -20
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +11 -9
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +31 -10
- data/vendor/eigen/Eigen/src/KLUSupport/KLUSupport.h +358 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +35 -19
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +29 -43
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +25 -8
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +71 -58
- data/vendor/eigen/Eigen/src/LU/arch/InverseSize4.h +351 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +7 -17
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +297 -277
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +6 -10
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +1 -1
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +9 -7
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +41 -20
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +100 -27
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +59 -22
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +48 -23
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +25 -3
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +183 -63
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +22 -14
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +83 -22
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +3 -3
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +17 -9
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +12 -37
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +3 -2
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +16 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +6 -6
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +81 -27
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +25 -57
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +40 -11
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +11 -15
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +4 -2
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +30 -8
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +126 -11
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +5 -12
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +13 -1
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +7 -7
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +5 -2
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +8 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +1 -1
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +1 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +162 -12
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +1 -1
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +76 -2
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +2 -2
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +1 -1
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +1 -1
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +19 -6
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +2 -12
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +2 -2
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +2 -2
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +6 -8
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +175 -39
- data/vendor/eigen/Eigen/src/misc/lapacke.h +5 -4
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +28 -2
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +155 -11
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +626 -242
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +14 -0
- data/vendor/eigen/Eigen/src/plugins/IndexedViewMethods.h +262 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +4 -4
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +10 -0
- data/vendor/eigen/Eigen/src/plugins/ReshapedMethods.h +149 -0
- data/vendor/eigen/README.md +2 -0
- data/vendor/eigen/bench/btl/README +1 -1
- data/vendor/eigen/bench/tensors/README +6 -7
- data/vendor/eigen/ci/README.md +56 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +1 -1
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +213 -158
- data/vendor/eigen/unsupported/README.txt +1 -1
- data/vendor/tomotopy/README.kr.rst +21 -0
- data/vendor/tomotopy/README.rst +20 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +2 -2
- data/vendor/tomotopy/src/Labeling/Phraser.hpp +1 -1
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +2 -1
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +2 -1
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +1 -1
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +2 -2
- data/vendor/tomotopy/src/TopicModel/HDP.h +1 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +53 -2
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +1 -1
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +1 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +2 -2
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +16 -5
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +1 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +1 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +1 -0
- data/vendor/tomotopy/src/TopicModel/PT.h +3 -1
- data/vendor/tomotopy/src/TopicModel/PTModel.hpp +31 -1
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +2 -2
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +7 -5
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +36 -1
- data/vendor/tomotopy/src/Utils/exception.h +6 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +14 -12
- data/vendor/tomotopy/src/Utils/sse_gamma.h +0 -3
- metadata +60 -14
- data/vendor/eigen/Eigen/CMakeLists.txt +0 -19
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +0 -674
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +0 -333
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +0 -1124
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +0 -212
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +0 -161
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +0 -338
@@ -17,6 +17,18 @@
|
|
17
17
|
#define EIGEN_SVDBASE_H
|
18
18
|
|
19
19
|
namespace Eigen {
|
20
|
+
|
21
|
+
namespace internal {
|
22
|
+
template<typename Derived> struct traits<SVDBase<Derived> >
|
23
|
+
: traits<Derived>
|
24
|
+
{
|
25
|
+
typedef MatrixXpr XprKind;
|
26
|
+
typedef SolverStorage StorageKind;
|
27
|
+
typedef int StorageIndex;
|
28
|
+
enum { Flags = 0 };
|
29
|
+
};
|
30
|
+
}
|
31
|
+
|
20
32
|
/** \ingroup SVD_Module
|
21
33
|
*
|
22
34
|
*
|
@@ -39,20 +51,26 @@ namespace Eigen {
|
|
39
51
|
* smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
|
40
52
|
* singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
|
41
53
|
* and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
|
54
|
+
*
|
55
|
+
* The status of the computation can be retrived using the \a info() method. Unless \a info() returns \a Success, the results should be not
|
56
|
+
* considered well defined.
|
42
57
|
*
|
43
|
-
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
|
58
|
+
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, and \a info() will return \a InvalidInput, but the computation is guaranteed to
|
44
59
|
* terminate in finite (and reasonable) time.
|
45
60
|
* \sa class BDCSVD, class JacobiSVD
|
46
61
|
*/
|
47
|
-
template<typename Derived>
|
48
|
-
|
62
|
+
template<typename Derived> class SVDBase
|
63
|
+
: public SolverBase<SVDBase<Derived> >
|
49
64
|
{
|
65
|
+
public:
|
66
|
+
|
67
|
+
template<typename Derived_>
|
68
|
+
friend struct internal::solve_assertion;
|
50
69
|
|
51
|
-
public:
|
52
70
|
typedef typename internal::traits<Derived>::MatrixType MatrixType;
|
53
71
|
typedef typename MatrixType::Scalar Scalar;
|
54
72
|
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
55
|
-
typedef typename
|
73
|
+
typedef typename Eigen::internal::traits<SVDBase>::StorageIndex StorageIndex;
|
56
74
|
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
|
57
75
|
enum {
|
58
76
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
@@ -82,7 +100,7 @@ public:
|
|
82
100
|
*/
|
83
101
|
const MatrixUType& matrixU() const
|
84
102
|
{
|
85
|
-
|
103
|
+
_check_compute_assertions();
|
86
104
|
eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
|
87
105
|
return m_matrixU;
|
88
106
|
}
|
@@ -98,7 +116,7 @@ public:
|
|
98
116
|
*/
|
99
117
|
const MatrixVType& matrixV() const
|
100
118
|
{
|
101
|
-
|
119
|
+
_check_compute_assertions();
|
102
120
|
eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
|
103
121
|
return m_matrixV;
|
104
122
|
}
|
@@ -110,14 +128,14 @@ public:
|
|
110
128
|
*/
|
111
129
|
const SingularValuesType& singularValues() const
|
112
130
|
{
|
113
|
-
|
131
|
+
_check_compute_assertions();
|
114
132
|
return m_singularValues;
|
115
133
|
}
|
116
134
|
|
117
135
|
/** \returns the number of singular values that are not exactly 0 */
|
118
136
|
Index nonzeroSingularValues() const
|
119
137
|
{
|
120
|
-
|
138
|
+
_check_compute_assertions();
|
121
139
|
return m_nonzeroSingularValues;
|
122
140
|
}
|
123
141
|
|
@@ -130,7 +148,7 @@ public:
|
|
130
148
|
inline Index rank() const
|
131
149
|
{
|
132
150
|
using std::abs;
|
133
|
-
|
151
|
+
_check_compute_assertions();
|
134
152
|
if(m_singularValues.size()==0) return 0;
|
135
153
|
RealScalar premultiplied_threshold = numext::maxi<RealScalar>(m_singularValues.coeff(0) * threshold(), (std::numeric_limits<RealScalar>::min)());
|
136
154
|
Index i = m_nonzeroSingularValues-1;
|
@@ -183,7 +201,7 @@ public:
|
|
183
201
|
// this temporary is needed to workaround a MSVC issue
|
184
202
|
Index diagSize = (std::max<Index>)(1,m_diagSize);
|
185
203
|
return m_usePrescribedThreshold ? m_prescribedThreshold
|
186
|
-
: diagSize*NumTraits<Scalar>::epsilon();
|
204
|
+
: RealScalar(diagSize)*NumTraits<Scalar>::epsilon();
|
187
205
|
}
|
188
206
|
|
189
207
|
/** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
|
@@ -194,6 +212,7 @@ public:
|
|
194
212
|
inline Index rows() const { return m_rows; }
|
195
213
|
inline Index cols() const { return m_cols; }
|
196
214
|
|
215
|
+
#ifdef EIGEN_PARSED_BY_DOXYGEN
|
197
216
|
/** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
|
198
217
|
*
|
199
218
|
* \param b the right-hand-side of the equation to solve.
|
@@ -205,32 +224,55 @@ public:
|
|
205
224
|
*/
|
206
225
|
template<typename Rhs>
|
207
226
|
inline const Solve<Derived, Rhs>
|
208
|
-
solve(const MatrixBase<Rhs>& b) const
|
227
|
+
solve(const MatrixBase<Rhs>& b) const;
|
228
|
+
#endif
|
229
|
+
|
230
|
+
|
231
|
+
/** \brief Reports whether previous computation was successful.
|
232
|
+
*
|
233
|
+
* \returns \c Success if computation was successful.
|
234
|
+
*/
|
235
|
+
EIGEN_DEVICE_FUNC
|
236
|
+
ComputationInfo info() const
|
209
237
|
{
|
210
238
|
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
211
|
-
|
212
|
-
return Solve<Derived, Rhs>(derived(), b.derived());
|
239
|
+
return m_info;
|
213
240
|
}
|
214
|
-
|
241
|
+
|
215
242
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
216
243
|
template<typename RhsType, typename DstType>
|
217
|
-
EIGEN_DEVICE_FUNC
|
218
244
|
void _solve_impl(const RhsType &rhs, DstType &dst) const;
|
245
|
+
|
246
|
+
template<bool Conjugate, typename RhsType, typename DstType>
|
247
|
+
void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
|
219
248
|
#endif
|
220
249
|
|
221
250
|
protected:
|
222
|
-
|
251
|
+
|
223
252
|
static void check_template_parameters()
|
224
253
|
{
|
225
254
|
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
226
255
|
}
|
227
|
-
|
256
|
+
|
257
|
+
void _check_compute_assertions() const {
|
258
|
+
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
259
|
+
}
|
260
|
+
|
261
|
+
template<bool Transpose_, typename Rhs>
|
262
|
+
void _check_solve_assertion(const Rhs& b) const {
|
263
|
+
EIGEN_ONLY_USED_FOR_DEBUG(b);
|
264
|
+
_check_compute_assertions();
|
265
|
+
eigen_assert(computeU() && computeV() && "SVDBase::solve(): Both unitaries U and V are required to be computed (thin unitaries suffice).");
|
266
|
+
eigen_assert((Transpose_?cols():rows())==b.rows() && "SVDBase::solve(): invalid number of rows of the right hand side matrix b");
|
267
|
+
}
|
268
|
+
|
228
269
|
// return true if already allocated
|
229
270
|
bool allocate(Index rows, Index cols, unsigned int computationOptions) ;
|
230
271
|
|
231
272
|
MatrixUType m_matrixU;
|
232
273
|
MatrixVType m_matrixV;
|
233
274
|
SingularValuesType m_singularValues;
|
275
|
+
ComputationInfo m_info;
|
234
276
|
bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
|
235
277
|
bool m_computeFullU, m_computeThinU;
|
236
278
|
bool m_computeFullV, m_computeThinV;
|
@@ -243,9 +285,14 @@ protected:
|
|
243
285
|
* Default constructor of SVDBase
|
244
286
|
*/
|
245
287
|
SVDBase()
|
246
|
-
:
|
288
|
+
: m_info(Success),
|
289
|
+
m_isInitialized(false),
|
247
290
|
m_isAllocated(false),
|
248
291
|
m_usePrescribedThreshold(false),
|
292
|
+
m_computeFullU(false),
|
293
|
+
m_computeThinU(false),
|
294
|
+
m_computeFullV(false),
|
295
|
+
m_computeThinV(false),
|
249
296
|
m_computationOptions(0),
|
250
297
|
m_rows(-1), m_cols(-1), m_diagSize(0)
|
251
298
|
{
|
@@ -260,17 +307,30 @@ template<typename Derived>
|
|
260
307
|
template<typename RhsType, typename DstType>
|
261
308
|
void SVDBase<Derived>::_solve_impl(const RhsType &rhs, DstType &dst) const
|
262
309
|
{
|
263
|
-
eigen_assert(rhs.rows() == rows());
|
264
|
-
|
265
310
|
// A = U S V^*
|
266
311
|
// So A^{-1} = V S^{-1} U^*
|
267
312
|
|
268
|
-
Matrix<Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp;
|
313
|
+
Matrix<typename RhsType::Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp;
|
269
314
|
Index l_rank = rank();
|
270
315
|
tmp.noalias() = m_matrixU.leftCols(l_rank).adjoint() * rhs;
|
271
316
|
tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp;
|
272
317
|
dst = m_matrixV.leftCols(l_rank) * tmp;
|
273
318
|
}
|
319
|
+
|
320
|
+
template<typename Derived>
|
321
|
+
template<bool Conjugate, typename RhsType, typename DstType>
|
322
|
+
void SVDBase<Derived>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
|
323
|
+
{
|
324
|
+
// A = U S V^*
|
325
|
+
// So A^{-*} = U S^{-1} V^*
|
326
|
+
// And A^{-T} = U_conj S^{-1} V^T
|
327
|
+
Matrix<typename RhsType::Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp;
|
328
|
+
Index l_rank = rank();
|
329
|
+
|
330
|
+
tmp.noalias() = m_matrixV.leftCols(l_rank).transpose().template conjugateIf<Conjugate>() * rhs;
|
331
|
+
tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp;
|
332
|
+
dst = m_matrixU.template conjugateIf<!Conjugate>().leftCols(l_rank) * tmp;
|
333
|
+
}
|
274
334
|
#endif
|
275
335
|
|
276
336
|
template<typename MatrixType>
|
@@ -288,6 +348,7 @@ bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computat
|
|
288
348
|
|
289
349
|
m_rows = rows;
|
290
350
|
m_cols = cols;
|
351
|
+
m_info = Success;
|
291
352
|
m_isInitialized = false;
|
292
353
|
m_isAllocated = true;
|
293
354
|
m_computationOptions = computationOptions;
|
@@ -127,7 +127,7 @@ void upperbidiagonalization_inplace_unblocked(MatrixType& mat,
|
|
127
127
|
.makeHouseholderInPlace(mat.coeffRef(k,k+1), upper_diagonal[k]);
|
128
128
|
// apply householder transform to remaining part of mat on the left
|
129
129
|
mat.bottomRightCorner(remainingRows-1, remainingCols)
|
130
|
-
.applyHouseholderOnTheRight(mat.row(k).tail(remainingCols-1).
|
130
|
+
.applyHouseholderOnTheRight(mat.row(k).tail(remainingCols-1).adjoint(), mat.coeff(k,k+1), tempData);
|
131
131
|
}
|
132
132
|
}
|
133
133
|
|
@@ -202,7 +202,7 @@ void upperbidiagonalization_blocked_helper(MatrixType& A,
|
|
202
202
|
{
|
203
203
|
SubColumnType y_k( Y.col(k).tail(remainingCols) );
|
204
204
|
|
205
|
-
// let's use the
|
205
|
+
// let's use the beginning of column k of Y as a temporary vector
|
206
206
|
SubColumnType tmp( Y.col(k).head(k) );
|
207
207
|
y_k.noalias() = A.block(k,k+1, remainingRows,remainingCols).adjoint() * v_k; // bottleneck
|
208
208
|
tmp.noalias() = V_k1.adjoint() * v_k;
|
@@ -231,7 +231,7 @@ void upperbidiagonalization_blocked_helper(MatrixType& A,
|
|
231
231
|
{
|
232
232
|
SubColumnType x_k ( X.col(k).tail(remainingRows-1) );
|
233
233
|
|
234
|
-
// let's use the
|
234
|
+
// let's use the beginning of column k of X as a temporary vectors
|
235
235
|
// note that tmp0 and tmp1 overlaps
|
236
236
|
SubColumnType tmp0 ( X.col(k).head(k) ),
|
237
237
|
tmp1 ( X.col(k).head(k+1) );
|
@@ -80,11 +80,19 @@ class SimplicialCholeskyBase : public SparseSolverBase<Derived>
|
|
80
80
|
|
81
81
|
/** Default constructor */
|
82
82
|
SimplicialCholeskyBase()
|
83
|
-
: m_info(Success),
|
83
|
+
: m_info(Success),
|
84
|
+
m_factorizationIsOk(false),
|
85
|
+
m_analysisIsOk(false),
|
86
|
+
m_shiftOffset(0),
|
87
|
+
m_shiftScale(1)
|
84
88
|
{}
|
85
89
|
|
86
90
|
explicit SimplicialCholeskyBase(const MatrixType& matrix)
|
87
|
-
: m_info(Success),
|
91
|
+
: m_info(Success),
|
92
|
+
m_factorizationIsOk(false),
|
93
|
+
m_analysisIsOk(false),
|
94
|
+
m_shiftOffset(0),
|
95
|
+
m_shiftScale(1)
|
88
96
|
{
|
89
97
|
derived().compute(matrix);
|
90
98
|
}
|
@@ -101,7 +109,7 @@ class SimplicialCholeskyBase : public SparseSolverBase<Derived>
|
|
101
109
|
|
102
110
|
/** \brief Reports whether previous computation was successful.
|
103
111
|
*
|
104
|
-
* \returns \c Success if computation was
|
112
|
+
* \returns \c Success if computation was successful,
|
105
113
|
* \c NumericalIssue if the matrix.appears to be negative.
|
106
114
|
*/
|
107
115
|
ComputationInfo info() const
|
@@ -210,7 +218,7 @@ class SimplicialCholeskyBase : public SparseSolverBase<Derived>
|
|
210
218
|
CholMatrixType tmp(size,size);
|
211
219
|
ConstCholMatrixPtr pmat;
|
212
220
|
|
213
|
-
if(m_P.size()==0 && (UpLo&Upper)==Upper)
|
221
|
+
if(m_P.size() == 0 && (int(UpLo) & int(Upper)) == Upper)
|
214
222
|
{
|
215
223
|
// If there is no ordering, try to directly use the input matrix without any copy
|
216
224
|
internal::simplicial_cholesky_grab_input<CholMatrixType,MatrixType>::run(a, pmat, tmp);
|
@@ -279,8 +287,8 @@ template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<Simp
|
|
279
287
|
typedef SparseMatrix<Scalar, ColMajor, StorageIndex> CholMatrixType;
|
280
288
|
typedef TriangularView<const CholMatrixType, Eigen::Lower> MatrixL;
|
281
289
|
typedef TriangularView<const typename CholMatrixType::AdjointReturnType, Eigen::Upper> MatrixU;
|
282
|
-
static inline MatrixL getL(const
|
283
|
-
static inline MatrixU getU(const
|
290
|
+
static inline MatrixL getL(const CholMatrixType& m) { return MatrixL(m); }
|
291
|
+
static inline MatrixU getU(const CholMatrixType& m) { return MatrixU(m.adjoint()); }
|
284
292
|
};
|
285
293
|
|
286
294
|
template<typename _MatrixType,int _UpLo, typename _Ordering> struct traits<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
|
@@ -293,8 +301,8 @@ template<typename _MatrixType,int _UpLo, typename _Ordering> struct traits<Simpl
|
|
293
301
|
typedef SparseMatrix<Scalar, ColMajor, StorageIndex> CholMatrixType;
|
294
302
|
typedef TriangularView<const CholMatrixType, Eigen::UnitLower> MatrixL;
|
295
303
|
typedef TriangularView<const typename CholMatrixType::AdjointReturnType, Eigen::UnitUpper> MatrixU;
|
296
|
-
static inline MatrixL getL(const
|
297
|
-
static inline MatrixU getU(const
|
304
|
+
static inline MatrixL getL(const CholMatrixType& m) { return MatrixL(m); }
|
305
|
+
static inline MatrixU getU(const CholMatrixType& m) { return MatrixU(m.adjoint()); }
|
298
306
|
};
|
299
307
|
|
300
308
|
template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
|
@@ -608,7 +616,7 @@ public:
|
|
608
616
|
}
|
609
617
|
|
610
618
|
if(Base::m_diag.size()>0)
|
611
|
-
dest = Base::m_diag.asDiagonal().inverse() * dest;
|
619
|
+
dest = Base::m_diag.real().asDiagonal().inverse() * dest;
|
612
620
|
|
613
621
|
if (Base::m_matrix.nonZeros()>0) // otherwise I==I
|
614
622
|
{
|
@@ -2,46 +2,21 @@
|
|
2
2
|
// for linear algebra.
|
3
3
|
//
|
4
4
|
// Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr>
|
5
|
+
//
|
6
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
7
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
8
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
5
9
|
|
6
10
|
/*
|
7
|
-
|
8
|
-
NOTE: thes functions vave been adapted from the LDL library:
|
11
|
+
NOTE: these functions have been adapted from the LDL library:
|
9
12
|
|
10
13
|
LDL Copyright (c) 2005 by Timothy A. Davis. All Rights Reserved.
|
11
14
|
|
12
|
-
LDL
|
13
|
-
|
14
|
-
|
15
|
-
LDL implies that you agree to this License.
|
16
|
-
|
17
|
-
This library is free software; you can redistribute it and/or
|
18
|
-
modify it under the terms of the GNU Lesser General Public
|
19
|
-
License as published by the Free Software Foundation; either
|
20
|
-
version 2.1 of the License, or (at your option) any later version.
|
21
|
-
|
22
|
-
This library is distributed in the hope that it will be useful,
|
23
|
-
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
24
|
-
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
25
|
-
Lesser General Public License for more details.
|
26
|
-
|
27
|
-
You should have received a copy of the GNU Lesser General Public
|
28
|
-
License along with this library; if not, write to the Free Software
|
29
|
-
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
|
30
|
-
USA
|
31
|
-
|
32
|
-
Permission is hereby granted to use or copy this program under the
|
33
|
-
terms of the GNU LGPL, provided that the Copyright, this License,
|
34
|
-
and the Availability of the original version is retained on all copies.
|
35
|
-
User documentation of any code that uses this code or any modified
|
36
|
-
version of this code must cite the Copyright, this License, the
|
37
|
-
Availability note, and "Used by permission." Permission to modify
|
38
|
-
the code and to distribute modified code is granted, provided the
|
39
|
-
Copyright, this License, and the Availability note are retained,
|
40
|
-
and a notice that the code was modified is included.
|
15
|
+
The author of LDL, Timothy A. Davis., has executed a license with Google LLC
|
16
|
+
to permit distribution of this code and derivative works as part of Eigen under
|
17
|
+
the Mozilla Public License v. 2.0, as stated at the top of this file.
|
41
18
|
*/
|
42
19
|
|
43
|
-
#include "../Core/util/NonMPL2.h"
|
44
|
-
|
45
20
|
#ifndef EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H
|
46
21
|
#define EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H
|
47
22
|
|
@@ -122,7 +97,7 @@ void SimplicialCholeskyBase<Derived>::factorize_preordered(const CholMatrixType&
|
|
122
97
|
for(StorageIndex k = 0; k < size; ++k)
|
123
98
|
{
|
124
99
|
// compute nonzero pattern of kth row of L, in topological order
|
125
|
-
y[k] = 0
|
100
|
+
y[k] = Scalar(0); // Y(0:k) is now all zero
|
126
101
|
StorageIndex top = size; // stack for pattern is empty
|
127
102
|
tags[k] = k; // mark node k as visited
|
128
103
|
m_nonZerosPerCol[k] = 0; // count of nonzeros in column k of L
|
@@ -146,17 +121,17 @@ void SimplicialCholeskyBase<Derived>::factorize_preordered(const CholMatrixType&
|
|
146
121
|
/* compute numerical values kth row of L (a sparse triangular solve) */
|
147
122
|
|
148
123
|
RealScalar d = numext::real(y[k]) * m_shiftScale + m_shiftOffset; // get D(k,k), apply the shift function, and clear Y(k)
|
149
|
-
y[k] = 0
|
124
|
+
y[k] = Scalar(0);
|
150
125
|
for(; top < size; ++top)
|
151
126
|
{
|
152
127
|
Index i = pattern[top]; /* pattern[top:n-1] is pattern of L(:,k) */
|
153
128
|
Scalar yi = y[i]; /* get and clear Y(i) */
|
154
|
-
y[i] = 0
|
129
|
+
y[i] = Scalar(0);
|
155
130
|
|
156
131
|
/* the nonzero entry L(k,i) */
|
157
132
|
Scalar l_ki;
|
158
133
|
if(DoLDLT)
|
159
|
-
l_ki = yi / m_diag[i];
|
134
|
+
l_ki = yi / numext::real(m_diag[i]);
|
160
135
|
else
|
161
136
|
yi = l_ki = yi / Lx[Lp[i]];
|
162
137
|
|
@@ -28,7 +28,7 @@ class AmbiVector
|
|
28
28
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
29
29
|
|
30
30
|
explicit AmbiVector(Index size)
|
31
|
-
: m_buffer(0), m_zero(0), m_size(0), m_allocatedSize(0), m_allocatedElements(0), m_mode(-1)
|
31
|
+
: m_buffer(0), m_zero(0), m_size(0), m_end(0), m_allocatedSize(0), m_allocatedElements(0), m_mode(-1)
|
32
32
|
{
|
33
33
|
resize(size);
|
34
34
|
}
|
@@ -147,7 +147,8 @@ template<typename _Scalar,typename _StorageIndex>
|
|
147
147
|
void AmbiVector<_Scalar,_StorageIndex>::init(int mode)
|
148
148
|
{
|
149
149
|
m_mode = mode;
|
150
|
-
|
150
|
+
// This is only necessary in sparse mode, but we set these unconditionally to avoid some maybe-uninitialized warnings
|
151
|
+
// if (m_mode==IsSparse)
|
151
152
|
{
|
152
153
|
m_llSize = 0;
|
153
154
|
m_llStart = -1;
|
@@ -207,6 +207,22 @@ class CompressedStorage
|
|
207
207
|
return m_values[id];
|
208
208
|
}
|
209
209
|
|
210
|
+
void moveChunk(Index from, Index to, Index chunkSize)
|
211
|
+
{
|
212
|
+
eigen_internal_assert(to+chunkSize <= m_size);
|
213
|
+
if(to>from && from+chunkSize>to)
|
214
|
+
{
|
215
|
+
// move backward
|
216
|
+
internal::smart_memmove(m_values+from, m_values+from+chunkSize, m_values+to);
|
217
|
+
internal::smart_memmove(m_indices+from, m_indices+from+chunkSize, m_indices+to);
|
218
|
+
}
|
219
|
+
else
|
220
|
+
{
|
221
|
+
internal::smart_copy(m_values+from, m_values+from+chunkSize, m_values+to);
|
222
|
+
internal::smart_copy(m_indices+from, m_indices+from+chunkSize, m_indices+to);
|
223
|
+
}
|
224
|
+
}
|
225
|
+
|
210
226
|
void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
|
211
227
|
{
|
212
228
|
Index k = 0;
|
@@ -10,7 +10,7 @@
|
|
10
10
|
#ifndef EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
|
11
11
|
#define EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
|
12
12
|
|
13
|
-
namespace Eigen {
|
13
|
+
namespace Eigen {
|
14
14
|
|
15
15
|
namespace internal {
|
16
16
|
|
@@ -25,16 +25,16 @@ static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& r
|
|
25
25
|
Index rows = lhs.innerSize();
|
26
26
|
Index cols = rhs.outerSize();
|
27
27
|
eigen_assert(lhs.outerSize() == rhs.innerSize());
|
28
|
-
|
28
|
+
|
29
29
|
ei_declare_aligned_stack_constructed_variable(bool, mask, rows, 0);
|
30
30
|
ei_declare_aligned_stack_constructed_variable(ResScalar, values, rows, 0);
|
31
31
|
ei_declare_aligned_stack_constructed_variable(Index, indices, rows, 0);
|
32
|
-
|
32
|
+
|
33
33
|
std::memset(mask,0,sizeof(bool)*rows);
|
34
34
|
|
35
35
|
evaluator<Lhs> lhsEval(lhs);
|
36
36
|
evaluator<Rhs> rhsEval(rhs);
|
37
|
-
|
37
|
+
|
38
38
|
// estimate the number of non zero entries
|
39
39
|
// given a rhs column containing Y non zeros, we assume that the respective Y columns
|
40
40
|
// of the lhs differs in average of one non zeros, thus the number of non zeros for
|
@@ -141,7 +141,7 @@ struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,C
|
|
141
141
|
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorMatrix;
|
142
142
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorMatrixAux;
|
143
143
|
typedef typename sparse_eval<ColMajorMatrixAux,ResultType::RowsAtCompileTime,ResultType::ColsAtCompileTime,ColMajorMatrixAux::Flags>::type ColMajorMatrix;
|
144
|
-
|
144
|
+
|
145
145
|
// If the result is tall and thin (in the extreme case a column vector)
|
146
146
|
// then it is faster to sort the coefficients inplace instead of transposing twice.
|
147
147
|
// FIXME, the following heuristic is probably not very good.
|
@@ -155,7 +155,7 @@ struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,C
|
|
155
155
|
else
|
156
156
|
{
|
157
157
|
ColMajorMatrixAux resCol(lhs.rows(),rhs.cols());
|
158
|
-
//
|
158
|
+
// resort to transpose to sort the entries
|
159
159
|
internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrixAux>(lhs, rhs, resCol, false);
|
160
160
|
RowMajorMatrix resRow(resCol);
|
161
161
|
res = resRow.markAsRValue();
|
@@ -83,7 +83,7 @@ void assign_sparse_to_sparse(DstXprType &dst, const SrcXprType &src)
|
|
83
83
|
// eval without temporary
|
84
84
|
dst.resize(src.rows(), src.cols());
|
85
85
|
dst.setZero();
|
86
|
-
dst.reserve((std::max)(src.rows(),src.cols())*2);
|
86
|
+
dst.reserve((std::min)(src.rows()*src.cols(), (std::max)(src.rows(),src.cols())*2));
|
87
87
|
for (Index j=0; j<outerEvaluationSize; ++j)
|
88
88
|
{
|
89
89
|
dst.startVec(j);
|
@@ -107,7 +107,7 @@ void assign_sparse_to_sparse(DstXprType &dst, const SrcXprType &src)
|
|
107
107
|
|
108
108
|
DstXprType temp(src.rows(), src.cols());
|
109
109
|
|
110
|
-
temp.reserve((std::max)(src.rows(),src.cols())*2);
|
110
|
+
temp.reserve((std::min)(src.rows()*src.cols(), (std::max)(src.rows(),src.cols())*2));
|
111
111
|
for (Index j=0; j<outerEvaluationSize; ++j)
|
112
112
|
{
|
113
113
|
temp.startVec(j);
|
@@ -134,8 +134,8 @@ struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Sparse>
|
|
134
134
|
};
|
135
135
|
|
136
136
|
// Generic Sparse to Dense assignment
|
137
|
-
template< typename DstXprType, typename SrcXprType, typename Functor>
|
138
|
-
struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Dense>
|
137
|
+
template< typename DstXprType, typename SrcXprType, typename Functor, typename Weak>
|
138
|
+
struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Dense, Weak>
|
139
139
|
{
|
140
140
|
static void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
|
141
141
|
{
|
@@ -153,6 +153,73 @@ struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Dense>
|
|
153
153
|
}
|
154
154
|
};
|
155
155
|
|
156
|
+
// Specialization for dense ?= dense +/- sparse and dense ?= sparse +/- dense
|
157
|
+
template<typename DstXprType, typename Func1, typename Func2>
|
158
|
+
struct assignment_from_dense_op_sparse
|
159
|
+
{
|
160
|
+
template<typename SrcXprType, typename InitialFunc>
|
161
|
+
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
162
|
+
void run(DstXprType &dst, const SrcXprType &src, const InitialFunc& /*func*/)
|
163
|
+
{
|
164
|
+
#ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN
|
165
|
+
EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN
|
166
|
+
#endif
|
167
|
+
|
168
|
+
call_assignment_no_alias(dst, src.lhs(), Func1());
|
169
|
+
call_assignment_no_alias(dst, src.rhs(), Func2());
|
170
|
+
}
|
171
|
+
|
172
|
+
// Specialization for dense1 = sparse + dense2; -> dense1 = dense2; dense1 += sparse;
|
173
|
+
template<typename Lhs, typename Rhs, typename Scalar>
|
174
|
+
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
175
|
+
typename internal::enable_if<internal::is_same<typename internal::evaluator_traits<Rhs>::Shape,DenseShape>::value>::type
|
176
|
+
run(DstXprType &dst, const CwiseBinaryOp<internal::scalar_sum_op<Scalar,Scalar>, const Lhs, const Rhs> &src,
|
177
|
+
const internal::assign_op<typename DstXprType::Scalar,Scalar>& /*func*/)
|
178
|
+
{
|
179
|
+
#ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN
|
180
|
+
EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN
|
181
|
+
#endif
|
182
|
+
|
183
|
+
// Apply the dense matrix first, then the sparse one.
|
184
|
+
call_assignment_no_alias(dst, src.rhs(), Func1());
|
185
|
+
call_assignment_no_alias(dst, src.lhs(), Func2());
|
186
|
+
}
|
187
|
+
|
188
|
+
// Specialization for dense1 = sparse - dense2; -> dense1 = -dense2; dense1 += sparse;
|
189
|
+
template<typename Lhs, typename Rhs, typename Scalar>
|
190
|
+
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
191
|
+
typename internal::enable_if<internal::is_same<typename internal::evaluator_traits<Rhs>::Shape,DenseShape>::value>::type
|
192
|
+
run(DstXprType &dst, const CwiseBinaryOp<internal::scalar_difference_op<Scalar,Scalar>, const Lhs, const Rhs> &src,
|
193
|
+
const internal::assign_op<typename DstXprType::Scalar,Scalar>& /*func*/)
|
194
|
+
{
|
195
|
+
#ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN
|
196
|
+
EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN
|
197
|
+
#endif
|
198
|
+
|
199
|
+
// Apply the dense matrix first, then the sparse one.
|
200
|
+
call_assignment_no_alias(dst, -src.rhs(), Func1());
|
201
|
+
call_assignment_no_alias(dst, src.lhs(), add_assign_op<typename DstXprType::Scalar,typename Lhs::Scalar>());
|
202
|
+
}
|
203
|
+
};
|
204
|
+
|
205
|
+
#define EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(ASSIGN_OP,BINOP,ASSIGN_OP2) \
|
206
|
+
template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar> \
|
207
|
+
struct Assignment<DstXprType, CwiseBinaryOp<internal::BINOP<Scalar,Scalar>, const Lhs, const Rhs>, internal::ASSIGN_OP<typename DstXprType::Scalar,Scalar>, \
|
208
|
+
Sparse2Dense, \
|
209
|
+
typename internal::enable_if< internal::is_same<typename internal::evaluator_traits<Lhs>::Shape,DenseShape>::value \
|
210
|
+
|| internal::is_same<typename internal::evaluator_traits<Rhs>::Shape,DenseShape>::value>::type> \
|
211
|
+
: assignment_from_dense_op_sparse<DstXprType, internal::ASSIGN_OP<typename DstXprType::Scalar,typename Lhs::Scalar>, internal::ASSIGN_OP2<typename DstXprType::Scalar,typename Rhs::Scalar> > \
|
212
|
+
{}
|
213
|
+
|
214
|
+
EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(assign_op, scalar_sum_op,add_assign_op);
|
215
|
+
EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(add_assign_op,scalar_sum_op,add_assign_op);
|
216
|
+
EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(sub_assign_op,scalar_sum_op,sub_assign_op);
|
217
|
+
|
218
|
+
EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(assign_op, scalar_difference_op,sub_assign_op);
|
219
|
+
EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(add_assign_op,scalar_difference_op,sub_assign_op);
|
220
|
+
EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(sub_assign_op,scalar_difference_op,add_assign_op);
|
221
|
+
|
222
|
+
|
156
223
|
// Specialization for "dst = dec.solve(rhs)"
|
157
224
|
// NOTE we need to specialize it for Sparse2Sparse to avoid ambiguous specialization error
|
158
225
|
template<typename DstXprType, typename DecType, typename RhsType, typename Scalar>
|
@@ -179,35 +246,22 @@ struct Assignment<DstXprType, SrcXprType, Functor, Diagonal2Sparse>
|
|
179
246
|
{
|
180
247
|
typedef typename DstXprType::StorageIndex StorageIndex;
|
181
248
|
typedef typename DstXprType::Scalar Scalar;
|
182
|
-
typedef Array<StorageIndex,Dynamic,1> ArrayXI;
|
183
|
-
typedef Array<Scalar,Dynamic,1> ArrayXS;
|
184
|
-
template<int Options>
|
185
|
-
static void run(SparseMatrix<Scalar,Options,StorageIndex> &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
|
186
|
-
{
|
187
|
-
Index dstRows = src.rows();
|
188
|
-
Index dstCols = src.cols();
|
189
|
-
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
|
190
|
-
dst.resize(dstRows, dstCols);
|
191
249
|
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
Map<ArrayXI>(dst.innerIndexPtr(), size).setLinSpaced(0,StorageIndex(size)-1);
|
196
|
-
Map<ArrayXI>(dst.outerIndexPtr(), size+1).setLinSpaced(0,StorageIndex(size));
|
197
|
-
Map<ArrayXS>(dst.valuePtr(), size) = src.diagonal();
|
198
|
-
}
|
250
|
+
template<int Options, typename AssignFunc>
|
251
|
+
static void run(SparseMatrix<Scalar,Options,StorageIndex> &dst, const SrcXprType &src, const AssignFunc &func)
|
252
|
+
{ dst.assignDiagonal(src.diagonal(), func); }
|
199
253
|
|
200
254
|
template<typename DstDerived>
|
201
255
|
static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
|
202
|
-
{
|
203
|
-
dst.diagonal() = src.diagonal();
|
204
|
-
}
|
256
|
+
{ dst.derived().diagonal() = src.diagonal(); }
|
205
257
|
|
206
|
-
|
207
|
-
|
258
|
+
template<typename DstDerived>
|
259
|
+
static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
|
260
|
+
{ dst.derived().diagonal() += src.diagonal(); }
|
208
261
|
|
209
|
-
|
210
|
-
|
262
|
+
template<typename DstDerived>
|
263
|
+
static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
|
264
|
+
{ dst.derived().diagonal() -= src.diagonal(); }
|
211
265
|
};
|
212
266
|
} // end namespace internal
|
213
267
|
|