svmkit 0.7.3 → 0.8.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +0 -9
- data/.rspec +1 -0
- data/.travis.yml +4 -12
- data/LICENSE.txt +1 -1
- data/README.md +11 -13
- data/lib/svmkit.rb +3 -66
- data/svmkit.gemspec +12 -7
- metadata +16 -81
- data/.coveralls.yml +0 -1
- data/.rubocop.yml +0 -47
- data/.rubocop_todo.yml +0 -58
- data/HISTORY.md +0 -168
- data/lib/svmkit/base/base_estimator.rb +0 -13
- data/lib/svmkit/base/classifier.rb +0 -34
- data/lib/svmkit/base/cluster_analyzer.rb +0 -29
- data/lib/svmkit/base/evaluator.rb +0 -13
- data/lib/svmkit/base/regressor.rb +0 -34
- data/lib/svmkit/base/splitter.rb +0 -17
- data/lib/svmkit/base/transformer.rb +0 -18
- data/lib/svmkit/clustering/dbscan.rb +0 -127
- data/lib/svmkit/clustering/k_means.rb +0 -140
- data/lib/svmkit/dataset.rb +0 -109
- data/lib/svmkit/decomposition/nmf.rb +0 -147
- data/lib/svmkit/decomposition/pca.rb +0 -150
- data/lib/svmkit/ensemble/ada_boost_classifier.rb +0 -198
- data/lib/svmkit/ensemble/ada_boost_regressor.rb +0 -180
- data/lib/svmkit/ensemble/random_forest_classifier.rb +0 -182
- data/lib/svmkit/ensemble/random_forest_regressor.rb +0 -143
- data/lib/svmkit/evaluation_measure/accuracy.rb +0 -30
- data/lib/svmkit/evaluation_measure/f_score.rb +0 -51
- data/lib/svmkit/evaluation_measure/log_loss.rb +0 -46
- data/lib/svmkit/evaluation_measure/mean_absolute_error.rb +0 -30
- data/lib/svmkit/evaluation_measure/mean_squared_error.rb +0 -30
- data/lib/svmkit/evaluation_measure/normalized_mutual_information.rb +0 -63
- data/lib/svmkit/evaluation_measure/precision.rb +0 -51
- data/lib/svmkit/evaluation_measure/precision_recall.rb +0 -91
- data/lib/svmkit/evaluation_measure/purity.rb +0 -41
- data/lib/svmkit/evaluation_measure/r2_score.rb +0 -44
- data/lib/svmkit/evaluation_measure/recall.rb +0 -51
- data/lib/svmkit/kernel_approximation/rbf.rb +0 -136
- data/lib/svmkit/kernel_machine/kernel_svc.rb +0 -194
- data/lib/svmkit/linear_model/lasso.rb +0 -138
- data/lib/svmkit/linear_model/linear_regression.rb +0 -112
- data/lib/svmkit/linear_model/logistic_regression.rb +0 -161
- data/lib/svmkit/linear_model/ridge.rb +0 -112
- data/lib/svmkit/linear_model/sgd_linear_estimator.rb +0 -89
- data/lib/svmkit/linear_model/svc.rb +0 -184
- data/lib/svmkit/linear_model/svr.rb +0 -123
- data/lib/svmkit/model_selection/cross_validation.rb +0 -121
- data/lib/svmkit/model_selection/grid_search_cv.rb +0 -247
- data/lib/svmkit/model_selection/k_fold.rb +0 -77
- data/lib/svmkit/model_selection/stratified_k_fold.rb +0 -95
- data/lib/svmkit/multiclass/one_vs_rest_classifier.rb +0 -101
- data/lib/svmkit/naive_bayes/naive_bayes.rb +0 -316
- data/lib/svmkit/nearest_neighbors/k_neighbors_classifier.rb +0 -112
- data/lib/svmkit/nearest_neighbors/k_neighbors_regressor.rb +0 -94
- data/lib/svmkit/optimizer/nadam.rb +0 -90
- data/lib/svmkit/optimizer/rmsprop.rb +0 -69
- data/lib/svmkit/optimizer/sgd.rb +0 -65
- data/lib/svmkit/optimizer/yellow_fin.rb +0 -144
- data/lib/svmkit/pairwise_metric.rb +0 -91
- data/lib/svmkit/pipeline/pipeline.rb +0 -197
- data/lib/svmkit/polynomial_model/factorization_machine_classifier.rb +0 -262
- data/lib/svmkit/polynomial_model/factorization_machine_regressor.rb +0 -194
- data/lib/svmkit/preprocessing/l2_normalizer.rb +0 -63
- data/lib/svmkit/preprocessing/label_encoder.rb +0 -95
- data/lib/svmkit/preprocessing/min_max_scaler.rb +0 -93
- data/lib/svmkit/preprocessing/one_hot_encoder.rb +0 -99
- data/lib/svmkit/preprocessing/standard_scaler.rb +0 -87
- data/lib/svmkit/probabilistic_output.rb +0 -112
- data/lib/svmkit/tree/decision_tree_classifier.rb +0 -276
- data/lib/svmkit/tree/decision_tree_regressor.rb +0 -251
- data/lib/svmkit/tree/node.rb +0 -70
- data/lib/svmkit/utils.rb +0 -22
- data/lib/svmkit/validation.rb +0 -79
- data/lib/svmkit/values.rb +0 -13
- data/lib/svmkit/version.rb +0 -7
@@ -1,247 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'svmkit/validation'
|
4
|
-
require 'svmkit/base/base_estimator'
|
5
|
-
require 'svmkit/base/evaluator'
|
6
|
-
require 'svmkit/base/splitter'
|
7
|
-
require 'svmkit/pipeline/pipeline'
|
8
|
-
|
9
|
-
module SVMKit
|
10
|
-
module ModelSelection
|
11
|
-
# GridSearchCV is a class that performs hyperparameter optimization with grid search method.
|
12
|
-
#
|
13
|
-
# @example
|
14
|
-
# rfc = SVMKit::Ensemble::RandomForestClassifier.new(random_seed: 1)
|
15
|
-
# pg = { n_estimators: [5, 10], max_depth: [3, 5], max_leaf_nodes: [15, 31] }
|
16
|
-
# kf = SVMKit::ModelSelection::StratifiedKFold.new(n_splits: 5)
|
17
|
-
# gs = SVMKit::ModelSelection::GridSearchCV.new(estimator: rfc, param_grid: pg, splitter: kf)
|
18
|
-
# gs.fit(samples, labels)
|
19
|
-
# p gs.cv_results
|
20
|
-
# p gs.best_params
|
21
|
-
#
|
22
|
-
# @example
|
23
|
-
# rbf = SVMKit::KernelApproximation::RBF.new(random_seed: 1)
|
24
|
-
# svc = SVMKit::LinearModel::SVC.new(random_seed: 1)
|
25
|
-
# pipe = SVMKit::Pipeline::Pipeline.new(steps: { rbf: rbf, svc: svc })
|
26
|
-
# pg = { rbf__gamma: [32.0, 1.0], rbf__n_components: [4, 128], svc__reg_param: [16.0, 0.1] }
|
27
|
-
# kf = SVMKit::ModelSelection::StratifiedKFold.new(n_splits: 5)
|
28
|
-
# gs = SVMKit::ModelSelection::GridSearchCV.new(estimator: pipe, param_grid: pg, splitter: kf)
|
29
|
-
# gs.fit(samples, labels)
|
30
|
-
# p gs.cv_results
|
31
|
-
# p gs.best_params
|
32
|
-
#
|
33
|
-
class GridSearchCV
|
34
|
-
include Base::BaseEstimator
|
35
|
-
include Validation
|
36
|
-
|
37
|
-
# Return the result of cross validation for each parameter.
|
38
|
-
# @return [Hash]
|
39
|
-
attr_reader :cv_results
|
40
|
-
|
41
|
-
# Return the score of the estimator learned with the best parameter.
|
42
|
-
# @return [Float]
|
43
|
-
attr_reader :best_score
|
44
|
-
|
45
|
-
# Return the best parameter set.
|
46
|
-
# @return [Hash]
|
47
|
-
attr_reader :best_params
|
48
|
-
|
49
|
-
# Return the index of the best parameter.
|
50
|
-
# @return [Integer]
|
51
|
-
attr_reader :best_index
|
52
|
-
|
53
|
-
# Return the estimator learned with the best parameter.
|
54
|
-
# @return [Estimator]
|
55
|
-
attr_reader :best_estimator
|
56
|
-
|
57
|
-
# Create a new grid search method.
|
58
|
-
#
|
59
|
-
# @param estimator [Classifier/Regresor] The estimator to be searched for optimal parameters with grid search method.
|
60
|
-
# @param param_grid [Array<Hash>] The parameter sets is represented with array of hash that
|
61
|
-
# consists of parameter names as keys and array of parameter values as values.
|
62
|
-
# @param splitter [Splitter] The splitter that divides dataset to training and testing dataset on cross validation.
|
63
|
-
# @param evaluator [Evaluator] The evaluator that calculates score of estimator results on cross validation.
|
64
|
-
# If nil is given, the score method of estimator is used to evaluation.
|
65
|
-
# @param greater_is_better [Boolean] The flag that indicates whether the estimator is better as
|
66
|
-
# evaluation score is larger.
|
67
|
-
def initialize(estimator: nil, param_grid: nil, splitter: nil, evaluator: nil, greater_is_better: true)
|
68
|
-
check_params_type(SVMKit::Base::BaseEstimator, estimator: estimator)
|
69
|
-
check_params_type(SVMKit::Base::Splitter, splitter: splitter)
|
70
|
-
check_params_type_or_nil(SVMKit::Base::Evaluator, evaluator: evaluator)
|
71
|
-
check_params_boolean(greater_is_better: greater_is_better)
|
72
|
-
@params = {}
|
73
|
-
@params[:param_grid] = valid_param_grid(param_grid)
|
74
|
-
@params[:estimator] = Marshal.load(Marshal.dump(estimator))
|
75
|
-
@params[:splitter] = Marshal.load(Marshal.dump(splitter))
|
76
|
-
@params[:evaluator] = Marshal.load(Marshal.dump(evaluator))
|
77
|
-
@params[:greater_is_better] = greater_is_better
|
78
|
-
@cv_results = nil
|
79
|
-
@best_score = nil
|
80
|
-
@best_params = nil
|
81
|
-
@best_index = nil
|
82
|
-
@best_estimator = nil
|
83
|
-
end
|
84
|
-
|
85
|
-
# Fit the model with given training data and all sets of parameters.
|
86
|
-
#
|
87
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
88
|
-
# @param y [Numo::NArray] (shape: [n_samples, n_outputs]) The target values or labels to be used for fitting the model.
|
89
|
-
# @return [GridSearchCV] The learned estimator with grid search.
|
90
|
-
def fit(x, y)
|
91
|
-
check_sample_array(x)
|
92
|
-
|
93
|
-
init_attrs
|
94
|
-
|
95
|
-
param_combinations.each do |prm_set|
|
96
|
-
prm_set.each do |prms|
|
97
|
-
report = perform_cross_validation(x, y, prms)
|
98
|
-
store_cv_result(prms, report)
|
99
|
-
end
|
100
|
-
end
|
101
|
-
|
102
|
-
find_best_params
|
103
|
-
|
104
|
-
@best_estimator = configurated_estimator(@best_params)
|
105
|
-
@best_estimator.fit(x, y)
|
106
|
-
self
|
107
|
-
end
|
108
|
-
|
109
|
-
# Call the decision_function method of learned estimator with the best parameter.
|
110
|
-
#
|
111
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
112
|
-
# @return [Numo::DFloat] (shape: [n_samples]) Confidence score per sample.
|
113
|
-
def decision_function(x)
|
114
|
-
check_sample_array(x)
|
115
|
-
@best_estimator.decision_function(x)
|
116
|
-
end
|
117
|
-
|
118
|
-
# Call the predict method of learned estimator with the best parameter.
|
119
|
-
#
|
120
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to obtain prediction result.
|
121
|
-
# @return [Numo::NArray] Predicted results.
|
122
|
-
def predict(x)
|
123
|
-
check_sample_array(x)
|
124
|
-
@best_estimator.predict(x)
|
125
|
-
end
|
126
|
-
|
127
|
-
# Call the predict_log_proba method of learned estimator with the best parameter.
|
128
|
-
#
|
129
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the log-probailities.
|
130
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted log-probability of each class per sample.
|
131
|
-
def predict_log_proba(x)
|
132
|
-
check_sample_array(x)
|
133
|
-
@best_estimator.predict_log_proba(x)
|
134
|
-
end
|
135
|
-
|
136
|
-
# Call the predict_proba method of learned estimator with the best parameter.
|
137
|
-
#
|
138
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
139
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
140
|
-
def predict_proba(x)
|
141
|
-
check_sample_array(x)
|
142
|
-
@best_estimator.predict_proba(x)
|
143
|
-
end
|
144
|
-
|
145
|
-
# Call the score method of learned estimator with the best parameter.
|
146
|
-
#
|
147
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) Testing data.
|
148
|
-
# @param y [Numo::NArray] (shape: [n_samples, n_outputs]) True target values or labels for testing data.
|
149
|
-
# @return [Float] The score of estimator.
|
150
|
-
def score(x, y)
|
151
|
-
check_sample_array(x)
|
152
|
-
@best_estimator.score(x, y)
|
153
|
-
end
|
154
|
-
|
155
|
-
# Dump marshal data.
|
156
|
-
# @return [Hash] The marshal data about GridSearchCV.
|
157
|
-
def marshal_dump
|
158
|
-
{ params: @params,
|
159
|
-
cv_results: @cv_results,
|
160
|
-
best_score: @best_score,
|
161
|
-
best_params: @best_params,
|
162
|
-
best_index: @best_index,
|
163
|
-
best_estimator: @best_estimator }
|
164
|
-
end
|
165
|
-
|
166
|
-
# Load marshal data.
|
167
|
-
# @return [nil]
|
168
|
-
def marshal_load(obj)
|
169
|
-
@params = obj[:params]
|
170
|
-
@cv_results = obj[:cv_results]
|
171
|
-
@best_score = obj[:best_score]
|
172
|
-
@best_params = obj[:best_params]
|
173
|
-
@best_index = obj[:best_index]
|
174
|
-
@best_estimator = obj[:best_estimator]
|
175
|
-
nil
|
176
|
-
end
|
177
|
-
|
178
|
-
private
|
179
|
-
|
180
|
-
def valid_param_grid(grid)
|
181
|
-
raise TypeError, 'Expect class of param_grid to be Hash or Array' unless grid.is_a?(Hash) || grid.is_a?(Array)
|
182
|
-
grid = [grid] if grid.is_a?(Hash)
|
183
|
-
grid.each do |h|
|
184
|
-
raise TypeError, 'Expect class of elements in param_grid to be Hash' unless h.is_a?(Hash)
|
185
|
-
raise TypeError, 'Expect class of parameter values in param_grid to be Array' unless h.values.all? { |v| v.is_a?(Array) }
|
186
|
-
end
|
187
|
-
grid
|
188
|
-
end
|
189
|
-
|
190
|
-
def param_combinations
|
191
|
-
@param_combinations ||= @params[:param_grid].map do |prm|
|
192
|
-
x = Hash[prm.sort].map { |k, v| [k].product(v) }
|
193
|
-
x[0].product(*x[1...x.size]).map { |v| Hash[v] }
|
194
|
-
end
|
195
|
-
end
|
196
|
-
|
197
|
-
def perform_cross_validation(x, y, prms)
|
198
|
-
est = configurated_estimator(prms)
|
199
|
-
cv = CrossValidation.new(estimator: est, splitter: @params[:splitter],
|
200
|
-
evaluator: @params[:evaluator], return_train_score: true)
|
201
|
-
cv.perform(x, y)
|
202
|
-
end
|
203
|
-
|
204
|
-
def configurated_estimator(prms)
|
205
|
-
estimator = Marshal.load(Marshal.dump(@params[:estimator]))
|
206
|
-
if @params[:estimator].is_a?(SVMKit::Pipeline::Pipeline)
|
207
|
-
prms.each do |k, v|
|
208
|
-
est_name, prm_name = k.to_s.split('__')
|
209
|
-
estimator.steps[est_name.to_sym].params[prm_name.to_sym] = v
|
210
|
-
end
|
211
|
-
else
|
212
|
-
prms.each { |k, v| estimator.params[k] = v }
|
213
|
-
end
|
214
|
-
estimator
|
215
|
-
end
|
216
|
-
|
217
|
-
def init_attrs
|
218
|
-
@cv_results = %i[mean_test_score std_test_score
|
219
|
-
mean_train_score std_train_score
|
220
|
-
mean_fit_time std_fit_time params].map { |v| [v, []] }.to_h
|
221
|
-
@best_score = nil
|
222
|
-
@best_params = nil
|
223
|
-
@best_index = nil
|
224
|
-
@best_estimator = nil
|
225
|
-
end
|
226
|
-
|
227
|
-
def store_cv_result(prms, report)
|
228
|
-
test_scores = Numo::DFloat[*report[:test_score]]
|
229
|
-
train_scores = Numo::DFloat[*report[:train_score]]
|
230
|
-
fit_times = Numo::DFloat[*report[:fit_time]]
|
231
|
-
@cv_results[:mean_test_score].push(test_scores.mean)
|
232
|
-
@cv_results[:std_test_score].push(test_scores.stddev)
|
233
|
-
@cv_results[:mean_train_score].push(train_scores.mean)
|
234
|
-
@cv_results[:std_train_score].push(train_scores.stddev)
|
235
|
-
@cv_results[:mean_fit_time].push(fit_times.mean)
|
236
|
-
@cv_results[:std_fit_time].push(fit_times.stddev)
|
237
|
-
@cv_results[:params].push(prms)
|
238
|
-
end
|
239
|
-
|
240
|
-
def find_best_params
|
241
|
-
@best_score = @params[:greater_is_better] ? @cv_results[:mean_test_score].max : @cv_results[:mean_test_score].min
|
242
|
-
@best_index = @cv_results[:mean_test_score].index(@best_score)
|
243
|
-
@best_params = @cv_results[:params][@best_index]
|
244
|
-
end
|
245
|
-
end
|
246
|
-
end
|
247
|
-
end
|
@@ -1,77 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'svmkit/validation'
|
4
|
-
require 'svmkit/base/splitter'
|
5
|
-
|
6
|
-
module SVMKit
|
7
|
-
# This module consists of the classes for model validation techniques.
|
8
|
-
module ModelSelection
|
9
|
-
# KFold is a class that generates the set of data indices for K-fold cross-validation.
|
10
|
-
#
|
11
|
-
# @example
|
12
|
-
# kf = SVMKit::ModelSelection::KFold.new(n_splits: 3, shuffle: true, random_seed: 1)
|
13
|
-
# kf.split(samples, labels).each do |train_ids, test_ids|
|
14
|
-
# train_samples = samples[train_ids, true]
|
15
|
-
# test_samples = samples[test_ids, true]
|
16
|
-
# ...
|
17
|
-
# end
|
18
|
-
#
|
19
|
-
class KFold
|
20
|
-
include Base::Splitter
|
21
|
-
|
22
|
-
# Return the flag indicating whether to shuffle the dataset.
|
23
|
-
# @return [Boolean]
|
24
|
-
attr_reader :shuffle
|
25
|
-
|
26
|
-
# Return the random generator for shuffling the dataset.
|
27
|
-
# @return [Random]
|
28
|
-
attr_reader :rng
|
29
|
-
|
30
|
-
# Create a new data splitter for K-fold cross validation.
|
31
|
-
#
|
32
|
-
# @param n_splits [Integer] The number of folds.
|
33
|
-
# @param shuffle [Boolean] The flag indicating whether to shuffle the dataset.
|
34
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
35
|
-
def initialize(n_splits: 3, shuffle: false, random_seed: nil)
|
36
|
-
SVMKit::Validation.check_params_integer(n_splits: n_splits)
|
37
|
-
SVMKit::Validation.check_params_boolean(shuffle: shuffle)
|
38
|
-
SVMKit::Validation.check_params_type_or_nil(Integer, random_seed: random_seed)
|
39
|
-
SVMKit::Validation.check_params_positive(n_splits: n_splits)
|
40
|
-
@n_splits = n_splits
|
41
|
-
@shuffle = shuffle
|
42
|
-
@random_seed = random_seed
|
43
|
-
@random_seed ||= srand
|
44
|
-
@rng = Random.new(@random_seed)
|
45
|
-
end
|
46
|
-
|
47
|
-
# Generate data indices for K-fold cross validation.
|
48
|
-
#
|
49
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features])
|
50
|
-
# The dataset to be used to generate data indices for K-fold cross validation.
|
51
|
-
# @return [Array] The set of data indices for constructing the training and testing dataset in each fold.
|
52
|
-
def split(x, _y = nil)
|
53
|
-
SVMKit::Validation.check_sample_array(x)
|
54
|
-
# Initialize and check some variables.
|
55
|
-
n_samples, = x.shape
|
56
|
-
unless @n_splits.between?(2, n_samples)
|
57
|
-
raise ArgumentError,
|
58
|
-
'The value of n_splits must be not less than 2 and not more than the number of samples.'
|
59
|
-
end
|
60
|
-
# Splits dataset ids to each fold.
|
61
|
-
dataset_ids = [*0...n_samples]
|
62
|
-
dataset_ids.shuffle!(random: @rng) if @shuffle
|
63
|
-
fold_sets = Array.new(@n_splits) do |n|
|
64
|
-
n_fold_samples = n_samples / @n_splits
|
65
|
-
n_fold_samples += 1 if n < n_samples % @n_splits
|
66
|
-
dataset_ids.shift(n_fold_samples)
|
67
|
-
end
|
68
|
-
# Returns array consisting of the training and testing ids for each fold.
|
69
|
-
Array.new(@n_splits) do |n|
|
70
|
-
train_ids = fold_sets.select.with_index { |_, id| id != n }.flatten
|
71
|
-
test_ids = fold_sets[n]
|
72
|
-
[train_ids, test_ids]
|
73
|
-
end
|
74
|
-
end
|
75
|
-
end
|
76
|
-
end
|
77
|
-
end
|
@@ -1,95 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'svmkit/validation'
|
4
|
-
require 'svmkit/base/splitter'
|
5
|
-
|
6
|
-
module SVMKit
|
7
|
-
module ModelSelection
|
8
|
-
# StratifiedKFold is a class that generates the set of data indices for K-fold cross-validation.
|
9
|
-
# The proportion of the number of samples in each class will be almost equal for each fold.
|
10
|
-
#
|
11
|
-
# @example
|
12
|
-
# kf = SVMKit::ModelSelection::StratifiedKFold.new(n_splits: 3, shuffle: true, random_seed: 1)
|
13
|
-
# kf.split(samples, labels).each do |train_ids, test_ids|
|
14
|
-
# train_samples = samples[train_ids, true]
|
15
|
-
# test_samples = samples[test_ids, true]
|
16
|
-
# ...
|
17
|
-
# end
|
18
|
-
#
|
19
|
-
class StratifiedKFold
|
20
|
-
include Base::Splitter
|
21
|
-
|
22
|
-
# Return the flag indicating whether to shuffle the dataset.
|
23
|
-
# @return [Boolean]
|
24
|
-
attr_reader :shuffle
|
25
|
-
|
26
|
-
# Return the random generator for shuffling the dataset.
|
27
|
-
# @return [Random]
|
28
|
-
attr_reader :rng
|
29
|
-
|
30
|
-
# Create a new data splitter for K-fold cross validation.
|
31
|
-
#
|
32
|
-
# @param n_splits [Integer] The number of folds.
|
33
|
-
# @param shuffle [Boolean] The flag indicating whether to shuffle the dataset.
|
34
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
35
|
-
def initialize(n_splits: 3, shuffle: false, random_seed: nil)
|
36
|
-
SVMKit::Validation.check_params_integer(n_splits: n_splits)
|
37
|
-
SVMKit::Validation.check_params_boolean(shuffle: shuffle)
|
38
|
-
SVMKit::Validation.check_params_type_or_nil(Integer, random_seed: random_seed)
|
39
|
-
SVMKit::Validation.check_params_positive(n_splits: n_splits)
|
40
|
-
@n_splits = n_splits
|
41
|
-
@shuffle = shuffle
|
42
|
-
@random_seed = random_seed
|
43
|
-
@random_seed ||= srand
|
44
|
-
@rng = Random.new(@random_seed)
|
45
|
-
end
|
46
|
-
|
47
|
-
# Generate data indices for stratified K-fold cross validation.
|
48
|
-
#
|
49
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features])
|
50
|
-
# The dataset to be used to generate data indices for stratified K-fold cross validation.
|
51
|
-
# This argument exists to unify the interface between the K-fold methods, it is not used in the method.
|
52
|
-
# @param y [Numo::Int32] (shape: [n_samples])
|
53
|
-
# The labels to be used to generate data indices for stratified K-fold cross validation.
|
54
|
-
# @return [Array] The set of data indices for constructing the training and testing dataset in each fold.
|
55
|
-
def split(x, y)
|
56
|
-
SVMKit::Validation.check_sample_array(x)
|
57
|
-
SVMKit::Validation.check_label_array(y)
|
58
|
-
SVMKit::Validation.check_sample_label_size(x, y)
|
59
|
-
# Check the number of samples in each class.
|
60
|
-
unless valid_n_splits?(y)
|
61
|
-
raise ArgumentError,
|
62
|
-
'The value of n_splits must be not less than 2 and not more than the number of samples in each class.'
|
63
|
-
end
|
64
|
-
# Splits dataset ids of each class to each fold.
|
65
|
-
fold_sets_each_class = y.to_a.uniq.map { |label| fold_sets(y, label) }
|
66
|
-
# Returns array consisting of the training and testing ids for each fold.
|
67
|
-
Array.new(@n_splits) { |fold_id| train_test_sets(fold_sets_each_class, fold_id) }
|
68
|
-
end
|
69
|
-
|
70
|
-
private
|
71
|
-
|
72
|
-
def valid_n_splits?(y)
|
73
|
-
y.to_a.uniq.map { |label| y.eq(label).where.size }.all? { |n_samples| @n_splits.between?(2, n_samples) }
|
74
|
-
end
|
75
|
-
|
76
|
-
def fold_sets(y, label)
|
77
|
-
sample_ids = y.eq(label).where.to_a
|
78
|
-
sample_ids.shuffle!(random: @rng) if @shuffle
|
79
|
-
n_samples = sample_ids.size
|
80
|
-
Array.new(@n_splits) do |n|
|
81
|
-
n_fold_samples = n_samples / @n_splits
|
82
|
-
n_fold_samples += 1 if n < n_samples % @n_splits
|
83
|
-
sample_ids.shift(n_fold_samples)
|
84
|
-
end
|
85
|
-
end
|
86
|
-
|
87
|
-
def train_test_sets(fold_sets_each_class, fold_id)
|
88
|
-
train_test_sets_each_class = fold_sets_each_class.map do |folds|
|
89
|
-
folds.partition.with_index { |_, id| id != fold_id }.map(&:flatten)
|
90
|
-
end
|
91
|
-
train_test_sets_each_class.transpose.map(&:flatten)
|
92
|
-
end
|
93
|
-
end
|
94
|
-
end
|
95
|
-
end
|
@@ -1,101 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'svmkit/validation'
|
4
|
-
require 'svmkit/base/base_estimator.rb'
|
5
|
-
require 'svmkit/base/classifier.rb'
|
6
|
-
|
7
|
-
module SVMKit
|
8
|
-
# This module consists of the classes that implement multi-class classification strategy.
|
9
|
-
module Multiclass
|
10
|
-
# @note
|
11
|
-
# All classifier in SVMKit support multi-class classifiction since version 0.2.7.
|
12
|
-
# There is no need to explicitly use this class for multiclass classifiction.
|
13
|
-
#
|
14
|
-
# OneVsRestClassifier is a class that implements One-vs-Rest (OvR) strategy for multi-class classification.
|
15
|
-
#
|
16
|
-
# @example
|
17
|
-
# base_estimator = SVMKit::LinearModel::LogisticRegression.new
|
18
|
-
# estimator = SVMKit::Multiclass::OneVsRestClassifier.new(estimator: base_estimator)
|
19
|
-
# estimator.fit(training_samples, training_labels)
|
20
|
-
# results = estimator.predict(testing_samples)
|
21
|
-
class OneVsRestClassifier
|
22
|
-
include Base::BaseEstimator
|
23
|
-
include Base::Classifier
|
24
|
-
|
25
|
-
# Return the set of estimators.
|
26
|
-
# @return [Array<Classifier>]
|
27
|
-
attr_reader :estimators
|
28
|
-
|
29
|
-
# Return the class labels.
|
30
|
-
# @return [Numo::Int32] (shape: [n_classes])
|
31
|
-
attr_reader :classes
|
32
|
-
|
33
|
-
# Create a new multi-class classifier with the one-vs-rest startegy.
|
34
|
-
#
|
35
|
-
# @param estimator [Classifier] The (binary) classifier for construction a multi-class classifier.
|
36
|
-
def initialize(estimator: nil)
|
37
|
-
SVMKit::Validation.check_params_type(SVMKit::Base::BaseEstimator, estimator: estimator)
|
38
|
-
@params = {}
|
39
|
-
@params[:estimator] = estimator
|
40
|
-
@estimators = nil
|
41
|
-
@classes = nil
|
42
|
-
end
|
43
|
-
|
44
|
-
# Fit the model with given training data.
|
45
|
-
#
|
46
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
47
|
-
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
48
|
-
# @return [OneVsRestClassifier] The learned classifier itself.
|
49
|
-
def fit(x, y)
|
50
|
-
SVMKit::Validation.check_sample_array(x)
|
51
|
-
SVMKit::Validation.check_label_array(y)
|
52
|
-
SVMKit::Validation.check_sample_label_size(x, y)
|
53
|
-
y_arr = y.to_a
|
54
|
-
@classes = Numo::Int32.asarray(y_arr.uniq.sort)
|
55
|
-
@estimators = @classes.to_a.map do |label|
|
56
|
-
bin_y = Numo::Int32.asarray(y_arr.map { |l| l == label ? 1 : -1 })
|
57
|
-
@params[:estimator].dup.fit(x, bin_y)
|
58
|
-
end
|
59
|
-
self
|
60
|
-
end
|
61
|
-
|
62
|
-
# Calculate confidence scores for samples.
|
63
|
-
#
|
64
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
65
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence scores per sample for each class.
|
66
|
-
def decision_function(x)
|
67
|
-
SVMKit::Validation.check_sample_array(x)
|
68
|
-
n_classes = @classes.size
|
69
|
-
Numo::DFloat.asarray(Array.new(n_classes) { |m| @estimators[m].decision_function(x).to_a }).transpose
|
70
|
-
end
|
71
|
-
|
72
|
-
# Predict class labels for samples.
|
73
|
-
#
|
74
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
75
|
-
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
76
|
-
def predict(x)
|
77
|
-
SVMKit::Validation.check_sample_array(x)
|
78
|
-
n_samples, = x.shape
|
79
|
-
decision_values = decision_function(x)
|
80
|
-
Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] })
|
81
|
-
end
|
82
|
-
|
83
|
-
# Dump marshal data.
|
84
|
-
# @return [Hash] The marshal data about OneVsRestClassifier.
|
85
|
-
def marshal_dump
|
86
|
-
{ params: @params,
|
87
|
-
classes: @classes,
|
88
|
-
estimators: @estimators.map { |e| Marshal.dump(e) } }
|
89
|
-
end
|
90
|
-
|
91
|
-
# Load marshal data.
|
92
|
-
# @return [nil]
|
93
|
-
def marshal_load(obj)
|
94
|
-
@params = obj[:params]
|
95
|
-
@classes = obj[:classes]
|
96
|
-
@estimators = obj[:estimators].map { |e| Marshal.load(e) }
|
97
|
-
nil
|
98
|
-
end
|
99
|
-
end
|
100
|
-
end
|
101
|
-
end
|