svmkit 0.7.3 → 0.8.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +0 -9
- data/.rspec +1 -0
- data/.travis.yml +4 -12
- data/LICENSE.txt +1 -1
- data/README.md +11 -13
- data/lib/svmkit.rb +3 -66
- data/svmkit.gemspec +12 -7
- metadata +16 -81
- data/.coveralls.yml +0 -1
- data/.rubocop.yml +0 -47
- data/.rubocop_todo.yml +0 -58
- data/HISTORY.md +0 -168
- data/lib/svmkit/base/base_estimator.rb +0 -13
- data/lib/svmkit/base/classifier.rb +0 -34
- data/lib/svmkit/base/cluster_analyzer.rb +0 -29
- data/lib/svmkit/base/evaluator.rb +0 -13
- data/lib/svmkit/base/regressor.rb +0 -34
- data/lib/svmkit/base/splitter.rb +0 -17
- data/lib/svmkit/base/transformer.rb +0 -18
- data/lib/svmkit/clustering/dbscan.rb +0 -127
- data/lib/svmkit/clustering/k_means.rb +0 -140
- data/lib/svmkit/dataset.rb +0 -109
- data/lib/svmkit/decomposition/nmf.rb +0 -147
- data/lib/svmkit/decomposition/pca.rb +0 -150
- data/lib/svmkit/ensemble/ada_boost_classifier.rb +0 -198
- data/lib/svmkit/ensemble/ada_boost_regressor.rb +0 -180
- data/lib/svmkit/ensemble/random_forest_classifier.rb +0 -182
- data/lib/svmkit/ensemble/random_forest_regressor.rb +0 -143
- data/lib/svmkit/evaluation_measure/accuracy.rb +0 -30
- data/lib/svmkit/evaluation_measure/f_score.rb +0 -51
- data/lib/svmkit/evaluation_measure/log_loss.rb +0 -46
- data/lib/svmkit/evaluation_measure/mean_absolute_error.rb +0 -30
- data/lib/svmkit/evaluation_measure/mean_squared_error.rb +0 -30
- data/lib/svmkit/evaluation_measure/normalized_mutual_information.rb +0 -63
- data/lib/svmkit/evaluation_measure/precision.rb +0 -51
- data/lib/svmkit/evaluation_measure/precision_recall.rb +0 -91
- data/lib/svmkit/evaluation_measure/purity.rb +0 -41
- data/lib/svmkit/evaluation_measure/r2_score.rb +0 -44
- data/lib/svmkit/evaluation_measure/recall.rb +0 -51
- data/lib/svmkit/kernel_approximation/rbf.rb +0 -136
- data/lib/svmkit/kernel_machine/kernel_svc.rb +0 -194
- data/lib/svmkit/linear_model/lasso.rb +0 -138
- data/lib/svmkit/linear_model/linear_regression.rb +0 -112
- data/lib/svmkit/linear_model/logistic_regression.rb +0 -161
- data/lib/svmkit/linear_model/ridge.rb +0 -112
- data/lib/svmkit/linear_model/sgd_linear_estimator.rb +0 -89
- data/lib/svmkit/linear_model/svc.rb +0 -184
- data/lib/svmkit/linear_model/svr.rb +0 -123
- data/lib/svmkit/model_selection/cross_validation.rb +0 -121
- data/lib/svmkit/model_selection/grid_search_cv.rb +0 -247
- data/lib/svmkit/model_selection/k_fold.rb +0 -77
- data/lib/svmkit/model_selection/stratified_k_fold.rb +0 -95
- data/lib/svmkit/multiclass/one_vs_rest_classifier.rb +0 -101
- data/lib/svmkit/naive_bayes/naive_bayes.rb +0 -316
- data/lib/svmkit/nearest_neighbors/k_neighbors_classifier.rb +0 -112
- data/lib/svmkit/nearest_neighbors/k_neighbors_regressor.rb +0 -94
- data/lib/svmkit/optimizer/nadam.rb +0 -90
- data/lib/svmkit/optimizer/rmsprop.rb +0 -69
- data/lib/svmkit/optimizer/sgd.rb +0 -65
- data/lib/svmkit/optimizer/yellow_fin.rb +0 -144
- data/lib/svmkit/pairwise_metric.rb +0 -91
- data/lib/svmkit/pipeline/pipeline.rb +0 -197
- data/lib/svmkit/polynomial_model/factorization_machine_classifier.rb +0 -262
- data/lib/svmkit/polynomial_model/factorization_machine_regressor.rb +0 -194
- data/lib/svmkit/preprocessing/l2_normalizer.rb +0 -63
- data/lib/svmkit/preprocessing/label_encoder.rb +0 -95
- data/lib/svmkit/preprocessing/min_max_scaler.rb +0 -93
- data/lib/svmkit/preprocessing/one_hot_encoder.rb +0 -99
- data/lib/svmkit/preprocessing/standard_scaler.rb +0 -87
- data/lib/svmkit/probabilistic_output.rb +0 -112
- data/lib/svmkit/tree/decision_tree_classifier.rb +0 -276
- data/lib/svmkit/tree/decision_tree_regressor.rb +0 -251
- data/lib/svmkit/tree/node.rb +0 -70
- data/lib/svmkit/utils.rb +0 -22
- data/lib/svmkit/validation.rb +0 -79
- data/lib/svmkit/values.rb +0 -13
- data/lib/svmkit/version.rb +0 -7
@@ -1,138 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'svmkit/validation'
|
4
|
-
require 'svmkit/linear_model/sgd_linear_estimator'
|
5
|
-
require 'svmkit/base/regressor'
|
6
|
-
|
7
|
-
module SVMKit
|
8
|
-
module LinearModel
|
9
|
-
# Lasso is a class that implements Lasso Regression
|
10
|
-
# with stochastic gradient descent (SGD) optimization.
|
11
|
-
#
|
12
|
-
# @example
|
13
|
-
# estimator =
|
14
|
-
# SVMKit::LinearModel::Lasso.new(reg_param: 0.1, max_iter: 1000, batch_size: 20, random_seed: 1)
|
15
|
-
# estimator.fit(training_samples, traininig_values)
|
16
|
-
# results = estimator.predict(testing_samples)
|
17
|
-
#
|
18
|
-
# *Reference*
|
19
|
-
# - S. Shalev-Shwartz and Y. Singer, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007.
|
20
|
-
# - L. Bottou, "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010.
|
21
|
-
class Lasso < SGDLinearEstimator
|
22
|
-
include Base::Regressor
|
23
|
-
include Validation
|
24
|
-
|
25
|
-
# Return the weight vector.
|
26
|
-
# @return [Numo::DFloat] (shape: [n_outputs, n_features])
|
27
|
-
attr_reader :weight_vec
|
28
|
-
|
29
|
-
# Return the bias term (a.k.a. intercept).
|
30
|
-
# @return [Numo::DFloat] (shape: [n_outputs])
|
31
|
-
attr_reader :bias_term
|
32
|
-
|
33
|
-
# Return the random generator for random sampling.
|
34
|
-
# @return [Random]
|
35
|
-
attr_reader :rng
|
36
|
-
|
37
|
-
# Create a new Lasso regressor.
|
38
|
-
#
|
39
|
-
# @param reg_param [Float] The regularization parameter.
|
40
|
-
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
41
|
-
# @param bias_scale [Float] The scale of the bias term.
|
42
|
-
# @param max_iter [Integer] The maximum number of iterations.
|
43
|
-
# @param batch_size [Integer] The size of the mini batches.
|
44
|
-
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
45
|
-
# If nil is given, Nadam is used.
|
46
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
47
|
-
def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil)
|
48
|
-
check_params_float(reg_param: reg_param, bias_scale: bias_scale)
|
49
|
-
check_params_integer(max_iter: max_iter, batch_size: batch_size)
|
50
|
-
check_params_boolean(fit_bias: fit_bias)
|
51
|
-
check_params_type_or_nil(Integer, random_seed: random_seed)
|
52
|
-
check_params_positive(reg_param: reg_param, max_iter: max_iter, batch_size: batch_size)
|
53
|
-
super
|
54
|
-
end
|
55
|
-
|
56
|
-
# Fit the model with given training data.
|
57
|
-
#
|
58
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
59
|
-
# @param y [Numo::Int32] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
60
|
-
# @return [Lasso] The learned regressor itself.
|
61
|
-
def fit(x, y)
|
62
|
-
check_sample_array(x)
|
63
|
-
check_tvalue_array(y)
|
64
|
-
check_sample_tvalue_size(x, y)
|
65
|
-
|
66
|
-
n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
|
67
|
-
n_features = x.shape[1]
|
68
|
-
|
69
|
-
if n_outputs > 1
|
70
|
-
@weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
|
71
|
-
@bias_term = Numo::DFloat.zeros(n_outputs)
|
72
|
-
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
|
73
|
-
else
|
74
|
-
@weight_vec, @bias_term = partial_fit(x, y)
|
75
|
-
end
|
76
|
-
|
77
|
-
self
|
78
|
-
end
|
79
|
-
|
80
|
-
# Predict values for samples.
|
81
|
-
#
|
82
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
83
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
84
|
-
def predict(x)
|
85
|
-
check_sample_array(x)
|
86
|
-
x.dot(@weight_vec.transpose) + @bias_term
|
87
|
-
end
|
88
|
-
|
89
|
-
# Dump marshal data.
|
90
|
-
# @return [Hash] The marshal data about Lasso.
|
91
|
-
def marshal_dump
|
92
|
-
{ params: @params,
|
93
|
-
weight_vec: @weight_vec,
|
94
|
-
bias_term: @bias_term,
|
95
|
-
rng: @rng }
|
96
|
-
end
|
97
|
-
|
98
|
-
# Load marshal data.
|
99
|
-
# @return [nil]
|
100
|
-
def marshal_load(obj)
|
101
|
-
@params = obj[:params]
|
102
|
-
@weight_vec = obj[:weight_vec]
|
103
|
-
@bias_term = obj[:bias_term]
|
104
|
-
@rng = obj[:rng]
|
105
|
-
nil
|
106
|
-
end
|
107
|
-
|
108
|
-
private
|
109
|
-
|
110
|
-
def partial_fit(x, y)
|
111
|
-
n_features = @params[:fit_bias] ? x.shape[1] + 1 : x.shape[1]
|
112
|
-
@left_weight = Numo::DFloat.zeros(n_features)
|
113
|
-
@right_weight = Numo::DFloat.zeros(n_features)
|
114
|
-
@left_optimizer = @params[:optimizer].dup
|
115
|
-
@right_optimizer = @params[:optimizer].dup
|
116
|
-
super
|
117
|
-
end
|
118
|
-
|
119
|
-
def calc_loss_gradient(x, y, weight)
|
120
|
-
2.0 * (x.dot(weight) - y)
|
121
|
-
end
|
122
|
-
|
123
|
-
def calc_new_weight(_optimizer, x, _weight, loss_gradient)
|
124
|
-
@left_weight = round_weight(@left_optimizer.call(@left_weight, calc_weight_gradient(loss_gradient, x)))
|
125
|
-
@right_weight = round_weight(@right_optimizer.call(@right_weight, calc_weight_gradient(-loss_gradient, x)))
|
126
|
-
@left_weight - @right_weight
|
127
|
-
end
|
128
|
-
|
129
|
-
def calc_weight_gradient(loss_gradient, data)
|
130
|
-
((@params[:reg_param] + loss_gradient).expand_dims(1) * data).mean(0)
|
131
|
-
end
|
132
|
-
|
133
|
-
def round_weight(weight)
|
134
|
-
0.5 * (weight + weight.abs)
|
135
|
-
end
|
136
|
-
end
|
137
|
-
end
|
138
|
-
end
|
@@ -1,112 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'svmkit/validation'
|
4
|
-
require 'svmkit/linear_model/sgd_linear_estimator'
|
5
|
-
require 'svmkit/base/regressor'
|
6
|
-
|
7
|
-
module SVMKit
|
8
|
-
module LinearModel
|
9
|
-
# LinearRegression is a class that implements ordinary least square linear regression
|
10
|
-
# with mini-batch stochastic gradient descent optimization.
|
11
|
-
#
|
12
|
-
# @example
|
13
|
-
# estimator =
|
14
|
-
# SVMKit::LinearModel::LinearRegression.new(max_iter: 1000, batch_size: 20, random_seed: 1)
|
15
|
-
# estimator.fit(training_samples, traininig_values)
|
16
|
-
# results = estimator.predict(testing_samples)
|
17
|
-
#
|
18
|
-
class LinearRegression < SGDLinearEstimator
|
19
|
-
include Base::Regressor
|
20
|
-
include Validation
|
21
|
-
|
22
|
-
# Return the weight vector.
|
23
|
-
# @return [Numo::DFloat] (shape: [n_outputs, n_features])
|
24
|
-
attr_reader :weight_vec
|
25
|
-
|
26
|
-
# Return the bias term (a.k.a. intercept).
|
27
|
-
# @return [Numo::DFloat] (shape: [n_outputs])
|
28
|
-
attr_reader :bias_term
|
29
|
-
|
30
|
-
# Return the random generator for random sampling.
|
31
|
-
# @return [Random]
|
32
|
-
attr_reader :rng
|
33
|
-
|
34
|
-
# Create a new ordinary least square linear regressor.
|
35
|
-
#
|
36
|
-
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
37
|
-
# @param bias_scale [Float] The scale of the bias term.
|
38
|
-
# @param max_iter [Integer] The maximum number of iterations.
|
39
|
-
# @param batch_size [Integer] The size of the mini batches.
|
40
|
-
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
41
|
-
# If nil is given, Nadam is used.
|
42
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
43
|
-
def initialize(fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil)
|
44
|
-
check_params_float(bias_scale: bias_scale)
|
45
|
-
check_params_integer(max_iter: max_iter, batch_size: batch_size)
|
46
|
-
check_params_boolean(fit_bias: fit_bias)
|
47
|
-
check_params_type_or_nil(Integer, random_seed: random_seed)
|
48
|
-
check_params_positive(max_iter: max_iter, batch_size: batch_size)
|
49
|
-
super(reg_param: 0.0, fit_bias: fit_bias, bias_scale: bias_scale,
|
50
|
-
max_iter: max_iter, batch_size: batch_size, optimizer: optimizer, random_seed: random_seed)
|
51
|
-
end
|
52
|
-
|
53
|
-
# Fit the model with given training data.
|
54
|
-
#
|
55
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
56
|
-
# @param y [Numo::Int32] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
57
|
-
# @return [LinearRegression] The learned regressor itself.
|
58
|
-
def fit(x, y)
|
59
|
-
check_sample_array(x)
|
60
|
-
check_tvalue_array(y)
|
61
|
-
check_sample_tvalue_size(x, y)
|
62
|
-
|
63
|
-
n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
|
64
|
-
n_features = x.shape[1]
|
65
|
-
|
66
|
-
if n_outputs > 1
|
67
|
-
@weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
|
68
|
-
@bias_term = Numo::DFloat.zeros(n_outputs)
|
69
|
-
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
|
70
|
-
else
|
71
|
-
@weight_vec, @bias_term = partial_fit(x, y)
|
72
|
-
end
|
73
|
-
|
74
|
-
self
|
75
|
-
end
|
76
|
-
|
77
|
-
# Predict values for samples.
|
78
|
-
#
|
79
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
80
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
81
|
-
def predict(x)
|
82
|
-
check_sample_array(x)
|
83
|
-
x.dot(@weight_vec.transpose) + @bias_term
|
84
|
-
end
|
85
|
-
|
86
|
-
# Dump marshal data.
|
87
|
-
# @return [Hash] The marshal data about LinearRegression.
|
88
|
-
def marshal_dump
|
89
|
-
{ params: @params,
|
90
|
-
weight_vec: @weight_vec,
|
91
|
-
bias_term: @bias_term,
|
92
|
-
rng: @rng }
|
93
|
-
end
|
94
|
-
|
95
|
-
# Load marshal data.
|
96
|
-
# @return [nil]
|
97
|
-
def marshal_load(obj)
|
98
|
-
@params = obj[:params]
|
99
|
-
@weight_vec = obj[:weight_vec]
|
100
|
-
@bias_term = obj[:bias_term]
|
101
|
-
@rng = obj[:rng]
|
102
|
-
nil
|
103
|
-
end
|
104
|
-
|
105
|
-
private
|
106
|
-
|
107
|
-
def calc_loss_gradient(x, y, weight)
|
108
|
-
2.0 * (x.dot(weight) - y)
|
109
|
-
end
|
110
|
-
end
|
111
|
-
end
|
112
|
-
end
|
@@ -1,161 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'svmkit/validation'
|
4
|
-
require 'svmkit/linear_model/sgd_linear_estimator'
|
5
|
-
require 'svmkit/base/classifier'
|
6
|
-
|
7
|
-
module SVMKit
|
8
|
-
module LinearModel
|
9
|
-
# LogisticRegression is a class that implements Logistic Regression
|
10
|
-
# with mini-batch stochastic gradient descent optimization.
|
11
|
-
# For multiclass classification problem, it uses one-vs-the-rest strategy.
|
12
|
-
#
|
13
|
-
# @example
|
14
|
-
# estimator =
|
15
|
-
# SVMKit::LinearModel::LogisticRegression.new(reg_param: 1.0, max_iter: 1000, batch_size: 20, random_seed: 1)
|
16
|
-
# estimator.fit(training_samples, traininig_labels)
|
17
|
-
# results = estimator.predict(testing_samples)
|
18
|
-
#
|
19
|
-
# *Reference*
|
20
|
-
# - S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Mathematical Programming, vol. 127 (1), pp. 3--30, 2011.
|
21
|
-
class LogisticRegression < SGDLinearEstimator
|
22
|
-
include Base::Classifier
|
23
|
-
include Validation
|
24
|
-
|
25
|
-
# Return the weight vector for Logistic Regression.
|
26
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
27
|
-
attr_reader :weight_vec
|
28
|
-
|
29
|
-
# Return the bias term (a.k.a. intercept) for Logistic Regression.
|
30
|
-
# @return [Numo::DFloat] (shape: [n_classes])
|
31
|
-
attr_reader :bias_term
|
32
|
-
|
33
|
-
# Return the class labels.
|
34
|
-
# @return [Numo::Int32] (shape: [n_classes])
|
35
|
-
attr_reader :classes
|
36
|
-
|
37
|
-
# Return the random generator for performing random sampling.
|
38
|
-
# @return [Random]
|
39
|
-
attr_reader :rng
|
40
|
-
|
41
|
-
# Create a new classifier with Logisitc Regression by the SGD optimization.
|
42
|
-
#
|
43
|
-
# @param reg_param [Float] The regularization parameter.
|
44
|
-
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
45
|
-
# @param bias_scale [Float] The scale of the bias term.
|
46
|
-
# If fit_bias is true, the feature vector v becoms [v; bias_scale].
|
47
|
-
# @param max_iter [Integer] The maximum number of iterations.
|
48
|
-
# @param batch_size [Integer] The size of the mini batches.
|
49
|
-
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
50
|
-
# If nil is given, Nadam is used.
|
51
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
52
|
-
def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0,
|
53
|
-
max_iter: 1000, batch_size: 20, optimizer: nil, random_seed: nil)
|
54
|
-
check_params_float(reg_param: reg_param, bias_scale: bias_scale)
|
55
|
-
check_params_integer(max_iter: max_iter, batch_size: batch_size)
|
56
|
-
check_params_boolean(fit_bias: fit_bias)
|
57
|
-
check_params_type_or_nil(Integer, random_seed: random_seed)
|
58
|
-
check_params_positive(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size)
|
59
|
-
super
|
60
|
-
@classes = nil
|
61
|
-
end
|
62
|
-
|
63
|
-
# Fit the model with given training data.
|
64
|
-
#
|
65
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
66
|
-
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
67
|
-
# @return [LogisticRegression] The learned classifier itself.
|
68
|
-
def fit(x, y)
|
69
|
-
check_sample_array(x)
|
70
|
-
check_label_array(y)
|
71
|
-
check_sample_label_size(x, y)
|
72
|
-
|
73
|
-
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
74
|
-
n_classes = @classes.size
|
75
|
-
n_features = x.shape[1]
|
76
|
-
|
77
|
-
if n_classes > 2
|
78
|
-
@weight_vec = Numo::DFloat.zeros(n_classes, n_features)
|
79
|
-
@bias_term = Numo::DFloat.zeros(n_classes)
|
80
|
-
n_classes.times do |n|
|
81
|
-
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
|
82
|
-
@weight_vec[n, true], @bias_term[n] = partial_fit(x, bin_y)
|
83
|
-
end
|
84
|
-
else
|
85
|
-
negative_label = y.to_a.uniq.min
|
86
|
-
bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1
|
87
|
-
@weight_vec, @bias_term = partial_fit(x, bin_y)
|
88
|
-
end
|
89
|
-
|
90
|
-
self
|
91
|
-
end
|
92
|
-
|
93
|
-
# Calculate confidence scores for samples.
|
94
|
-
#
|
95
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
96
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
|
97
|
-
def decision_function(x)
|
98
|
-
check_sample_array(x)
|
99
|
-
x.dot(@weight_vec.transpose) + @bias_term
|
100
|
-
end
|
101
|
-
|
102
|
-
# Predict class labels for samples.
|
103
|
-
#
|
104
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
105
|
-
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
106
|
-
def predict(x)
|
107
|
-
check_sample_array(x)
|
108
|
-
|
109
|
-
return Numo::Int32.cast(predict_proba(x)[true, 1].ge(0.5)) * 2 - 1 if @classes.size <= 2
|
110
|
-
|
111
|
-
n_samples, = x.shape
|
112
|
-
decision_values = predict_proba(x)
|
113
|
-
Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] })
|
114
|
-
end
|
115
|
-
|
116
|
-
# Predict probability for samples.
|
117
|
-
#
|
118
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
119
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
120
|
-
def predict_proba(x)
|
121
|
-
check_sample_array(x)
|
122
|
-
|
123
|
-
proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0)
|
124
|
-
return (proba.transpose / proba.sum(axis: 1)).transpose if @classes.size > 2
|
125
|
-
|
126
|
-
n_samples, = x.shape
|
127
|
-
probs = Numo::DFloat.zeros(n_samples, 2)
|
128
|
-
probs[true, 1] = proba
|
129
|
-
probs[true, 0] = 1.0 - proba
|
130
|
-
probs
|
131
|
-
end
|
132
|
-
|
133
|
-
# Dump marshal data.
|
134
|
-
# @return [Hash] The marshal data about LogisticRegression.
|
135
|
-
def marshal_dump
|
136
|
-
{ params: @params,
|
137
|
-
weight_vec: @weight_vec,
|
138
|
-
bias_term: @bias_term,
|
139
|
-
classes: @classes,
|
140
|
-
rng: @rng }
|
141
|
-
end
|
142
|
-
|
143
|
-
# Load marshal data.
|
144
|
-
# @return [nil]
|
145
|
-
def marshal_load(obj)
|
146
|
-
@params = obj[:params]
|
147
|
-
@weight_vec = obj[:weight_vec]
|
148
|
-
@bias_term = obj[:bias_term]
|
149
|
-
@classes = obj[:classes]
|
150
|
-
@rng = obj[:rng]
|
151
|
-
nil
|
152
|
-
end
|
153
|
-
|
154
|
-
private
|
155
|
-
|
156
|
-
def calc_loss_gradient(x, y, weight)
|
157
|
-
y / (Numo::NMath.exp(-y * x.dot(weight)) + 1.0) - y
|
158
|
-
end
|
159
|
-
end
|
160
|
-
end
|
161
|
-
end
|
@@ -1,112 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'svmkit/validation'
|
4
|
-
require 'svmkit/linear_model/sgd_linear_estimator'
|
5
|
-
require 'svmkit/base/regressor'
|
6
|
-
|
7
|
-
module SVMKit
|
8
|
-
module LinearModel
|
9
|
-
# Ridge is a class that implements Ridge Regression
|
10
|
-
# with mini-batch stochastic gradient descent optimization.
|
11
|
-
#
|
12
|
-
# @example
|
13
|
-
# estimator =
|
14
|
-
# SVMKit::LinearModel::Ridge.new(reg_param: 0.1, max_iter: 1000, batch_size: 20, random_seed: 1)
|
15
|
-
# estimator.fit(training_samples, traininig_values)
|
16
|
-
# results = estimator.predict(testing_samples)
|
17
|
-
#
|
18
|
-
class Ridge < SGDLinearEstimator
|
19
|
-
include Base::Regressor
|
20
|
-
include Validation
|
21
|
-
|
22
|
-
# Return the weight vector.
|
23
|
-
# @return [Numo::DFloat] (shape: [n_outputs, n_features])
|
24
|
-
attr_reader :weight_vec
|
25
|
-
|
26
|
-
# Return the bias term (a.k.a. intercept).
|
27
|
-
# @return [Numo::DFloat] (shape: [n_outputs])
|
28
|
-
attr_reader :bias_term
|
29
|
-
|
30
|
-
# Return the random generator for random sampling.
|
31
|
-
# @return [Random]
|
32
|
-
attr_reader :rng
|
33
|
-
|
34
|
-
# Create a new Ridge regressor.
|
35
|
-
#
|
36
|
-
# @param reg_param [Float] The regularization parameter.
|
37
|
-
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
38
|
-
# @param bias_scale [Float] The scale of the bias term.
|
39
|
-
# @param max_iter [Integer] The maximum number of iterations.
|
40
|
-
# @param batch_size [Integer] The size of the mini batches.
|
41
|
-
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
42
|
-
# If nil is given, Nadam is used.
|
43
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
44
|
-
def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil)
|
45
|
-
check_params_float(reg_param: reg_param, bias_scale: bias_scale)
|
46
|
-
check_params_integer(max_iter: max_iter, batch_size: batch_size)
|
47
|
-
check_params_boolean(fit_bias: fit_bias)
|
48
|
-
check_params_type_or_nil(Integer, random_seed: random_seed)
|
49
|
-
check_params_positive(reg_param: reg_param, max_iter: max_iter, batch_size: batch_size)
|
50
|
-
super
|
51
|
-
end
|
52
|
-
|
53
|
-
# Fit the model with given training data.
|
54
|
-
#
|
55
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
56
|
-
# @param y [Numo::Int32] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
57
|
-
# @return [Ridge] The learned regressor itself.
|
58
|
-
def fit(x, y)
|
59
|
-
check_sample_array(x)
|
60
|
-
check_tvalue_array(y)
|
61
|
-
check_sample_tvalue_size(x, y)
|
62
|
-
|
63
|
-
n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
|
64
|
-
n_features = x.shape[1]
|
65
|
-
|
66
|
-
if n_outputs > 1
|
67
|
-
@weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
|
68
|
-
@bias_term = Numo::DFloat.zeros(n_outputs)
|
69
|
-
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
|
70
|
-
else
|
71
|
-
@weight_vec, @bias_term = partial_fit(x, y)
|
72
|
-
end
|
73
|
-
|
74
|
-
self
|
75
|
-
end
|
76
|
-
|
77
|
-
# Predict values for samples.
|
78
|
-
#
|
79
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
80
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
81
|
-
def predict(x)
|
82
|
-
check_sample_array(x)
|
83
|
-
x.dot(@weight_vec.transpose) + @bias_term
|
84
|
-
end
|
85
|
-
|
86
|
-
# Dump marshal data.
|
87
|
-
# @return [Hash] The marshal data about Ridge.
|
88
|
-
def marshal_dump
|
89
|
-
{ params: @params,
|
90
|
-
weight_vec: @weight_vec,
|
91
|
-
bias_term: @bias_term,
|
92
|
-
rng: @rng }
|
93
|
-
end
|
94
|
-
|
95
|
-
# Load marshal data.
|
96
|
-
# @return [nil]
|
97
|
-
def marshal_load(obj)
|
98
|
-
@params = obj[:params]
|
99
|
-
@weight_vec = obj[:weight_vec]
|
100
|
-
@bias_term = obj[:bias_term]
|
101
|
-
@rng = obj[:rng]
|
102
|
-
nil
|
103
|
-
end
|
104
|
-
|
105
|
-
private
|
106
|
-
|
107
|
-
def calc_loss_gradient(x, y, weight)
|
108
|
-
2.0 * (x.dot(weight) - y)
|
109
|
-
end
|
110
|
-
end
|
111
|
-
end
|
112
|
-
end
|