svmkit 0.7.3 → 0.8.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +0 -9
- data/.rspec +1 -0
- data/.travis.yml +4 -12
- data/LICENSE.txt +1 -1
- data/README.md +11 -13
- data/lib/svmkit.rb +3 -66
- data/svmkit.gemspec +12 -7
- metadata +16 -81
- data/.coveralls.yml +0 -1
- data/.rubocop.yml +0 -47
- data/.rubocop_todo.yml +0 -58
- data/HISTORY.md +0 -168
- data/lib/svmkit/base/base_estimator.rb +0 -13
- data/lib/svmkit/base/classifier.rb +0 -34
- data/lib/svmkit/base/cluster_analyzer.rb +0 -29
- data/lib/svmkit/base/evaluator.rb +0 -13
- data/lib/svmkit/base/regressor.rb +0 -34
- data/lib/svmkit/base/splitter.rb +0 -17
- data/lib/svmkit/base/transformer.rb +0 -18
- data/lib/svmkit/clustering/dbscan.rb +0 -127
- data/lib/svmkit/clustering/k_means.rb +0 -140
- data/lib/svmkit/dataset.rb +0 -109
- data/lib/svmkit/decomposition/nmf.rb +0 -147
- data/lib/svmkit/decomposition/pca.rb +0 -150
- data/lib/svmkit/ensemble/ada_boost_classifier.rb +0 -198
- data/lib/svmkit/ensemble/ada_boost_regressor.rb +0 -180
- data/lib/svmkit/ensemble/random_forest_classifier.rb +0 -182
- data/lib/svmkit/ensemble/random_forest_regressor.rb +0 -143
- data/lib/svmkit/evaluation_measure/accuracy.rb +0 -30
- data/lib/svmkit/evaluation_measure/f_score.rb +0 -51
- data/lib/svmkit/evaluation_measure/log_loss.rb +0 -46
- data/lib/svmkit/evaluation_measure/mean_absolute_error.rb +0 -30
- data/lib/svmkit/evaluation_measure/mean_squared_error.rb +0 -30
- data/lib/svmkit/evaluation_measure/normalized_mutual_information.rb +0 -63
- data/lib/svmkit/evaluation_measure/precision.rb +0 -51
- data/lib/svmkit/evaluation_measure/precision_recall.rb +0 -91
- data/lib/svmkit/evaluation_measure/purity.rb +0 -41
- data/lib/svmkit/evaluation_measure/r2_score.rb +0 -44
- data/lib/svmkit/evaluation_measure/recall.rb +0 -51
- data/lib/svmkit/kernel_approximation/rbf.rb +0 -136
- data/lib/svmkit/kernel_machine/kernel_svc.rb +0 -194
- data/lib/svmkit/linear_model/lasso.rb +0 -138
- data/lib/svmkit/linear_model/linear_regression.rb +0 -112
- data/lib/svmkit/linear_model/logistic_regression.rb +0 -161
- data/lib/svmkit/linear_model/ridge.rb +0 -112
- data/lib/svmkit/linear_model/sgd_linear_estimator.rb +0 -89
- data/lib/svmkit/linear_model/svc.rb +0 -184
- data/lib/svmkit/linear_model/svr.rb +0 -123
- data/lib/svmkit/model_selection/cross_validation.rb +0 -121
- data/lib/svmkit/model_selection/grid_search_cv.rb +0 -247
- data/lib/svmkit/model_selection/k_fold.rb +0 -77
- data/lib/svmkit/model_selection/stratified_k_fold.rb +0 -95
- data/lib/svmkit/multiclass/one_vs_rest_classifier.rb +0 -101
- data/lib/svmkit/naive_bayes/naive_bayes.rb +0 -316
- data/lib/svmkit/nearest_neighbors/k_neighbors_classifier.rb +0 -112
- data/lib/svmkit/nearest_neighbors/k_neighbors_regressor.rb +0 -94
- data/lib/svmkit/optimizer/nadam.rb +0 -90
- data/lib/svmkit/optimizer/rmsprop.rb +0 -69
- data/lib/svmkit/optimizer/sgd.rb +0 -65
- data/lib/svmkit/optimizer/yellow_fin.rb +0 -144
- data/lib/svmkit/pairwise_metric.rb +0 -91
- data/lib/svmkit/pipeline/pipeline.rb +0 -197
- data/lib/svmkit/polynomial_model/factorization_machine_classifier.rb +0 -262
- data/lib/svmkit/polynomial_model/factorization_machine_regressor.rb +0 -194
- data/lib/svmkit/preprocessing/l2_normalizer.rb +0 -63
- data/lib/svmkit/preprocessing/label_encoder.rb +0 -95
- data/lib/svmkit/preprocessing/min_max_scaler.rb +0 -93
- data/lib/svmkit/preprocessing/one_hot_encoder.rb +0 -99
- data/lib/svmkit/preprocessing/standard_scaler.rb +0 -87
- data/lib/svmkit/probabilistic_output.rb +0 -112
- data/lib/svmkit/tree/decision_tree_classifier.rb +0 -276
- data/lib/svmkit/tree/decision_tree_regressor.rb +0 -251
- data/lib/svmkit/tree/node.rb +0 -70
- data/lib/svmkit/utils.rb +0 -22
- data/lib/svmkit/validation.rb +0 -79
- data/lib/svmkit/values.rb +0 -13
- data/lib/svmkit/version.rb +0 -7
@@ -1,87 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'svmkit/validation'
|
4
|
-
require 'svmkit/base/base_estimator'
|
5
|
-
require 'svmkit/base/transformer'
|
6
|
-
|
7
|
-
module SVMKit
|
8
|
-
# This module consists of the classes that perform preprocessings.
|
9
|
-
module Preprocessing
|
10
|
-
# Normalize samples by centering and scaling to unit variance.
|
11
|
-
#
|
12
|
-
# @example
|
13
|
-
# normalizer = SVMKit::Preprocessing::StandardScaler.new
|
14
|
-
# new_training_samples = normalizer.fit_transform(training_samples)
|
15
|
-
# new_testing_samples = normalizer.transform(testing_samples)
|
16
|
-
class StandardScaler
|
17
|
-
include Base::BaseEstimator
|
18
|
-
include Base::Transformer
|
19
|
-
|
20
|
-
# Return the vector consists of the mean value for each feature.
|
21
|
-
# @return [Numo::DFloat] (shape: [n_features])
|
22
|
-
attr_reader :mean_vec
|
23
|
-
|
24
|
-
# Return the vector consists of the standard deviation for each feature.
|
25
|
-
# @return [Numo::DFloat] (shape: [n_features])
|
26
|
-
attr_reader :std_vec
|
27
|
-
|
28
|
-
# Create a new normalizer for centering and scaling to unit variance.
|
29
|
-
def initialize
|
30
|
-
@params = {}
|
31
|
-
@mean_vec = nil
|
32
|
-
@std_vec = nil
|
33
|
-
end
|
34
|
-
|
35
|
-
# Calculate the mean value and standard deviation of each feature for scaling.
|
36
|
-
#
|
37
|
-
# @overload fit(x) -> StandardScaler
|
38
|
-
#
|
39
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features])
|
40
|
-
# The samples to calculate the mean values and standard deviations.
|
41
|
-
# @return [StandardScaler]
|
42
|
-
def fit(x, _y = nil)
|
43
|
-
SVMKit::Validation.check_sample_array(x)
|
44
|
-
@mean_vec = x.mean(0)
|
45
|
-
@std_vec = x.stddev(0)
|
46
|
-
self
|
47
|
-
end
|
48
|
-
|
49
|
-
# Calculate the mean values and standard deviations, and then normalize samples using them.
|
50
|
-
#
|
51
|
-
# @overload fit_transform(x) -> Numo::DFloat
|
52
|
-
#
|
53
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features])
|
54
|
-
# The samples to calculate the mean values and standard deviations.
|
55
|
-
# @return [Numo::DFloat] The scaled samples.
|
56
|
-
def fit_transform(x, _y = nil)
|
57
|
-
SVMKit::Validation.check_sample_array(x)
|
58
|
-
fit(x).transform(x)
|
59
|
-
end
|
60
|
-
|
61
|
-
# Perform standardization the given samples.
|
62
|
-
#
|
63
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be scaled.
|
64
|
-
# @return [Numo::DFloat] The scaled samples.
|
65
|
-
def transform(x)
|
66
|
-
SVMKit::Validation.check_sample_array(x)
|
67
|
-
n_samples, = x.shape
|
68
|
-
(x - @mean_vec.tile(n_samples, 1)) / @std_vec.tile(n_samples, 1)
|
69
|
-
end
|
70
|
-
|
71
|
-
# Dump marshal data.
|
72
|
-
# @return [Hash] The marshal data about StandardScaler.
|
73
|
-
def marshal_dump
|
74
|
-
{ mean_vec: @mean_vec,
|
75
|
-
std_vec: @std_vec }
|
76
|
-
end
|
77
|
-
|
78
|
-
# Load marshal data.
|
79
|
-
# @return [nil]
|
80
|
-
def marshal_load(obj)
|
81
|
-
@mean_vec = obj[:mean_vec]
|
82
|
-
@std_vec = obj[:std_vec]
|
83
|
-
nil
|
84
|
-
end
|
85
|
-
end
|
86
|
-
end
|
87
|
-
end
|
@@ -1,112 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
module SVMKit
|
4
|
-
# Module for calculating posterior class probabilities with SVM outputs.
|
5
|
-
# This module is used for internal processes.
|
6
|
-
#
|
7
|
-
# @example
|
8
|
-
# estimator = SVMKit::LinearModel::SVC.new
|
9
|
-
# estimator.fit(x, bin_y)
|
10
|
-
# df = estimator.decision_function(x)
|
11
|
-
# params = SVMKit::ProbabilisticOutput.fit_sigmoid(df, bin_y)
|
12
|
-
# probs = 1 / (Numo::NMath.exp(params[0] * df + params[1]) + 1)
|
13
|
-
#
|
14
|
-
# *Reference*
|
15
|
-
# 1. J C. Platt, "Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods," Adv. Large Margin Classifiers, pp. 61--74, 2000.
|
16
|
-
# 1. H-T Lin, C-J Lin, and R C.Weng, "A Note on Platt's Probabilistic Outputs for Support Vector Machines," J. Machine Learning, Vol. 63 (3), pp. 267--276, 2007.
|
17
|
-
module ProbabilisticOutput
|
18
|
-
class << self
|
19
|
-
# Fit the probabilistic model for binary SVM outputs.
|
20
|
-
#
|
21
|
-
# @param df [Numo::DFloat] (shape: [n_samples]) The outputs of decision function to be used for fitting the model.
|
22
|
-
# @param bin_y [Numo::Int32] (shape: [n_samples]) The binary labels to be used for fitting the model.
|
23
|
-
# @param max_iter [Integer] The maximum number of iterations.
|
24
|
-
# @param min_step [Float] The minimum step of Newton's method.
|
25
|
-
# @param sigma [Float] The parameter to avoid hessian matrix from becoming singular matrix.
|
26
|
-
# @return [Numo::DFloat] (shape: 2) The parameters of the model.
|
27
|
-
def fit_sigmoid(df, bin_y, max_iter = 100, min_step = 1e-10, sigma = 1e-12)
|
28
|
-
# Initialize some variables.
|
29
|
-
n_samples = bin_y.size
|
30
|
-
negative_label = bin_y.to_a.uniq.min
|
31
|
-
pos = bin_y.ne(negative_label)
|
32
|
-
neg = bin_y.eq(negative_label)
|
33
|
-
n_pos_samples = pos.count
|
34
|
-
n_neg_samples = neg.count
|
35
|
-
target_probs = Numo::DFloat.zeros(n_samples)
|
36
|
-
target_probs[pos] = (n_pos_samples + 1) / (n_pos_samples + 2.0)
|
37
|
-
target_probs[neg] = 1 / (n_neg_samples + 2.0)
|
38
|
-
alpha = 0.0
|
39
|
-
beta = Math.log((n_neg_samples + 1) / (n_pos_samples + 1.0))
|
40
|
-
err = error_function(target_probs, df, alpha, beta)
|
41
|
-
# Optimize parameters for class porbability calculation.
|
42
|
-
old_grad_vec = Numo::DFloat.zeros(2)
|
43
|
-
max_iter.times do
|
44
|
-
# Calculate gradient and hessian matrix.
|
45
|
-
probs = predicted_probs(df, alpha, beta)
|
46
|
-
grad_vec = gradient(target_probs, probs, df)
|
47
|
-
hess_mat = hessian_matrix(probs, df, sigma)
|
48
|
-
break if grad_vec.abs.lt(1e-5).count == 2
|
49
|
-
break if (old_grad_vec - grad_vec).abs.sum < 1e-5
|
50
|
-
old_grad_vec = grad_vec
|
51
|
-
# Calculate Newton directions.
|
52
|
-
dirs_vec = directions(grad_vec, hess_mat)
|
53
|
-
grad_dir = grad_vec.dot(dirs_vec)
|
54
|
-
stepsize = 2.0
|
55
|
-
while stepsize >= min_step
|
56
|
-
stepsize *= 0.5
|
57
|
-
new_alpha = alpha + stepsize * dirs_vec[0]
|
58
|
-
new_beta = beta + stepsize * dirs_vec[1]
|
59
|
-
new_err = error_function(target_probs, df, new_alpha, new_beta)
|
60
|
-
next unless new_err < err + 0.0001 * stepsize * grad_dir
|
61
|
-
alpha = new_alpha
|
62
|
-
beta = new_beta
|
63
|
-
err = new_err
|
64
|
-
break
|
65
|
-
end
|
66
|
-
end
|
67
|
-
Numo::DFloat[alpha, beta]
|
68
|
-
end
|
69
|
-
|
70
|
-
private
|
71
|
-
|
72
|
-
def error_function(target_probs, df, alpha, beta)
|
73
|
-
fn = alpha * df + beta
|
74
|
-
pos = fn.ge(0.0)
|
75
|
-
neg = fn.lt(0.0)
|
76
|
-
err = 0.0
|
77
|
-
err += (target_probs[pos] * fn[pos] + Numo::NMath.log(1 + Numo::NMath.exp(-fn[pos]))).sum if pos.count > 0
|
78
|
-
err += ((target_probs[neg] - 1) * fn[neg] + Numo::NMath.log(1 + Numo::NMath.exp(fn[neg]))).sum if neg.count > 0
|
79
|
-
err
|
80
|
-
end
|
81
|
-
|
82
|
-
def predicted_probs(df, alpha, beta)
|
83
|
-
fn = alpha * df + beta
|
84
|
-
pos = fn.ge(0.0)
|
85
|
-
neg = fn.lt(0.0)
|
86
|
-
probs = Numo::DFloat.zeros(df.shape[0])
|
87
|
-
probs[pos] = Numo::NMath.exp(-fn[pos]) / (1 + Numo::NMath.exp(-fn[pos])) if pos.count > 0
|
88
|
-
probs[neg] = 1 / (1 + Numo::NMath.exp(fn[neg])) if neg.count > 0
|
89
|
-
probs
|
90
|
-
end
|
91
|
-
|
92
|
-
def gradient(target_probs, probs, df)
|
93
|
-
sub = target_probs - probs
|
94
|
-
Numo::DFloat[(df * sub).sum, sub.sum]
|
95
|
-
end
|
96
|
-
|
97
|
-
def hessian_matrix(probs, df, sigma)
|
98
|
-
sub = probs * (1 - probs)
|
99
|
-
h11 = (df * df * sub).sum + sigma
|
100
|
-
h22 = sub.sum + sigma
|
101
|
-
h21 = (df * sub).sum
|
102
|
-
Numo::DFloat[[h11, h21], [h21, h22]]
|
103
|
-
end
|
104
|
-
|
105
|
-
def directions(grad_vec, hess_mat)
|
106
|
-
det = hess_mat[0, 0] * hess_mat[1, 1] - hess_mat[0, 1] * hess_mat[1, 0]
|
107
|
-
inv_hess_mat = Numo::DFloat[[hess_mat[1, 1], -hess_mat[0, 1]], [-hess_mat[1, 0], hess_mat[0, 0]]] / det
|
108
|
-
-inv_hess_mat.dot(grad_vec)
|
109
|
-
end
|
110
|
-
end
|
111
|
-
end
|
112
|
-
end
|
@@ -1,276 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'svmkit/validation'
|
4
|
-
require 'svmkit/base/base_estimator'
|
5
|
-
require 'svmkit/base/classifier'
|
6
|
-
require 'svmkit/tree/node'
|
7
|
-
|
8
|
-
module SVMKit
|
9
|
-
# This module consists of the classes that implement tree models.
|
10
|
-
module Tree
|
11
|
-
# DecisionTreeClassifier is a class that implements decision tree for classification.
|
12
|
-
#
|
13
|
-
# @example
|
14
|
-
# estimator =
|
15
|
-
# SVMKit::Tree::DecisionTreeClassifier.new(
|
16
|
-
# criterion: 'gini', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
|
17
|
-
# estimator.fit(training_samples, traininig_labels)
|
18
|
-
# results = estimator.predict(testing_samples)
|
19
|
-
#
|
20
|
-
class DecisionTreeClassifier
|
21
|
-
include Base::BaseEstimator
|
22
|
-
include Base::Classifier
|
23
|
-
|
24
|
-
# Return the class labels.
|
25
|
-
# @return [Numo::Int32] (size: n_classes)
|
26
|
-
attr_reader :classes
|
27
|
-
|
28
|
-
# Return the importance for each feature.
|
29
|
-
# @return [Numo::DFloat] (size: n_features)
|
30
|
-
attr_reader :feature_importances
|
31
|
-
|
32
|
-
# Return the learned tree.
|
33
|
-
# @return [Node]
|
34
|
-
attr_reader :tree
|
35
|
-
|
36
|
-
# Return the random generator for random selection of feature index.
|
37
|
-
# @return [Random]
|
38
|
-
attr_reader :rng
|
39
|
-
|
40
|
-
# Return the labels assigned each leaf.
|
41
|
-
# @return [Numo::Int32] (size: n_leafs)
|
42
|
-
attr_reader :leaf_labels
|
43
|
-
|
44
|
-
# Create a new classifier with decision tree algorithm.
|
45
|
-
#
|
46
|
-
# @param criterion [String] The function to evalue spliting point. Supported criteria are 'gini' and 'entropy'.
|
47
|
-
# @param max_depth [Integer] The maximum depth of the tree.
|
48
|
-
# If nil is given, decision tree grows without concern for depth.
|
49
|
-
# @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree.
|
50
|
-
# If nil is given, number of leaves is not limited.
|
51
|
-
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
52
|
-
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
53
|
-
# If nil is given, split process considers all features.
|
54
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
55
|
-
# It is used to randomly determine the order of features when deciding spliting point.
|
56
|
-
def initialize(criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil,
|
57
|
-
random_seed: nil)
|
58
|
-
SVMKit::Validation.check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
59
|
-
max_features: max_features, random_seed: random_seed)
|
60
|
-
SVMKit::Validation.check_params_integer(min_samples_leaf: min_samples_leaf)
|
61
|
-
SVMKit::Validation.check_params_string(criterion: criterion)
|
62
|
-
SVMKit::Validation.check_params_positive(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
63
|
-
min_samples_leaf: min_samples_leaf, max_features: max_features)
|
64
|
-
@params = {}
|
65
|
-
@params[:criterion] = criterion
|
66
|
-
@params[:max_depth] = max_depth
|
67
|
-
@params[:max_leaf_nodes] = max_leaf_nodes
|
68
|
-
@params[:min_samples_leaf] = min_samples_leaf
|
69
|
-
@params[:max_features] = max_features
|
70
|
-
@params[:random_seed] = random_seed
|
71
|
-
@params[:random_seed] ||= srand
|
72
|
-
@criterion = :gini
|
73
|
-
@criterion = :entropy if @params[:criterion] == 'entropy'
|
74
|
-
@tree = nil
|
75
|
-
@classes = nil
|
76
|
-
@feature_importances = nil
|
77
|
-
@n_leaves = nil
|
78
|
-
@leaf_labels = nil
|
79
|
-
@rng = Random.new(@params[:random_seed])
|
80
|
-
end
|
81
|
-
|
82
|
-
# Fit the model with given training data.
|
83
|
-
#
|
84
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
85
|
-
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
86
|
-
# @return [DecisionTreeClassifier] The learned classifier itself.
|
87
|
-
def fit(x, y)
|
88
|
-
SVMKit::Validation.check_sample_array(x)
|
89
|
-
SVMKit::Validation.check_label_array(y)
|
90
|
-
SVMKit::Validation.check_sample_label_size(x, y)
|
91
|
-
n_samples, n_features = x.shape
|
92
|
-
@params[:max_features] = n_features if @params[:max_features].nil?
|
93
|
-
@params[:max_features] = [@params[:max_features], n_features].min
|
94
|
-
uniq_y = y.to_a.uniq.sort
|
95
|
-
@classes = Numo::Int32.asarray(uniq_y)
|
96
|
-
build_tree(x, y.map { |v| uniq_y.index(v) })
|
97
|
-
eval_importance(n_samples, n_features)
|
98
|
-
self
|
99
|
-
end
|
100
|
-
|
101
|
-
# Predict class labels for samples.
|
102
|
-
#
|
103
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
104
|
-
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
105
|
-
def predict(x)
|
106
|
-
SVMKit::Validation.check_sample_array(x)
|
107
|
-
@leaf_labels[apply(x)]
|
108
|
-
end
|
109
|
-
|
110
|
-
# Predict probability for samples.
|
111
|
-
#
|
112
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
113
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
114
|
-
def predict_proba(x)
|
115
|
-
SVMKit::Validation.check_sample_array(x)
|
116
|
-
Numo::DFloat[*(Array.new(x.shape[0]) { |n| predict_at_node(@tree, x[n, true]) })]
|
117
|
-
end
|
118
|
-
|
119
|
-
# Return the index of the leaf that each sample reached.
|
120
|
-
#
|
121
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
122
|
-
# @return [Numo::Int32] (shape: [n_samples]) Leaf index for sample.
|
123
|
-
def apply(x)
|
124
|
-
SVMKit::Validation.check_sample_array(x)
|
125
|
-
Numo::Int32[*(Array.new(x.shape[0]) { |n| apply_at_node(@tree, x[n, true]) })]
|
126
|
-
end
|
127
|
-
|
128
|
-
# Dump marshal data.
|
129
|
-
# @return [Hash] The marshal data about DecisionTreeClassifier
|
130
|
-
def marshal_dump
|
131
|
-
{ params: @params,
|
132
|
-
classes: @classes,
|
133
|
-
criterion: @criterion,
|
134
|
-
tree: @tree,
|
135
|
-
feature_importances: @feature_importances,
|
136
|
-
leaf_labels: @leaf_labels,
|
137
|
-
rng: @rng }
|
138
|
-
end
|
139
|
-
|
140
|
-
# Load marshal data.
|
141
|
-
# @return [nil]
|
142
|
-
def marshal_load(obj)
|
143
|
-
@params = obj[:params]
|
144
|
-
@classes = obj[:classes]
|
145
|
-
@criterion = obj[:criterion]
|
146
|
-
@tree = obj[:tree]
|
147
|
-
@feature_importances = obj[:feature_importances]
|
148
|
-
@leaf_labels = obj[:leaf_labels]
|
149
|
-
@rng = obj[:rng]
|
150
|
-
nil
|
151
|
-
end
|
152
|
-
|
153
|
-
private
|
154
|
-
|
155
|
-
def predict_at_node(node, sample)
|
156
|
-
return node.probs if node.leaf
|
157
|
-
branch_at_node('predict', node, sample)
|
158
|
-
end
|
159
|
-
|
160
|
-
def apply_at_node(node, sample)
|
161
|
-
return node.leaf_id if node.leaf
|
162
|
-
branch_at_node('apply', node, sample)
|
163
|
-
end
|
164
|
-
|
165
|
-
def branch_at_node(action, node, sample)
|
166
|
-
return send("#{action}_at_node", node.left, sample) if node.right.nil?
|
167
|
-
return send("#{action}_at_node", node.right, sample) if node.left.nil?
|
168
|
-
if sample[node.feature_id] <= node.threshold
|
169
|
-
send("#{action}_at_node", node.left, sample)
|
170
|
-
else
|
171
|
-
send("#{action}_at_node", node.right, sample)
|
172
|
-
end
|
173
|
-
end
|
174
|
-
|
175
|
-
def build_tree(x, y)
|
176
|
-
@n_leaves = 0
|
177
|
-
@leaf_labels = []
|
178
|
-
@tree = grow_node(0, x, y, impurity(y))
|
179
|
-
@leaf_labels = Numo::Int32[*@leaf_labels]
|
180
|
-
nil
|
181
|
-
end
|
182
|
-
|
183
|
-
def grow_node(depth, x, y, whole_impurity)
|
184
|
-
unless @params[:max_leaf_nodes].nil?
|
185
|
-
return nil if @n_leaves >= @params[:max_leaf_nodes]
|
186
|
-
end
|
187
|
-
|
188
|
-
n_samples, n_features = x.shape
|
189
|
-
return nil if n_samples <= @params[:min_samples_leaf]
|
190
|
-
|
191
|
-
node = Node.new(depth: depth, impurity: whole_impurity, n_samples: n_samples)
|
192
|
-
|
193
|
-
return put_leaf(node, y) if y.to_a.uniq.size == 1
|
194
|
-
|
195
|
-
unless @params[:max_depth].nil?
|
196
|
-
return put_leaf(node, y) if depth == @params[:max_depth]
|
197
|
-
end
|
198
|
-
|
199
|
-
feature_id, threshold, left_ids, right_ids, left_impurity, right_impurity, gain =
|
200
|
-
rand_ids(n_features).map { |f_id| [f_id, *best_split(x[true, f_id], y, whole_impurity)] }.max_by(&:last)
|
201
|
-
|
202
|
-
return put_leaf(node, y) if gain.nil? || gain.zero?
|
203
|
-
|
204
|
-
node.left = grow_node(depth + 1, x[left_ids, true], y[left_ids], left_impurity)
|
205
|
-
node.right = grow_node(depth + 1, x[right_ids, true], y[right_ids], right_impurity)
|
206
|
-
|
207
|
-
return put_leaf(node, y) if node.left.nil? && node.right.nil?
|
208
|
-
|
209
|
-
node.feature_id = feature_id
|
210
|
-
node.threshold = threshold
|
211
|
-
node.leaf = false
|
212
|
-
node
|
213
|
-
end
|
214
|
-
|
215
|
-
def put_leaf(node, y)
|
216
|
-
node.probs = y.bincount(minlength: @classes.size) / node.n_samples.to_f
|
217
|
-
node.leaf = true
|
218
|
-
node.leaf_id = @n_leaves
|
219
|
-
@n_leaves += 1
|
220
|
-
@leaf_labels.push(@classes[node.probs.max_index])
|
221
|
-
node
|
222
|
-
end
|
223
|
-
|
224
|
-
def rand_ids(n)
|
225
|
-
[*0...n].sample(@params[:max_features], random: @rng)
|
226
|
-
end
|
227
|
-
|
228
|
-
def best_split(features, labels, whole_impurity)
|
229
|
-
n_samples = labels.size
|
230
|
-
features.to_a.uniq.sort.each_cons(2).map do |l, r|
|
231
|
-
threshold = 0.5 * (l + r)
|
232
|
-
left_ids = features.le(threshold).where
|
233
|
-
right_ids = features.gt(threshold).where
|
234
|
-
left_impurity = impurity(labels[left_ids])
|
235
|
-
right_impurity = impurity(labels[right_ids])
|
236
|
-
gain = whole_impurity -
|
237
|
-
left_impurity * left_ids.size.fdiv(n_samples) -
|
238
|
-
right_impurity * right_ids.size.fdiv(n_samples)
|
239
|
-
[threshold, left_ids, right_ids, left_impurity, right_impurity, gain]
|
240
|
-
end.max_by(&:last)
|
241
|
-
end
|
242
|
-
|
243
|
-
def impurity(labels)
|
244
|
-
send(@criterion, labels.bincount / labels.size.to_f)
|
245
|
-
end
|
246
|
-
|
247
|
-
def gini(posterior_probs)
|
248
|
-
1.0 - (posterior_probs * posterior_probs).sum
|
249
|
-
end
|
250
|
-
|
251
|
-
def entropy(posterior_probs)
|
252
|
-
-(posterior_probs * Numo::NMath.log(posterior_probs + 1)).sum
|
253
|
-
end
|
254
|
-
|
255
|
-
def eval_importance(n_samples, n_features)
|
256
|
-
@feature_importances = Numo::DFloat.zeros(n_features)
|
257
|
-
eval_importance_at_node(@tree)
|
258
|
-
@feature_importances /= n_samples
|
259
|
-
normalizer = @feature_importances.sum
|
260
|
-
@feature_importances /= normalizer if normalizer > 0.0
|
261
|
-
nil
|
262
|
-
end
|
263
|
-
|
264
|
-
def eval_importance_at_node(node)
|
265
|
-
return nil if node.leaf
|
266
|
-
return nil if node.left.nil? || node.right.nil?
|
267
|
-
gain = node.n_samples * node.impurity -
|
268
|
-
node.left.n_samples * node.left.impurity -
|
269
|
-
node.right.n_samples * node.right.impurity
|
270
|
-
@feature_importances[node.feature_id] += gain
|
271
|
-
eval_importance_at_node(node.left)
|
272
|
-
eval_importance_at_node(node.right)
|
273
|
-
end
|
274
|
-
end
|
275
|
-
end
|
276
|
-
end
|