tomoto 0.2.3 → 0.3.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +6 -0
- data/README.md +8 -10
- data/ext/tomoto/extconf.rb +6 -2
- data/ext/tomoto/{ext.cpp → tomoto.cpp} +1 -1
- data/lib/tomoto/version.rb +1 -1
- data/lib/tomoto.rb +5 -1
- data/vendor/EigenRand/EigenRand/Core.h +10 -10
- data/vendor/EigenRand/EigenRand/Dists/Basic.h +208 -9
- data/vendor/EigenRand/EigenRand/Dists/Discrete.h +52 -31
- data/vendor/EigenRand/EigenRand/Dists/GammaPoisson.h +9 -8
- data/vendor/EigenRand/EigenRand/Dists/NormalExp.h +28 -21
- data/vendor/EigenRand/EigenRand/EigenRand +11 -6
- data/vendor/EigenRand/EigenRand/Macro.h +13 -7
- data/vendor/EigenRand/EigenRand/MorePacketMath.h +348 -740
- data/vendor/EigenRand/EigenRand/MvDists/Multinomial.h +5 -3
- data/vendor/EigenRand/EigenRand/MvDists/MvNormal.h +9 -3
- data/vendor/EigenRand/EigenRand/PacketFilter.h +11 -253
- data/vendor/EigenRand/EigenRand/PacketRandomEngine.h +21 -47
- data/vendor/EigenRand/EigenRand/RandUtils.h +50 -344
- data/vendor/EigenRand/EigenRand/arch/AVX/MorePacketMath.h +619 -0
- data/vendor/EigenRand/EigenRand/arch/AVX/PacketFilter.h +149 -0
- data/vendor/EigenRand/EigenRand/arch/AVX/RandUtils.h +228 -0
- data/vendor/EigenRand/EigenRand/arch/NEON/MorePacketMath.h +473 -0
- data/vendor/EigenRand/EigenRand/arch/NEON/PacketFilter.h +142 -0
- data/vendor/EigenRand/EigenRand/arch/NEON/RandUtils.h +126 -0
- data/vendor/EigenRand/EigenRand/arch/SSE/MorePacketMath.h +501 -0
- data/vendor/EigenRand/EigenRand/arch/SSE/PacketFilter.h +133 -0
- data/vendor/EigenRand/EigenRand/arch/SSE/RandUtils.h +120 -0
- data/vendor/EigenRand/EigenRand/doc.h +24 -12
- data/vendor/EigenRand/README.md +57 -4
- data/vendor/eigen/COPYING.APACHE +203 -0
- data/vendor/eigen/COPYING.BSD +1 -1
- data/vendor/eigen/COPYING.MINPACK +51 -52
- data/vendor/eigen/Eigen/Cholesky +0 -1
- data/vendor/eigen/Eigen/Core +112 -265
- data/vendor/eigen/Eigen/Eigenvalues +2 -3
- data/vendor/eigen/Eigen/Geometry +5 -8
- data/vendor/eigen/Eigen/Householder +0 -1
- data/vendor/eigen/Eigen/Jacobi +0 -1
- data/vendor/eigen/Eigen/KLUSupport +41 -0
- data/vendor/eigen/Eigen/LU +2 -5
- data/vendor/eigen/Eigen/OrderingMethods +0 -3
- data/vendor/eigen/Eigen/PaStiXSupport +1 -0
- data/vendor/eigen/Eigen/PardisoSupport +0 -0
- data/vendor/eigen/Eigen/QR +2 -3
- data/vendor/eigen/Eigen/QtAlignedMalloc +0 -1
- data/vendor/eigen/Eigen/SVD +0 -1
- data/vendor/eigen/Eigen/Sparse +0 -2
- data/vendor/eigen/Eigen/SparseCholesky +0 -8
- data/vendor/eigen/Eigen/SparseLU +4 -0
- data/vendor/eigen/Eigen/SparseQR +0 -1
- data/vendor/eigen/Eigen/src/Cholesky/LDLT.h +42 -27
- data/vendor/eigen/Eigen/src/Cholesky/LLT.h +39 -23
- data/vendor/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +90 -47
- data/vendor/eigen/Eigen/src/Core/ArithmeticSequence.h +413 -0
- data/vendor/eigen/Eigen/src/Core/Array.h +99 -11
- data/vendor/eigen/Eigen/src/Core/ArrayBase.h +3 -3
- data/vendor/eigen/Eigen/src/Core/ArrayWrapper.h +21 -21
- data/vendor/eigen/Eigen/src/Core/Assign.h +1 -1
- data/vendor/eigen/Eigen/src/Core/AssignEvaluator.h +125 -50
- data/vendor/eigen/Eigen/src/Core/Assign_MKL.h +10 -10
- data/vendor/eigen/Eigen/src/Core/BandMatrix.h +16 -16
- data/vendor/eigen/Eigen/src/Core/Block.h +56 -60
- data/vendor/eigen/Eigen/src/Core/BooleanRedux.h +29 -31
- data/vendor/eigen/Eigen/src/Core/CommaInitializer.h +7 -3
- data/vendor/eigen/Eigen/src/Core/CoreEvaluators.h +325 -272
- data/vendor/eigen/Eigen/src/Core/CoreIterators.h +5 -0
- data/vendor/eigen/Eigen/src/Core/CwiseBinaryOp.h +21 -22
- data/vendor/eigen/Eigen/src/Core/CwiseNullaryOp.h +153 -18
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryOp.h +6 -6
- data/vendor/eigen/Eigen/src/Core/CwiseUnaryView.h +14 -10
- data/vendor/eigen/Eigen/src/Core/DenseBase.h +132 -42
- data/vendor/eigen/Eigen/src/Core/DenseCoeffsBase.h +25 -21
- data/vendor/eigen/Eigen/src/Core/DenseStorage.h +153 -71
- data/vendor/eigen/Eigen/src/Core/Diagonal.h +21 -23
- data/vendor/eigen/Eigen/src/Core/DiagonalMatrix.h +50 -2
- data/vendor/eigen/Eigen/src/Core/DiagonalProduct.h +1 -1
- data/vendor/eigen/Eigen/src/Core/Dot.h +10 -10
- data/vendor/eigen/Eigen/src/Core/EigenBase.h +10 -9
- data/vendor/eigen/Eigen/src/Core/ForceAlignedAccess.h +8 -4
- data/vendor/eigen/Eigen/src/Core/Fuzzy.h +3 -3
- data/vendor/eigen/Eigen/src/Core/GeneralProduct.h +20 -10
- data/vendor/eigen/Eigen/src/Core/GenericPacketMath.h +599 -152
- data/vendor/eigen/Eigen/src/Core/GlobalFunctions.h +40 -33
- data/vendor/eigen/Eigen/src/Core/IO.h +40 -7
- data/vendor/eigen/Eigen/src/Core/IndexedView.h +237 -0
- data/vendor/eigen/Eigen/src/Core/Inverse.h +9 -10
- data/vendor/eigen/Eigen/src/Core/Map.h +7 -7
- data/vendor/eigen/Eigen/src/Core/MapBase.h +10 -3
- data/vendor/eigen/Eigen/src/Core/MathFunctions.h +767 -125
- data/vendor/eigen/Eigen/src/Core/MathFunctionsImpl.h +118 -19
- data/vendor/eigen/Eigen/src/Core/Matrix.h +131 -25
- data/vendor/eigen/Eigen/src/Core/MatrixBase.h +21 -3
- data/vendor/eigen/Eigen/src/Core/NestByValue.h +25 -50
- data/vendor/eigen/Eigen/src/Core/NoAlias.h +4 -3
- data/vendor/eigen/Eigen/src/Core/NumTraits.h +107 -20
- data/vendor/eigen/Eigen/src/Core/PartialReduxEvaluator.h +232 -0
- data/vendor/eigen/Eigen/src/Core/PermutationMatrix.h +3 -31
- data/vendor/eigen/Eigen/src/Core/PlainObjectBase.h +152 -59
- data/vendor/eigen/Eigen/src/Core/Product.h +30 -25
- data/vendor/eigen/Eigen/src/Core/ProductEvaluators.h +192 -125
- data/vendor/eigen/Eigen/src/Core/Random.h +37 -1
- data/vendor/eigen/Eigen/src/Core/Redux.h +180 -170
- data/vendor/eigen/Eigen/src/Core/Ref.h +121 -23
- data/vendor/eigen/Eigen/src/Core/Replicate.h +8 -8
- data/vendor/eigen/Eigen/src/Core/Reshaped.h +454 -0
- data/vendor/eigen/Eigen/src/Core/ReturnByValue.h +7 -5
- data/vendor/eigen/Eigen/src/Core/Reverse.h +18 -12
- data/vendor/eigen/Eigen/src/Core/Select.h +8 -6
- data/vendor/eigen/Eigen/src/Core/SelfAdjointView.h +33 -20
- data/vendor/eigen/Eigen/src/Core/Solve.h +14 -14
- data/vendor/eigen/Eigen/src/Core/SolveTriangular.h +16 -16
- data/vendor/eigen/Eigen/src/Core/SolverBase.h +41 -3
- data/vendor/eigen/Eigen/src/Core/StableNorm.h +100 -70
- data/vendor/eigen/Eigen/src/Core/StlIterators.h +463 -0
- data/vendor/eigen/Eigen/src/Core/Stride.h +9 -4
- data/vendor/eigen/Eigen/src/Core/Swap.h +5 -4
- data/vendor/eigen/Eigen/src/Core/Transpose.h +88 -27
- data/vendor/eigen/Eigen/src/Core/Transpositions.h +26 -47
- data/vendor/eigen/Eigen/src/Core/TriangularMatrix.h +93 -75
- data/vendor/eigen/Eigen/src/Core/VectorBlock.h +5 -5
- data/vendor/eigen/Eigen/src/Core/VectorwiseOp.h +159 -70
- data/vendor/eigen/Eigen/src/Core/Visitor.h +137 -29
- data/vendor/eigen/Eigen/src/Core/arch/AVX/Complex.h +50 -129
- data/vendor/eigen/Eigen/src/Core/arch/AVX/MathFunctions.h +126 -337
- data/vendor/eigen/Eigen/src/Core/arch/AVX/PacketMath.h +1092 -155
- data/vendor/eigen/Eigen/src/Core/arch/AVX/TypeCasting.h +65 -1
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/Complex.h +422 -0
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +207 -236
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/PacketMath.h +1482 -495
- data/vendor/eigen/Eigen/src/Core/arch/AVX512/TypeCasting.h +89 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/Complex.h +152 -165
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +19 -251
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProduct.h +2937 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProductCommon.h +221 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/MatrixProductMMA.h +629 -0
- data/vendor/eigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +2042 -392
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Complex.h +235 -80
- data/vendor/eigen/Eigen/src/Core/arch/Default/BFloat16.h +700 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/ConjHelper.h +102 -14
- data/vendor/eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h +1649 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctionsFwd.h +110 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Half.h +942 -0
- data/vendor/eigen/Eigen/src/Core/arch/Default/Settings.h +1 -1
- data/vendor/eigen/Eigen/src/Core/arch/Default/TypeCasting.h +120 -0
- data/vendor/eigen/Eigen/src/Core/arch/{CUDA → GPU}/MathFunctions.h +16 -4
- data/vendor/eigen/Eigen/src/Core/arch/GPU/PacketMath.h +1685 -0
- data/vendor/eigen/Eigen/src/Core/arch/GPU/TypeCasting.h +80 -0
- data/vendor/eigen/Eigen/src/Core/arch/HIP/hcc/math_constants.h +23 -0
- data/vendor/eigen/Eigen/src/Core/arch/MSA/Complex.h +648 -0
- data/vendor/eigen/Eigen/src/Core/arch/MSA/MathFunctions.h +387 -0
- data/vendor/eigen/Eigen/src/Core/arch/MSA/PacketMath.h +1233 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/Complex.h +313 -219
- data/vendor/eigen/Eigen/src/Core/arch/NEON/GeneralBlockPanelKernel.h +183 -0
- data/vendor/eigen/Eigen/src/Core/arch/NEON/MathFunctions.h +54 -70
- data/vendor/eigen/Eigen/src/Core/arch/NEON/PacketMath.h +4376 -549
- data/vendor/eigen/Eigen/src/Core/arch/NEON/TypeCasting.h +1419 -0
- data/vendor/eigen/Eigen/src/Core/arch/SSE/Complex.h +59 -179
- data/vendor/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h +65 -428
- data/vendor/eigen/Eigen/src/Core/arch/SSE/PacketMath.h +893 -283
- data/vendor/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h +65 -0
- data/vendor/eigen/Eigen/src/Core/arch/SVE/MathFunctions.h +44 -0
- data/vendor/eigen/Eigen/src/Core/arch/SVE/PacketMath.h +752 -0
- data/vendor/eigen/Eigen/src/Core/arch/SVE/TypeCasting.h +49 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/InteropHeaders.h +232 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/MathFunctions.h +301 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/PacketMath.h +670 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/SyclMemoryModel.h +694 -0
- data/vendor/eigen/Eigen/src/Core/arch/SYCL/TypeCasting.h +85 -0
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/Complex.h +212 -183
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +101 -5
- data/vendor/eigen/Eigen/src/Core/arch/ZVector/PacketMath.h +510 -395
- data/vendor/eigen/Eigen/src/Core/functors/AssignmentFunctors.h +11 -2
- data/vendor/eigen/Eigen/src/Core/functors/BinaryFunctors.h +112 -46
- data/vendor/eigen/Eigen/src/Core/functors/NullaryFunctors.h +31 -30
- data/vendor/eigen/Eigen/src/Core/functors/StlFunctors.h +32 -2
- data/vendor/eigen/Eigen/src/Core/functors/UnaryFunctors.h +355 -16
- data/vendor/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +1075 -586
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h +49 -24
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +41 -35
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +6 -6
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +4 -2
- data/vendor/eigen/Eigen/src/Core/products/GeneralMatrixVector.h +382 -483
- data/vendor/eigen/Eigen/src/Core/products/Parallelizer.h +22 -5
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +53 -30
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +16 -8
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +8 -6
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointProduct.h +4 -4
- data/vendor/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h +5 -4
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +33 -27
- data/vendor/eigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +14 -12
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h +36 -34
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +8 -4
- data/vendor/eigen/Eigen/src/Core/products/TriangularSolverVector.h +13 -10
- data/vendor/eigen/Eigen/src/Core/util/BlasUtil.h +304 -119
- data/vendor/eigen/Eigen/src/Core/util/ConfigureVectorization.h +512 -0
- data/vendor/eigen/Eigen/src/Core/util/Constants.h +25 -9
- data/vendor/eigen/Eigen/src/Core/util/DisableStupidWarnings.h +26 -3
- data/vendor/eigen/Eigen/src/Core/util/ForwardDeclarations.h +29 -9
- data/vendor/eigen/Eigen/src/Core/util/IndexedViewHelper.h +186 -0
- data/vendor/eigen/Eigen/src/Core/util/IntegralConstant.h +272 -0
- data/vendor/eigen/Eigen/src/Core/util/MKL_support.h +8 -1
- data/vendor/eigen/Eigen/src/Core/util/Macros.h +709 -246
- data/vendor/eigen/Eigen/src/Core/util/Memory.h +222 -52
- data/vendor/eigen/Eigen/src/Core/util/Meta.h +355 -77
- data/vendor/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h +5 -1
- data/vendor/eigen/Eigen/src/Core/util/ReshapedHelper.h +51 -0
- data/vendor/eigen/Eigen/src/Core/util/StaticAssert.h +8 -5
- data/vendor/eigen/Eigen/src/Core/util/SymbolicIndex.h +293 -0
- data/vendor/eigen/Eigen/src/Core/util/XprHelper.h +65 -30
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +1 -1
- data/vendor/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +7 -4
- data/vendor/eigen/Eigen/src/Eigenvalues/EigenSolver.h +2 -2
- data/vendor/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +1 -1
- data/vendor/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +2 -2
- data/vendor/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +2 -2
- data/vendor/eigen/Eigen/src/Eigenvalues/RealQZ.h +9 -6
- data/vendor/eigen/Eigen/src/Eigenvalues/RealSchur.h +21 -9
- data/vendor/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +77 -43
- data/vendor/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +20 -15
- data/vendor/eigen/Eigen/src/Geometry/AlignedBox.h +99 -5
- data/vendor/eigen/Eigen/src/Geometry/AngleAxis.h +4 -4
- data/vendor/eigen/Eigen/src/Geometry/EulerAngles.h +3 -3
- data/vendor/eigen/Eigen/src/Geometry/Homogeneous.h +15 -11
- data/vendor/eigen/Eigen/src/Geometry/Hyperplane.h +1 -1
- data/vendor/eigen/Eigen/src/Geometry/OrthoMethods.h +3 -2
- data/vendor/eigen/Eigen/src/Geometry/ParametrizedLine.h +39 -2
- data/vendor/eigen/Eigen/src/Geometry/Quaternion.h +70 -14
- data/vendor/eigen/Eigen/src/Geometry/Rotation2D.h +3 -3
- data/vendor/eigen/Eigen/src/Geometry/Scaling.h +23 -5
- data/vendor/eigen/Eigen/src/Geometry/Transform.h +88 -67
- data/vendor/eigen/Eigen/src/Geometry/Translation.h +6 -12
- data/vendor/eigen/Eigen/src/Geometry/Umeyama.h +1 -1
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +168 -0
- data/vendor/eigen/Eigen/src/Householder/BlockHouseholder.h +9 -2
- data/vendor/eigen/Eigen/src/Householder/Householder.h +8 -4
- data/vendor/eigen/Eigen/src/Householder/HouseholderSequence.h +123 -48
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +15 -15
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +7 -23
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +5 -22
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +41 -47
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +51 -60
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +70 -20
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +2 -20
- data/vendor/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +11 -9
- data/vendor/eigen/Eigen/src/Jacobi/Jacobi.h +31 -10
- data/vendor/eigen/Eigen/src/KLUSupport/KLUSupport.h +358 -0
- data/vendor/eigen/Eigen/src/LU/Determinant.h +35 -19
- data/vendor/eigen/Eigen/src/LU/FullPivLU.h +29 -43
- data/vendor/eigen/Eigen/src/LU/InverseImpl.h +25 -8
- data/vendor/eigen/Eigen/src/LU/PartialPivLU.h +71 -58
- data/vendor/eigen/Eigen/src/LU/arch/InverseSize4.h +351 -0
- data/vendor/eigen/Eigen/src/OrderingMethods/Amd.h +7 -17
- data/vendor/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +297 -277
- data/vendor/eigen/Eigen/src/OrderingMethods/Ordering.h +6 -10
- data/vendor/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +1 -1
- data/vendor/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +9 -7
- data/vendor/eigen/Eigen/src/QR/ColPivHouseholderQR.h +41 -20
- data/vendor/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +100 -27
- data/vendor/eigen/Eigen/src/QR/FullPivHouseholderQR.h +59 -22
- data/vendor/eigen/Eigen/src/QR/HouseholderQR.h +48 -23
- data/vendor/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +25 -3
- data/vendor/eigen/Eigen/src/SVD/BDCSVD.h +183 -63
- data/vendor/eigen/Eigen/src/SVD/JacobiSVD.h +22 -14
- data/vendor/eigen/Eigen/src/SVD/SVDBase.h +83 -22
- data/vendor/eigen/Eigen/src/SVD/UpperBidiagonalization.h +3 -3
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +17 -9
- data/vendor/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +12 -37
- data/vendor/eigen/Eigen/src/SparseCore/AmbiVector.h +3 -2
- data/vendor/eigen/Eigen/src/SparseCore/CompressedStorage.h +16 -0
- data/vendor/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +6 -6
- data/vendor/eigen/Eigen/src/SparseCore/SparseAssign.h +81 -27
- data/vendor/eigen/Eigen/src/SparseCore/SparseBlock.h +25 -57
- data/vendor/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +40 -11
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +11 -15
- data/vendor/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +4 -2
- data/vendor/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +30 -8
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrix.h +126 -11
- data/vendor/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +5 -12
- data/vendor/eigen/Eigen/src/SparseCore/SparseProduct.h +13 -1
- data/vendor/eigen/Eigen/src/SparseCore/SparseRef.h +7 -7
- data/vendor/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +5 -2
- data/vendor/eigen/Eigen/src/SparseCore/SparseUtil.h +8 -0
- data/vendor/eigen/Eigen/src/SparseCore/SparseVector.h +1 -1
- data/vendor/eigen/Eigen/src/SparseCore/SparseView.h +1 -0
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU.h +162 -12
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +1 -1
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +76 -2
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +2 -2
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +1 -1
- data/vendor/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +1 -1
- data/vendor/eigen/Eigen/src/SparseQR/SparseQR.h +19 -6
- data/vendor/eigen/Eigen/src/StlSupport/StdDeque.h +2 -12
- data/vendor/eigen/Eigen/src/StlSupport/StdList.h +2 -2
- data/vendor/eigen/Eigen/src/StlSupport/StdVector.h +2 -2
- data/vendor/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +6 -8
- data/vendor/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +175 -39
- data/vendor/eigen/Eigen/src/misc/lapacke.h +5 -4
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +28 -2
- data/vendor/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +155 -11
- data/vendor/eigen/Eigen/src/plugins/BlockMethods.h +626 -242
- data/vendor/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +14 -0
- data/vendor/eigen/Eigen/src/plugins/IndexedViewMethods.h +262 -0
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +4 -4
- data/vendor/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +10 -0
- data/vendor/eigen/Eigen/src/plugins/ReshapedMethods.h +149 -0
- data/vendor/eigen/README.md +2 -0
- data/vendor/eigen/bench/btl/README +1 -1
- data/vendor/eigen/bench/tensors/README +6 -7
- data/vendor/eigen/ci/README.md +56 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +1 -1
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +213 -158
- data/vendor/eigen/unsupported/README.txt +1 -1
- data/vendor/tomotopy/README.kr.rst +21 -0
- data/vendor/tomotopy/README.rst +20 -0
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +2 -2
- data/vendor/tomotopy/src/Labeling/Phraser.hpp +1 -1
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +2 -1
- data/vendor/tomotopy/src/TopicModel/DMRModel.hpp +2 -1
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +1 -1
- data/vendor/tomotopy/src/TopicModel/GDMRModel.hpp +2 -2
- data/vendor/tomotopy/src/TopicModel/HDP.h +1 -0
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +53 -2
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +1 -1
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +1 -0
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +2 -2
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +16 -5
- data/vendor/tomotopy/src/TopicModel/LLDAModel.hpp +1 -0
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +1 -0
- data/vendor/tomotopy/src/TopicModel/PLDAModel.hpp +1 -0
- data/vendor/tomotopy/src/TopicModel/PT.h +3 -1
- data/vendor/tomotopy/src/TopicModel/PTModel.hpp +31 -1
- data/vendor/tomotopy/src/TopicModel/SLDAModel.hpp +2 -2
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +7 -5
- data/vendor/tomotopy/src/Utils/EigenAddonOps.hpp +36 -1
- data/vendor/tomotopy/src/Utils/exception.h +6 -0
- data/vendor/tomotopy/src/Utils/sample.hpp +14 -12
- data/vendor/tomotopy/src/Utils/sse_gamma.h +0 -3
- metadata +60 -14
- data/vendor/eigen/Eigen/CMakeLists.txt +0 -19
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/Half.h +0 -674
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMath.h +0 -333
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +0 -1124
- data/vendor/eigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +0 -212
- data/vendor/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h +0 -161
- data/vendor/eigen/Eigen/src/LU/arch/Inverse_SSE.h +0 -338
@@ -201,7 +201,7 @@ class Ref<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType
|
|
201
201
|
|
202
202
|
~Ref() {
|
203
203
|
if(m_hasCopy) {
|
204
|
-
TPlainObjectType* obj = reinterpret_cast<TPlainObjectType*>(
|
204
|
+
TPlainObjectType* obj = reinterpret_cast<TPlainObjectType*>(&m_storage);
|
205
205
|
obj->~TPlainObjectType();
|
206
206
|
}
|
207
207
|
}
|
@@ -213,7 +213,7 @@ class Ref<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType
|
|
213
213
|
{
|
214
214
|
if((Options & int(StandardCompressedFormat)) && (!expr.isCompressed()))
|
215
215
|
{
|
216
|
-
TPlainObjectType* obj = reinterpret_cast<TPlainObjectType*>(
|
216
|
+
TPlainObjectType* obj = reinterpret_cast<TPlainObjectType*>(&m_storage);
|
217
217
|
::new (obj) TPlainObjectType(expr);
|
218
218
|
m_hasCopy = true;
|
219
219
|
Base::construct(*obj);
|
@@ -227,14 +227,14 @@ class Ref<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType
|
|
227
227
|
template<typename Expression>
|
228
228
|
void construct(const Expression& expr, internal::false_type)
|
229
229
|
{
|
230
|
-
TPlainObjectType* obj = reinterpret_cast<TPlainObjectType*>(
|
230
|
+
TPlainObjectType* obj = reinterpret_cast<TPlainObjectType*>(&m_storage);
|
231
231
|
::new (obj) TPlainObjectType(expr);
|
232
232
|
m_hasCopy = true;
|
233
233
|
Base::construct(*obj);
|
234
234
|
}
|
235
235
|
|
236
236
|
protected:
|
237
|
-
|
237
|
+
typename internal::aligned_storage<sizeof(TPlainObjectType), EIGEN_ALIGNOF(TPlainObjectType)>::type m_storage;
|
238
238
|
bool m_hasCopy;
|
239
239
|
};
|
240
240
|
|
@@ -319,7 +319,7 @@ class Ref<const SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType
|
|
319
319
|
|
320
320
|
~Ref() {
|
321
321
|
if(m_hasCopy) {
|
322
|
-
TPlainObjectType* obj = reinterpret_cast<TPlainObjectType*>(
|
322
|
+
TPlainObjectType* obj = reinterpret_cast<TPlainObjectType*>(&m_storage);
|
323
323
|
obj->~TPlainObjectType();
|
324
324
|
}
|
325
325
|
}
|
@@ -335,14 +335,14 @@ class Ref<const SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType
|
|
335
335
|
template<typename Expression>
|
336
336
|
void construct(const Expression& expr, internal::false_type)
|
337
337
|
{
|
338
|
-
TPlainObjectType* obj = reinterpret_cast<TPlainObjectType*>(
|
338
|
+
TPlainObjectType* obj = reinterpret_cast<TPlainObjectType*>(&m_storage);
|
339
339
|
::new (obj) TPlainObjectType(expr);
|
340
340
|
m_hasCopy = true;
|
341
341
|
Base::construct(*obj);
|
342
342
|
}
|
343
343
|
|
344
344
|
protected:
|
345
|
-
|
345
|
+
typename internal::aligned_storage<sizeof(TPlainObjectType), EIGEN_ALIGNOF(TPlainObjectType)>::type m_storage;
|
346
346
|
bool m_hasCopy;
|
347
347
|
};
|
348
348
|
|
@@ -142,6 +142,9 @@ template<typename MatrixType, unsigned int _Mode> class SparseSelfAdjointView
|
|
142
142
|
return *this = src.twistedBy(pnull);
|
143
143
|
}
|
144
144
|
|
145
|
+
// Since we override the copy-assignment operator, we need to explicitly re-declare the copy-constructor
|
146
|
+
EIGEN_DEFAULT_COPY_CONSTRUCTOR(SparseSelfAdjointView)
|
147
|
+
|
145
148
|
template<typename SrcMatrixType,unsigned int SrcMode>
|
146
149
|
SparseSelfAdjointView& operator=(const SparseSelfAdjointView<SrcMatrixType,SrcMode>& src)
|
147
150
|
{
|
@@ -453,7 +456,7 @@ void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename Matri
|
|
453
456
|
Index r = it.row();
|
454
457
|
Index c = it.col();
|
455
458
|
Index ip = perm ? perm[i] : i;
|
456
|
-
if(Mode==(Upper|Lower))
|
459
|
+
if(Mode==int(Upper|Lower))
|
457
460
|
count[StorageOrderMatch ? jp : ip]++;
|
458
461
|
else if(r==c)
|
459
462
|
count[ip]++;
|
@@ -486,7 +489,7 @@ void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename Matri
|
|
486
489
|
StorageIndex jp = perm ? perm[j] : j;
|
487
490
|
StorageIndex ip = perm ? perm[i] : i;
|
488
491
|
|
489
|
-
if(Mode==(Upper|Lower))
|
492
|
+
if(Mode==int(Upper|Lower))
|
490
493
|
{
|
491
494
|
Index k = count[StorageOrderMatch ? jp : ip]++;
|
492
495
|
dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp;
|
@@ -140,6 +140,14 @@ struct SparseSelfAdjointShape { static std::string debugName() { return "SparseS
|
|
140
140
|
template<> struct glue_shapes<SparseShape,SelfAdjointShape> { typedef SparseSelfAdjointShape type; };
|
141
141
|
template<> struct glue_shapes<SparseShape,TriangularShape > { typedef SparseTriangularShape type; };
|
142
142
|
|
143
|
+
// return type of SparseCompressedBase::lower_bound;
|
144
|
+
struct LowerBoundIndex {
|
145
|
+
LowerBoundIndex() : value(-1), found(false) {}
|
146
|
+
LowerBoundIndex(Index val, bool ok) : value(val), found(ok) {}
|
147
|
+
Index value;
|
148
|
+
bool found;
|
149
|
+
};
|
150
|
+
|
143
151
|
} // end namespace internal
|
144
152
|
|
145
153
|
/** \ingroup SparseCore_Module
|
@@ -281,7 +281,7 @@ class SparseVector
|
|
281
281
|
}
|
282
282
|
|
283
283
|
/** Swaps the values of \c *this and \a other.
|
284
|
-
* Overloaded for performance: this version performs a \em shallow swap by
|
284
|
+
* Overloaded for performance: this version performs a \em shallow swap by swapping pointers and attributes only.
|
285
285
|
* \sa SparseMatrixBase::swap()
|
286
286
|
*/
|
287
287
|
inline void swap(SparseVector& other)
|
@@ -18,6 +18,63 @@ template <typename _MatrixType, typename _OrderingType = COLAMDOrdering<typename
|
|
18
18
|
template <typename MappedSparseMatrixType> struct SparseLUMatrixLReturnType;
|
19
19
|
template <typename MatrixLType, typename MatrixUType> struct SparseLUMatrixUReturnType;
|
20
20
|
|
21
|
+
template <bool Conjugate,class SparseLUType>
|
22
|
+
class SparseLUTransposeView : public SparseSolverBase<SparseLUTransposeView<Conjugate,SparseLUType> >
|
23
|
+
{
|
24
|
+
protected:
|
25
|
+
typedef SparseSolverBase<SparseLUTransposeView<Conjugate,SparseLUType> > APIBase;
|
26
|
+
using APIBase::m_isInitialized;
|
27
|
+
public:
|
28
|
+
typedef typename SparseLUType::Scalar Scalar;
|
29
|
+
typedef typename SparseLUType::StorageIndex StorageIndex;
|
30
|
+
typedef typename SparseLUType::MatrixType MatrixType;
|
31
|
+
typedef typename SparseLUType::OrderingType OrderingType;
|
32
|
+
|
33
|
+
enum {
|
34
|
+
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
35
|
+
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
36
|
+
};
|
37
|
+
|
38
|
+
SparseLUTransposeView() : m_sparseLU(NULL) {}
|
39
|
+
SparseLUTransposeView(const SparseLUTransposeView& view) {
|
40
|
+
this->m_sparseLU = view.m_sparseLU;
|
41
|
+
}
|
42
|
+
void setIsInitialized(const bool isInitialized) {this->m_isInitialized = isInitialized;}
|
43
|
+
void setSparseLU(SparseLUType* sparseLU) {m_sparseLU = sparseLU;}
|
44
|
+
using APIBase::_solve_impl;
|
45
|
+
template<typename Rhs, typename Dest>
|
46
|
+
bool _solve_impl(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
|
47
|
+
{
|
48
|
+
Dest& X(X_base.derived());
|
49
|
+
eigen_assert(m_sparseLU->info() == Success && "The matrix should be factorized first");
|
50
|
+
EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
|
51
|
+
THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
|
52
|
+
|
53
|
+
|
54
|
+
// this ugly const_cast_derived() helps to detect aliasing when applying the permutations
|
55
|
+
for(Index j = 0; j < B.cols(); ++j){
|
56
|
+
X.col(j) = m_sparseLU->colsPermutation() * B.const_cast_derived().col(j);
|
57
|
+
}
|
58
|
+
//Forward substitution with transposed or adjoint of U
|
59
|
+
m_sparseLU->matrixU().template solveTransposedInPlace<Conjugate>(X);
|
60
|
+
|
61
|
+
//Backward substitution with transposed or adjoint of L
|
62
|
+
m_sparseLU->matrixL().template solveTransposedInPlace<Conjugate>(X);
|
63
|
+
|
64
|
+
// Permute back the solution
|
65
|
+
for (Index j = 0; j < B.cols(); ++j)
|
66
|
+
X.col(j) = m_sparseLU->rowsPermutation().transpose() * X.col(j);
|
67
|
+
return true;
|
68
|
+
}
|
69
|
+
inline Index rows() const { return m_sparseLU->rows(); }
|
70
|
+
inline Index cols() const { return m_sparseLU->cols(); }
|
71
|
+
|
72
|
+
private:
|
73
|
+
SparseLUType *m_sparseLU;
|
74
|
+
SparseLUTransposeView& operator=(const SparseLUTransposeView&);
|
75
|
+
};
|
76
|
+
|
77
|
+
|
21
78
|
/** \ingroup SparseLU_Module
|
22
79
|
* \class SparseLU
|
23
80
|
*
|
@@ -26,7 +83,7 @@ template <typename MatrixLType, typename MatrixUType> struct SparseLUMatrixURetu
|
|
26
83
|
* This class implements the supernodal LU factorization for general matrices.
|
27
84
|
* It uses the main techniques from the sequential SuperLU package
|
28
85
|
* (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real
|
29
|
-
* and complex
|
86
|
+
* and complex arithmetic with single and double precision, depending on the
|
30
87
|
* scalar type of your input matrix.
|
31
88
|
* The code has been optimized to provide BLAS-3 operations during supernode-panel updates.
|
32
89
|
* It benefits directly from the built-in high-performant Eigen BLAS routines.
|
@@ -43,8 +100,8 @@ template <typename MatrixLType, typename MatrixUType> struct SparseLUMatrixURetu
|
|
43
100
|
* Simple example with key steps
|
44
101
|
* \code
|
45
102
|
* VectorXd x(n), b(n);
|
46
|
-
* SparseMatrix<double
|
47
|
-
* SparseLU<SparseMatrix<
|
103
|
+
* SparseMatrix<double> A;
|
104
|
+
* SparseLU<SparseMatrix<double>, COLAMDOrdering<int> > solver;
|
48
105
|
* // fill A and b;
|
49
106
|
* // Compute the ordering permutation vector from the structural pattern of A
|
50
107
|
* solver.analyzePattern(A);
|
@@ -97,6 +154,7 @@ class SparseLU : public SparseSolverBase<SparseLU<_MatrixType,_OrderingType> >,
|
|
97
154
|
};
|
98
155
|
|
99
156
|
public:
|
157
|
+
|
100
158
|
SparseLU():m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
|
101
159
|
{
|
102
160
|
initperfvalues();
|
@@ -128,6 +186,45 @@ class SparseLU : public SparseSolverBase<SparseLU<_MatrixType,_OrderingType> >,
|
|
128
186
|
//Factorize
|
129
187
|
factorize(matrix);
|
130
188
|
}
|
189
|
+
|
190
|
+
/** \returns an expression of the transposed of the factored matrix.
|
191
|
+
*
|
192
|
+
* A typical usage is to solve for the transposed problem A^T x = b:
|
193
|
+
* \code
|
194
|
+
* solver.compute(A);
|
195
|
+
* x = solver.transpose().solve(b);
|
196
|
+
* \endcode
|
197
|
+
*
|
198
|
+
* \sa adjoint(), solve()
|
199
|
+
*/
|
200
|
+
const SparseLUTransposeView<false,SparseLU<_MatrixType,_OrderingType> > transpose()
|
201
|
+
{
|
202
|
+
SparseLUTransposeView<false, SparseLU<_MatrixType,_OrderingType> > transposeView;
|
203
|
+
transposeView.setSparseLU(this);
|
204
|
+
transposeView.setIsInitialized(this->m_isInitialized);
|
205
|
+
return transposeView;
|
206
|
+
}
|
207
|
+
|
208
|
+
|
209
|
+
/** \returns an expression of the adjoint of the factored matrix
|
210
|
+
*
|
211
|
+
* A typical usage is to solve for the adjoint problem A' x = b:
|
212
|
+
* \code
|
213
|
+
* solver.compute(A);
|
214
|
+
* x = solver.adjoint().solve(b);
|
215
|
+
* \endcode
|
216
|
+
*
|
217
|
+
* For real scalar types, this function is equivalent to transpose().
|
218
|
+
*
|
219
|
+
* \sa transpose(), solve()
|
220
|
+
*/
|
221
|
+
const SparseLUTransposeView<true, SparseLU<_MatrixType,_OrderingType> > adjoint()
|
222
|
+
{
|
223
|
+
SparseLUTransposeView<true, SparseLU<_MatrixType,_OrderingType> > adjointView;
|
224
|
+
adjointView.setSparseLU(this);
|
225
|
+
adjointView.setIsInitialized(this->m_isInitialized);
|
226
|
+
return adjointView;
|
227
|
+
}
|
131
228
|
|
132
229
|
inline Index rows() const { return m_mat.rows(); }
|
133
230
|
inline Index cols() const { return m_mat.cols(); }
|
@@ -193,7 +290,7 @@ class SparseLU : public SparseSolverBase<SparseLU<_MatrixType,_OrderingType> >,
|
|
193
290
|
|
194
291
|
/** \brief Reports whether previous computation was successful.
|
195
292
|
*
|
196
|
-
* \returns \c Success if computation was
|
293
|
+
* \returns \c Success if computation was successful,
|
197
294
|
* \c NumericalIssue if the LU factorization reports a problem, zero diagonal for instance
|
198
295
|
* \c InvalidInput if the input matrix is invalid
|
199
296
|
*
|
@@ -355,6 +452,9 @@ class SparseLU : public SparseSolverBase<SparseLU<_MatrixType,_OrderingType> >,
|
|
355
452
|
return (m_detPermR * m_detPermC) > 0 ? det : -det;
|
356
453
|
}
|
357
454
|
|
455
|
+
Index nnzL() const { return m_nnzL; };
|
456
|
+
Index nnzU() const { return m_nnzU; };
|
457
|
+
|
358
458
|
protected:
|
359
459
|
// Functions
|
360
460
|
void initperfvalues()
|
@@ -391,7 +491,6 @@ class SparseLU : public SparseSolverBase<SparseLU<_MatrixType,_OrderingType> >,
|
|
391
491
|
private:
|
392
492
|
// Disable copy constructor
|
393
493
|
SparseLU (const SparseLU& );
|
394
|
-
|
395
494
|
}; // End class SparseLU
|
396
495
|
|
397
496
|
|
@@ -501,7 +600,6 @@ void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
|
|
501
600
|
|
502
601
|
m_isInitialized = true;
|
503
602
|
|
504
|
-
|
505
603
|
// Apply the column permutation computed in analyzepattern()
|
506
604
|
// m_mat = matrix * m_perm_c.inverse();
|
507
605
|
m_mat = matrix;
|
@@ -585,7 +683,6 @@ void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
|
|
585
683
|
// (a) a relaxed supernode at the bottom of the etree, or
|
586
684
|
// (b) panel_size contiguous columns, <panel_size> defined by the user
|
587
685
|
Index jcol;
|
588
|
-
IndexVector panel_histo(n);
|
589
686
|
Index pivrow; // Pivotal row number in the original row matrix
|
590
687
|
Index nseg1; // Number of segments in U-column above panel row jcol
|
591
688
|
Index nseg; // Number of segments in each U-column
|
@@ -704,13 +801,19 @@ struct SparseLUMatrixLReturnType : internal::no_assignment_operator
|
|
704
801
|
typedef typename MappedSupernodalType::Scalar Scalar;
|
705
802
|
explicit SparseLUMatrixLReturnType(const MappedSupernodalType& mapL) : m_mapL(mapL)
|
706
803
|
{ }
|
707
|
-
Index rows() { return m_mapL.rows(); }
|
708
|
-
Index cols() { return m_mapL.cols(); }
|
804
|
+
Index rows() const { return m_mapL.rows(); }
|
805
|
+
Index cols() const { return m_mapL.cols(); }
|
709
806
|
template<typename Dest>
|
710
807
|
void solveInPlace( MatrixBase<Dest> &X) const
|
711
808
|
{
|
712
809
|
m_mapL.solveInPlace(X);
|
713
810
|
}
|
811
|
+
template<bool Conjugate, typename Dest>
|
812
|
+
void solveTransposedInPlace( MatrixBase<Dest> &X) const
|
813
|
+
{
|
814
|
+
m_mapL.template solveTransposedInPlace<Conjugate>(X);
|
815
|
+
}
|
816
|
+
|
714
817
|
const MappedSupernodalType& m_mapL;
|
715
818
|
};
|
716
819
|
|
@@ -721,8 +824,8 @@ struct SparseLUMatrixUReturnType : internal::no_assignment_operator
|
|
721
824
|
SparseLUMatrixUReturnType(const MatrixLType& mapL, const MatrixUType& mapU)
|
722
825
|
: m_mapL(mapL),m_mapU(mapU)
|
723
826
|
{ }
|
724
|
-
Index rows() { return m_mapL.rows(); }
|
725
|
-
Index cols() { return m_mapL.cols(); }
|
827
|
+
Index rows() const { return m_mapL.rows(); }
|
828
|
+
Index cols() const { return m_mapL.cols(); }
|
726
829
|
|
727
830
|
template<typename Dest> void solveInPlace(MatrixBase<Dest> &X) const
|
728
831
|
{
|
@@ -745,8 +848,9 @@ struct SparseLUMatrixUReturnType : internal::no_assignment_operator
|
|
745
848
|
}
|
746
849
|
else
|
747
850
|
{
|
851
|
+
// FIXME: the following lines should use Block expressions and not Map!
|
748
852
|
Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
|
749
|
-
Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
|
853
|
+
Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X.coeffRef(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
|
750
854
|
U = A.template triangularView<Upper>().solve(U);
|
751
855
|
}
|
752
856
|
|
@@ -764,6 +868,52 @@ struct SparseLUMatrixUReturnType : internal::no_assignment_operator
|
|
764
868
|
}
|
765
869
|
} // End For U-solve
|
766
870
|
}
|
871
|
+
|
872
|
+
template<bool Conjugate, typename Dest> void solveTransposedInPlace(MatrixBase<Dest> &X) const
|
873
|
+
{
|
874
|
+
using numext::conj;
|
875
|
+
Index nrhs = X.cols();
|
876
|
+
Index n = X.rows();
|
877
|
+
// Forward solve with U
|
878
|
+
for (Index k = 0; k <= m_mapL.nsuper(); k++)
|
879
|
+
{
|
880
|
+
Index fsupc = m_mapL.supToCol()[k];
|
881
|
+
Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension
|
882
|
+
Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
|
883
|
+
Index luptr = m_mapL.colIndexPtr()[fsupc];
|
884
|
+
|
885
|
+
for (Index j = 0; j < nrhs; ++j)
|
886
|
+
{
|
887
|
+
for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
|
888
|
+
{
|
889
|
+
typename MatrixUType::InnerIterator it(m_mapU, jcol);
|
890
|
+
for ( ; it; ++it)
|
891
|
+
{
|
892
|
+
Index irow = it.index();
|
893
|
+
X(jcol, j) -= X(irow, j) * (Conjugate? conj(it.value()): it.value());
|
894
|
+
}
|
895
|
+
}
|
896
|
+
}
|
897
|
+
if (nsupc == 1)
|
898
|
+
{
|
899
|
+
for (Index j = 0; j < nrhs; j++)
|
900
|
+
{
|
901
|
+
X(fsupc, j) /= (Conjugate? conj(m_mapL.valuePtr()[luptr]) : m_mapL.valuePtr()[luptr]);
|
902
|
+
}
|
903
|
+
}
|
904
|
+
else
|
905
|
+
{
|
906
|
+
Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
|
907
|
+
Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
|
908
|
+
if(Conjugate)
|
909
|
+
U = A.adjoint().template triangularView<Lower>().solve(U);
|
910
|
+
else
|
911
|
+
U = A.transpose().template triangularView<Lower>().solve(U);
|
912
|
+
}
|
913
|
+
}// End For U-solve
|
914
|
+
}
|
915
|
+
|
916
|
+
|
767
917
|
const MatrixLType& m_mapL;
|
768
918
|
const MatrixUType& m_mapU;
|
769
919
|
};
|
@@ -51,7 +51,7 @@ inline Index LUTempSpace(Index&m, Index& w)
|
|
51
51
|
|
52
52
|
|
53
53
|
/**
|
54
|
-
* Expand the existing storage to
|
54
|
+
* Expand the existing storage to accommodate more fill-ins
|
55
55
|
* \param vec Valid pointer to the vector to allocate or expand
|
56
56
|
* \param[in,out] length At input, contain the current length of the vector that is to be increased. At output, length of the newly allocated vector
|
57
57
|
* \param[in] nbElts Current number of elements in the factors
|
@@ -75,12 +75,12 @@ class MappedSuperNodalMatrix
|
|
75
75
|
/**
|
76
76
|
* Number of rows
|
77
77
|
*/
|
78
|
-
Index rows() { return m_row; }
|
78
|
+
Index rows() const { return m_row; }
|
79
79
|
|
80
80
|
/**
|
81
81
|
* Number of columns
|
82
82
|
*/
|
83
|
-
Index cols() { return m_col; }
|
83
|
+
Index cols() const { return m_col; }
|
84
84
|
|
85
85
|
/**
|
86
86
|
* Return the array of nonzero values packed by column
|
@@ -156,6 +156,9 @@ class MappedSuperNodalMatrix
|
|
156
156
|
class InnerIterator;
|
157
157
|
template<typename Dest>
|
158
158
|
void solveInPlace( MatrixBase<Dest>&X) const;
|
159
|
+
template<bool Conjugate, typename Dest>
|
160
|
+
void solveTransposedInPlace( MatrixBase<Dest>&X) const;
|
161
|
+
|
159
162
|
|
160
163
|
|
161
164
|
|
@@ -294,6 +297,77 @@ void MappedSuperNodalMatrix<Scalar,Index_>::solveInPlace( MatrixBase<Dest>&X) co
|
|
294
297
|
}
|
295
298
|
}
|
296
299
|
|
300
|
+
template<typename Scalar, typename Index_>
|
301
|
+
template<bool Conjugate, typename Dest>
|
302
|
+
void MappedSuperNodalMatrix<Scalar,Index_>::solveTransposedInPlace( MatrixBase<Dest>&X) const
|
303
|
+
{
|
304
|
+
using numext::conj;
|
305
|
+
Index n = int(X.rows());
|
306
|
+
Index nrhs = Index(X.cols());
|
307
|
+
const Scalar * Lval = valuePtr(); // Nonzero values
|
308
|
+
Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor> work(n, nrhs); // working vector
|
309
|
+
work.setZero();
|
310
|
+
for (Index k = nsuper(); k >= 0; k--)
|
311
|
+
{
|
312
|
+
Index fsupc = supToCol()[k]; // First column of the current supernode
|
313
|
+
Index istart = rowIndexPtr()[fsupc]; // Pointer index to the subscript of the current column
|
314
|
+
Index nsupr = rowIndexPtr()[fsupc+1] - istart; // Number of rows in the current supernode
|
315
|
+
Index nsupc = supToCol()[k+1] - fsupc; // Number of columns in the current supernode
|
316
|
+
Index nrow = nsupr - nsupc; // Number of rows in the non-diagonal part of the supernode
|
317
|
+
Index irow; //Current index row
|
318
|
+
|
319
|
+
if (nsupc == 1 )
|
320
|
+
{
|
321
|
+
for (Index j = 0; j < nrhs; j++)
|
322
|
+
{
|
323
|
+
InnerIterator it(*this, fsupc);
|
324
|
+
++it; // Skip the diagonal element
|
325
|
+
for (; it; ++it)
|
326
|
+
{
|
327
|
+
irow = it.row();
|
328
|
+
X(fsupc,j) -= X(irow, j) * (Conjugate?conj(it.value()):it.value());
|
329
|
+
}
|
330
|
+
}
|
331
|
+
}
|
332
|
+
else
|
333
|
+
{
|
334
|
+
// The supernode has more than one column
|
335
|
+
Index luptr = colIndexPtr()[fsupc];
|
336
|
+
Index lda = colIndexPtr()[fsupc+1] - luptr;
|
337
|
+
|
338
|
+
//Begin Gather
|
339
|
+
for (Index j = 0; j < nrhs; j++)
|
340
|
+
{
|
341
|
+
Index iptr = istart + nsupc;
|
342
|
+
for (Index i = 0; i < nrow; i++)
|
343
|
+
{
|
344
|
+
irow = rowIndex()[iptr];
|
345
|
+
work.topRows(nrow)(i,j)= X(irow,j); // Gather operation
|
346
|
+
iptr++;
|
347
|
+
}
|
348
|
+
}
|
349
|
+
|
350
|
+
// Matrix-vector product with transposed submatrix
|
351
|
+
Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(Lval[luptr+nsupc]), nrow, nsupc, OuterStride<>(lda) );
|
352
|
+
Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
|
353
|
+
if(Conjugate)
|
354
|
+
U = U - A.adjoint() * work.topRows(nrow);
|
355
|
+
else
|
356
|
+
U = U - A.transpose() * work.topRows(nrow);
|
357
|
+
|
358
|
+
// Triangular solve (of transposed diagonal block)
|
359
|
+
new (&A) Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > ( &(Lval[luptr]), nsupc, nsupc, OuterStride<>(lda) );
|
360
|
+
if(Conjugate)
|
361
|
+
U = A.adjoint().template triangularView<UnitUpper>().solve(U);
|
362
|
+
else
|
363
|
+
U = A.transpose().template triangularView<UnitUpper>().solve(U);
|
364
|
+
|
365
|
+
}
|
366
|
+
|
367
|
+
}
|
368
|
+
}
|
369
|
+
|
370
|
+
|
297
371
|
} // end namespace internal
|
298
372
|
|
299
373
|
} // end namespace Eigen
|
@@ -151,7 +151,7 @@ Index SparseLUImpl<Scalar,StorageIndex>::column_dfs(const Index m, const Index j
|
|
151
151
|
StorageIndex ito = glu.xlsub(fsupc+1);
|
152
152
|
glu.xlsub(jcolm1) = ito;
|
153
153
|
StorageIndex istop = ito + jptr - jm1ptr;
|
154
|
-
xprune(jcolm1) = istop; //
|
154
|
+
xprune(jcolm1) = istop; // initialize xprune(jcol-1)
|
155
155
|
glu.xlsub(jcol) = istop;
|
156
156
|
|
157
157
|
for (StorageIndex ifrom = jm1ptr; ifrom < nextl; ++ifrom, ++ito)
|
@@ -166,7 +166,7 @@ Index SparseLUImpl<Scalar,StorageIndex>::column_dfs(const Index m, const Index j
|
|
166
166
|
// Tidy up the pointers before exit
|
167
167
|
glu.xsup(nsuper+1) = jcolp1;
|
168
168
|
glu.supno(jcolp1) = nsuper;
|
169
|
-
xprune(jcol) = StorageIndex(nextl); //
|
169
|
+
xprune(jcol) = StorageIndex(nextl); // Initialize upper bound for pruning
|
170
170
|
glu.xlsub(jcolp1) = StorageIndex(nextl);
|
171
171
|
|
172
172
|
return 0;
|
@@ -215,7 +215,7 @@ void sparselu_gemm(Index m, Index n, Index d, const Scalar* A, Index lda, const
|
|
215
215
|
if(RK==4){ a3 = pload<Packet>(A3+i+(I+1)*PacketSize); }\
|
216
216
|
pstore(C0+i+(I)*PacketSize, c0);
|
217
217
|
|
218
|
-
//
|
218
|
+
// aggressive vectorization and peeling
|
219
219
|
for(Index i=0; i<actual_b_end1; i+=PacketSize*8)
|
220
220
|
{
|
221
221
|
EIGEN_ASM_COMMENT("SPARSELU_GEMML_KERNEL2");
|
@@ -38,7 +38,7 @@ namespace internal {
|
|
38
38
|
* \brief Performs numeric block updates (sup-panel) in topological order.
|
39
39
|
*
|
40
40
|
* Before entering this routine, the original nonzeros in the panel
|
41
|
-
* were already copied
|
41
|
+
* were already copied into the spa[m,w]
|
42
42
|
*
|
43
43
|
* \param m number of rows in the matrix
|
44
44
|
* \param w Panel size
|
@@ -41,15 +41,16 @@ namespace internal {
|
|
41
41
|
/**
|
42
42
|
* \ingroup SparseQR_Module
|
43
43
|
* \class SparseQR
|
44
|
-
* \brief Sparse left-looking
|
44
|
+
* \brief Sparse left-looking QR factorization with numerical column pivoting
|
45
45
|
*
|
46
|
-
* This class implements a left-looking
|
47
|
-
*
|
46
|
+
* This class implements a left-looking QR decomposition of sparse matrices
|
47
|
+
* with numerical column pivoting.
|
48
|
+
* When a column has a norm less than a given tolerance
|
48
49
|
* it is implicitly permuted to the end. The QR factorization thus obtained is
|
49
50
|
* given by A*P = Q*R where R is upper triangular or trapezoidal.
|
50
51
|
*
|
51
52
|
* P is the column permutation which is the product of the fill-reducing and the
|
52
|
-
*
|
53
|
+
* numerical permutations. Use colsPermutation() to get it.
|
53
54
|
*
|
54
55
|
* Q is the orthogonal matrix represented as products of Householder reflectors.
|
55
56
|
* Use matrixQ() to get an expression and matrixQ().adjoint() to get the adjoint.
|
@@ -64,6 +65,17 @@ namespace internal {
|
|
64
65
|
*
|
65
66
|
* \implsparsesolverconcept
|
66
67
|
*
|
68
|
+
* The numerical pivoting strategy and default threshold are the same as in SuiteSparse QR, and
|
69
|
+
* detailed in the following paper:
|
70
|
+
* <i>
|
71
|
+
* Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
|
72
|
+
* Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011.
|
73
|
+
* </i>
|
74
|
+
* Even though it is qualified as "rank-revealing", this strategy might fail for some
|
75
|
+
* rank deficient problems. When this class is used to solve linear or least-square problems
|
76
|
+
* it is thus strongly recommended to check the accuracy of the computed solution. If it
|
77
|
+
* failed, it usually helps to increase the threshold with setPivotThreshold.
|
78
|
+
*
|
67
79
|
* \warning The input sparse matrix A must be in compressed mode (see SparseMatrix::makeCompressed()).
|
68
80
|
* \warning For complex matrices matrixQ().transpose() will actually return the adjoint matrix.
|
69
81
|
*
|
@@ -331,7 +343,7 @@ void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
|
|
331
343
|
m_R.resize(m, n);
|
332
344
|
m_Q.resize(m, diagSize);
|
333
345
|
|
334
|
-
// Allocate space for nonzero elements
|
346
|
+
// Allocate space for nonzero elements: rough estimation
|
335
347
|
m_R.reserve(2*mat.nonZeros()); //FIXME Get a more accurate estimation through symbolic factorization with the etree
|
336
348
|
m_Q.reserve(2*mat.nonZeros());
|
337
349
|
m_hcoeffs.resize(diagSize);
|
@@ -640,7 +652,8 @@ struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived
|
|
640
652
|
// Compute res = Q * other column by column
|
641
653
|
for(Index j = 0; j < res.cols(); j++)
|
642
654
|
{
|
643
|
-
|
655
|
+
Index start_k = internal::is_identity<Derived>::value ? numext::mini(j,diagSize-1) : diagSize-1;
|
656
|
+
for (Index k = start_k; k >=0; k--)
|
644
657
|
{
|
645
658
|
Scalar tau = Scalar(0);
|
646
659
|
tau = m_qr.m_Q.col(k).dot(res.col(j));
|
@@ -36,7 +36,7 @@ namespace std \
|
|
36
36
|
deque(InputIterator first, InputIterator last, const allocator_type& a = allocator_type()) : deque_base(first, last, a) {} \
|
37
37
|
deque(const deque& c) : deque_base(c) {} \
|
38
38
|
explicit deque(size_type num, const value_type& val = value_type()) : deque_base(num, val) {} \
|
39
|
-
deque(iterator
|
39
|
+
deque(iterator start_, iterator end_) : deque_base(start_, end_) {} \
|
40
40
|
deque& operator=(const deque& x) { \
|
41
41
|
deque_base::operator=(x); \
|
42
42
|
return *this; \
|
@@ -62,7 +62,7 @@ namespace std {
|
|
62
62
|
: deque_base(first, last, a) {} \
|
63
63
|
deque(const deque& c) : deque_base(c) {} \
|
64
64
|
explicit deque(size_type num, const value_type& val = value_type()) : deque_base(num, val) {} \
|
65
|
-
deque(iterator
|
65
|
+
deque(iterator start_, iterator end_) : deque_base(start_, end_) {} \
|
66
66
|
deque& operator=(const deque& x) { \
|
67
67
|
deque_base::operator=(x); \
|
68
68
|
return *this; \
|
@@ -98,17 +98,7 @@ namespace std {
|
|
98
98
|
{ return deque_base::insert(position,x); }
|
99
99
|
void insert(const_iterator position, size_type new_size, const value_type& x)
|
100
100
|
{ deque_base::insert(position, new_size, x); }
|
101
|
-
#elif defined(_GLIBCXX_DEQUE) && EIGEN_GNUC_AT_LEAST(4,2)
|
102
|
-
// workaround GCC std::deque implementation
|
103
|
-
void resize(size_type new_size, const value_type& x)
|
104
|
-
{
|
105
|
-
if (new_size < deque_base::size())
|
106
|
-
deque_base::_M_erase_at_end(this->_M_impl._M_start + new_size);
|
107
|
-
else
|
108
|
-
deque_base::insert(deque_base::end(), new_size - deque_base::size(), x);
|
109
|
-
}
|
110
101
|
#else
|
111
|
-
// either GCC 4.1 or non-GCC
|
112
102
|
// default implementation which should always work.
|
113
103
|
void resize(size_type new_size, const value_type& x)
|
114
104
|
{
|
@@ -35,7 +35,7 @@ namespace std \
|
|
35
35
|
list(InputIterator first, InputIterator last, const allocator_type& a = allocator_type()) : list_base(first, last, a) {} \
|
36
36
|
list(const list& c) : list_base(c) {} \
|
37
37
|
explicit list(size_type num, const value_type& val = value_type()) : list_base(num, val) {} \
|
38
|
-
list(iterator
|
38
|
+
list(iterator start_, iterator end_) : list_base(start_, end_) {} \
|
39
39
|
list& operator=(const list& x) { \
|
40
40
|
list_base::operator=(x); \
|
41
41
|
return *this; \
|
@@ -62,7 +62,7 @@ namespace std
|
|
62
62
|
: list_base(first, last, a) {} \
|
63
63
|
list(const list& c) : list_base(c) {} \
|
64
64
|
explicit list(size_type num, const value_type& val = value_type()) : list_base(num, val) {} \
|
65
|
-
list(iterator
|
65
|
+
list(iterator start_, iterator end_) : list_base(start_, end_) {} \
|
66
66
|
list& operator=(const list& x) { \
|
67
67
|
list_base::operator=(x); \
|
68
68
|
return *this; \
|