svmkit 0.7.3 → 0.8.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.gitignore +0 -9
- data/.rspec +1 -0
- data/.travis.yml +4 -12
- data/LICENSE.txt +1 -1
- data/README.md +11 -13
- data/lib/svmkit.rb +3 -66
- data/svmkit.gemspec +12 -7
- metadata +16 -81
- data/.coveralls.yml +0 -1
- data/.rubocop.yml +0 -47
- data/.rubocop_todo.yml +0 -58
- data/HISTORY.md +0 -168
- data/lib/svmkit/base/base_estimator.rb +0 -13
- data/lib/svmkit/base/classifier.rb +0 -34
- data/lib/svmkit/base/cluster_analyzer.rb +0 -29
- data/lib/svmkit/base/evaluator.rb +0 -13
- data/lib/svmkit/base/regressor.rb +0 -34
- data/lib/svmkit/base/splitter.rb +0 -17
- data/lib/svmkit/base/transformer.rb +0 -18
- data/lib/svmkit/clustering/dbscan.rb +0 -127
- data/lib/svmkit/clustering/k_means.rb +0 -140
- data/lib/svmkit/dataset.rb +0 -109
- data/lib/svmkit/decomposition/nmf.rb +0 -147
- data/lib/svmkit/decomposition/pca.rb +0 -150
- data/lib/svmkit/ensemble/ada_boost_classifier.rb +0 -198
- data/lib/svmkit/ensemble/ada_boost_regressor.rb +0 -180
- data/lib/svmkit/ensemble/random_forest_classifier.rb +0 -182
- data/lib/svmkit/ensemble/random_forest_regressor.rb +0 -143
- data/lib/svmkit/evaluation_measure/accuracy.rb +0 -30
- data/lib/svmkit/evaluation_measure/f_score.rb +0 -51
- data/lib/svmkit/evaluation_measure/log_loss.rb +0 -46
- data/lib/svmkit/evaluation_measure/mean_absolute_error.rb +0 -30
- data/lib/svmkit/evaluation_measure/mean_squared_error.rb +0 -30
- data/lib/svmkit/evaluation_measure/normalized_mutual_information.rb +0 -63
- data/lib/svmkit/evaluation_measure/precision.rb +0 -51
- data/lib/svmkit/evaluation_measure/precision_recall.rb +0 -91
- data/lib/svmkit/evaluation_measure/purity.rb +0 -41
- data/lib/svmkit/evaluation_measure/r2_score.rb +0 -44
- data/lib/svmkit/evaluation_measure/recall.rb +0 -51
- data/lib/svmkit/kernel_approximation/rbf.rb +0 -136
- data/lib/svmkit/kernel_machine/kernel_svc.rb +0 -194
- data/lib/svmkit/linear_model/lasso.rb +0 -138
- data/lib/svmkit/linear_model/linear_regression.rb +0 -112
- data/lib/svmkit/linear_model/logistic_regression.rb +0 -161
- data/lib/svmkit/linear_model/ridge.rb +0 -112
- data/lib/svmkit/linear_model/sgd_linear_estimator.rb +0 -89
- data/lib/svmkit/linear_model/svc.rb +0 -184
- data/lib/svmkit/linear_model/svr.rb +0 -123
- data/lib/svmkit/model_selection/cross_validation.rb +0 -121
- data/lib/svmkit/model_selection/grid_search_cv.rb +0 -247
- data/lib/svmkit/model_selection/k_fold.rb +0 -77
- data/lib/svmkit/model_selection/stratified_k_fold.rb +0 -95
- data/lib/svmkit/multiclass/one_vs_rest_classifier.rb +0 -101
- data/lib/svmkit/naive_bayes/naive_bayes.rb +0 -316
- data/lib/svmkit/nearest_neighbors/k_neighbors_classifier.rb +0 -112
- data/lib/svmkit/nearest_neighbors/k_neighbors_regressor.rb +0 -94
- data/lib/svmkit/optimizer/nadam.rb +0 -90
- data/lib/svmkit/optimizer/rmsprop.rb +0 -69
- data/lib/svmkit/optimizer/sgd.rb +0 -65
- data/lib/svmkit/optimizer/yellow_fin.rb +0 -144
- data/lib/svmkit/pairwise_metric.rb +0 -91
- data/lib/svmkit/pipeline/pipeline.rb +0 -197
- data/lib/svmkit/polynomial_model/factorization_machine_classifier.rb +0 -262
- data/lib/svmkit/polynomial_model/factorization_machine_regressor.rb +0 -194
- data/lib/svmkit/preprocessing/l2_normalizer.rb +0 -63
- data/lib/svmkit/preprocessing/label_encoder.rb +0 -95
- data/lib/svmkit/preprocessing/min_max_scaler.rb +0 -93
- data/lib/svmkit/preprocessing/one_hot_encoder.rb +0 -99
- data/lib/svmkit/preprocessing/standard_scaler.rb +0 -87
- data/lib/svmkit/probabilistic_output.rb +0 -112
- data/lib/svmkit/tree/decision_tree_classifier.rb +0 -276
- data/lib/svmkit/tree/decision_tree_regressor.rb +0 -251
- data/lib/svmkit/tree/node.rb +0 -70
- data/lib/svmkit/utils.rb +0 -22
- data/lib/svmkit/validation.rb +0 -79
- data/lib/svmkit/values.rb +0 -13
- data/lib/svmkit/version.rb +0 -7
@@ -1,316 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'svmkit/validation'
|
4
|
-
require 'svmkit/base/base_estimator'
|
5
|
-
require 'svmkit/base/classifier'
|
6
|
-
|
7
|
-
module SVMKit
|
8
|
-
# This module consists of the classes that implement naive bayes models.
|
9
|
-
module NaiveBayes
|
10
|
-
# BaseNaiveBayes is a class that has methods for common processes of naive bayes classifier.
|
11
|
-
class BaseNaiveBayes
|
12
|
-
include Base::BaseEstimator
|
13
|
-
include Base::Classifier
|
14
|
-
|
15
|
-
# Predict class labels for samples.
|
16
|
-
#
|
17
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
18
|
-
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
19
|
-
def predict(x)
|
20
|
-
SVMKit::Validation.check_sample_array(x)
|
21
|
-
n_samples = x.shape.first
|
22
|
-
decision_values = decision_function(x)
|
23
|
-
Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] })
|
24
|
-
end
|
25
|
-
|
26
|
-
# Predict log-probability for samples.
|
27
|
-
#
|
28
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the log-probailities.
|
29
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted log-probability of each class per sample.
|
30
|
-
def predict_log_proba(x)
|
31
|
-
SVMKit::Validation.check_sample_array(x)
|
32
|
-
n_samples, = x.shape
|
33
|
-
log_likelihoods = decision_function(x)
|
34
|
-
log_likelihoods - Numo::NMath.log(Numo::NMath.exp(log_likelihoods).sum(1)).reshape(n_samples, 1)
|
35
|
-
end
|
36
|
-
|
37
|
-
# Predict probability for samples.
|
38
|
-
#
|
39
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
40
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
41
|
-
def predict_proba(x)
|
42
|
-
SVMKit::Validation.check_sample_array(x)
|
43
|
-
Numo::NMath.exp(predict_log_proba(x)).abs
|
44
|
-
end
|
45
|
-
end
|
46
|
-
|
47
|
-
# GaussianNB is a class that implements Gaussian Naive Bayes classifier.
|
48
|
-
#
|
49
|
-
# @example
|
50
|
-
# estimator = SVMKit::NaiveBayes::GaussianNB.new
|
51
|
-
# estimator.fit(training_samples, training_labels)
|
52
|
-
# results = estimator.predict(testing_samples)
|
53
|
-
class GaussianNB < BaseNaiveBayes
|
54
|
-
# Return the class labels.
|
55
|
-
# @return [Numo::Int32] (size: n_classes)
|
56
|
-
attr_reader :classes
|
57
|
-
|
58
|
-
# Return the prior probabilities of the classes.
|
59
|
-
# @return [Numo::DFloat] (shape: [n_classes])
|
60
|
-
attr_reader :class_priors
|
61
|
-
|
62
|
-
# Return the mean vectors of the classes.
|
63
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
64
|
-
attr_reader :means
|
65
|
-
|
66
|
-
# Return the variance vectors of the classes.
|
67
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
68
|
-
attr_reader :variances
|
69
|
-
|
70
|
-
# Create a new classifier with Gaussian Naive Bayes.
|
71
|
-
def initialize
|
72
|
-
@params = {}
|
73
|
-
end
|
74
|
-
|
75
|
-
# Fit the model with given training data.
|
76
|
-
#
|
77
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
78
|
-
# @param y [Numo::Int32] (shape: [n_samples]) The categorical variables (e.g. labels)
|
79
|
-
# to be used for fitting the model.
|
80
|
-
# @return [GaussianNB] The learned classifier itself.
|
81
|
-
def fit(x, y)
|
82
|
-
SVMKit::Validation.check_sample_array(x)
|
83
|
-
SVMKit::Validation.check_label_array(y)
|
84
|
-
SVMKit::Validation.check_sample_label_size(x, y)
|
85
|
-
n_samples, = x.shape
|
86
|
-
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
87
|
-
@class_priors = Numo::DFloat[*@classes.to_a.map { |l| y.eq(l).count / n_samples.to_f }]
|
88
|
-
@means = Numo::DFloat[*@classes.to_a.map { |l| x[y.eq(l).where, true].mean(0) }]
|
89
|
-
@variances = Numo::DFloat[*@classes.to_a.map { |l| x[y.eq(l).where, true].var(0) }]
|
90
|
-
self
|
91
|
-
end
|
92
|
-
|
93
|
-
# Calculate confidence scores for samples.
|
94
|
-
#
|
95
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
96
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence scores per sample for each class.
|
97
|
-
def decision_function(x)
|
98
|
-
SVMKit::Validation.check_sample_array(x)
|
99
|
-
n_classes = @classes.size
|
100
|
-
log_likelihoods = Array.new(n_classes) do |l|
|
101
|
-
Math.log(@class_priors[l]) - 0.5 * (
|
102
|
-
Numo::NMath.log(2.0 * Math::PI * @variances[l, true]) +
|
103
|
-
((x - @means[l, true])**2 / @variances[l, true])).sum(1)
|
104
|
-
end
|
105
|
-
Numo::DFloat[*log_likelihoods].transpose
|
106
|
-
end
|
107
|
-
|
108
|
-
# Dump marshal data.
|
109
|
-
#
|
110
|
-
# @return [Hash] The marshal data about GaussianNB.
|
111
|
-
def marshal_dump
|
112
|
-
{ params: @params,
|
113
|
-
classes: @classes,
|
114
|
-
class_priors: @class_priors,
|
115
|
-
means: @means,
|
116
|
-
variances: @variances }
|
117
|
-
end
|
118
|
-
|
119
|
-
# Load marshal data.
|
120
|
-
#
|
121
|
-
# @return [nil]
|
122
|
-
def marshal_load(obj)
|
123
|
-
@params = obj[:params]
|
124
|
-
@classes = obj[:classes]
|
125
|
-
@class_priors = obj[:class_priors]
|
126
|
-
@means = obj[:means]
|
127
|
-
@variances = obj[:variances]
|
128
|
-
nil
|
129
|
-
end
|
130
|
-
end
|
131
|
-
|
132
|
-
# MultinomialNB is a class that implements Multinomial Naive Bayes classifier.
|
133
|
-
#
|
134
|
-
# @example
|
135
|
-
# estimator = SVMKit::NaiveBayes::MultinomialNB.new(smoothing_param: 1.0)
|
136
|
-
# estimator.fit(training_samples, training_labels)
|
137
|
-
# results = estimator.predict(testing_samples)
|
138
|
-
#
|
139
|
-
# *Reference*
|
140
|
-
# - C D. Manning, P. Raghavan, and H. Schutze, "Introduction to Information Retrieval," Cambridge University Press., 2008.
|
141
|
-
class MultinomialNB < BaseNaiveBayes
|
142
|
-
# Return the class labels.
|
143
|
-
# @return [Numo::Int32] (size: n_classes)
|
144
|
-
attr_reader :classes
|
145
|
-
|
146
|
-
# Return the prior probabilities of the classes.
|
147
|
-
# @return [Numo::DFloat] (shape: [n_classes])
|
148
|
-
attr_reader :class_priors
|
149
|
-
|
150
|
-
# Return the conditional probabilities for features of each class.
|
151
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
152
|
-
attr_reader :feature_probs
|
153
|
-
|
154
|
-
# Create a new classifier with Multinomial Naive Bayes.
|
155
|
-
#
|
156
|
-
# @param smoothing_param [Float] The Laplace smoothing parameter.
|
157
|
-
def initialize(smoothing_param: 1.0)
|
158
|
-
SVMKit::Validation.check_params_float(smoothing_param: smoothing_param)
|
159
|
-
SVMKit::Validation.check_params_positive(smoothing_param: smoothing_param)
|
160
|
-
@params = {}
|
161
|
-
@params[:smoothing_param] = smoothing_param
|
162
|
-
end
|
163
|
-
|
164
|
-
# Fit the model with given training data.
|
165
|
-
#
|
166
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
167
|
-
# @param y [Numo::Int32] (shape: [n_samples]) The categorical variables (e.g. labels)
|
168
|
-
# to be used for fitting the model.
|
169
|
-
# @return [MultinomialNB] The learned classifier itself.
|
170
|
-
def fit(x, y)
|
171
|
-
SVMKit::Validation.check_sample_array(x)
|
172
|
-
SVMKit::Validation.check_label_array(y)
|
173
|
-
SVMKit::Validation.check_sample_label_size(x, y)
|
174
|
-
n_samples, = x.shape
|
175
|
-
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
176
|
-
@class_priors = Numo::DFloat[*@classes.to_a.map { |l| y.eq(l).count / n_samples.to_f }]
|
177
|
-
count_features = Numo::DFloat[*@classes.to_a.map { |l| x[y.eq(l).where, true].sum(0) }]
|
178
|
-
count_features += @params[:smoothing_param]
|
179
|
-
n_classes = @classes.size
|
180
|
-
@feature_probs = count_features / count_features.sum(1).reshape(n_classes, 1)
|
181
|
-
self
|
182
|
-
end
|
183
|
-
|
184
|
-
# Calculate confidence scores for samples.
|
185
|
-
#
|
186
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
187
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence scores per sample for each class.
|
188
|
-
def decision_function(x)
|
189
|
-
SVMKit::Validation.check_sample_array(x)
|
190
|
-
n_classes = @classes.size
|
191
|
-
bin_x = x.gt(0)
|
192
|
-
log_likelihoods = Array.new(n_classes) do |l|
|
193
|
-
Math.log(@class_priors[l]) + (Numo::DFloat[*bin_x] * Numo::NMath.log(@feature_probs[l, true])).sum(1)
|
194
|
-
end
|
195
|
-
Numo::DFloat[*log_likelihoods].transpose
|
196
|
-
end
|
197
|
-
|
198
|
-
# Dump marshal data.
|
199
|
-
#
|
200
|
-
# @return [Hash] The marshal data about MultinomialNB.
|
201
|
-
def marshal_dump
|
202
|
-
{ params: @params,
|
203
|
-
classes: @classes,
|
204
|
-
class_priors: @class_priors,
|
205
|
-
feature_probs: @feature_probs }
|
206
|
-
end
|
207
|
-
|
208
|
-
# Load marshal data.
|
209
|
-
#
|
210
|
-
# @return [nil]
|
211
|
-
def marshal_load(obj)
|
212
|
-
@params = obj[:params]
|
213
|
-
@classes = obj[:classes]
|
214
|
-
@class_priors = obj[:class_priors]
|
215
|
-
@feature_probs = obj[:feature_probs]
|
216
|
-
nil
|
217
|
-
end
|
218
|
-
end
|
219
|
-
|
220
|
-
# BernoulliNB is a class that implements Bernoulli Naive Bayes classifier.
|
221
|
-
#
|
222
|
-
# @example
|
223
|
-
# estimator = SVMKit::NaiveBayes::BernoulliNB.new(smoothing_param: 1.0, bin_threshold: 0.0)
|
224
|
-
# estimator.fit(training_samples, training_labels)
|
225
|
-
# results = estimator.predict(testing_samples)
|
226
|
-
#
|
227
|
-
# *Reference*
|
228
|
-
# - C D. Manning, P. Raghavan, and H. Schutze, "Introduction to Information Retrieval," Cambridge University Press., 2008.
|
229
|
-
class BernoulliNB < BaseNaiveBayes
|
230
|
-
# Return the class labels.
|
231
|
-
# @return [Numo::Int32] (size: n_classes)
|
232
|
-
attr_reader :classes
|
233
|
-
|
234
|
-
# Return the prior probabilities of the classes.
|
235
|
-
# @return [Numo::DFloat] (shape: [n_classes])
|
236
|
-
attr_reader :class_priors
|
237
|
-
|
238
|
-
# Return the conditional probabilities for features of each class.
|
239
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
240
|
-
attr_reader :feature_probs
|
241
|
-
|
242
|
-
# Create a new classifier with Bernoulli Naive Bayes.
|
243
|
-
#
|
244
|
-
# @param smoothing_param [Float] The Laplace smoothing parameter.
|
245
|
-
# @param bin_threshold [Float] The threshold for binarizing of features.
|
246
|
-
def initialize(smoothing_param: 1.0, bin_threshold: 0.0)
|
247
|
-
SVMKit::Validation.check_params_float(smoothing_param: smoothing_param, bin_threshold: bin_threshold)
|
248
|
-
SVMKit::Validation.check_params_positive(smoothing_param: smoothing_param)
|
249
|
-
@params = {}
|
250
|
-
@params[:smoothing_param] = smoothing_param
|
251
|
-
@params[:bin_threshold] = bin_threshold
|
252
|
-
end
|
253
|
-
|
254
|
-
# Fit the model with given training data.
|
255
|
-
#
|
256
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
257
|
-
# @param y [Numo::Int32] (shape: [n_samples]) The categorical variables (e.g. labels)
|
258
|
-
# to be used for fitting the model.
|
259
|
-
# @return [BernoulliNB] The learned classifier itself.
|
260
|
-
def fit(x, y)
|
261
|
-
SVMKit::Validation.check_sample_array(x)
|
262
|
-
SVMKit::Validation.check_label_array(y)
|
263
|
-
SVMKit::Validation.check_sample_label_size(x, y)
|
264
|
-
n_samples, = x.shape
|
265
|
-
bin_x = Numo::DFloat[*x.gt(@params[:bin_threshold])]
|
266
|
-
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
267
|
-
n_samples_each_class = Numo::DFloat[*@classes.to_a.map { |l| y.eq(l).count.to_f }]
|
268
|
-
@class_priors = n_samples_each_class / n_samples
|
269
|
-
count_features = Numo::DFloat[*@classes.to_a.map { |l| bin_x[y.eq(l).where, true].sum(0) }]
|
270
|
-
count_features += @params[:smoothing_param]
|
271
|
-
n_samples_each_class += 2.0 * @params[:smoothing_param]
|
272
|
-
n_classes = @classes.size
|
273
|
-
@feature_probs = count_features / n_samples_each_class.reshape(n_classes, 1)
|
274
|
-
self
|
275
|
-
end
|
276
|
-
|
277
|
-
# Calculate confidence scores for samples.
|
278
|
-
#
|
279
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
280
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence scores per sample for each class.
|
281
|
-
def decision_function(x)
|
282
|
-
SVMKit::Validation.check_sample_array(x)
|
283
|
-
n_classes = @classes.size
|
284
|
-
bin_x = Numo::DFloat[*x.gt(@params[:bin_threshold])]
|
285
|
-
not_bin_x = Numo::DFloat[*x.le(@params[:bin_threshold])]
|
286
|
-
log_likelihoods = Array.new(n_classes) do |l|
|
287
|
-
Math.log(@class_priors[l]) + (
|
288
|
-
(Numo::DFloat[*bin_x] * Numo::NMath.log(@feature_probs[l, true])).sum(1)
|
289
|
-
(Numo::DFloat[*not_bin_x] * Numo::NMath.log(1.0 - @feature_probs[l, true])).sum(1))
|
290
|
-
end
|
291
|
-
Numo::DFloat[*log_likelihoods].transpose
|
292
|
-
end
|
293
|
-
|
294
|
-
# Dump marshal data.
|
295
|
-
#
|
296
|
-
# @return [Hash] The marshal data about BernoulliNB.
|
297
|
-
def marshal_dump
|
298
|
-
{ params: @params,
|
299
|
-
classes: @classes,
|
300
|
-
class_priors: @class_priors,
|
301
|
-
feature_probs: @feature_probs }
|
302
|
-
end
|
303
|
-
|
304
|
-
# Load marshal data.
|
305
|
-
#
|
306
|
-
# @return [nil]
|
307
|
-
def marshal_load(obj)
|
308
|
-
@params = obj[:params]
|
309
|
-
@classes = obj[:classes]
|
310
|
-
@class_priors = obj[:class_priors]
|
311
|
-
@feature_probs = obj[:feature_probs]
|
312
|
-
nil
|
313
|
-
end
|
314
|
-
end
|
315
|
-
end
|
316
|
-
end
|
@@ -1,112 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'svmkit/validation'
|
4
|
-
require 'svmkit/base/base_estimator'
|
5
|
-
require 'svmkit/base/classifier'
|
6
|
-
|
7
|
-
module SVMKit
|
8
|
-
# This module consists of the classes that implement estimators based on nearest neighbors rule.
|
9
|
-
module NearestNeighbors
|
10
|
-
# KNeighborsClassifier is a class that implements the classifier with the k-nearest neighbors rule.
|
11
|
-
# The current implementation uses the Euclidean distance for finding the neighbors.
|
12
|
-
#
|
13
|
-
# @example
|
14
|
-
# estimator =
|
15
|
-
# SVMKit::NearestNeighbors::KNeighborsClassifier.new(n_neighbors = 5)
|
16
|
-
# estimator.fit(training_samples, traininig_labels)
|
17
|
-
# results = estimator.predict(testing_samples)
|
18
|
-
#
|
19
|
-
class KNeighborsClassifier
|
20
|
-
include Base::BaseEstimator
|
21
|
-
include Base::Classifier
|
22
|
-
|
23
|
-
# Return the prototypes for the nearest neighbor classifier.
|
24
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_features])
|
25
|
-
attr_reader :prototypes
|
26
|
-
|
27
|
-
# Return the labels of the prototypes
|
28
|
-
# @return [Numo::Int32] (size: n_samples)
|
29
|
-
attr_reader :labels
|
30
|
-
|
31
|
-
# Return the class labels.
|
32
|
-
# @return [Numo::Int32] (size: n_classes)
|
33
|
-
attr_reader :classes
|
34
|
-
|
35
|
-
# Create a new classifier with the nearest neighbor rule.
|
36
|
-
#
|
37
|
-
# @param n_neighbors [Integer] The number of neighbors.
|
38
|
-
def initialize(n_neighbors: 5)
|
39
|
-
SVMKit::Validation.check_params_integer(n_neighbors: n_neighbors)
|
40
|
-
SVMKit::Validation.check_params_positive(n_neighbors: n_neighbors)
|
41
|
-
@params = {}
|
42
|
-
@params[:n_neighbors] = n_neighbors
|
43
|
-
@prototypes = nil
|
44
|
-
@labels = nil
|
45
|
-
@classes = nil
|
46
|
-
end
|
47
|
-
|
48
|
-
# Fit the model with given training data.
|
49
|
-
#
|
50
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
51
|
-
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
52
|
-
# @return [KNeighborsClassifier] The learned classifier itself.
|
53
|
-
def fit(x, y)
|
54
|
-
SVMKit::Validation.check_sample_array(x)
|
55
|
-
SVMKit::Validation.check_label_array(y)
|
56
|
-
SVMKit::Validation.check_sample_label_size(x, y)
|
57
|
-
@prototypes = Numo::DFloat.asarray(x.to_a)
|
58
|
-
@labels = Numo::Int32.asarray(y.to_a)
|
59
|
-
@classes = Numo::Int32.asarray(y.to_a.uniq.sort)
|
60
|
-
self
|
61
|
-
end
|
62
|
-
|
63
|
-
# Calculate confidence scores for samples.
|
64
|
-
#
|
65
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
66
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence scores per sample for each class.
|
67
|
-
def decision_function(x)
|
68
|
-
SVMKit::Validation.check_sample_array(x)
|
69
|
-
distance_matrix = PairwiseMetric.euclidean_distance(x, @prototypes)
|
70
|
-
n_samples, n_prototypes = distance_matrix.shape
|
71
|
-
n_classes = @classes.size
|
72
|
-
n_neighbors = [@params[:n_neighbors], n_prototypes].min
|
73
|
-
scores = Numo::DFloat.zeros(n_samples, n_classes)
|
74
|
-
n_samples.times do |m|
|
75
|
-
neighbor_ids = distance_matrix[m, true].to_a.each_with_index.sort.map(&:last)[0...n_neighbors]
|
76
|
-
neighbor_ids.each { |n| scores[m, @classes.to_a.index(@labels[n])] += 1.0 }
|
77
|
-
end
|
78
|
-
scores
|
79
|
-
end
|
80
|
-
|
81
|
-
# Predict class labels for samples.
|
82
|
-
#
|
83
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
84
|
-
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
85
|
-
def predict(x)
|
86
|
-
SVMKit::Validation.check_sample_array(x)
|
87
|
-
n_samples = x.shape.first
|
88
|
-
decision_values = decision_function(x)
|
89
|
-
Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] })
|
90
|
-
end
|
91
|
-
|
92
|
-
# Dump marshal data.
|
93
|
-
# @return [Hash] The marshal data about KNeighborsClassifier.
|
94
|
-
def marshal_dump
|
95
|
-
{ params: @params,
|
96
|
-
prototypes: @prototypes,
|
97
|
-
labels: @labels,
|
98
|
-
classes: @classes }
|
99
|
-
end
|
100
|
-
|
101
|
-
# Load marshal data.
|
102
|
-
# @return [nil]
|
103
|
-
def marshal_load(obj)
|
104
|
-
@params = obj[:params]
|
105
|
-
@prototypes = obj[:prototypes]
|
106
|
-
@labels = obj[:labels]
|
107
|
-
@classes = obj[:classes]
|
108
|
-
nil
|
109
|
-
end
|
110
|
-
end
|
111
|
-
end
|
112
|
-
end
|
@@ -1,94 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'svmkit/validation'
|
4
|
-
require 'svmkit/base/base_estimator'
|
5
|
-
require 'svmkit/base/regressor'
|
6
|
-
|
7
|
-
module SVMKit
|
8
|
-
module NearestNeighbors
|
9
|
-
# KNeighborsRegressor is a class that implements the regressor with the k-nearest neighbors rule.
|
10
|
-
# The current implementation uses the Euclidean distance for finding the neighbors.
|
11
|
-
#
|
12
|
-
# @example
|
13
|
-
# estimator =
|
14
|
-
# SVMKit::NearestNeighbors::KNeighborsRegressor.new(n_neighbors = 5)
|
15
|
-
# estimator.fit(training_samples, traininig_target_values)
|
16
|
-
# results = estimator.predict(testing_samples)
|
17
|
-
#
|
18
|
-
class KNeighborsRegressor
|
19
|
-
include Base::BaseEstimator
|
20
|
-
include Base::Regressor
|
21
|
-
|
22
|
-
# Return the prototypes for the nearest neighbor regressor.
|
23
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_features])
|
24
|
-
attr_reader :prototypes
|
25
|
-
|
26
|
-
# Return the values of the prototypes
|
27
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_outputs])
|
28
|
-
attr_reader :values
|
29
|
-
|
30
|
-
# Create a new regressor with the nearest neighbor rule.
|
31
|
-
#
|
32
|
-
# @param n_neighbors [Integer] The number of neighbors.
|
33
|
-
def initialize(n_neighbors: 5)
|
34
|
-
SVMKit::Validation.check_params_integer(n_neighbors: n_neighbors)
|
35
|
-
SVMKit::Validation.check_params_positive(n_neighbors: n_neighbors)
|
36
|
-
@params = {}
|
37
|
-
@params[:n_neighbors] = n_neighbors
|
38
|
-
@prototypes = nil
|
39
|
-
@values = nil
|
40
|
-
end
|
41
|
-
|
42
|
-
# Fit the model with given training data.
|
43
|
-
#
|
44
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
45
|
-
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
46
|
-
# @return [KNeighborsRegressor] The learned regressor itself.
|
47
|
-
def fit(x, y)
|
48
|
-
SVMKit::Validation.check_sample_array(x)
|
49
|
-
SVMKit::Validation.check_tvalue_array(y)
|
50
|
-
SVMKit::Validation.check_sample_tvalue_size(x, y)
|
51
|
-
@prototypes = x.dup
|
52
|
-
@values = y.dup
|
53
|
-
self
|
54
|
-
end
|
55
|
-
|
56
|
-
# Predict values for samples.
|
57
|
-
#
|
58
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
59
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
60
|
-
def predict(x)
|
61
|
-
SVMKit::Validation.check_sample_array(x)
|
62
|
-
# Initialize some variables.
|
63
|
-
n_samples, = x.shape
|
64
|
-
n_prototypes, n_outputs = @values.shape
|
65
|
-
n_neighbors = [@params[:n_neighbors], n_prototypes].min
|
66
|
-
# Calculate distance matrix.
|
67
|
-
distance_matrix = PairwiseMetric.euclidean_distance(x, @prototypes)
|
68
|
-
# Predict values for the given samples.
|
69
|
-
predicted_values = Array.new(n_samples) do |n|
|
70
|
-
neighbor_ids = distance_matrix[n, true].to_a.each_with_index.sort.map(&:last)[0...n_neighbors]
|
71
|
-
n_outputs.nil? ? @values[neighbor_ids].mean : @values[neighbor_ids, true].mean(0).to_a
|
72
|
-
end
|
73
|
-
Numo::DFloat[*predicted_values]
|
74
|
-
end
|
75
|
-
|
76
|
-
# Dump marshal data.
|
77
|
-
# @return [Hash] The marshal data about KNeighborsRegressor.
|
78
|
-
def marshal_dump
|
79
|
-
{ params: @params,
|
80
|
-
prototypes: @prototypes,
|
81
|
-
values: @values }
|
82
|
-
end
|
83
|
-
|
84
|
-
# Load marshal data.
|
85
|
-
# @return [nil]
|
86
|
-
def marshal_load(obj)
|
87
|
-
@params = obj[:params]
|
88
|
-
@prototypes = obj[:prototypes]
|
89
|
-
@values = obj[:values]
|
90
|
-
nil
|
91
|
-
end
|
92
|
-
end
|
93
|
-
end
|
94
|
-
end
|