svmkit 0.7.3 → 0.8.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +0 -9
- data/.rspec +1 -0
- data/.travis.yml +4 -12
- data/LICENSE.txt +1 -1
- data/README.md +11 -13
- data/lib/svmkit.rb +3 -66
- data/svmkit.gemspec +12 -7
- metadata +16 -81
- data/.coveralls.yml +0 -1
- data/.rubocop.yml +0 -47
- data/.rubocop_todo.yml +0 -58
- data/HISTORY.md +0 -168
- data/lib/svmkit/base/base_estimator.rb +0 -13
- data/lib/svmkit/base/classifier.rb +0 -34
- data/lib/svmkit/base/cluster_analyzer.rb +0 -29
- data/lib/svmkit/base/evaluator.rb +0 -13
- data/lib/svmkit/base/regressor.rb +0 -34
- data/lib/svmkit/base/splitter.rb +0 -17
- data/lib/svmkit/base/transformer.rb +0 -18
- data/lib/svmkit/clustering/dbscan.rb +0 -127
- data/lib/svmkit/clustering/k_means.rb +0 -140
- data/lib/svmkit/dataset.rb +0 -109
- data/lib/svmkit/decomposition/nmf.rb +0 -147
- data/lib/svmkit/decomposition/pca.rb +0 -150
- data/lib/svmkit/ensemble/ada_boost_classifier.rb +0 -198
- data/lib/svmkit/ensemble/ada_boost_regressor.rb +0 -180
- data/lib/svmkit/ensemble/random_forest_classifier.rb +0 -182
- data/lib/svmkit/ensemble/random_forest_regressor.rb +0 -143
- data/lib/svmkit/evaluation_measure/accuracy.rb +0 -30
- data/lib/svmkit/evaluation_measure/f_score.rb +0 -51
- data/lib/svmkit/evaluation_measure/log_loss.rb +0 -46
- data/lib/svmkit/evaluation_measure/mean_absolute_error.rb +0 -30
- data/lib/svmkit/evaluation_measure/mean_squared_error.rb +0 -30
- data/lib/svmkit/evaluation_measure/normalized_mutual_information.rb +0 -63
- data/lib/svmkit/evaluation_measure/precision.rb +0 -51
- data/lib/svmkit/evaluation_measure/precision_recall.rb +0 -91
- data/lib/svmkit/evaluation_measure/purity.rb +0 -41
- data/lib/svmkit/evaluation_measure/r2_score.rb +0 -44
- data/lib/svmkit/evaluation_measure/recall.rb +0 -51
- data/lib/svmkit/kernel_approximation/rbf.rb +0 -136
- data/lib/svmkit/kernel_machine/kernel_svc.rb +0 -194
- data/lib/svmkit/linear_model/lasso.rb +0 -138
- data/lib/svmkit/linear_model/linear_regression.rb +0 -112
- data/lib/svmkit/linear_model/logistic_regression.rb +0 -161
- data/lib/svmkit/linear_model/ridge.rb +0 -112
- data/lib/svmkit/linear_model/sgd_linear_estimator.rb +0 -89
- data/lib/svmkit/linear_model/svc.rb +0 -184
- data/lib/svmkit/linear_model/svr.rb +0 -123
- data/lib/svmkit/model_selection/cross_validation.rb +0 -121
- data/lib/svmkit/model_selection/grid_search_cv.rb +0 -247
- data/lib/svmkit/model_selection/k_fold.rb +0 -77
- data/lib/svmkit/model_selection/stratified_k_fold.rb +0 -95
- data/lib/svmkit/multiclass/one_vs_rest_classifier.rb +0 -101
- data/lib/svmkit/naive_bayes/naive_bayes.rb +0 -316
- data/lib/svmkit/nearest_neighbors/k_neighbors_classifier.rb +0 -112
- data/lib/svmkit/nearest_neighbors/k_neighbors_regressor.rb +0 -94
- data/lib/svmkit/optimizer/nadam.rb +0 -90
- data/lib/svmkit/optimizer/rmsprop.rb +0 -69
- data/lib/svmkit/optimizer/sgd.rb +0 -65
- data/lib/svmkit/optimizer/yellow_fin.rb +0 -144
- data/lib/svmkit/pairwise_metric.rb +0 -91
- data/lib/svmkit/pipeline/pipeline.rb +0 -197
- data/lib/svmkit/polynomial_model/factorization_machine_classifier.rb +0 -262
- data/lib/svmkit/polynomial_model/factorization_machine_regressor.rb +0 -194
- data/lib/svmkit/preprocessing/l2_normalizer.rb +0 -63
- data/lib/svmkit/preprocessing/label_encoder.rb +0 -95
- data/lib/svmkit/preprocessing/min_max_scaler.rb +0 -93
- data/lib/svmkit/preprocessing/one_hot_encoder.rb +0 -99
- data/lib/svmkit/preprocessing/standard_scaler.rb +0 -87
- data/lib/svmkit/probabilistic_output.rb +0 -112
- data/lib/svmkit/tree/decision_tree_classifier.rb +0 -276
- data/lib/svmkit/tree/decision_tree_regressor.rb +0 -251
- data/lib/svmkit/tree/node.rb +0 -70
- data/lib/svmkit/utils.rb +0 -22
- data/lib/svmkit/validation.rb +0 -79
- data/lib/svmkit/values.rb +0 -13
- data/lib/svmkit/version.rb +0 -7
@@ -1,197 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'svmkit/validation'
|
4
|
-
require 'svmkit/base/base_estimator'
|
5
|
-
|
6
|
-
module SVMKit
|
7
|
-
# Module implements utilities of pipeline that cosists of a chain of transfomers and estimators.
|
8
|
-
module Pipeline
|
9
|
-
# Pipeline is a class that implements the function to perform the transformers and estimators sequencially.
|
10
|
-
#
|
11
|
-
# @example
|
12
|
-
# rbf = SVMKit::KernelApproximation::RBF.new(gamma: 1.0, n_coponents: 128, random_seed: 1)
|
13
|
-
# svc = SVMKit::LinearModel::SVC.new(reg_param: 1.0, fit_bias: true, max_iter: 5000, random_seed: 1)
|
14
|
-
# pipeline = SVMKit::Pipeline::Pipeline.new(steps: { trs: rbf, est: svc })
|
15
|
-
# pipeline.fit(training_samples, traininig_labels)
|
16
|
-
# results = pipeline.predict(testing_samples)
|
17
|
-
#
|
18
|
-
class Pipeline
|
19
|
-
include Base::BaseEstimator
|
20
|
-
include Validation
|
21
|
-
|
22
|
-
# Return the steps.
|
23
|
-
# @return [Hash]
|
24
|
-
attr_reader :steps
|
25
|
-
|
26
|
-
# Create a new pipeline.
|
27
|
-
#
|
28
|
-
# @param steps [Hash] List of transformers and estimators. The order of transforms follows the insertion order of hash keys.
|
29
|
-
# The last entry is considered an estimator.
|
30
|
-
def initialize(steps:)
|
31
|
-
check_params_type(Hash, steps: steps)
|
32
|
-
validate_steps(steps)
|
33
|
-
@params = {}
|
34
|
-
@steps = steps
|
35
|
-
end
|
36
|
-
|
37
|
-
# Fit the model with given training data.
|
38
|
-
#
|
39
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be transformed and used for fitting the model.
|
40
|
-
# @param y [Numo::NArray] (shape: [n_samples, n_outputs]) The target values or labels to be used for fitting the model.
|
41
|
-
# @return [Pipeline] The learned pipeline itself.
|
42
|
-
def fit(x, y)
|
43
|
-
check_sample_array(x)
|
44
|
-
trans_x = apply_transforms(x, y, fit: true)
|
45
|
-
last_estimator.fit(trans_x, y) unless last_estimator.nil?
|
46
|
-
self
|
47
|
-
end
|
48
|
-
|
49
|
-
# Call the fit_predict method of last estimator after applying all transforms.
|
50
|
-
#
|
51
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be transformed and used for fitting the model.
|
52
|
-
# @param y [Numo::NArray] (shape: [n_samples, n_outputs], default: nil) The target values or labels to be used for fitting the model.
|
53
|
-
# @return [Numo::NArray] The predicted results by last estimator.
|
54
|
-
def fit_predict(x, y = nil)
|
55
|
-
check_sample_array(x)
|
56
|
-
trans_x = apply_transforms(x, y, fit: true)
|
57
|
-
last_estimator.fit_predict(trans_x)
|
58
|
-
end
|
59
|
-
|
60
|
-
# Call the fit_transform method of last estimator after applying all transforms.
|
61
|
-
#
|
62
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be transformed and used for fitting the model.
|
63
|
-
# @param y [Numo::NArray] (shape: [n_samples, n_outputs], default: nil) The target values or labels to be used for fitting the model.
|
64
|
-
# @return [Numo::NArray] The predicted results by last estimator.
|
65
|
-
def fit_transform(x, y = nil)
|
66
|
-
check_sample_array(x)
|
67
|
-
trans_x = apply_transforms(x, y, fit: true)
|
68
|
-
last_estimator.fit_transform(trans_x, y)
|
69
|
-
end
|
70
|
-
|
71
|
-
# Call the decision_function method of last estimator after applying all transforms.
|
72
|
-
#
|
73
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
74
|
-
# @return [Numo::DFloat] (shape: [n_samples]) Confidence score per sample.
|
75
|
-
def decision_function(x)
|
76
|
-
check_sample_array(x)
|
77
|
-
trans_x = apply_transforms(x)
|
78
|
-
last_estimator.decision_function(trans_x)
|
79
|
-
end
|
80
|
-
|
81
|
-
# Call the predict method of last estimator after applying all transforms.
|
82
|
-
#
|
83
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to obtain prediction result.
|
84
|
-
# @return [Numo::NArray] The predicted results by last estimator.
|
85
|
-
def predict(x)
|
86
|
-
check_sample_array(x)
|
87
|
-
trans_x = apply_transforms(x)
|
88
|
-
last_estimator.predict(trans_x)
|
89
|
-
end
|
90
|
-
|
91
|
-
# Call the predict_log_proba method of last estimator after applying all transforms.
|
92
|
-
#
|
93
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the log-probailities.
|
94
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted log-probability of each class per sample.
|
95
|
-
def predict_log_proba(x)
|
96
|
-
check_sample_array(x)
|
97
|
-
trans_x = apply_transforms(x)
|
98
|
-
last_estimator.predict_log_proba(trans_x)
|
99
|
-
end
|
100
|
-
|
101
|
-
# Call the predict_proba method of last estimator after applying all transforms.
|
102
|
-
#
|
103
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
104
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
105
|
-
def predict_proba(x)
|
106
|
-
check_sample_array(x)
|
107
|
-
trans_x = apply_transforms(x)
|
108
|
-
last_estimator.predict_proba(trans_x)
|
109
|
-
end
|
110
|
-
|
111
|
-
# Call the transform method of last estimator after applying all transforms.
|
112
|
-
#
|
113
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be transformed.
|
114
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed samples.
|
115
|
-
def transform(x)
|
116
|
-
check_sample_array(x)
|
117
|
-
trans_x = apply_transforms(x)
|
118
|
-
last_estimator.nil? ? trans_x : last_estimator.transform(trans_x)
|
119
|
-
end
|
120
|
-
|
121
|
-
# Call the inverse_transform method in reverse order.
|
122
|
-
#
|
123
|
-
# @param z [Numo::DFloat] (shape: [n_samples, n_components]) The transformed samples to be restored into original space.
|
124
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_featuress]) The restored samples.
|
125
|
-
def inverse_transform(z)
|
126
|
-
check_sample_array(z)
|
127
|
-
itrans_z = z
|
128
|
-
@steps.keys.reverse_each do |name|
|
129
|
-
transformer = @steps[name]
|
130
|
-
next if transformer.nil?
|
131
|
-
itrans_z = transformer.inverse_transform(itrans_z)
|
132
|
-
end
|
133
|
-
itrans_z
|
134
|
-
end
|
135
|
-
|
136
|
-
# Call the score method of last estimator after applying all transforms.
|
137
|
-
#
|
138
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) Testing data.
|
139
|
-
# @param y [Numo::NArray] (shape: [n_samples, n_outputs]) True target values or labels for testing data.
|
140
|
-
# @return [Float] The score of last estimator
|
141
|
-
def score(x, y)
|
142
|
-
check_sample_array(x)
|
143
|
-
trans_x = apply_transforms(x)
|
144
|
-
last_estimator.score(trans_x, y)
|
145
|
-
end
|
146
|
-
|
147
|
-
# Dump marshal data.
|
148
|
-
# @return [Hash] The marshal data about Pipeline.
|
149
|
-
def marshal_dump
|
150
|
-
{ params: @params,
|
151
|
-
steps: @steps }
|
152
|
-
end
|
153
|
-
|
154
|
-
# Load marshal data.
|
155
|
-
# @return [nil]
|
156
|
-
def marshal_load(obj)
|
157
|
-
@params = obj[:params]
|
158
|
-
@steps = obj[:steps]
|
159
|
-
nil
|
160
|
-
end
|
161
|
-
|
162
|
-
private
|
163
|
-
|
164
|
-
def validate_steps(steps)
|
165
|
-
steps.keys[0...-1].each do |name|
|
166
|
-
transformer = steps[name]
|
167
|
-
next if transformer.nil? || %i[fit transform].all? { |m| transformer.class.method_defined?(m) }
|
168
|
-
raise TypeError,
|
169
|
-
'Class of intermediate step in pipeline should be implemented fit and transform methods: ' \
|
170
|
-
"#{name} => #{transformer.class}"
|
171
|
-
end
|
172
|
-
|
173
|
-
estimator = steps[steps.keys.last]
|
174
|
-
unless estimator.nil? || estimator.class.method_defined?(:fit)
|
175
|
-
raise TypeError,
|
176
|
-
'Class of last step in pipeline should be implemented fit method: ' \
|
177
|
-
"#{steps.keys.last} => #{estimator.class}"
|
178
|
-
end
|
179
|
-
end
|
180
|
-
|
181
|
-
def apply_transforms(x, y = nil, fit: false)
|
182
|
-
trans_x = x
|
183
|
-
@steps.keys[0...-1].each do |name|
|
184
|
-
transformer = @steps[name]
|
185
|
-
next if transformer.nil?
|
186
|
-
transformer.fit(trans_x, y) if fit
|
187
|
-
trans_x = transformer.transform(trans_x)
|
188
|
-
end
|
189
|
-
trans_x
|
190
|
-
end
|
191
|
-
|
192
|
-
def last_estimator
|
193
|
-
@steps[@steps.keys.last]
|
194
|
-
end
|
195
|
-
end
|
196
|
-
end
|
197
|
-
end
|
@@ -1,262 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'svmkit/validation'
|
4
|
-
require 'svmkit/base/base_estimator'
|
5
|
-
require 'svmkit/base/classifier'
|
6
|
-
require 'svmkit/optimizer/nadam'
|
7
|
-
|
8
|
-
module SVMKit
|
9
|
-
# This module consists of the classes that implement polynomial models.
|
10
|
-
module PolynomialModel
|
11
|
-
# FactorizationMachineClassifier is a class that implements Factorization Machine
|
12
|
-
# with stochastic gradient descent (SGD) optimization.
|
13
|
-
# For multiclass classification problem, it uses one-vs-the-rest strategy.
|
14
|
-
#
|
15
|
-
# @example
|
16
|
-
# estimator =
|
17
|
-
# SVMKit::PolynomialModel::FactorizationMachineClassifier.new(
|
18
|
-
# n_factors: 10, loss: 'hinge', reg_param_linear: 0.001, reg_param_factor: 0.001,
|
19
|
-
# max_iter: 5000, batch_size: 50, random_seed: 1)
|
20
|
-
# estimator.fit(training_samples, traininig_labels)
|
21
|
-
# results = estimator.predict(testing_samples)
|
22
|
-
#
|
23
|
-
# *Reference*
|
24
|
-
# - S. Rendle, "Factorization Machines with libFM," ACM TIST, vol. 3 (3), pp. 57:1--57:22, 2012.
|
25
|
-
# - S. Rendle, "Factorization Machines," Proc. ICDM'10, pp. 995--1000, 2010.
|
26
|
-
class FactorizationMachineClassifier
|
27
|
-
include Base::BaseEstimator
|
28
|
-
include Base::Classifier
|
29
|
-
include Validation
|
30
|
-
|
31
|
-
# Return the factor matrix for Factorization Machine.
|
32
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_factors, n_features])
|
33
|
-
attr_reader :factor_mat
|
34
|
-
|
35
|
-
# Return the weight vector for Factorization Machine.
|
36
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
37
|
-
attr_reader :weight_vec
|
38
|
-
|
39
|
-
# Return the bias term for Factoriazation Machine.
|
40
|
-
# @return [Numo::DFloat] (shape: [n_classes])
|
41
|
-
attr_reader :bias_term
|
42
|
-
|
43
|
-
# Return the class labels.
|
44
|
-
# @return [Numo::Int32] (shape: [n_classes])
|
45
|
-
attr_reader :classes
|
46
|
-
|
47
|
-
# Return the random generator for random sampling.
|
48
|
-
# @return [Random]
|
49
|
-
attr_reader :rng
|
50
|
-
|
51
|
-
# Create a new classifier with Factorization Machine.
|
52
|
-
#
|
53
|
-
# @param n_factors [Integer] The maximum number of iterations.
|
54
|
-
# @param loss [String] The loss function ('hinge' or 'logistic').
|
55
|
-
# @param reg_param_linear [Float] The regularization parameter for linear model.
|
56
|
-
# @param reg_param_factor [Float] The regularization parameter for factor matrix.
|
57
|
-
# @param max_iter [Integer] The maximum number of iterations.
|
58
|
-
# @param batch_size [Integer] The size of the mini batches.
|
59
|
-
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
60
|
-
# If nil is given, Nadam is used.
|
61
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
62
|
-
def initialize(n_factors: 2, loss: 'hinge', reg_param_linear: 1.0, reg_param_factor: 1.0,
|
63
|
-
max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil)
|
64
|
-
check_params_float(reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor)
|
65
|
-
check_params_integer(n_factors: n_factors, max_iter: max_iter, batch_size: batch_size)
|
66
|
-
check_params_string(loss: loss)
|
67
|
-
check_params_type_or_nil(Integer, random_seed: random_seed)
|
68
|
-
check_params_positive(n_factors: n_factors,
|
69
|
-
reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor,
|
70
|
-
max_iter: max_iter, batch_size: batch_size)
|
71
|
-
@params = {}
|
72
|
-
@params[:n_factors] = n_factors
|
73
|
-
@params[:loss] = loss
|
74
|
-
@params[:reg_param_linear] = reg_param_linear
|
75
|
-
@params[:reg_param_factor] = reg_param_factor
|
76
|
-
@params[:max_iter] = max_iter
|
77
|
-
@params[:batch_size] = batch_size
|
78
|
-
@params[:optimizer] = optimizer
|
79
|
-
@params[:optimizer] ||= Optimizer::Nadam.new
|
80
|
-
@params[:random_seed] = random_seed
|
81
|
-
@params[:random_seed] ||= srand
|
82
|
-
@factor_mat = nil
|
83
|
-
@weight_vec = nil
|
84
|
-
@bias_term = nil
|
85
|
-
@classes = nil
|
86
|
-
@rng = Random.new(@params[:random_seed])
|
87
|
-
end
|
88
|
-
|
89
|
-
# Fit the model with given training data.
|
90
|
-
#
|
91
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
92
|
-
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
93
|
-
# @return [FactorizationMachineClassifier] The learned classifier itself.
|
94
|
-
def fit(x, y)
|
95
|
-
check_sample_array(x)
|
96
|
-
check_label_array(y)
|
97
|
-
check_sample_label_size(x, y)
|
98
|
-
|
99
|
-
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
100
|
-
n_classes = @classes.size
|
101
|
-
_n_samples, n_features = x.shape
|
102
|
-
|
103
|
-
if n_classes > 2
|
104
|
-
@factor_mat = Numo::DFloat.zeros(n_classes, @params[:n_factors], n_features)
|
105
|
-
@weight_vec = Numo::DFloat.zeros(n_classes, n_features)
|
106
|
-
@bias_term = Numo::DFloat.zeros(n_classes)
|
107
|
-
n_classes.times do |n|
|
108
|
-
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
|
109
|
-
@factor_mat[n, true, true], @weight_vec[n, true], @bias_term[n] = binary_fit(x, bin_y)
|
110
|
-
end
|
111
|
-
else
|
112
|
-
negative_label = y.to_a.uniq.min
|
113
|
-
bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1
|
114
|
-
@factor_mat, @weight_vec, @bias_term = binary_fit(x, bin_y)
|
115
|
-
end
|
116
|
-
|
117
|
-
self
|
118
|
-
end
|
119
|
-
|
120
|
-
# Calculate confidence scores for samples.
|
121
|
-
#
|
122
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
123
|
-
# @return [Numo::DFloat] (shape: [n_samples]) Confidence score per sample.
|
124
|
-
def decision_function(x)
|
125
|
-
check_sample_array(x)
|
126
|
-
linear_term = @bias_term + x.dot(@weight_vec.transpose)
|
127
|
-
factor_term = if @classes.size <= 2
|
128
|
-
0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(0)
|
129
|
-
else
|
130
|
-
0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(1).transpose
|
131
|
-
end
|
132
|
-
linear_term + factor_term
|
133
|
-
end
|
134
|
-
|
135
|
-
# Predict class labels for samples.
|
136
|
-
#
|
137
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
138
|
-
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
139
|
-
def predict(x)
|
140
|
-
check_sample_array(x)
|
141
|
-
return Numo::Int32.cast(decision_function(x).ge(0.0)) * 2 - 1 if @classes.size <= 2
|
142
|
-
|
143
|
-
n_samples, = x.shape
|
144
|
-
decision_values = decision_function(x)
|
145
|
-
Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] })
|
146
|
-
end
|
147
|
-
|
148
|
-
# Predict probability for samples.
|
149
|
-
#
|
150
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
151
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
152
|
-
def predict_proba(x)
|
153
|
-
check_sample_array(x)
|
154
|
-
proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0)
|
155
|
-
return (proba.transpose / proba.sum(axis: 1)).transpose if @classes.size > 2
|
156
|
-
|
157
|
-
n_samples, = x.shape
|
158
|
-
probs = Numo::DFloat.zeros(n_samples, 2)
|
159
|
-
probs[true, 1] = proba
|
160
|
-
probs[true, 0] = 1.0 - proba
|
161
|
-
probs
|
162
|
-
end
|
163
|
-
|
164
|
-
# Dump marshal data.
|
165
|
-
# @return [Hash] The marshal data about FactorizationMachineClassifier.
|
166
|
-
def marshal_dump
|
167
|
-
{ params: @params,
|
168
|
-
factor_mat: @factor_mat,
|
169
|
-
weight_vec: @weight_vec,
|
170
|
-
bias_term: @bias_term,
|
171
|
-
classes: @classes,
|
172
|
-
rng: @rng }
|
173
|
-
end
|
174
|
-
|
175
|
-
# Load marshal data.
|
176
|
-
# @return [nil]
|
177
|
-
def marshal_load(obj)
|
178
|
-
@params = obj[:params]
|
179
|
-
@factor_mat = obj[:factor_mat]
|
180
|
-
@weight_vec = obj[:weight_vec]
|
181
|
-
@bias_term = obj[:bias_term]
|
182
|
-
@classes = obj[:classes]
|
183
|
-
@rng = obj[:rng]
|
184
|
-
nil
|
185
|
-
end
|
186
|
-
|
187
|
-
private
|
188
|
-
|
189
|
-
def binary_fit(x, y)
|
190
|
-
# Initialize some variables.
|
191
|
-
n_samples, n_features = x.shape
|
192
|
-
rand_ids = [*0...n_samples].shuffle(random: @rng)
|
193
|
-
weight_vec = Numo::DFloat.zeros(n_features + 1)
|
194
|
-
factor_mat = Numo::DFloat.zeros(@params[:n_factors], n_features)
|
195
|
-
weight_optimizer = @params[:optimizer].dup
|
196
|
-
factor_optimizers = Array.new(@params[:n_factors]) { @params[:optimizer].dup }
|
197
|
-
# Start optimization.
|
198
|
-
@params[:max_iter].times do |_t|
|
199
|
-
# Random sampling.
|
200
|
-
subset_ids = rand_ids.shift(@params[:batch_size])
|
201
|
-
rand_ids.concat(subset_ids)
|
202
|
-
data = x[subset_ids, true]
|
203
|
-
ex_data = expand_feature(data)
|
204
|
-
label = y[subset_ids]
|
205
|
-
# Calculate gradients for loss function.
|
206
|
-
loss_grad = loss_gradient(data, ex_data, label, factor_mat, weight_vec)
|
207
|
-
next if loss_grad.ne(0.0).count.zero?
|
208
|
-
# Update each parameter.
|
209
|
-
weight_vec = weight_optimizer.call(weight_vec, weight_gradient(loss_grad, ex_data, weight_vec))
|
210
|
-
@params[:n_factors].times do |n|
|
211
|
-
factor_mat[n, true] = factor_optimizers[n].call(factor_mat[n, true],
|
212
|
-
factor_gradient(loss_grad, data, factor_mat[n, true]))
|
213
|
-
end
|
214
|
-
end
|
215
|
-
[factor_mat, *split_weight_vec_bias(weight_vec)]
|
216
|
-
end
|
217
|
-
|
218
|
-
def bin_decision_function(x, ex_x, factor, weight)
|
219
|
-
ex_x.dot(weight) + 0.5 * (factor.dot(x.transpose)**2 - (factor**2).dot(x.transpose**2)).sum(0)
|
220
|
-
end
|
221
|
-
|
222
|
-
def hinge_loss_gradient(x, ex_x, y, factor, weight)
|
223
|
-
evaluated = y * bin_decision_function(x, ex_x, factor, weight)
|
224
|
-
gradient = Numo::DFloat.zeros(evaluated.size)
|
225
|
-
gradient[evaluated < 1.0] = -y[evaluated < 1.0]
|
226
|
-
gradient
|
227
|
-
end
|
228
|
-
|
229
|
-
def logistic_loss_gradient(x, ex_x, y, factor, weight)
|
230
|
-
evaluated = y * bin_decision_function(x, ex_x, factor, weight)
|
231
|
-
sigmoid_func = 1.0 / (Numo::NMath.exp(-evaluated) + 1.0)
|
232
|
-
(sigmoid_func - 1.0) * y
|
233
|
-
end
|
234
|
-
|
235
|
-
def loss_gradient(x, ex_x, y, factor, weight)
|
236
|
-
if @params[:loss] == 'hinge'
|
237
|
-
hinge_loss_gradient(x, ex_x, y, factor, weight)
|
238
|
-
else
|
239
|
-
logistic_loss_gradient(x, ex_x, y, factor, weight)
|
240
|
-
end
|
241
|
-
end
|
242
|
-
|
243
|
-
def weight_gradient(loss_grad, data, weight)
|
244
|
-
(loss_grad.expand_dims(1) * data).mean(0) + @params[:reg_param_linear] * weight
|
245
|
-
end
|
246
|
-
|
247
|
-
def factor_gradient(loss_grad, data, factor)
|
248
|
-
(loss_grad.expand_dims(1) * (data * data.dot(factor).expand_dims(1) - factor * (data**2))).mean(0) + @params[:reg_param_factor] * factor
|
249
|
-
end
|
250
|
-
|
251
|
-
def expand_feature(x)
|
252
|
-
Numo::NArray.hstack([x, Numo::DFloat.ones([x.shape[0], 1])])
|
253
|
-
end
|
254
|
-
|
255
|
-
def split_weight_vec_bias(weight_vec)
|
256
|
-
weights = weight_vec[0...-1].dup
|
257
|
-
bias = weight_vec[-1]
|
258
|
-
[weights, bias]
|
259
|
-
end
|
260
|
-
end
|
261
|
-
end
|
262
|
-
end
|